
Problems for Ross 2022 Bernoulli Numbers

1. Work out the volume calculation done by Ibn al-Haytham: for a parabola rotated about an “ordinate”
(say x − b = −ay2, x ∈ [0, b], rotated about the x = 0 line), the volume of the resulting solid is 8

15
times the volume of the inscribing cylinder.

2. Compute B2m for m = 1, . . . , 8, and factor into primes the numerator and denominator. Do you have
any conjectures about what primes can appear in the denominator of B2m? (The numerators will
probably look very mysterious!)

3. Prove that for Re(s) > 1,

ζ(s) =
∏
p

(1− p−s)−1,

where the product is taken over all primes p.

4. Suppose f : R→ C is Riemann-integrable on any closed interval, and that f is periodic with period L.
Show that the Fourier coefficients of f do not depend on which interval of length L is used to compute
them. Compute the Fourier coefficients of the 2π-periodic function f(x) = eimx, m ∈ Z.

5. Check that when f(x) is twice continuously differentiable on the circle R/2πZ, it satisfies the hypothesis∑
n∈Z |f̂(n)| <∞in our pointwise-convergence result for Fourier series. Along the way, find a formula

for ˆ(f ′)(n).

6. Complete the calculations sketched in class of the Fourier coefficients f̂(n) for:

(a) f(x) = |x|, x ∈ [−π, π].

(b) f(x) = cos(αx), x ∈ [−π, π] and α ∈ C \ Z. What happens when α ∈ Z?

7. Define the Bernoulli polynomials Bn(x) n ∈ Z≥0 by the generating function

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

Check the following:

(a) Bk(x) =
∑k
i=0

(
k
i

)
Bix

k−i.

(b) For k ≥ 2, Bk(0) = Bk(1).

(c) For k ≥ 1, B′k(x) = kBk−1(x), and
∫ 1

0
Bk(x)dx = 0.

Regard Bk(x) as a function on [0, 1], and compute its Fourier coefficients. Using the theorem on
convergence of Fourier series stated in class, derive from this another calculation of ζ(2m), m ∈ Z≥1.

8. (a) Let G be a topological group: this means that G is a group and a topological space in such a way
that the group operation G×G→ G and inversion G→ G are both continuous maps. Examples
(given as pairs (G, ·), where G is the space and · is the group operation): (R,+), (R×,×), (C,+),
(C×,×), with the usual topologies on the real line or complex plane, or any group (G, ·), where
G is a discrete topological space. Write down some other examples.

(b) Our study of Fourier analysis for periodic functions on R can be thought of as the study of
functions on the topological group (R/2πZ,+), which via the complex exponential map x 7→ eix

is isomorphic as topological group (what does that mean?) to the unit circle (S1, ·) with the
operation multiplication (S1 = {z ∈ C : |z| = 1}).
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(c) For f : R/2πZ → C, why is Z the right parameter space for Fourier coefficients, and for n ∈ Z
what is the special role of the functions x 7→ einx? One answer to this question is that they are
the (unitary) characters of R/2πZ, i.e. they are precisely the continuous group homomorphisms
χ : R/2πZ→ S1. The word “unitary” here refers to the fact that the homomorphisms land in S1;
more generally for a topological group G, a character is a continuous homomorphism G → C×;
we will write Ĝ for the set of continuous homomorphisms Ĝ→ S1.

i. How can you make Ĝ into a group? (If you are familiar with the compact-open topology on

function spaces, you can elaborate on this exercise to make Ĝ a topological group.)

ii. Check that these x 7→ einx are indeed all the characters of R/2πZ. Thus identifying Z ∼−→
R̂/2πZ = Homcts(R/2πZ, S1) (as what? sets? groups? topological groups?), we can think of

the collection of Fourier coefficients {f̂(n)}n∈Z as the function f̂ : R̂/2πZ→ C given by

f̂(χ) =
1

2π

∫
R/2πZ

f(x)χ(x)dx.

(The bar indicates complex conjugation. It’s not essential to include it, but if we don’t we
would have to redo our past calculations to get normalizations right.)

iii. “Dually,” determine the character group Ẑ.

(d) For another example, replace R/2πZ with R. What are the characters (valued in C×) and the
unitary characters (valued in S1) of R? (Again, depending on your background, you may deter-

mine R̂ either as group or as topological group.) These will appear when we discuss the Fourier
transform on R.

9. We continue with the abstraction of the previous exercise in the case G = Z/mZ, the cyclic group of

order m ∈ Z > 1. Identify the set (group!) Ĝ of characters (= unitary characters—why?) of Z/mZ
with mth roots of unity µm = {z ∈ C : zm = 1}. For a function f : G → C, we define its Fourier

transform to be the function on Ĝ, f̂ : Ĝ→ C, given by

f̂(ζ) =
1

m

∑
a∈Z/mZ

f(a)ζ(a)

We have written this thinking of ζ ∈ Ĝ as an abstract character so that the formal analogy with
problem 8.c.ii is clear; but using the identification Ĝ

∼−→ µm that sends ζ to ζ(1), and then writing

ζ(1) = e2πik/m for some k ∈ Z/mZ, we can regard f̂ as the function f̂ : Z/m→ C given by

f̂(k) =
1

m

∑
a∈Z/mZ

f(a)e−2πiak/m

(a) Show that f can be expressed in terms of its “Fourier series”:

f(a) =
∑

k∈Z/mZ

f̂(k)e2πiak/m

(b) Now let χ : (Z/mZ)× → C× be a Dirichlet character, extended to a function χ : Z/mZ → C by
setting χ(a) = 0 if (a,m) > 1. Relate the Fourier transform χ̂(a) to the Gauss sum

G(χ, a) =
∑

k∈Z/mZ

χ(k)e2πiak/m.

(c) We say that χ is a primitive character modulo m if there is no proper divisor d of m such that χ

agrees on (Z/mZ)× with the composition (Z/mZ)× → (Z/dZ)×
χ̄−→ C× for a Dirichlet character

modulo d χ̄. Show that if χ is primitive, then G(χ, a) = χ̄(a)G(χ, 1) for every a ∈ Z/mZ (note:
without assuming primitivity, this will be true when (a,m) = 1; show G(χ, a) vanishes when
(a,m) > 1).
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(d) Combine parts (a)-(c) to show that for a primitive character χ, |G(χ, 1)|2 = m. (This can be
shown directly as well.) We will use this calculation in our later discussion of Dirichlet L-functions.

10. A little practice with complex functions.

(a) Compute the path integrals ∫
Γ

zndz

where Γ is the path traversing the unit circle once counter-clockwise given by γ(t) = e2πit for
t ∈ [0, 1] and n ∈ Z. What n is exceptional? Can you account for this in light of Goursat’s
theorem?

(b) Show that f(z) = z̄ (complex conjugate) is not holomorphic (anywhere?!).

(c) Generalize the previous part to establish the Cauchy-Riemann equations: identify C = R2 via
x + iy 7→ (x, y) and regard a function f : Ω → C, Ω ⊂ C an open subset, as a function f(x, y) =
u(x, y) + iv(x, y) for (x, y) ∈ Ω ⊂ C = R2, where u and v are now real-valued functions of two
variables. Show that if f is holomorphic at a point z0 = (x0, y0) ∈ Ω, then the partial derivatives
satisfy

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.

at the point (x0, y0). (The following converse is also true: if u and v are continuously differentiable
and satisfy the Cauchy-Riemann equations on an open set Ω, then u + iv is holomorphic on Ω.)
Show that f(z) = ez, or explicitly f(x+ iy) = ex(cos(y) + i sin(y)) (and thus cos(z) and sin(z)),
and also any polynomial in z satisfy the Cauchy-Riemann equations at every point of C (with
continuous partial derivatives, so the converse mentioned would show they are holomorphic on all
of C).

(d) Let f : Ω → C be a holomorphic function on an open subset Ω ⊂ C. Further assume that
f ′ : Ω→ C is continuous. Use Green’s theorem and the Cauchy-Riemann equations to show that∫

Γ
f(z)dz = 0 (as in Goursat’s theorem) for any “nice” closed path Γ ⊂ Ω such that the “inside”

of Γ is entirely contained in Ω (use whatever notions of “nice” and “inside” you are comfortable
with; for instance, you could take Γ to be a polygon whose interior is also contained in Ω

(e) Fix z0 ∈ C. Generalize arguments you’ve seen for real power series to show that if f(z) =∑∞
n=0 an(z−z0)n is a power series with an ∈ C that converges absolutely on a disc {|z−z0| < R},

then f defines a holomorphic function on this disc. (This provides another proof that ez, defined
by its power series, is a holomorphic function on all of C.)

11. In class we reduced the extension to a holomorphic function on C and functional equation of Dirichlet
L-series to an identity for generalized theta series. This exercise asks you to prove this identity. Let
χ : (Z/mZ)× → C× be a non-trivial primitive Dirichlet character modulo m > 1, and as in class define
for y > 0

θ(χ, y) =
∑
n∈Z

χ(n)npe−πn
2y/m,

where p ∈ {0, 1} is characterized by χ(−1) = (−1)p.

(a) Check that θ(χ, y) =
∑m−1
a=0 χ(a)

∑
n∈mZ(a+ n)pe−π(a+n)2y/m.

(b) We consider a generalization of the inner sum in part (a): for a, b ∈ R, µ ∈ R>0, let

θµ(a, b, y) =
∑
n∈µZ

e−π(a+n)2y+2πibn.
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Show that this series converges absolutely for y > 0 and uniformly on compact subsets of R>0.
Use Poisson summation to show that

θµ(a, b, 1/y) = e−2πiab

√
y

µ
θ1/µ(−b, a, y).

(Hint: for f(µ, a, b, x) = e−π(a+µx)2+2πibµx, compute the Fourier transform in the x variable to be
(omitting the µ, a, b parameters from the notation for f)

f̂(ξ) = e2πi aµ ξ−2πiab 1

µ
e−π( ξµ−b)

2

.

Check that θµ(a, b, 1/y) =
∑
n∈Z f(µ/

√
y, a/
√
y, b
√
y, n), and apply Poisson summation to finish

the proof.)

(c) Show that as a function of a, θµ(a, b, y) is differentiable, and its derivative can be computed by
differentiating each term of the infinite sum. Conclude that for p ∈ {0, 1},

θ(p)
µ (a, b, 1/y) =

1

ipe2πiabµ
yp+

1
2 θ

(p)
1/µ(−b, a, y),

where the superscript in θ(p) indicates differentiation p times with respect to the variable a.

(d) Combine parts (a) and (c) to deduce the desired formula, that

θ(χ, 1/y) =
G(χ)

ip
√
m
yp+

1
2 θ(χ̄, y).

(You will need to use that χ is primitive and in particular problem 9(c).)

12. In class we omitted the modifications to the proof needed to evaluate L(χ, 1), for χ a primitive Dirichlet
character with χ(−1) = −1. Complete the proof.

13. Using our results on special values of Dirichlet L-functions (including the previous problem), evaluate
the sums

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ,

1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+ · · · ,

1− 1

33
+

1

53
− 1

73
+

1

93
− 1

113
+ · · · ,

14. Check the lemma from class that vp(ab) = vp(a)+vp(b) and vp(a+b) ≥ min(vp(a), vp(b)), with equality
if vp(a) 6= vp(b); deduce the corresponding multiplicative version (| · |p is multiplicative and satisfies
the strong triangle inequality |a+ b|p ≤ max(|a|p, |b|p)).

15. Let p = 5. Set a1 = 2, and recursively solve (in Z) the equation a2
n ≡ −1 (mod 5n), with an ≡ an−1

(mod 5n−1). Show that (an)n is a Cauchy sequence with respect to | · |5, i.e. for all ε > 0 there exists
N such that for all m,n > N , |an − am|5 < ε.

16. Generalize the previous exercise as follows (one form of Hensel’s lemma).

(a) Let f(x) ∈ Z[x], and let a1 ∈ Z satisfy vp(f(a1)) > 0 and vp(f
′(a1)) = 0 (f ′(x) is the derivative,

computed using the usual formulas for polynomials; note this can be done for polynomials over
any ring). Show that the sequence (an)n≥1 of rational numbers

an+1 = an −
f(an)

f ′(an)

is a Cauchy sequence with respect to | · |p, and |f(an)|p → 0 as n→∞.
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(b) Once we have (one 7/20) defined Zp, reformulate the result of part (a) as a statement about
solving f(x) = 0 in Zp given a mod p solution (also check that we may, more generally, take
f(x) ∈ Zp[x]).

17. Let K be a field. A function v : K → Z ∪∞ (here Z can be replaced with any totally ordered abelian
group isomorphic to Z) satisfying the properties of vp in Problem 14 is called a discrete valuation.

(a) Let K be a field extension of Qp of finite degree. Show that vp : Q→ Z ∪ {∞} extends uniquely
to a discrete valuation vp : K → 1

eZ ∪ {∞} for some integer e.

(b) Let K = Q[i]. Does v3 : Q× → Z extend uniquely to K? What about v5? What is going on?

18. Verify the rest of the lemma that we partially proved in class: component-wise addition and multipli-
cation yield well-defined (independent of representative Cauchy sequences) ring operations on Qp; Qp
is a field; Qp is complete with respect to | · |p.

19. Consider the usual power series expansions for the exponential and logarithm functions:

exp(x) =

∞∑
n=0

xn

n!
,

log(1 + x) =

∞∑
n=1

(−1)n+1xn

n
.

If we attempt to use these power series to define exp(x) and log(1+x) as Qp-valued functions of a p-adic
variable x ∈ Qp (giving the p-adic exponential and logarithm), what are their radii of convergence?
(Recall a series

∑∞
n=0 anx

n has radius of convergence r if it converges for all |x| < r and diverges for all
|x| > r; here of course we should take |·|p for the relevant “absolute value.”) In calculus, the exponential
and logarithm functions are inverse homomorphisms R → R>0 (the group operations are addition on
the source and multiplication on the target): what analogue is true for our p-adic exponential and
p-adic logarithm functions?

20. How many quadratic (degree 2) field extensions, up to isomorphism, does Qp have for p odd? (Use
Problem 16.) What about for p = 2? (This is more subtle; you can try generalizing the results of
Problem 16 to include some cases when vp(f

′(a1)) > 0.)

21. Let χ : (Z/mZ)× → C× be a primitive Dirichlet character. Let F be any integer multiple of m. Show
(generalizing the argument we gave in class for F = m) that for all n ∈ Z≥0,

Bn,χ = Fn−1
F∑
a=1

χ(a)Bn

( a
F

)
(here Bn(a/F ) is the value of the Bernoulli polynomial at a/F , not Bn times a/F ).

22. Let χ1 and χ2 be primitive Dirichlet characters modulo m1 and m2. Let (χ1χ2) denote the primitive
Dirichlet character underlying the näıve product character ψ(a) = χ1(a)χ2(a), which is a well-defined
Dirichlet character modulo lcm(m1,m2). (Stop and make sure you understand the distinction being
drawn here!)

(a) Give an example where ψ 6= (χ1χ2). Give an example where ψ = (χ1χ2).

(b) Show that unless χ1(a) = χ2(a) = 0, χ1(a)χ2(a) = (χ1χ2)(a).

23. In class we established the basic properties of the p-adic L-function Lp(χ, s), restricting for simplicity
to the case p 6= 2. Make the necessary case-by-case adjustments to extend our results to the case p = 2.

Further reading: Here are some references that you might enjoy as follow-ups or companions to this course.
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1. Ireland-Rosen, A Classical Introduction to Modern Number Theory, chapters on Bernoulli numbers and
Dirichlet L-functions (including: a different proof of the analytic continuation of L(χ, s)—somewhat
easier than what we did—but not working out the functional equation; an elementary proof of the
Kummer congruences; a proof of Herbrand’s theorem).

2. Körner, Fourier Analysis: a wide-ranging essayistic introduction to Fourier analysis, with some fun
history and applications.

3. Shakarchi-Stein, Fourier Analysis: a wonderfully clear Fourier analysis book written for an audience
who has just taken a first real analysis course.

4. Washington, Introduction to Cyclotomic Fields: a more advanced book on Iwasawa theory. Our
treatment of the p-adic L-function follows Chapter 5 (the book later gives other, more sophisticated,
constructions of the p-adic L-function). Other parts of the book assume more background in complex
analysis, algebra, and algebraic number theory.

5. Kato-Kurokawa-Saito, Number Theory I: Fermat’s Dream: a beautiful introduction to several fun-
damental topics in modern number theory, written for an audience with some algebra and complex
analysis background but otherwise quite accessible. Chapter 3 gives a different treatment of our work
on L-functions and Bernoulli numbers, and chapter 4 develops the first connections to algebraic number
theory. (This is the first book in a series of 3 number theory texts that are commonly used in Japan;
the third book discusses Iwasawa theory and the p-adic L-function.)

6. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions. Chapter 1 is a careful introduction to
p-adic numbers. Chapter 2 constructs the p-adic zeta function (a special case of the p-adic L-function)
using a different method than the one we gave in class (similar to but at a more accessible level than
the construction given in Washington Chapter 12).
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