Problems for Ross 2022 Bernoulli Numbers

- 1. Work out the volume calculation done by Ibn al-Haytham: for a parabola rotated about an "ordinate" (say $x b = -ay^2$, $x \in [0, b]$, rotated about the x = 0 line), the volume of the resulting solid is $\frac{8}{15}$ times the volume of the inscribing cylinder.
- 2. Compute B_{2m} for m = 1, ..., 8, and factor into primes the numerator and denominator. Do you have any conjectures about what primes can appear in the denominator of B_{2m} ? (The numerators will probably look very mysterious!)
- 3. Prove that for $\operatorname{Re}(s) > 1$,

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

where the product is taken over all primes p.

- 4. Suppose $f \colon \mathbb{R} \to \mathbb{C}$ is Riemann-integrable on any closed interval, and that f is periodic with period L. Show that the Fourier coefficients of f do not depend on which interval of length L is used to compute them. Compute the Fourier coefficients of the 2π -periodic function $f(x) = e^{imx}$, $m \in \mathbb{Z}$.
- 5. Check that when f(x) is twice continuously differentiable on the circle $\mathbb{R}/2\pi\mathbb{Z}$, it satisfies the hypothesis $\sum_{n\in\mathbb{Z}} |\hat{f}(n)| < \infty$ in our pointwise-convergence result for Fourier series. Along the way, find a formula for $(\hat{f}')(n)$.
- 6. Complete the calculations sketched in class of the Fourier coefficients $\hat{f}(n)$ for:
 - (a) $f(x) = |x|, x \in [-\pi, \pi].$
 - (b) $f(x) = \cos(\alpha x), x \in [-\pi, \pi]$ and $\alpha \in \mathbb{C} \setminus \mathbb{Z}$. What happens when $\alpha \in \mathbb{Z}$?
- 7. Define the Bernoulli polynomials $B_n(x)$ $n \in \mathbb{Z}_{>0}$ by the generating function

$$\frac{te^{xt}}{e^t - 1} = \sum_{k=0}^{\infty} B_k(x) \frac{t^k}{k!}.$$

Check the following:

- (a) $B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$.
- (b) For $k \ge 2$, $B_k(0) = B_k(1)$.
- (c) For $k \ge 1$, $B'_k(x) = kB_{k-1}(x)$, and $\int_0^1 B_k(x)dx = 0$.

Regard $B_k(x)$ as a function on [0,1], and compute its Fourier coefficients. Using the theorem on convergence of Fourier series stated in class, derive from this another calculation of $\zeta(2m)$, $m \in \mathbb{Z}_{\geq 1}$.

- 8. (a) Let G be a topological group: this means that G is a group and a topological space in such a way that the group operation $G \times G \to G$ and inversion $G \to G$ are both continuous maps. Examples (given as pairs (G, \cdot) , where G is the space and \cdot is the group operation): $(\mathbb{R}, +), (\mathbb{R}^{\times}, \times), (\mathbb{C}, +),$ $(\mathbb{C}^{\times}, \times)$, with the usual topologies on the real line or complex plane, or any group (G, \cdot) , where G is a discrete topological space. Write down some other examples.
 - (b) Our study of Fourier analysis for periodic functions on ℝ can be thought of as the study of functions on the topological group (ℝ/2πℤ, +), which via the complex exponential map x → e^{ix} is isomorphic as topological group (what does that mean?) to the unit circle (S¹, ·) with the operation multiplication (S¹ = {z ∈ ℂ : |z| = 1}).

- (c) For $f: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}$, why is \mathbb{Z} the right parameter space for Fourier coefficients, and for $n \in \mathbb{Z}$ what is the special role of the functions $x \mapsto e^{inx}$? One answer to this question is that they are the (unitary) *characters* of $\mathbb{R}/2\pi\mathbb{Z}$, i.e. they are precisely the continuous group homomorphisms $\chi: \mathbb{R}/2\pi\mathbb{Z} \to S^1$. The word "unitary" here refers to the fact that the homomorphisms land in S^1 ; more generally for a topological group G, a character is a continuous homomorphism $G \to \mathbb{C}^{\times}$; we will write \widehat{G} for the set of continuous homomorphisms $\widehat{G} \to S^1$.
 - i. How can you make \widehat{G} into a group? (If you are familiar with the compact-open topology on function spaces, you can elaborate on this exercise to make \widehat{G} a topological group.)
 - ii. Check that these $x \mapsto e^{inx}$ are indeed all the characters of $\mathbb{R}/2\pi\mathbb{Z}$. Thus identifying $\mathbb{Z} \xrightarrow{\sim} \mathbb{R}/2\pi\mathbb{Z} = \operatorname{Hom}_{\operatorname{cts}}(\mathbb{R}/2\pi\mathbb{Z}, S^1)$ (as what? sets? groups? topological groups?), we can think of the collection of Fourier coefficients $\{\widehat{f}(n)\}_{n\in\mathbb{Z}}$ as the function $\widehat{f}: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}$ given by

$$\hat{f}(\chi) = \frac{1}{2\pi} \int_{\mathbb{R}/2\pi\mathbb{Z}} f(x)\overline{\chi(x)} dx.$$

(The bar indicates complex conjugation. It's not essential to include it, but if we don't we would have to redo our past calculations to get normalizations right.)

- iii. "Dually," determine the character group \mathbb{Z} .
- (d) For another example, replace $\mathbb{R}/2\pi\mathbb{Z}$ with \mathbb{R} . What are the characters (valued in \mathbb{C}^{\times}) and the unitary characters (valued in S^1) of \mathbb{R} ? (Again, depending on your background, you may determine $\widehat{\mathbb{R}}$ either as group or as topological group.) These will appear when we discuss the Fourier transform on \mathbb{R} .
- 9. We continue with the abstraction of the previous exercise in the case $G = \mathbb{Z}/m\mathbb{Z}$, the cyclic group of order $m \in \mathbb{Z} > 1$. Identify the set (group!) \hat{G} of characters (= unitary characters—why?) of $\mathbb{Z}/m\mathbb{Z}$ with m^{th} roots of unity $\mu_m = \{z \in \mathbb{C} : z^m = 1\}$. For a function $f: G \to \mathbb{C}$, we define its Fourier transform to be the function on $\hat{G}, \hat{f}: \hat{G} \to \mathbb{C}$, given by

$$\hat{f}(\zeta) = \frac{1}{m} \sum_{a \in \mathbb{Z}/m\mathbb{Z}} f(a) \overline{\zeta(a)}$$

We have written this thinking of $\zeta \in \widehat{G}$ as an abstract character so that the formal analogy with problem 8.c.ii is clear; but using the identification $\widehat{G} \xrightarrow{\sim} \mu_m$ that sends ζ to $\zeta(1)$, and then writing $\zeta(1) = e^{2\pi i k/m}$ for some $k \in \mathbb{Z}/m\mathbb{Z}$, we can regard \widehat{f} as the function $\widehat{f} : \mathbb{Z}/m \to \mathbb{C}$ given by

$$\hat{f}(k) = \frac{1}{m} \sum_{a \in \mathbb{Z}/m\mathbb{Z}} f(a) e^{-2\pi i ak/m}$$

(a) Show that f can be expressed in terms of its "Fourier series":

$$f(a) = \sum_{k \in \mathbb{Z}/m\mathbb{Z}} \hat{f}(k) e^{2\pi i ak/m}$$

(b) Now let $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character, extended to a function $\chi: \mathbb{Z}/m\mathbb{Z} \to \mathbb{C}$ by setting $\chi(a) = 0$ if (a, m) > 1. Relate the Fourier transform $\hat{\chi}(a)$ to the *Gauss sum*

$$G(\chi,a) = \sum_{k \in \mathbb{Z}/m\mathbb{Z}} \chi(k) e^{2\pi i a k/m}$$

(c) We say that χ is a primitive character modulo m if there is no proper divisor d of m such that χ agrees on $(\mathbb{Z}/m\mathbb{Z})^{\times}$ with the composition $(\mathbb{Z}/m\mathbb{Z})^{\times} \to (\mathbb{Z}/d\mathbb{Z})^{\times} \xrightarrow{\bar{\chi}} \mathbb{C}^{\times}$ for a Dirichlet character modulo $d \bar{\chi}$. Show that if χ is primitive, then $G(\chi, a) = \bar{\chi}(a)G(\chi, 1)$ for every $a \in \mathbb{Z}/m\mathbb{Z}$ (note: without assuming primitivity, this will be true when (a, m) = 1; show $G(\chi, a)$ vanishes when (a, m) > 1).

- (d) Combine parts (a)-(c) to show that for a primitive character χ , $|G(\chi, 1)|^2 = m$. (This can be shown directly as well.) We will use this calculation in our later discussion of Dirichlet L-functions.
- 10. A little practice with complex functions.
 - (a) Compute the path integrals

$$\int_{\Gamma} z^n dz$$

where Γ is the path traversing the unit circle once counter-clockwise given by $\gamma(t) = e^{2\pi i t}$ for $t \in [0,1]$ and $n \in \mathbb{Z}$. What n is exceptional? Can you account for this in light of Goursat's theorem?

- (b) Show that $f(z) = \overline{z}$ (complex conjugate) is not holomorphic (anywhere?!).
- (c) Generalize the previous part to establish the *Cauchy-Riemann equations*: identify $\mathbb{C} = \mathbb{R}^2$ via $x + iy \mapsto (x, y)$ and regard a function $f: \Omega \to \mathbb{C}, \Omega \subset \mathbb{C}$ an open subset, as a function f(x, y) = u(x, y) + iv(x, y) for $(x, y) \in \Omega \subset \mathbb{C} = \mathbb{R}^2$, where u and v are now real-valued functions of two variables. Show that if f is holomorphic at a point $z_0 = (x_0, y_0) \in \Omega$, then the partial derivatives satisfy

$$rac{\partial u}{\partial x} = rac{\partial v}{\partial y}, rac{\partial u}{\partial y} = -rac{\partial v}{\partial x}$$

at the point (x_0, y_0) . (The following converse is also true: if u and v are continuously differentiable and satisfy the Cauchy-Riemann equations on an open set Ω , then u + iv is holomorphic on Ω .) Show that $f(z) = e^z$, or explicitly $f(x + iy) = e^x(\cos(y) + i\sin(y))$ (and thus $\cos(z)$ and $\sin(z)$), and also any polynomial in z satisfy the Cauchy-Riemann equations at every point of \mathbb{C} (with continuous partial derivatives, so the converse mentioned would show they are holomorphic on all of \mathbb{C}).

- (d) Let $f: \Omega \to \mathbb{C}$ be a holomorphic function on an open subset $\Omega \subset \mathbb{C}$. Further assume that $f': \Omega \to \mathbb{C}$ is continuous. Use Green's theorem and the Cauchy-Riemann equations to show that $\int_{\Gamma} f(z) dz = 0$ (as in Goursat's theorem) for any "nice" closed path $\Gamma \subset \Omega$ such that the "inside" of Γ is entirely contained in Ω (use whatever notions of "nice" and "inside" you are comfortable with; for instance, you could take Γ to be a polygon whose interior is also contained in Ω
- (e) Fix $z_0 \in \mathbb{C}$. Generalize arguments you've seen for real power series to show that if $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ is a power series with $a_n \in \mathbb{C}$ that converges absolutely on a disc $\{|z-z_0| < R\}$, then f defines a holomorphic function on this disc. (This provides another proof that e^z , defined by its power series, is a holomorphic function on all of \mathbb{C} .)
- 11. In class we reduced the extension to a holomorphic function on \mathbb{C} and functional equation of Dirichlet L-series to an identity for generalized theta series. This exercise asks you to prove this identity. Let $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a non-trivial primitive Dirichlet character modulo m > 1, and as in class define for y > 0

$$\theta(\chi, y) = \sum_{n \in \mathbb{Z}} \chi(n) n^p e^{-\pi n^2 y/m},$$

where $p \in \{0, 1\}$ is characterized by $\chi(-1) = (-1)^p$.

- (a) Check that $\theta(\chi, y) = \sum_{a=0}^{m-1} \chi(a) \sum_{n \in m\mathbb{Z}} (a+n)^p e^{-\pi (a+n)^2 y/m}$.
- (b) We consider a generalization of the inner sum in part (a): for $a, b \in \mathbb{R}, \mu \in \mathbb{R}_{>0}$, let

$$\theta_{\mu}(a,b,y) = \sum_{n \in \mu \mathbb{Z}} e^{-\pi (a+n)^2 y + 2\pi i b n}.$$

Show that this series converges absolutely for y > 0 and uniformly on compact subsets of $\mathbb{R}_{>0}$. Use Poisson summation to show that

$$\theta_{\mu}(a,b,1/y) = e^{-2\pi i a b} \frac{\sqrt{y}}{\mu} \theta_{1/\mu}(-b,a,y)$$

(Hint: for $f(\mu, a, b, x) = e^{-\pi(a+\mu x)^2 + 2\pi i b \mu x}$, compute the Fourier transform in the x variable to be (omitting the μ , a, b parameters from the notation for f)

$$\hat{f}(\xi) = e^{2\pi i \frac{a}{\mu}\xi - 2\pi i ab} \frac{1}{\mu} e^{-\pi (\frac{\xi}{\mu} - b)^2}.$$

Check that $\theta_{\mu}(a, b, 1/y) = \sum_{n \in \mathbb{Z}} f(\mu/\sqrt{y}, a/\sqrt{y}, b\sqrt{y}, n)$, and apply Poisson summation to finish the proof.)

(c) Show that as a function of a, $\theta_{\mu}(a, b, y)$ is differentiable, and its derivative can be computed by differentiating each term of the infinite sum. Conclude that for $p \in \{0, 1\}$,

$$\theta_{\mu}^{(p)}(a,b,1/y) = \frac{1}{i^{p}e^{2\pi i ab}\mu}y^{p+\frac{1}{2}}\theta_{1/\mu}^{(p)}(-b,a,y),$$

where the superscript in $\theta^{(p)}$ indicates differentiation p times with respect to the variable a.

(d) Combine parts (a) and (c) to deduce the desired formula, that

$$\theta(\chi, 1/y) = \frac{G(\chi)}{i^p \sqrt{m}} y^{p+\frac{1}{2}} \theta(\bar{\chi}, y).$$

(You will need to use that χ is primitive and in particular problem 9(c).)

- 12. In class we omitted the modifications to the proof needed to evaluate $L(\chi, 1)$, for χ a primitive Dirichlet character with $\chi(-1) = -1$. Complete the proof.
- 13. Using our results on special values of Dirichlet L-functions (including the previous problem), evaluate the sums

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots,$$

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + \cdots,$$

$$1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \frac{1}{9^3} - \frac{1}{11^3} + \cdots,$$

- 14. Check the lemma from class that $v_p(ab) = v_p(a) + v_p(b)$ and $v_p(a+b) \ge \min(v_p(a), v_p(b))$, with equality if $v_p(a) \ne v_p(b)$; deduce the corresponding multiplicative version $(|\cdot|_p \text{ is multiplicative and satisfies the strong triangle inequality } |a+b|_p \le \max(|a|_p, |b|_p)).$
- 15. Let p = 5. Set $a_1 = 2$, and recursively solve (in \mathbb{Z}) the equation $a_n^2 \equiv -1 \pmod{5^n}$, with $a_n \equiv a_{n-1} \pmod{5^{n-1}}$. Show that $(a_n)_n$ is a Cauchy sequence with respect to $|\cdot|_5$, i.e. for all $\epsilon > 0$ there exists N such that for all m, n > N, $|a_n a_m|_5 < \epsilon$.
- 16. Generalize the previous exercise as follows (one form of Hensel's lemma).
 - (a) Let $f(x) \in \mathbb{Z}[x]$, and let $a_1 \in \mathbb{Z}$ satisfy $v_p(f(a_1)) > 0$ and $v_p(f'(a_1)) = 0$ (f'(x)) is the derivative, computed using the usual formulas for polynomials; note this can be done for polynomials over any ring). Show that the sequence $(a_n)_{n>1}$ of rational numbers

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

is a Cauchy sequence with respect to $|\cdot|_p$, and $|f(a_n)|_p \to 0$ as $n \to \infty$.

- (b) Once we have (one 7/20) defined \mathbb{Z}_p , reformulate the result of part (a) as a statement about solving f(x) = 0 in \mathbb{Z}_p given a mod p solution (also check that we may, more generally, take $f(x) \in \mathbb{Z}_p[x]$).
- 17. Let K be a field. A function $v: K \to \mathbb{Z} \cup \infty$ (here \mathbb{Z} can be replaced with any totally ordered abelian group isomorphic to \mathbb{Z}) satisfying the properties of v_p in Problem 14 is called a discrete valuation.
 - (a) Let K be a field extension of \mathbb{Q}_p of finite degree. Show that $v_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ extends uniquely to a discrete valuation $v_p : K \to \frac{1}{e}\mathbb{Z} \cup \{\infty\}$ for some integer e.
 - (b) Let $K = \mathbb{Q}[i]$. Does $v_3: \mathbb{Q}^{\times} \to \mathbb{Z}$ extend uniquely to K? What about v_5 ? What is going on?
- 18. Verify the rest of the lemma that we partially proved in class: component-wise addition and multiplication yield well-defined (independent of representative Cauchy sequences) ring operations on \mathbb{Q}_p ; \mathbb{Q}_p is a field; \mathbb{Q}_p is complete with respect to $|\cdot|_p$.
- 19. Consider the usual power series expansions for the exponential and logarithm functions:

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n!}$$

If we attempt to use these power series to define $\exp(x)$ and $\log(1+x)$ as \mathbb{Q}_p -valued functions of a *p*-adic variable $x \in \mathbb{Q}_p$ (giving the *p*-adic exponential and logarithm), what are their radii of convergence? (Recall a series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence *r* if it converges for all |x| < r and diverges for all |x| > r; here of course we should take $|\cdot|_p$ for the relevant "absolute value.") In calculus, the exponential and logarithm functions are inverse homomorphisms $\mathbb{R} \to \mathbb{R}_{>0}$ (the group operations are addition on the source and multiplication on the target): what analogue is true for our *p*-adic exponential and *p*-adic logarithm functions?

- 20. How many quadratic (degree 2) field extensions, up to isomorphism, does \mathbb{Q}_p have for p odd? (Use Problem 16.) What about for p = 2? (This is more subtle; you can try generalizing the results of Problem 16 to include some cases when $v_p(f'(a_1)) > 0$.)
- 21. Let $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a primitive Dirichlet character. Let F be any integer multiple of m. Show (generalizing the argument we gave in class for F = m) that for all $n \in \mathbb{Z}_{\geq 0}$,

$$B_{n,\chi} = F^{n-1} \sum_{a=1}^{F} \chi(a) B_n\left(\frac{a}{F}\right)$$

(here $B_n(a/F)$ is the value of the Bernoulli polynomial at a/F, not B_n times a/F).

- 22. Let χ_1 and χ_2 be primitive Dirichlet characters modulo m_1 and m_2 . Let $(\chi_1\chi_2)$ denote the *primitive* Dirichlet character underlying the naïve product character $\psi(a) = \chi_1(a)\chi_2(a)$, which is a well-defined Dirichlet character modulo lcm (m_1, m_2) . (Stop and make sure you understand the distinction being drawn here!)
 - (a) Give an example where $\psi \neq (\chi_1 \chi_2)$. Give an example where $\psi = (\chi_1 \chi_2)$.
 - (b) Show that unless $\chi_1(a) = \chi_2(a) = 0$, $\chi_1(a)\chi_2(a) = (\chi_1\chi_2)(a)$.
- 23. In class we established the basic properties of the *p*-adic L-function $L_p(\chi, s)$, restricting for simplicity to the case $p \neq 2$. Make the necessary case-by-case adjustments to extend our results to the case p = 2.

Further reading: Here are some references that you might enjoy as follow-ups or companions to this course.

- 1. Ireland-Rosen, A Classical Introduction to Modern Number Theory, chapters on Bernoulli numbers and Dirichlet L-functions (including: a different proof of the analytic continuation of $L(\chi, s)$ —somewhat easier than what we did—but not working out the functional equation; an elementary proof of the Kummer congruences; a proof of Herbrand's theorem).
- 2. Körner, *Fourier Analysis*: a wide-ranging essayistic introduction to Fourier analysis, with some fun history and applications.
- 3. Shakarchi-Stein, *Fourier Analysis*: a wonderfully clear Fourier analysis book written for an audience who has just taken a first real analysis course.
- 4. Washington, *Introduction to Cyclotomic Fields*: a more advanced book on Iwasawa theory. Our treatment of the *p*-adic L-function follows Chapter 5 (the book later gives other, more sophisticated, constructions of the *p*-adic L-function). Other parts of the book assume more background in complex analysis, algebra, and algebraic number theory.
- 5. Kato-Kurokawa-Saito, Number Theory I: Fermat's Dream: a beautiful introduction to several fundamental topics in modern number theory, written for an audience with some algebra and complex analysis background but otherwise quite accessible. Chapter 3 gives a different treatment of our work on L-functions and Bernoulli numbers, and chapter 4 develops the first connections to algebraic number theory. (This is the first book in a series of 3 number theory texts that are commonly used in Japan; the third book discusses Iwasawa theory and the *p*-adic L-function.)
- 6. Koblitz, *p-adic Numbers, p-adic Analysis, and Zeta-Functions.* Chapter 1 is a careful introduction to *p*-adic numbers. Chapter 2 constructs the *p*-adic zeta function (a special case of the *p*-adic L-function) using a different method than the one we gave in class (similar to but at a more accessible level than the construction given in Washington Chapter 12).