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Abstract. Let F be a number field. These notes explore Galois-theoretic, automorphic, and mo-
tivic analogues and refinements of Tate’s basic result that continuous projective representations
Gal(F/F)→ PGLn(C) lift to GLn(C). We take special interest in the interaction of this result with al-
gebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On
the motivic side, we study refinements and generalizations of the classical Kuga-Satake construction.
Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations;
comparison of the automorphic and Galois “Tannakian formalisms”; monodromy (independence-
of-`) questions for abstract Galois representations.
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CHAPTER 1

Introduction

1.1. Introduction

Let F be a number field, with ΓF = Gal(F/F) its Galois group relative to a choice of algebraic
closure. Tate’s theorem that H2(ΓF ,Q/Z) vanishes (see [Ser77, Theorem 4] or Theorem 2.1.1 be-
low) encodes one of the basic features of the representation theory of ΓF: since coker(µ∞(C)→ C×)
is uniquely divisible, H2(ΓF ,C

×) vanishes as well, and therefore all obstructions to lifting projec-
tive representations ΓF → PGLn(C) vanish. More generally, as explained in [Con11] (Lemma
2.1.4 below), for any surjection H̃ � H of linear algebraic groups over Q` with central torus
kernel, any homomorphism ΓF → H(Q`) lifts (continuously) to H̃(Q`). The simplicity of Tate’s
theorem is striking: replacing Q/Z by some finite group Z/m of coefficients, the vanishing result
breaks down.

Two other groups, more or less fanciful, extend ΓF and conjecturally encode the key struc-
tural features of, respectively, automorphic representations and (pure) motives. The more remote
automorphic Langlands group, LF , at present exists primarily as heuristic, whereas the motivic
Galois group GF would take precise form granted Grothendieck’s Standard Conjectures, and in
the meantime can be approximated by certain unconditional substitutes, for instance via Deligne’s
theory of absolute Hodge cycles, or André’s theory of motivated cycles (see §4.1.3). In either case,
however, we can ask for an analogue of Tate’s lifting theorem and attempt to prove unconditional
results. The basic project of this book is to pursue these analogies wherever they may lead; the
fundamental importance of Tate’s theorem is affirmed by the fruitfulness of these investigations,
which lead us to reconsider and reinvigorate classic works of Weil ([Wei56]) and Kuga and Satake
([KS67]).

We begin by translating the heuristic lifting problem for the (conjectural) automorphic Lang-
lands group into a concrete and well-defined question about automorphic representations. Let
G ⊂ G̃ be an inclusion of connected reductive F-groups having the same derived group; basic
cases to keep in mind are SLn ⊂ GLn or Sp2n ⊂ GSp2n. For simplicity, we will throughout assume
these groups are split, although many of the results described continue to hold in greater generality.
We let G∨ and G̃∨ denote the respective Langlands dual groups, which are related by a surjective
homomorphism G̃∨ → G∨ whose kernel is a central torus in G̃∨ (in the SLn ⊂ GLn case, this
dual homomorphism is the usual surjection GLn(C) → PGLn(C)); thus on the dual side we have
a setup analogous to the one in Tate’s lifting theorem, and indeed the whole point of the Lang-
lands group LF is that, loosely, automorphic representations of G(AF) should correspond to maps
LF → G∨. The automorphic analogue of Tate’s theorem is then the assertion that automorphic
representations of G(AF) extend to automorphic representations of G̃(AF), i.e. the fibers of the
functorial transfer associated to G̃∨ → G∨ are non-empty. We show (Proposition 3.1.4) that cusp-
idal representations of G(AF) do indeed lift to G̃(AF). This result is elementary, but our analogies
insist that we investigate it further. For instance, the analogous lifting result is false for GF , and

1

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



a priori there is no reason to believe that ‘lifting problems’ for the three groups ΓF ,LF , and GF

should qualitatively admit the same answer: a general automorphic representation has seemingly
no connection with either `-adic representations or motives; and a general `-adic representation has
no apparent connection with classical automorphic representations or motives. Two quite distinct
kinds of transcendence–one complex, one `-adic–prevent these overlapping theories from being
reduced to one another. A key problem, therefore, is to identify the overlap and ask how the lifting
problem behaves when restricted to this (at least conjectural) common ground; it is only in posing
this refined form of the lifting problem that the relevant structures emerge.

What automorphic representations, then, do we expect to correspond to `-adic Galois represen-
tations or motives? Putting off for the time being precise definitions, we now informally state the
fundamental conjectures, due to Fontaine-Mazur, Langlands, Tate, Serre, and Grothendieck, that
lay out the basic expectations.

Conjecture 1.1.1 (Preliminary form: see Conjecture 1.2.1 for the precise version). There is a
bijection, characterized by local compatibilities, between

• “Algebraic” cuspidal automorphic representations of GLn(AF).
• Irreducible “geometric” Galois representations ΓF → GLn(Q`).
• Irreducible pure motives over F (with Q-coefficients).

(The only direction of this correspondence whose construction is known is from motives to
Galois representations: simply take `-adic cohomology.) This book will focus on studying the
analogues of Tate’s lifting theorem at this conjectural intersection of the three subjects of automor-
phic forms, motives, and Galois representations. The automorphic and Galois-theoretic aspects
will be more or less fully treated, and we will find that the motivic aspect is a deep and largely
unconsidered problem; but our Galois-theoretic and automorphic investigations will allow us to
frame a precise conjectural response to the motivic lifting question.

To continue, then, we must discuss notions of algebraicity for automorphic representations;
then we can see whether the automorphic lifting analogous to Tate’s theorem can be made to respect
this ‘algebraicity.’ Weil laid the foundation for this discussion in his paper [Wei56], by showing
that for Hecke characters (automorphic representations of GL1(AF)), an integrality condition on
the archimedean component suffices to imply algebraicity of the coefficients of the corresponding
L-series (i.e. algebraicity of its Satake parameters). Waldschmidt ([Wal82]) later proved necessity
of this condition. Weil, Serre, and others also showed that a subset, the ‘type A0’ Hecke charac-
ters (Definition 2.3.2), moreover give rise to compatible systems of Galois characters ΓF → Q

×

`

(and, via the theory of CM abelian varieties, motives underlying these compatible systems). The
general feeling since has been that the most obvious analogue of Weil’s type A0 condition should
govern the existence of associated `-adic representations. To be precise, let π be an automorphic
representation of our F-group G, and let T be a maximal torus of G. We will use the terminology
‘L-algebraic’ of [BG11] as the general analogue of type A0 characters. That is, fixing at each v|∞
an isomorphism ιv : Fv

∼
−→ C, we can write (in Langlands’ normalization of [Lan89]) the restriction

to WFv
of its L-parameter as

recv(πv) : z 7→ ιv(z)µιv ῑv(z)νιv ∈ T∨(C).

with µιv , νιv ∈ X•(T )C and µιv − νιv ∈ X•(T ) (here and throughout, ῑv denotes the complex conjugate
of ιv). Unless there is risk of confusion, we will omit reference to the embedding ιv, writing
µv = µιv , etc.

2
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Definition 1.1.2. The automorphic representation π is L-algebraic if for all v|∞, µv and νv lie
in X•(T ).

The naı̈ve reason for focusing on this condition is that, for G = GLn, it lets us see the Hodge
numbers of the (hoped-for) corresponding motive. Clozel ([Clo90]), noticing that cohomological
representations need not satisfy this condition, but have parameters µv, νv ∈ ρ + X•(T ), where ρ
is the half-sum of the positive roots,1 studied this alternative integrality condition for G = GLn.
Buzzard and Gee ([BG11]) have recently elaborated on this latter condition (‘C-algebraic’) and its
relation with L-algebraicity. For GL1, the two notions C and L-algebraic coincide, and in general
they are both useful and distinct generalizations of Weil’s type A0 condition.

But Weil’s ‘integrality condition,’ which he calls ‘type A’ (Definition 2.3.2), is more general
than the type A0 condition, and its analogues in higher rank seem largely to have been neglected.2

It is of independent interest to resuscitate this condition, but we moreover find it essential for
understanding the interaction of descent problems and algebraicity, including our original lifting
question. By this we mean the following problem: given connected reductive (say quasi-split)
F-groups H and G with a morphism of L-groups LH → LG, and given a cuspidal L-algebraic
representation π of G(AF) which is known to be in the image of the associated functorial transfer,
is π the transfer of an L-algebraic representation? The answer is certainly ‘no,’ even for GL1, but
it fails to be ‘yes’ in a tightly constrained way. I believe the most useful general notion is the
following:

Definition 1.1.3. We say that π is W-algebraic if for all v|∞, µv and νv lie in 1
2 X•(T ).

This is more restrictive than Weil’s type A condition (which allows twists | · |r for r ∈ Q as well),
and it is easy to concoct examples of automorphic representations that have algebraic Satake pa-
rameters but are not even twists of W-algebraic representations. It is one of our guiding principles,
suggested by the (archimedean) Ramanujan conjecture, that all such examples are degenerate, and
up to unwinding these degeneracies, all representations with algebraic Satake parameters should
be built up from W-algebraic pieces.

We can now describe the algebraic refinement for automorphic representations of the afore-
mentioned (Proposition 3.1.4) lifting result. The answer depends on whether the field F has real
embeddings, so we state it in two parts:

Proposition 1.1.4 (See Proposition 3.1.12). Let F be a CM field, and for simplicity let G be a
split semi-simple F-group, and let G̃ be a split F-group containing G as its derived group. Let π
be a cuspidal representation of G(AF). Assume π∞ is tempered.

(1) If π is L-algebraic, then there exists an L-algebraic lift to a cuspidal automorphic repre-
sentation π̃ of G̃(AF).

(2) If π is W-algebraic, then there exists a W-algebraic lift π̃.

In §2.4 we develop a conjectural framework that allows this result to be extended to all totally
imaginary F. See page 10 of this introduction. In contrast, over totally real fields, we have the
following:

1For some choice of Borel containing T . Such a choice was implicit in defining a dual group, with its Borel B∨

containing a maximal torus T∨, and the above archimedean L-parameters.
2One substantial use of type A but not A0 Hecke characters since the early work of Weil and Shimura occurs

in the paper [BR93], in which Blasius-Rogawski associate motives to certain tensor products of Hilbert modular
representations.

3
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Proposition 1.1.5 (See Proposition 3.1.14). Now suppose F is totally real, with π as before.
Continue to assume π∞ is tempered. Write Z̃ for the center of G̃, and Z̃0 for its connected compo-
nent.3

(1) If π is L-algebraic, then it admits a W-algebraic lift π̃.
(2) For the ‘only if’ direction of the following statement assume Hypothesis 3.1.8. Then the

images of µv and νv under X•(T ) → X•(ZG ∩ Z̃0) lie in X•(ZG ∩ Z̃0)[2], and π admits an
L-algebraic lift if and only if these images are independent of v|∞.

The basic example in which an L-algebraic representation does not lift to an L-algebraic repre-
sentation is given by a mixed-parity Hilbert modular form π on GL2(AF) (F a totally real field not
equal to Q). That is, π is the cuspidal automorphic representation associated to a classical Hilbert
modular cusp form whose weights (in the classical sense) at two different infinite places of F have
different parities: such a π restricts to an L-algebraic representation of SL2(AF), but no twist of
π itself is L-algebraic. In contrast Proposition 1.1.5 tells us that, when F is totally real, there is
no obstruction to finding L-algebraic lifts for G a simple split group of type A2n, E6, E8, F4 or G2.
For other groups the obstructions are in fact realizable: Corollary 3.1.15 applies limit multiplicity
formulas (as in [Clo86]) to produce many discrete-series examples generalizing the basic case of
mixed-parity Hilbert modular forms. These examples imply that Arthur’s conjectural construction
([Art02]) of a morphism LF → GF requires modification (see Remark 3.1.16).

Propositions 1.1.4 and 1.1.5 give the basic answer to our refined lifting question for automor-
phic representations. We next turn to the corresponding question for geometric Galois representa-
tions; Conjecture 1.1.1 leads us to expect conclusions analogous to those of these two automorphic
results. First, we recall the definition (due to Fontaine-Mazur) of a geometric Galois representa-
tion:

Definition 1.1.6. A semi-simple representation ρ : ΓF → GLn(Q`) is geometric if it is un-
ramified at all but a finite set of primes and is de Rham at all places v|`. (See §2.2.1 for further
discussion of the de Rham condition.) More generally, if H is a linear algebraic group over Q`,
then a representation ρ : ΓF → H(Q`) is geometric if it is almost everywhere unramified, de Rham
at all places above `, and if the Zariski closure of ρ(ΓF) in H is reductive.

The Galois question parallel to our refined automorphic lifting results has been raised by Brian
Conrad in [Con11]. In that paper, Conrad, building on previous work of Wintenberger ([Win95])
addresses lifting problems of the form

H̃(Q`)

��

ΓF

ρ̃
==

ρ
// H(Q`)

,

where H̃ � H is a surjection of linear algebraic groups with central kernel. He discusses existence
(a local-global principle), ramification control, and `-adic Hodge theory properties, and the results
are comprehensive, except for one question (see Remark 1.6 and Example 6.8 of [Con11]):

Question 1.1.7. Suppose that the kernel of H̃ � H is a torus. If ρ is geometric, when does
there exist a geometric lift ρ̃?

3Note that we use somewhat different notation in §3.1; see the introduction to that section.
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This, in the case H = G∨, H̃ = G̃∨, is the natural Galois analogue of the question addressed
by Propositions 1.1.4 and 1.1.5; indeed, it provided much of the motivation to understand those
automorphic questions.

Conrad’s Example 6.8 shows the answer is at least ‘not always;’ he produces a character
ψ̂ : ΓL → Q

×

` over certain CM fields L (with F the totally real subfield) such that IndF
L (ψ̂) reduces

to a geometric projective representation that has no geometric lift. We give a general solution
to Question 1.1.7, assuming the representations in question satisfy a certain ‘generalized Hodge-
symmetry’ property, which is automatic in automorphic or motivic contexts. We formalize this
generalized Hodge-Tate weight symmetry in Hypothesis 3.2.4 and then prove (Theorem 3.2.10
and remarks following):

Theorem 1.1.8. Let F be totally imaginary, and let ρ : ΓF → H(Q`) be a geometric representa-
tion satisfying Hypothesis 3.2.4. Then ρ admits a geometric lift ρ̃ : ΓF → H̃(Q`).

There is an analogue in the totally real case (Corollary 3.2.8 and Remark 3.2.11), which is
parallel to Proposition 1.1.5. Again, the reader may want to keep in mind the key example of
mixed parity Hilbert modular representations: to these one can associate geometric PGL2-valued
representations that do not lift to geometric GL2-valued representations. In the preliminary Chap-
ter 2, we work this particular example (and, more generally, similar examples for automorphic
representations of symplectic groups) through in detail, since it is instructive to see precisely how
the automorphic and Galois theories match one another. Then in Chapter 3 we proceed to the
general arguments, which of course cannot rely on any such automorphic-Galois correspondence,
as this remains entirely conjectural in general. Finally, we remark that it is somewhat surprising
that the Galois theory is not more complicated than the automorphic theory: roughly speaking,
the automorphic input of temperedness is missing, and the obstruction to finding a geometric lift,
say for the simple yet decisive case GLn → PGLn, seems to be a question of 1

n -integrality rather
than 1

2 -integrality; this first appearance is, however, a red herring–it is precisely Hodge symme-
try that provides the Galois-theoretic substitute for temperedness–and W-algebraicity remains the
condition of basic importance on the Galois side as well.

We also include a local version of Theorem 1.1.8. Namely, for K/Q` finite, we can ask the same
sorts of lifting questions with ΓK in place of ΓF . A theorem of Wintenberger ([Win95]), in the case
of H̃ � H a central isogeny, generalized by Conrad to H̃ � H with kernel of multiplicative type,
asserts that for any `-adic Hodge theory property P (i.e. Hodge-Tate, crystalline, semi-stable, or de
Rham) a ρ of type P admits a type P lift if and only if ρ restricted to the inertia group IK admits a
Hodge-Tate lift. This Hodge-Tate lift need not exist in the isogeny case, but we can complete this
story by showing it exists unconditionally for central torus quotients: see Corollary 3.2.12. The
argument is a simpler version of that of Theorem 3.2.10, requiring no additional assumption on
‘Hodge-Tate symmetry.’ This question too was suggested by Conrad.

Having addressed the refined (“algebraic” and “geometric,” respectively) lifting problems in
the automorphic and Galois-theoretic settings–and, reassuringly, having found the answers match
up under the correspondence of Conjecture 1.1.1 (or, more precisely, Conjecture 1.2.1)–it remains
to consider the analogous motivic lifting problem. Before formulating this precisely, however, let
us explain how quite concrete Galois-theoretic considerations already point to a fundamental gap
in the Galois-theoretic story, whose implications will demand that we embrace the formalism of
the motivic Galois group. If ` , `′ are distinct primes, recall that, in spite of the incompatibility
of the `- and `′-adic topologies, there is sometimes a meaningful way to compare a pair of Galois

5
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representations ρ` : ΓF → GLn(Q`) and ρ`′ : ΓF → GLn(Q`′). Namely, having fixed embeddings
Q ↪→ Q` and Q ↪→ Q`′ , ρ` and ρ`′ are said to be weakly compatible if for all but a finite set of
primes S of F, both representations are unramified outside S , and for v < S the characteristic
polynomials of ρ`(frv) and ρ`′(frv) have coefficients in Q (with respect to the fixed embeddings)
and are in fact equal. We then extend this to a notion of weak compatibility for any collection of
`-adic representations as the prime ` varies. Deligne’s work on the last of the Weil conjectures
([Del74]) implies that this compatibility holds for the Galois representations arising from `-adic
cohomology (for all `) of smooth projective varieties over F.

Similarly, we can formulate a notion of compatibility for a pair of representations ρ` : ΓF →

H(Q`) and ρ`′ : ΓF → H(Q`′), where now H is any linear algebraic group over Q. In fact, there are
a few possible notions, which may not be equivalent for groups other than GLn; so as not to burden
the discussion, we put off precise formulations until §1.2.4 and §3.3.1. In light of Theorem 1.1.8,
it is then natural to ask the following question:

Question 1.1.9. Let H̃ → H be a surjection of linear algebraic groups over Q with kernel
equal to a central torus. When does a weakly compatible system of geometric representations
ρ` : ΓF → H(Q`) lift to a weakly compatible system of geometric representations ρ̃ : ΓF → H̃(Q`)?

Even when, as for instance ensured by Theorem 1.1.8, all ρ` lift to geometric H̃-valued rep-
resentations, compatible lifts may not exist! See Example 2.1.10 for the prototypical counterex-
ample; this phenomenon is quite familiar from the automorphic theory, where it is closely related
to questions of automorphic multiplicities and endoscopy. How, then, can we address Question
1.1.9? The only way I know involves both assuming and proving much more: granting that the ρ`
are `-adic avatars of a (pro-algebraic) representation of the motivic Galois group GF,E of motives
over F with coefficients in a number field E (implicit here are specified E-forms of H and H̃),
and showing that this motivic Galois representation lifts to H̃, possibly after enlarging E. We have
therefore come full-circle to the motivic lifting-problem raised at the beginning of this introduc-
tion. This is far more difficult than the corresponding automorphic and Galois questions, but we
can unconditionally treat certain examples.

In order to pose the question precisely, we need a category of ‘motives’ in which the Galois
formalism of GF is unconditional. There are two common constructions, one based on Deligne’s
theory ([DMOS82]) of absolute Hodge cycles, the other based on André’s theory ([And96b]),
much inspired by Deligne’s work, of motivated cycles. We work with motivated cycles, since the
inclusions

algebraic cycles ⊆ motivated cycles ⊆ absolute Hodge cycles ⊆ Hodge cycles

more or less imply that results about motivated cycles (eg, ‘Hodge cycles are motivated’) follow
a fortiori for absolute Hodge cycles. Note that the Hodge conjecture asserts that each ⊆ is an
equality; Deligne’s ‘espoir’ ([Del79, 0.10]) asserts that the last ⊆ is an equality. We letMF,E denote
the category of motives for motivated cycles over F with coefficients in E (see §4.1.3 and 4.1.4).
This is a semi-simple E-linear Tannakian category, and, choosing an embedding F ↪→ C, we can
associate (via the E-valued Betti fiber functor) a (pro-reductive) motivic Galois group GF,E. Note
that Serre has asked ([Ser94, 8.3]) whether homomorphisms GF → PGL2 (note the algebraically
closed ground field) lift to GL2. This is closely related to the question, also raised by Serre, of
whether the derived group of GF is simply-connected, but Serre notes that questions of this sort
do not have obvious conjectural answers, even if we assume we are in le paradis motivique. Our
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geometric Galois and algebraic automorphic lifting results (in combination with Conjecture 1.1.1
or Conjecture 1.2.1) suggest the following sharpening and generalization of Serre’s question, that
this motivic lifting phenomenon is utterly general:

Conjecture 1.1.10. Let F and E be number fields, and let H̃ � H be a surjection, with
central torus kernel, of linear algebraic groups over E. Suppose we are given a homomorphism
ρ : GF,E → H. Then if F is imaginary, there is a finite extension E′/E and a homomorphism
ρ̃ : GF,E′ → H̃E′ lifting ρ ⊗E E′. If F is totally real, then such a lift exists if and only if the Hodge
number parity obstruction of Corollary 3.2.8 vanishes.

But what does this conjecture mean? There is in fact one classical construction in complex
algebraic geometry, of a very special Hodge-theoretic nature, that fits into this framework. Namely,
Kuga and Satake ([KS67]) showed in the late 1960’s how, given a complex K3 surface X, one could
construct a complex abelian variety KS (X) related to X by an inclusion of rational Hodge structures

H2(X,Q) ⊂ H1(KS (X),Q)⊗2.

Implicit in Deligne’s work ([Del72]) on the Weil conjectures for K3 surfaces, in which he used the
Kuga-Satake construction to reduce the case of K3 surfaces to the (known) case of abelian varieties,
is the perspective that the Kuga-Satake construction arises from lifting an SO-valued representation
(of the Deligne torus of Hodge theory, for instance) through the surjection GSpin → SO. André
([And96a]), building on work of Deligne, showed that the above inclusion of Hodge structures is
motivated, i.e. derives from a morphism in MC, making the motivic Galois group appear more
explicitly in the discussion of the Kuga-Satake construction. He also proved a weak arithmetic
descent result, showing that if the K3 X is defined over some subfield F ⊂ C, then KS (X) can
be descended to some finite extension of F. Our Conjecture 1.1.10 suggests a sharpening of this
arithmetic descent (down to the field F itself), and we will indeed take up this question in Chapter
4.

Before describing these results, however, let us pause to consider the scope of Conjecture
1.1.10. The classical Kuga-Satake construction depends on a lucky numerical coincidence: it is
straightforward to lift the Hodge structure associated to the K3 to a GSpin-valued Hodge structure,
and it turns out we get exactly the right weights (in the natural representation of GSpin on the Clif-
ford algebra) to have a Hodge structure that looks like it comes from H1 of an abelian variety. And
then Riemann’s theorem tells us that all such Hodge structures do come from abelian varieties!
Riemann’s remarkable theorem, however, is a miraculous exception; in general, we understand al-
most nothing about the essential image of the Hodge-Betti realization functor fromMC to rational
Hodge structures. For example, the reader could write down almost any smooth projective variety
X/F, say of even dimension d, and the analogous motivic lifting problem (or even its base-change
to C, let alone the arithmetic refinement)

GSpin(Hd(X)( d
2 ))

��

GF ρ
//

ρ̃
88

SO(Hd(X)(d
2 ))

would be totally out of reach. (Here we write Hd(X)(d
2 ) for the object of MF corresponding to

d
2 -fold Tate twist of the degree d cohomology of X; and we have possibly made a quadratic base-
change on F to obtain an SO-valued rather than O-valued ρ.) In essence, each new case of the
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“generalized Kuga-Satake” Conjecture 1.1.10 requires us, in light of our Galois-theoretic lifting
results (Theorem 1.1.8) to prove a new case of the Fontaine-Mazur conjecture.

That said, let us turn to some positive results toward Conjecture 1.1.10. The crucial limitation
shared by all results to be discussed here is that they take place entirely in the Tannakian category
of motives generated by abelian varieties (and Artin motives), the reliance on Riemann’s theorem
being the essential crutch. We will return at the end of the introduction to mention some later work
that begins to push the boundaries of the conjecture. In Chapter 4 we prove a lifting result of the
form

GSpin(VE)

��

GF,E

ρ̃
99

ρ
// SO(VE)

for certain ρ arising from degree 2 primitive cohomology VQ of a hyperkähler variety (see Defini-
tion 4.2.1) over F (or, rather, for ρ having analogous formal properties); the extension of scalars
VE = VQ ⊗Q E is essential for the lifting result to hold. The starting-point for this refined motivic
lifting result is, again, the work of André ([And96a]) on the ‘motivated’ theory of hyperkählers; as
mentioned above, his results imply a version of this lifting statement with F replaced by a large but
quantifiable (with considerable work: see Theorem 8.4.3 of [And96a]) finite extension F′/F. Our
contribution is the arithmetic descent from F′ to F, and for this we generalize a technique intro-
duced by Ribet ([Rib92]) to study so-called ‘Q-curves,’ elliptic curves over Q that are isogenous
to all of their ΓQ-conjugates. Passing from a softer geometric statement (compare: ‘a variety over
F has a point over some finite extension’) to a precise arithmetic version (compare: ‘when does a
variety over F have a point over F?’) typically requires some deep input; in this case, Faltings’s
isogeny theorem ([Fal83]) does the hard work. The method requires a case-by-case analysis (de-
pending on the motivic group of the transcendental lattice), and I have decided not to pursue all
the cases here, but here is a partial result (see Theorem 4.2.13, Theorem 4.2.31, and Proposition
4.2.33 and following for more cases and more precise versions):

Theorem 1.1.11. Let (X, η) be a polarized variety over F satisfying André’s conditions Ak, Bk, B+
k

(see §4.2.1). For instance, with k = 1, X can be a hyperkähler variety with second Betti number
greater than 3. Suppose that the transcendental lattice TQ ⊂ VQ = Prim2k(XC,Q)(k) satisfies either

• EndQ-HS(TQ) = Q; or
• TQ is odd-dimensional.

For simplicity, moreover assume that det V` = det T` = 1 as ΓF-representations.4 Then after some
finite scalar extension to VE = VQ ⊗Q E there is a lifting of the motivic Galois representation
ρV : GF → SO(VQ):

GSpin(VE)

��

GF,E

ρ̃
99

ρV
// SO(VE).

4This can be achieved in each case after a quadratic, independent-of-` extension on F. It is only so we can
work with SO(V`) rather than O(V`), but since our abstract Galois-lifting results apply to non-connected groups (see
Theorem 1.1.8, for instance), this hypothesis is not essential.
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Moreover, this lifting gives rise on λ-adic realizations (for all finite places λ of E) to lifts ρ̃λ : ΓF →

GSpin(Vλ) whose compositions with the spin (or sum of half-spin) representations form a weakly
compatible system.

For more cases of Theorem 1.1.11 in which TQ is even-dimensional, see §4.2.7; the omitted
cases should yield to similar methods. We have not pursued in depth whether Question 1.1.9 can
be answered in this setting, i.e. whether the ρ̃λ can actually be taken to be weakly compatible
as GSpin-valued representations (in the sense of Definition 1.2.3 below). For a partial result,
see Corollary 4.2.11. We stress that this compatibility of λ-adic realizations is not automatic for
André’s motives (nor for absolute Hodge motives), so we need to exploit an explicit description
of the lift. Moreover, the excluded case b2(X) = 3 of Theorem 1.1.11 is related to a more general
result for potentially abelian motives: we prove such a lifting result across an arbitrary surjection
H̃ → H with central torus kernel: see Proposition 4.1.30 and Lemma 4.2.5.

Our next example seems to be a novel result even in complex algebraic geometry, where many
authors have studied variants of the Kuga-Satake construction for Hodge structures of ‘K3-type’
(see, for example, [Mor85], [Voi05], [Gal00]). Generalizing the well-known case ([Mor85]) of H2

of an abelian surface–which has a Hodge structure of K3 type, so falls within the ken of classical
Kuga-Satake theory5–we prove an analogous GSpin → SO motivic lifting result for H2 of any
abelian variety (see Corollary 4.3.3). Moreover, we can describe the corresponding motive (in the
spin representation) as a Grothendieck motive, without assuming the Standard Conjectures.

In all, the Galois-theoretic, automorphic, and limited motivic evidence (the cases of potentially
abelian motives, hyperkähler motives, and abelian varieties) should encourage optimism about
Conjecture 1.1.10. The crucial next step would be to verify interesting “non-classical” examples
of Conjecture 1.1.10. After the initial writing of this book, I found two ways to produce such
examples, both relying on the theory of rigid local systems: the interested reader can consult [Pat]
and [Pat14a] for these developments. There is clearly vast terrain waiting to be discovered here,
some of which is not entirely hostile to exploration.

I have also made progress, in [Pat16], on a weaker version of Question 1.1.9. In the present
book, we do not emphasize questions of ramification control. The geometric representations
ρ : ΓF → H(Q`) of Theorem 1.1.8 are unramified outside some finite set S of primes of F, and the
lifts ρ̃ : ΓF → H̃(Q`) produced by that theorem are unramified outside some, possibly larger, finite
set S̃ ⊇ S . Achieving sharp (quantitative) control of the ramification set S̃ is a deep problem, but a
softer version still provides a more demanding Galois-theoretic test of the generalized Kuga-Satake
conjecture. Namely, if {ρι : ΓF → H(Q`)}ι : Q↪→Q` is the collection of `-adic realizations of a motivic
Galois representation ρ : GF,Q → H valued in aQ-group H, then there is a finite set S such that each
ρι is unramified outside the union of S and the places S ` above ` (where ι : Q ↪→ Q`). Certainly
a necessary condition for Conjecture 1.1.10 to hold is that the representations ρι should all admit
geometric lifts ρ̃ι unramified outside S̃ ∪ S ` for a finite, independent-of -`, set S̃ . A strengthening
of this necessary condition, including the fact that the lifts ρ̃ι can be taken to be crystalline outside
of the bad set S̃ , is proven in [Pat16, Corollary 1.1]; the basic difficulty of such a result is that one
has to kill cohomological obstructions lying in infinitely many different cohomology groups, one

5The paper [Gal00] treats the case of a particular family of abelian four-folds, where a constraint on the Mumford-
Tate group allows one to extract a Hodge structure of K3-type; as we show, though, the lifting phenomenon is com-
pletely general.
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for each ι, but in an independent-of-ι manner. This result provides the natural generalization of the
theorem of Wintenberger (Theorem 2.1.8 below) to the case of central torus quotients; and indeed
it implies (with a different proof) Theorem 2.1.8: see [Pat16, Corollary 3.20, Corollary 3.22]. We
also remark that the method of proof yields a new demonstration ([Pat16, Corollary 3.12]) of the
basic theorem of Tate, whose classical proof is recalled in Theorem 2.1.1 below.

In the remainder of this introduction, we describe a few other general themes that recur through-
out these notes, in automorphic, Galois-theoretic, and motivic variants. The first is the systematic
exploitation of ‘coefficients,’ and the general principle that our arithmetic objects will naturally
have coefficients in CM fields. In §2.4, we use this principle to formulate (and prove, for regular
representations; see Proposition 2.4.8) a conjectural generalization of Weil’s result that a type A
Hecke character of a number field F descends, up to finite order twist, to the maximal CM subfield
Fcm; this generalization asserts that the infinity-type of an L-algebraic cuspidal automorphic repre-
sentation of GLn(AF), over a totally imaginary field F, necessarily descends to Fcm. In §4.1.5, we
use this principle–descent of infinity-types to the CM subfield, which in the motivic context fol-
lows from the Hodge index theorem–to show that André’s motives satisfy the Hodge-Tate weight
symmetries needed for the Galois lifting Theorem 1.1.8. Finally, Corollary 3.4.14 gives an ex-
ample of how having CM coefficients can be exploited even in the study of abstract compatible
systems of `-adic representations. Since the writing of this paper, the same principles have been
applied in [PT15] to establish new results on the potential automorphy of regular motives, and the
irreducibility of automorphic Galois representations.

Corollary 3.4.14 depends on the following abstract independence-of-` result, which may be of
independent interest (see Proposition 3.4.9 for a more general statement):

Proposition 1.1.12. Let ρλ : ΓF → GLn(Eλ) be a compatible system of irreducible, Lie-multiplicity-
free representations of ΓF with coefficients in a number field E, so that ρλ � IndF

Lλ(rλ) for some
Lie-irreducible representation rλ of ΓLλ , where the number field Lλ a priori depends on λ. Then
the set of places of F having a split factor in Lλ is independent of λ. If we further assume that the
Lλ/F are Galois, then Lλ is independent of λ.

By Lie-multiplicity-free, we mean multiplicity-free after all finite restrictions. One applica-
tion is a converse to a theorem of Rajan (Theorem 4 of [Raj98]), also generalizing a result of Serre
(Corollaire 2 to Proposition 15 of [Ser81]). See §3.4 for further discussion, as well as the aformen-
tioned application (Corollary 3.4.14), which is a weak Galois-theoretic shadow of the automorphic
Proposition 2.4.8. In §3.4, we also record a variant for number fields of a result of Katz (for affine
curves over a finite field; see [Kat87]), which in particular clarifies the place in the general theory
occupied by Lie-multiplicity-free (or more specifically, Lie-irreducible) representations:

Proposition 1.1.13. Let ρ : ΓF → GLn(Q`) be an irreducible representation. Then either ρ is
induced, or there exists d dividing n, a Lie irreducible representation τ of dimension n

d , and an
Artin representation ω of dimension d such that ρ � τ ⊗ ω. This decomposition is unique up to
twisting by a finite-order character. Consequently, any (irreducible) ρ can be written in the form

ρ � IndF
L (τ ⊗ ω)

for some finite L/F and irreducible representations τ and ω of ΓL, with τ Lie-irreducible and ω
Artin.

This is a very handy result, which despite its basic nature does not seem to be widely-known.
Some of our descent arguments in §4.2 rely on it.
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Finally, time and again our arguments are buttressed by some explicit knowledge of the con-
straints on infinity-types of automorphic representations, and on Hodge-Tate weights of Galois
representations. More generally, we find that asking finer structural questions about the interac-
tion of functoriality and algebraicity naturally leads to existence (and non-existence) problems
that are often dissociated from functoriality; as we will see in §2.1, this theme is present even in
the proof of Tate’s original vanishing theorem H2(ΓF ,Q/Z) = 0. We certainly have many more
questions than answers (scattered through §’s 2.3-2.7; see eg Corollary 2.7.8 for a curious posi-
tive result), although fortunately our main results depend largely on detailed study of GL1 (§2.3),
which provides both the technical ingredients for later arguments and the motivation for higher-
rank results (namely, after a close reading of Weil’s [Wei56], the definition of W-algebraicity and
the key descent principle of Proposition 2.4.8). In this latter respect, I do not believe that GL1 has
yielded all of its fruit–see the discussion surrounding Corollary 2.3.9–but the extreme difficulty
of establishing the (non-)existence of automorphic representations with given infinity-types, even
in qualitative form, necessarily tempers further conjecture. We also use the GL1-theory, in com-
bination with Conjecture 1.2.1, to show how the conjectural automorphic-Galois correspondence
for the group GLn implies an analogous correspondence for SLn: see §3.3.2. For an unconditional
construction, building on the arguments of §3.3.2, of geometric projective Galois representations
associated to certain ‘mixed-parity’ automorphic representations on higher-rank Spin-groups, see
[Pat14b].

For a reader interested only in certain aspects of these notes, I hope that the table of contents
is a clear reference to the points of interest. Roughly, Chapter 2 contains preliminary material and
many examples arising from the groups GL1 and GL2. Chapter 3 contains the general automorphic
and Galois-theoretic lifting theorems, as well as ‘abstract’ results about monodromy groups of
Galois representations. Chapter 4 contains the discussion of motivic lifting problems, culminating
in the statement of the generalized Kuga-Satake conjecture, Conjecture 4.3.1.

1.2. What is assumed of the reader: background references

Because this book studies all three vertices–and, to a far lesser extent, the edges–of the mys-
terious Galois-automorphic-motivic triangle, the reader will need some limited familiarity with all
three subjects. In this subsection, we indicate what background will be assumed, give some useful
references, and also explain that while the background required may be broad, it is not terribly
deep; indeed, the arguments are largely elementary, once some basic definitions are assimilated.
Let us deal individually with each of these three topics.

1.2.1. Automorphic representations. Preliminary to the study of automorphic representa-
tions, one must have some familiarity with the theory of reductive algebraic groups. For sim-
plicity, we always restrict to split groups, so it is sufficient to know the theory over algebraically
closed fields. Many arguments in this paper rest on the manipulation of root data; Springer’s sur-
vey [Spr79] and his book [Spr09] (especially chapters 7-10) are very clear, and provide more
than enough background. We also assume familiarity with the algebraic representation theory of
(connected) reductive groups (i.e., elementary highest-weight theory).

We use a little of the representation theory of reductive groups over local fields. Familiarity
with unramified representations of split p-adic groups and the Satake correspondence ([Gro98]
is a beautiful guide; [Car79, III] is a thorough treatment of unramified representations; [Cas] is
the best general introduction to the theory of admissible smooth representations), and with some
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aspects of the formalism of the archimedean local Langlands correspondence will suffice. As for
the global theory of automorphic representations themselves, and the theory of the L-group, the
standard and more than adequate reference is [Bor79]; [Bor79, §9-11] would be particularly useful
background reading, sketching the archimedean theory and, crucially for our purposes, explaining
the desired, in some cases proven, connection between central characters and L-parameters.

1.2.2. `-adic Galois representations. Apart from some very elementary notions, we only
require some familiarity with the formal, non-geometric, aspects of `-adic Hodge theory, which
is to say the study of `-adic representations of ΓK for a finite extension K/Q` (when studied in a
purely local context, ` is traditionally replaced by p, as in ’p-adic Hodge theory’). An excellent
overview, with references to detailed proofs, is [Ber04, §I-II]. A ‘text-book-style’ reference (very
useful but not quite in final form) for everything we do is [BC].6 Finally, we should remark to a
reader new to p-adic Hodge theory that the subject has been much in flux in the last 10 years, and
that one should take heed of recent conceptual advances (eg [Bei12], [Bha12], [FF12], [Sch13])
before reading too deeply into the ‘classical’ theory.

1.2.3. Motives. Here we recommend some familiarity with the notion of motive, as conceived
by Grothendieck, and with Grothendieck’s Standard Conjectures on algebraic cycles. Kleiman’s
articles [Kle68] and [Kle94] provide a clear, careful, and concise introduction. Certainly familiar-
ity with the various cohomological realizations (Betti, de Rham, `-adic), and the relations between
them, of a smooth projective variety is necessary; the first section, ‘Review of Cohomology,’ of
Deligne’s article [DMOS82, §I.1] will provide quick and easy orientation for someone new to the
subject. We will also require (some of) the theory of Tannakian categories; we will give a brief
introduction, which should be enough for a reader to follow all of our arguments, but a thorough
treatment is [DM11] (originally [DMOS82]). Finally, although not necessary for the present work,
the excellent book [And04] provides a broad survey of the theory of motives, from its inception to
more recent developments.

1.2.4. Connecting the dots. These notes rely on the systematic transfer of intuition back and
forth between these three areas. We now make precise the towering conjectures that dominate this
conceptual landscape. The following collection of conjectures (crudely stated before as Conjecture
1.1.1), and the consequences of combining the various parts, summarize the principal problems in
the field (in contrast to Conjecture 1.1.1, here we give an asymmetric formulation in order to
distinguish the original Fontaine-Mazur conjecture from stronger versions).

Conjecture 1.2.1 (Fontaine-Mazur, Langlands, Tate, Grothendieck-Serre). Let ρ : ΓF → GLn(Q`)
be an irreducible geometric Galois representation. Recall from the introduction that this means ρ
is almost everywhere unramified, and is de Rham at all places above `. Then:

(1) (Fontaine-Mazur) There exists a smooth projective variety X/F and an integer r such that
ρ is isomorphic to some sub-quotient of H j(XF ,Q`)(r).

(2) (Grothendieck-Serre) For any smooth projective variety X/F, each H j(XF ,Q`) is a semi-
simple ΓF-representation.

(3) (Above plus Tate) Such a ρ is motivic in the sense that it is cut out by Q`-linear combina-
tions of (homological) algebraic cycles. More precisely, for any embedding ι` : Q ↪→ Q`,

6It is also highly recommended to visit Laurent Berger’s website to check on the status of the course-notes from
his course at IHP in the Galois Trimestre of 2010.
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there is an idempotent project e in the algebra C0
hom(X, X)Q (see [Kle68, §1.3.8], where

this is denotedA(X)) of self-correspondences of X with Q-coefficients, such that

ρ � e(H∗(X)(r)Q) ⊗Q,ι` Q`
as ΓF-representations.

(4) (Above plus Langlands) Fix an embedding ι∞ : Q ↪→ C. There exists a cuspidal auto-
morphic representation Π of GLn(AF) such that for almost all v unramified for ρ, the
eigenvalues of ρ(frv) agree with the Satake parameters of Πv, viewed in Q` via the compo-
sition ι` ◦ ι−1

∞ (recv(Πv)).7 Moreover for ι : F ↪→ C, the archimedean Langlands parameter

recv(Πv)|Fv
× : WFv

→ GLn(C),

landing in a maximal torus Tn, is of the form z 7→ zµι z̄νι for µι, νι ∈ X•(Tn), and for any
τ : F ⊂ Fv ↪→ Q`, the Hodge-Tate co-character µτ of ρ|ΓFv

is (conjugate to) µι∗
∞,`

(τ).8

Conversely, given a cuspidal automorphic representation Π of GLn(AF) with integral
archimedean Langlands parameters, there exists an irreducible geometric Galois repre-
sentation ρΠ : ΓF → GLn(Q`) (depending on ι∞, ι`) satisfying the above compatibilities.

Remark 1.2.2. (1) Note that the Standard Conjectures are a special case of part 3 of Con-
jecture 1.2.1. We will rarely work directly with motives for homological equivalence in
these notes, substituting instead André’s category of motivated motives. Keeping one’s
faith in the Standard Conjectures, but wanting to assume less at the outset, one could
substitute the algebra of motivated correspondences C0

mot(X, X) (Definition 4.1.13 and fol-
lowing) for C0

hom(X, X) in Conjecture 1.2.1.
(2) This is not a historically faithful presentation of these conjectures; for our purposes in

these notes, however, this formulation is convenient.
(3) Part 4 implies a similar correspondence between semi-simple (not necessarily irreducible)

geometric Galois representations and (suitably algebraic) isobaric automorphic represen-
tations of GLn(AF). Alternatively, one can begin from this more general conjecture and
deduce that cuspidal automorphic representations must correspond to irreducible Galois
representations using standard properties of Rankin-Selberg L-functions.

The Fontaine-Mazur-Tate conjecture challenges us, given a geometric `-adic representation ρ`,
to produce a motive with ρ` as `-adic realization, and in particular to produce a family of `′-adic
realizations (for all `′) that are ‘compatible’ with ρ`. It is often convenient to abstract this notion
of compatible system of Galois representations, as an intermediary between the isolated ρ` and the
robust motive.

Definition 1.2.3. Let F and E be number fields, and let N be a positive integer. A rank N
weakly compatible system of λ-adic (or, informally, `-adic) representations of ΓF with coefficients
in E is a collection

R =
(
{ρλ}λ, S , {Qv(X)}v<S

)
,

7Implicit in the conjecture is that the Satake parameters of Π are algebraic; of course this is not the case for general
automorphic representations. A stronger version moreover asks that for all finite places v,

WD(ρ|ΓFv
) f r−ss � ι` ◦ ι

−1
∞ (recv(Πv))

8ι∗
∞,`(τ) is the pullback of τ to an archimedean embedding via ι`, ι∞; see §1.4.
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consisting of:
(1) for each finite place λ of E, a continuous semi-simple geometric representation

ρλ : ΓF → GLN(Eλ);

(2) a finite set of places S of F, containing the infinite places, such that for all v < S and for
all λ of different residue characteristic from v, ρλ|ΓFv

is unramified;
(3) for all v < S , a polynomial Qv(X) ∈ E[X] such that for all λ of different residue character-

istic from v, Qv(X) is the characteristic polynomial of ρλ(frv).
We will sometimes use a similar notion where GLN is replaced by a, for simplicity, split connected
reductive group H over the number field of coefficients E. In this case, repeat the above definition
verbatim, except replace the characteristic polynomial of ρλ(frv) with the analogous point of the
space of Weyl-invariant functions on a maximal torus in H, i.e. the image of ρλ(frv) ∈ H(Eλ) under
the Chevalley map induced by the map on coordinate rings

E[H] ⊃ E[H]H ∼
−−→
res

E[T ]W ,

where T is an E-split maximal torus, and W is the Weyl group of (H,T ). That is, we ask that for
all λ, the associated Eλ-points of E[T ]W in fact arise from a common E-point.

Motivated again by [Del74], we will sometimes impose a purity hypothesis on R:

Definition 1.2.4. Fix an integer w. For any finite place v of F, let qv denote the order of the
residue field of F at v. We say that a weakly compatible system R is pure of weight w ∈ Z if for a
density one set of places v of F, each root α of Qv(X) in E satisfies |ι(α)|2 = qw

v for all embeddings
ι : E ↪→ C.

Another standard variant of the definition of weakly compatible system would also specify
that the `-adic Hodge numbers are suitably ‘independent of `,’ but we will not require this; see
for instance [BLGGT14, §5.1]. Finally, an elementary argument (see, eg, [CHT08, Lemma
2.1.5]) shows that any continuous Eλ-representation of ΓF (a compact group) takes values in some
GLN(E′) for some finite extension E′ of Eλ.
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which I visited for the 2010 Trimestre Galois, and the Oxford University mathematics department,
which I visited in 2011 − 2012, for their hospitality. I of course am grateful to the Princeton math
department, both for its official support, and for its singular camaraderie.

The anonymous referees made many suggestions which have greatly improved the readability
of this book; I heartily thank them, and also thank Kevin Buzzard for helpful comments and cor-
rections. I am especially grateful to the referee who twice took the time to report on substantially
different versions of this book.

Above all, it gives me great pleasure to thank the following people. Brian Conrad’s paper
[Con11] catalyzed much of the present work: indeed, I was stumbling towards the questions stud-
ied in [Con11] when Brian posted his paper, and the clarity and generality of the questions he
raised put my ideas into the sharpest focus. Having posed such fruitful questions, Brian moreover
generously stepped back to allow me the time to pursue my ideas. He further provided very helpful

14

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



comments on an earlier draft. I am grateful to Peter Sarnak for his encouragement and for several
enjoyable conversations about this material, and to Christopher Skinner for reading an earlier draft.
Most of all, I thank Andrew Wiles, my advisor, for his ongoing support and patient encouragement
during my graduate career.

1.4. Notation

We end this introductory chapter by collecting some of the most frequently-used notation in
this text. The reader may also refer to the notation index to see where a given piece of notation is
introduced. For a number field F, we always choose an algebraic closure F/F and let ΓF denote
Gal(F/F). We write CF = A×F/F

× for the idele class group of F.
If L/F is a finite extension inside F and W a representation of ΓL (= Gal(F/L)), we abbreviate

IndΓF
ΓL

(W) to IndF
L (W). For g ∈ ΓF , we write (gW) for the conjugate representation of gΓLg−1.

We fix separable closures Q and Q` of Q and Q` for all `. We fix throughout embeddings
ι` : Q ↪→ Q` and ι∞ : Q ↪→ C. An archimedean embedding ι : F ↪→ C thus induces an `-adic
embedding τ∗`,∞(ι) = ι` ◦ ι

−1
∞ ◦ ι : F ↪→ Q`; and similarly an `-adic embedding τ : F ↪→ Q` induces

ι∗
∞,`(τ) : F ↪→ C. If there is no risk of confusion, we just write τ∗(ι) and ι∗(τ). These embeddings

will be invoked (often implicitly) whenever we associate automorphic forms and Galois represen-
tations.

For a connected reductive F-group G, we construct dual and L-groups G∨ and LG over Q
(having chosen a maximal torus, Borel, and splitting, although we will only ever make the maximal
torus explicit), and then use ι` and ι∞ to regard the dual group over Q` or C as needed.

If v is a place of F, we denote by recv the local reciprocity map from irreducible admissible
smooth representations (v finite) or irreducible admissible Harish-Chandra modules (v infinite) to
(frobenius semi-simple) representations of the Weil(-Deligne) group of Fv. We use this in the
unramified and archimedean cases, and for GLn. For the group GL1, this is local class field theory,
normalized so that uniformizers correspond to geometric frobenii, which we denote frv.

It will be convenient to have a short-hand for the assertion that an automorphic representation
and Galois representation ‘correspond’ under the conjectural global Langlands correspondence.
We will elaborate on a number of related notions in §3.3.1, but for now we give two that will come
up frequently. Recall that we have fixed embeddings ι` and ι∞ of Q into Q` and C, respectively.
If π is an automorphic representation of G(AF), and ρ : ΓF →

LG(Q`) is a continuous, almost
everywhere unramified, representation, then we write ρ ∼w π if for almost every unramified place
v of F (at which we may assume ρ is unramified), recv(πv) : WFv →

LG(C) can be realized (up to
G∨-conjugation) over Q

ι∞
−→ C, and that then

ι` ◦ ι
−1
∞ (recv(πv)) ∼

(
ρ|ΓFv

)fr−ss
,

where ∼ here denotes G∨(Q`)-conjugacy, and ‘fr-ss’ means we replace ρ(frv) with its semi-simple
part. More concretely, we restrict to places v at which both π and ρ are unramified, so that recv(πv)
and ρ|ΓFv

are both just given by their evaluations at frv; after using ι` ◦ ι−1
∞ to regard them as defined

over the same field, we ask that these two elements be G∨(Q`)-conjugate.
As in the Fontaine-Mazur-Langlands Conjecture 1.2.1, we also often want to compare the

archimedean component of π with the Hodge-Tate weights of ρ; when π is L-algebraic (see Def-
inition 1.1.2), and ρ is de Rham, we may write, for all ι : F ↪→ C, the archimedean Langlands
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parameter recv(πv)|F×v in the form
z 7→ ι(z)µι ῑ(z)νι

for µι, νι ∈ X•(T∨). Then write ρ ∼w,∞ π if ρ ∼w π, and moreover for all such ι : F ↪→ C, and for
all τ : F ⊂ Fv ↪→ Q`, the τ-labeled Hodge-Tate co-character (see §2.2.2) of ρ|ΓFv

is (conjugate to)
µι∗
∞,`

(τ).
By a CM field we mean as usual a quadratic totally imaginary extension of a totally real field;

these, and their real subfields, are the number fields on which complex conjugation is well-defined,
independent of the choice of complex embedding. For any number field, we write Fcm for the
maximal subfield of F on which complex conjugation is well-defined; thus it is the maximal CM
or totally real subfield, depending on whether F contains a CM subfield. We also write Qcm for the
union of all CM extensions of Q inside Q.

For any topological group A, we denote by AD the group Homcts(A,S1) (S1 is the unit circle);
when A is abelian and locally compact, we topologize this as the Pontryagin dual.

For any ground field k (always characteristic zero for us) with a fixed separable closure ks, and
a (separable) algebraic extension K/k inside ks, we write K̃ for the normal (Galois) closure of K
over k inside ks.

We always denote base-changes of schemes by sub-scripts: thus, Xk′ is the base-change X×Spec k

Spec k′ for a k-scheme X and a base-extension Spec k′ → Spec k. Notation such as M ⊗k k′ will be
reserved (see §4.1.4) to describe extension of scalars from an object M of a k-linear abelian cate-
gory to one of a k′-linear abelian category; when there is no risk of confusion we will sometimes
denote this also by Mk′ .

Finally, we will signal either a significant change in running hypotheses, or an essential yet
easily-overlooked point, with the ‘dangerous bend’ symbol �
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CHAPTER 2

Foundations & examples

This chapter discusses the motivating examples and technical ingredients that underly the gen-
eral arguments of Chapter 3. After (§2.1) recalling foundational lifting results of Tate, Winten-
berger, and Conrad, and (§2.2) setting up the tools we will need from `-adic Hodge theory, we
undertake a detailed discussion (§2.3) of Hecke characters and `-adic Galois characters, especially
with reference to their possible infinity-types and Hodge-Tate weights. In §2.4.1 we first explain
an abstract principle that is important for ‘doing Hodge theory with coefficients;’ in §2.4 we apply
this to generalize Weil’s result on descent of type A Hecke characters. Drawing further inspiration
from [Wei56], we then discuss (§2.5) what seems to be the most useful generalization of the type
A condition to higher-rank groups, which we call W-algebraic representations. The subsequent
sections (§2.6 and §2.7) discuss the simplest non-abelian example, that of W-algebraic Hilbert
modular forms, their associated Galois representations, and the first interesting cases of Conrad’s
geometric lifting question (Question 1.1.7); although certain results in these sections are super-
seded by the general theorems of Chapter 3, we can also prove much more refined statements in
the Hilbert modular case, as well as some complementary results about the GL2 × GL2

�
−→ GL4

functorial lift.1 Another case where more precise results are accessible with the current technology
is for certain automorphic representations on symplectic groups, and their associated (orthogonal
and spin) Galois representations (§2.8).

2.1. Review of lifting results

In this section, we review the basic Galois lifting results due to Tate, Wintenberger, and Con-
rad. We then highlight some of the basic problems that remain unaddressed by these foundational
results. The two main elements of Tate’s proof will come up repeatedly throughout these notes,
so they are worth making explicit: he requires information coming both from the ‘automorphic-
Galois correspondence’ and from the bare automorphic theory, which in our work amounts to some
question of what infinity-types automorphic representation can have. In Tate’s proof, the former
is global class field theory–in the form of the local-global structure of the Brauer group–and the
latter takes the form of precise results about the structure of the connected component of the idele
class group CF . We will give a slightly different proof that emphasizes the continuity with some of
our other arguments, especially Lemma 2.3.6.

Theorem 2.1.1 (Tate; see [Ser77, Theorem 4]). Let F be a number field. Then H2(ΓF ,Q/Z) = 0.

Proof. It suffices to prove H2(ΓF ,Qp/Zp) = 0 for all primes p, and then an easy inflation-
restriction argument shows we may assume that F contains µp. Since H2(ΓF ,Qp/Zp) is p-power

1Some of the results of §2.7, among other things, have been independently obtained by Tong Liu and Jiu-Kang
Yu in their preprint [LY].
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torsion, to show it is zero we may instead show that multiplication by p is injective, or equivalently
that the boundary map

H1(ΓF ,Qp/Zp)
δ
−→ H2(ΓF ,Z/p) � Br(F)[p]

is surjective (the identification with the Brauer group is possible since µp ⊂ F). First we note
that the corresponding claim holds for the completions Fv: since Br(Fv)[p] � Z/p (for v finite;
for v archimedean the argument is even simpler), we only need the corresponding (at v) boundary
map δv : H1(ΓFv ,Qp/Zp)→ H2(ΓFv ,Z/p) to be non-zero, and thus only that multiplication by p on
H1(ΓFv ,Qp/Zp) should not be surjective. But a character F×v → Qp/Zp is a pth-power if and only if
it is trivial on µp(Fv) ⊂ F×v , and there are obviously characters not satisfying this condition. Note
also that for φv ∈ H1(ΓFv ,Qp/Zp), the image δv(φv) depends only on the restriction φv|µp(Fv).

For global F, let α be a p-torsion element of Br(F) ⊂ ⊕vBr(Fv), with local components αv.
By the local theory, for all v we have characters φv : F×v → Qp/Zp such that δv(φv) = αv, and the
collection of αv is equivalent to the collection of restrictions φv|µp(Fv), i.e. to the corresponding
character φ : µp(AF) → Qp/Zp. The fact that the αv arise from a global Brauer class α implies
that φ factors through µp(F)\µp(AF), and we need only produce a finite-order extension to a Hecke
character φ̃ : CF → Q/Z. The archimedean classes αv are trivial for v complex, so Lemma 2.3.6
implies the existence of such an extension (note that it suffices to produce, as in the Lemma, an
extension to a character φ̃ : CF → Q/Z, since we can then project down to Qp/Zp and still have an
extension of φ). �

Example 2.1.2. As mentioned in the introduction, Tate’s result certainly breaks down with finite
coefficients. For example, consider the projectivization of the `-adic Tate module of an elliptic
curve over a totally real field F. The obstruction to lifting to SL2(Q`) lives in H2(ΓF ,Z/2), and it
vanishes if and only if the `-adic cyclotomic character admits a square-root, which cannot happen
for F totally real.

The papers [Con11] and [Win95] both study the problem of lifting Galois representation ΓF →

H(Q`) through a surjection of linear algebraic groups H̃ → H with central kernel. The problem
naturally breaks into two cases: that of finite kernel (an isogeny), and that of connected (torus)
kernel. It is helpful to contrast these cases using an algebraic toy model:

Example 2.1.3. Let H̃ � H be a surjection of tori over an algebraically closed field of charac-
teristic zero, with kernel D, and suppose we are given an algebraic homomorphism ρ : Gm → H.
Via the anti-equivalence of categories between diagonalizable algebraic groups and abelian groups
(taking character groups), we see that the obstruction to lifting ρ as an algebraic morphism lives in
Ext1(X•(D),Z); in particular, when D is a torus, all such ρ lift, but they do not all lift when D is
finite. For instance, we can fill in the dotted arrow in the diagram

G2
m

(w,z)7→wrzs

��

Gm

>>

z 7→zn
// Gm

precisely when gcd(r, s)|n. The kernel of G2
m → Gm is connected precisely when gcd(r, s) = 1, so

there is no obstruction in that case, and in general there is an explicit congruence obstruction.

Since it is the basis of all that follows, I recall the application of Theorem 2.1.1 to lifting
through central torus quotients (see Proposition 5.3 of [Con11]).
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Proposition 2.1.4 (5.3 of [Con11]). Let H̃ � H be a surjection of linear algebraic groups over
Q` with kernel a central torus S ∨.2 Then any continuous representation ρ : ΓF → H(Q`) lifts to
H̃(Q`), i.e. we can fill in the diagram

H̃(Q`)

��

ΓF

ρ̃
<<

ρ
// H(Q`).

Proof. By induction, we may assume S ∨ = Gm. There is an isogeny complement H̃1 in H̃
to S ∨: that is, we still have a surjection H̃1 � H, but now H̃1 ∩ S ∨ is finite, and thus equal to
µn0 ⊂ Gm for some n0. For any integer n divisible by n0, we can enlarge H̃1 to H̃n := H̃1 · S ∨[n],
which now surjects onto H with kernel S ∨[n] � µn. These isogenies yield obstruction classes
cn ∈ H2(ΓF ,Z/n) (as ΓF-module, the µn ⊂ S ∨[n] is of course trivial) that are compatible under the
natural maps Z/n→ Z/n′ for n|n′. Tate’s theorem (Theorem 2.1.1) tells us that

lim
−−→

n

H2(ΓF ,Z/n) = H2(ΓF ,Q/Z) = 0,

so for sufficiently large n, there exists a lift ρ̃ : ΓF → H̃n(Q`). �

Remark 2.1.5. • Note that crucial to lifting here is the ability to enlarge the coefficients:
if H̃ � H is a morphism of groups over Q` and ρ lands in H(Q`), then we only obtain a
lift to H̃(Q`(µn)) for sufficiently large n.
• For example (and similarly in general; compare Lemma 3.2.2), in the case of GLn →

PGLn, this proof produces lifts with finite-order determinant. If ρ is Hodge-Tate, it is
possible that no such lift is also Hodge-Tate. These non-Hodge-Tate Galois lifts have
no parallel in the ‘toy model’ of Example 2.1.3, but we will use them as a stepping-
stone toward finding geometric lifts, just as in the automorphic context we can choose
an initial, possibly non-algebraic, lift, and then modify it to something algebraic (see
Proposition 3.1.12). By contrast, in the ‘motivic’ version of this problem (see §4.2), the
motivic Galois group does not have the extra flexibility to admit such ‘non-algebraic’ lifts.
• If ρ is almost everywhere unramified, then it is easy to see that ρ̃ is almost everywhere

unramified; see Lemma 5.2 of [Con11].

The problem of lifting through the isogeny H̃1 → H (or any isogeny H̃ → H) is taken up
in [Win95]. Before describing this work, we state results of Wintenberger and Conrad related to
lifting p-adic Hodge theory properties through central quotients (Wintenberger treated isogenies;
the general case is due to Conrad). Since all of our Galois representations will be `-adic (rather
than p-adic), from now on we will refer to “`-adic Hodge theory,” rather than p-adic Hodge theory.
We will use the phrase “basic `-adic Hodge theory property” to refer to any of the usual prop-
erties Hodge-Tate, de Rham, semistable, or crystalline. In the current subsection, we will only
formally apply the following result; in the next subsection (§2.2), we will recall the more specific
background from `-adic Hodge theory needed later on in this book.

2I use this awful notation to remain consistent with the ‘dual picture’ that we will later use to think about these
questions.
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Theorem 2.1.6 (Corollary 6.7 of [Con11]). Let H̃ � H be a surjection of linear algebraic
groups over Q` with central kernel of multiplicative type. For K/Q` finite, let ρ : ΓK → H(Q`) be
a representation satisfying a basic `-adic Hodge theory property P. Provided that ρ admits a lift
ρ̃ : ΓK → H̃(Q`), it has a lift satisfying P if and only if ρ|IK has a Hodge-Tate lift IK → H̃(Q`).

Remark 2.1.7. When the kernel of H̃ → H is a central torus, Proposition 2.1.4 shows that ρ
always has some lift. We will see later (Corollary 3.2.12) that it even always has a Hodge-Tate lift,
so there is no obstruction to finding a lift ρ̃ : ΓK → H̃(Q`) satisfying P. Even simple cases of this
theorem yield very interesting results: for instance, applied to H̃ = GLn1×GLn2 → H ⊂ GLn1n2 , for
H the image of the exterior tensor product, it shows that if a tensor product of ΓK-representations
satisfies P, then up to twist they themselves satisfy P. We will use this example in Proposition
3.3.8.

We now sketch the proof of Wintenberger’s main global result. This provides an occasion to
simplify and generalize the arguments using subsequent progress in p-adic Hodge theory; it also
serves to make clear what these methods do and do not prove, and to set up a contrast with the
quite different techniques that we will use.

Theorem 2.1.8 (2.1.4 of [Win95]). Let H̃
π
−→ H be a central isogeny of linear algebraic groups

over Q. Let S be a finite set of non-archimedean places of F. Then there exist two extensions of
number fields F′′ ⊃ F′ ⊃ F, and a finite set of finite places S ′ of F′ such that for any prime number
` and any representation ρ` : ΓF → H(Q`) satisfying

• ρ` has “good reduction,” i.e. is unramified for places not dividing ` and crystalline for
places above `, outside S ;
• For all v|`, the one-parameter subgroups µv : Gm → HCFv

giving the Hodge-Tate structure
of ρ`|ΓFv

lift to H̃CFv
;3

then the restriction ρ`|ΓF′ admits a geometric lift ρ̃`, unramified outside S ′, to H̃(Q`); if ρ` is
crystalline (resp. semistable) at places above `, then the lift may be chosen crystalline (resp.
semistable). Moreover, the restriction ρ̃`|ΓF′′ is unique, i.e. independent of the initial choice of lift
ρ̃`.

Proof. We follow Wintenberger’s arguments in detail, simplifying where the technology al-
lows. First we explain some generalities: since the map on Q`-points π` : H̃(Q`) → H(Q`) need
not be surjective, we have an initial obstruction O1(ρ`) in Hom(ΓF ,H1(ΓQ` , ker π)) given by the
composition

ΓF
ρ`
−→ H(Q`)/ im(π`) ↪→ H1(ΓQ` , ker π(Q`)).

We have the choice of killing this obstruction by enlarging Q` to some finite extension, or by
restricting F; following Wintenberger, we will do the former. Having dealt with this obstruction,
we will face the more serious lifting obstruction O2(ρ`) in H2(ΓF , ker π(Q`)).

With these preliminaries aside, we construct the field F′, first dealing with all but the (finite)
set of ` lying below a place in S . Let a(π) be the annihilator of ker π. The field F′ (and set of places
S ′) will be defined, independent of `, in the following three steps:

3When some local lift IFv → H̃(Q`) exists, this condition is equivalent to the existence of a local Hodge-Tate lift.
When ρ` |IFv

is moreover crystalline, or semistable, it is equivalent to the existence of a crystalline, or semistable, lift,
by Theorem 2.1.6.
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• Let F1 be the maximal abelian extension of exponent a(π), unramified outside S . For
all ` and ρ`, the class O1(ρ`) dies after restriction to ΓF1: outside of S ` = S ∪ {v|`}, it
is of course unramified, and if v|` but v < S (i.e. ρ`|ΓFv

is crystalline), then Théorème
1.1.3 of [Win95]) shows the existence of a crystalline lift, valued in H̃(Q`), of ρ`|IFv

.
(Since weakly-admissible is now known to be equivalent to admissible, Wintenberger’s
argument applies without restriction on the Hodge-Tate weights, or the ramification of the
local field Fv/Q`.)
• Let F2/F1 be a totally imaginary extension containing Q(ζa(π)) and such that for all places

v′ above a place v in S , a(π) divides the local degree [F2,v′ : F1,v(ζa(π))]. If we write S 2 for
the set of places of F2 above S , `, or a(π`) (the annihilator of ker π(Q`)), then this implies
local triviality of the obstruction classes, as long as we assume S contains no places above
`. That is,

O2(ρ`) ∈ ker

H2(ΓF2,S 2 , ker π(Q`))→
⊕

v∈S 2∪S∞

H2(ΓFv , ker π(Q`))

 .
At v′ above S , the fact that F2 contains ζa(π) makes the local obstruction class a Brauer
obstruction, which is killed over F2 by the assumption a(π)|[F2,v′ : F1,v(ζa(π))]. At places
not in S but above a(π`) there is no obstruction, since unramified reprsentations always
lift (granted that O1(ρ`) is trivial). Finally, at places above `, which we have assumed for
now do not lie in S , Wintenberger’s local result implies the existence of a crystalline lift:
on the full decomposition group ΓFv , this is [Win95, Proposition 1.2]–note that for the
extension from IFv to ΓFv , one must use the fact that a crystalline lift on inertia is unique.
• Let F3 be the Hilbert class field of F2. By global duality, the above kernel is Pontryagin

dual to

ker

H1(ΓF2,S 2 , ker π(Q`)∗)→
⊕

v∈S 2∪S∞

H1(ΓF2,S 2 , ker π(Q`)∗)


The Galois module ker π(Q`)∗ is trivial since F2 contains ζa(π), so this is just the space of
homomorphisms ΓF2 → ker π(Q`) that are unramified everywhere and trivial at the places
S 2. Restriction of the class O2(ρ`) to F3 corresponds to (via global duality for F3 now)
the transfer on the Pontryagin dual of the H1’s, so by the Hauptidealsatz (trivialization of
ideal classes upon restriction to the Hilbert class field), O2(ρ`) dies upon restriction to F3.

We conclude that, independent of ` not below places of S , and of ρ` satisfying the hypotheses
of the theorem, there exist lifts over the number field F3. To deal with ` for which the local
representations are not crystalline, we apply Proposition 0.3 of [Win95] to find a finite extension
F(`)/F, unramified outside S `, and such that all ρ`|ΓF(`) will lift.4 Enlarging F3 by the composite of
the F(`) (for ` below places of S ), we obtain a number field F4 and a set of places S 4 equal to all
places above S or a(π), such that for all `, any ρ` as in the theorem has a lift with good reduction
outside S 4 after restriction to ΓF4 .

4This is a ‘soft’ result. It is easy to see that for fixed `, all ρ` unramified outside S lift after restriction to some F(`).
The point of Wintenberger’s theorem is that, with the `-adic Hodge theory hypotheses, F(`) can be taken independent
of `.
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The final step of the argument makes one final extension to show that these lifts can be taken
crystalline (or semistable) whenever ρ` is, and even unramified outside all primes above S ` (in-
cluding those above a(π), although this is not necessary for the theorem’s conclusion); we omit the
details, but see [Win95, Lemme 2.3.5ff.]. This will be the number field F′, and the set of places
S ′ can then be taken to be those above S . Finally, all such lifts ρ̃` (with good reduction outside S ′)
are the same over the maximal abelian extension of exponent a(π), unramified outside S ′, of F′;
this is our F′′. �

�

Remark 2.1.9. We can apply the theorem to a system of representations ρ` all having good re-
duction outside S , and all having liftable Hodge-Tate cocharacters (which in the ‘motivic’ case we
may assume all arise from a common underlying geometric Hodge structure), to obtain a common
number field F′, with finite set of places S ′, and a further extension F′′ such that the whole system
lifts to F′ (with good reduction outside S ′), and such that all the lifts are unique over F′′. The cru-
cial limitation of this result is that, even if the ρ` are assumed to be the system of `-adic realizations
of some motive (for absolute Hodge cycles, as in [Win95], or for motivated cycles), the proof of
the theorem produce lifts ρ̃` that are neither (proven to be) motivic nor even weakly compatible
(almost everywhere locally conjugate). So, even with the strong uniqueness properties ensured by
Wintenberger’s theorem, it is still not at all clear how to lift a compatible (or even motivic) system
of `-adic representations to another compatible (or motivic) system.

Here is the simplest cautionary example of how weakly compatible systems need not lift to
weakly compatible systems; it arises from an example due to Serre (see [Lar94]) involving pro-
jective representations that are everywhere locally, but not globally, conjugate:

Example 2.1.10. For any positive integer n, let Hn denote the Heisenberg group of upper-
triangular unipotent elements in GL3(Z/nZ). This is a non-split extension

1→ Z/n→ Hn → Z/n × Z/n→ 1,

and writing A and B for lifts of the generators of the quotient copies of Z/n, and Z for a generator
of the center, we have the commutation relation [A, B] = Z. Now let ζ be a primitive nth root of
unity; for any α ∈ Z/n, we can then define a representation ρα : Hn → GLn(C) by, in the standard
basis ei, i = 1, . . . , n, and abusively letting e0 denote en as well,

A(ei) = ei−1

B(ei) = ζ(i−1)αei

Z(ei) = ζαei

for i = 1, . . . , n. One can check that for all α ∈ (Z/nZ)×, the associated projective representations
ρα : Hn → PGLn(C) are everywhere locally conjugate. Nevertheless, for distinct α, they are not
globally conjugate: if they were, then the corresponding GLn(C)-representations would be twist-
equivalent. The implications for our problem are the following: take ρα and ρβ for α , β, and
form a weakly-compatible system ρ` : ΓF � Hn → PGLn(Q`) (Hn certainly arises as Galois group
of a finite extension of number fields.) in which some ρ` are formed from ρα and others from ρβ.
There is then no system of weakly-compatible lifts ρ̃` : ΓF → GLn(Q`), since any character of ΓF

is trivial on Z (viewed as an element of Gal(FabF′/F), where F′/F is the given Hn-extension; note
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that Gal(FabF′/Fab) is generated by Z). Also note that we can even produce such examples where
the lifts to GLn(C) have the same determinant:

det(ρα) :


A 7→ (−1)n−1;
B 7→ 1 if n is odd, or if α and n are even; −1 otherwise;
Z 7→ 1.

Thus, even weakly compatible systems ΓF → PGLn(Q`) × Q
×

` need not have compatible lifts
through the isogeny GLn → PGLn × Gm.

To connect this example more explicitly with endoscopy, note that CentPGLn(C)(ρα) is the (cyclic
order n) subgroup generated by ρα(A), whereas ρα itself is irreducible. These centralizers partially
govern the multiplicities of discrete automorphic representations in Arthur’s conjectures. Explic-
itly, ρα(ABA−1) = ζαB.

2.2. `-adic Hodge theory preliminaries

2.2.1. Basics. In this section, we recall some background and prove some simple lemmas in `-
adic Hodge theory. Throughout, let K/Q` be a finite extension. Choose an algebraic closure K/K,
and let CK denote the completion of K. Since ΓK acts by isometries on K, CK inherits a continuous
ΓK-action. We will mainly use only the simplest of Fontaine’s period rings, BHT and BdR, and even
these only formally. Again, we refer the reader to the references in §1.2.2 for background, but here
we quickly recall the little needed to follow future arguments. BHT is the graded CK-algebra

BHT =
⊕

i∈Z

CK(i),

with the obvious continuous CK-semilinear action of ΓK , CK(i) denoting a twist of CK by the ith

power of the cyclotomic character. BdR is the fraction field of a complete DVR and K-algebra B+
dR

whose residue field is CK . We do not recall the construction, but note that BdR is a filtered K-
algebra (the filtration associated to the maximal ideal of B+

dR) with a continuous K-linear action of
ΓK . Two of the fundamental results of the theory assert that gr•(BdR) � BHT (as graded CK-algebras
with semi-linear ΓK-action) and BΓK

dR = BΓK
HT = K. From this second point it follows that if V is a

finite-dimensional representation of ΓK over Q`, then

DHT(V) = (BHT ⊗Q` V)ΓK

is a K-vector space of dimension at most dimQ`(V), and similarly

DdR(V) = (BdR ⊗Q` V)ΓK

is a K-vector space of dimension at most dimQ`(V).

Definition 2.2.1. Let V be a finite-dimensional representation of ΓK over Q`. V is said to be
Hodge-Tate if dimK DHT(V) = dimQ`(V), and de Rham if dimK DdR(V) = dimQ`(V).
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If V is de Rham, then it is Hodge-Tate (see, eg, [BC, Proposition 6.3.2]), but not conversely.5

However, the converse holds for characters ([Ser98, III-A6]), a fact to which we will frequently
appeal.

We will usually consider ΓK-representations V with coefficients in some extension E/Q`, typ-
ically either some unspecified finite extension, or E = Q`. Then DdR(V) (mutatis mutandis for
DHT) is a filtered K ⊗Q` E-module; if V , viewed as a Q` representation by forgetting the E-linear
structure, is de Rham, then DdR(V) is a free K ⊗Q` E-module. To see this, we may assume E is
(finite-dimensional over Q` and) large enough to contain all embeddings of K into Q`. Then for
all Q`-embeddings τ : K ↪→ E, we have orthogonal idempotents eτ ∈ K ⊗Q` E, giving rise to an
isomorphism

K ⊗Q` E
(eτ)
−−→
∼

⊕
τ : K↪→E

E

x ⊗ α 7→ (τ(x)α)τ .

As K ⊗Q` E-module,

DdR(V) �
⊕
τ

eτDdR(V) �
⊕
τ

(BdR ⊗K,τ V)ΓK

(compare Lemma 2.2.7), and each space on the right-hand side has E-dimension at most dimE(V).
The sum of their E-dimensions is then at most dimQ`(K) dimE(V), so theQ`-dimension of the right-
hand side is at most dimQ`(K) dimQ`(V), which is, since V is de Rham, the Q`-dimension of the
left-hand side. Therefore equality holds everywhere, and it easily follows that DdR(V) is free over
K ⊗Q` E � ⊕τE.

Example 2.2.2. Note that even when V is de Rham, other steps of the filtration need not be free
over K ⊗Q` E. We sketch a basic example, omitting the details because they require introducing
more about BdR than we will subsequently need. Take any extension to a character ψ of ΓK of the
character

IK
recK
−−−→ O×K

τ
−→ Q

×

` ,

where τ : K ↪→ Q` is any fixedQ`-embedding. If K = Q`, so that there is only one such embedding,
then ψ|IK is just the restriction to inertia of the cyclotomic character, and DdR(ψ) has filtration
concentrated in degree -1. If K , Q`, then for all embeddings τ′ , τ, the filtered one-dimensional
Q`-vector space eτ′DdR(ψ) has its filtration concentrated in degree zero, whereas the τ piece is
concentrated in degree -1.

It will be crucial for us to have a refined notion of Hodge-Tate weight that takes into account
the different embeddings τ : K ↪→ Q`:

Definition 2.2.3. Let V be a de Rham representation of ΓK on a Q`-vector space of dimension
d, so that DdR(V) is a free K ⊗Q` Q`-module of rank d. Then for each τ : K ↪→ Q`, we define

5The standard example is a non-split extension of ΓK- representations

0→ Q` → V → Q`(1)→ 0.

Standard results on Galois cohomology of local fields show such a V exists. It’s not so hard to show V is Hodge-Tate,
but to show that it cannot be de Rham seems to require quite deep input; see for instance [BC, Example 6.3.5].
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the d-element multi-set of τ-labeled Hodge-Tate weights, HTτ(D), to be the multi-set of integers h
such that

grh(eτ(DdR(V))) , 0,
where h has multiplicity dimQ` grh(eτDdR(V)).

We could also make this definition for V having coefficients in a subfield E ⊂ Q`, possibly
then having to enlarge E in order to contain the embeddings of K (and thus define the labeled
Hodge-Tate weights). For example, for any embedding τ : K ↪→ Q`, the cyclotomic character
κ : ΓK → Q

×
` has a single Hodge-Tate weight of −1. In §2.4.1, we will discuss the elementary but

significant implications of E not containing all embeddings of K (which in the cyclotomic example
just described, is that HTτ(κ) is independent of τ).

2.2.2. Labeled Hodge-Tate-Sen weights. Later we will work with ΓK-representations that are
not even Hodge-Tate and will need a generalized notion of (labeled) Hodge-Tate weight. Moreover,
we will need an analogue of the sets HTτ for representations of ΓK valued in linear algebraic groups
other than GLN . Both of these flexibilities will be required to address Question 1.1.7. First, again
let V be a de Rham representation of ΓK on a Q`-vector space. The identification of gr•(BdR)
with BHT implies that the multiplicity of q in HTτ(V) also equals dimQ`(V ⊗τ,K CK(−q))ΓK . We use
this formulation to extend the definition of τ-labeled weights to the Hodge-Tate case. Note that
if K′/K is any finite extension, and τ′ : K′ ↪→ Q` is any embedding extending τ : K ↪→ Q`, then
HTτ′(V |ΓK′ ) = HTτ(V).

Now we drop the assumption that V is Hodge-Tate. To analyze such V , we use a construction
of Sen ([Sen81]): for Sen’s theory, [Ber04, II.1.2] is a very brief, and very illuminating, overview;
see the references there or [BC, Part IV] for a detailed introduction. Sen’s theory gives much more
precise results than what we use here, and we will not need any details of the construction. We will
therefore only summarize the properties of the construction that we will formally apply:

Theorem 2.2.4 (Sen). For any CK-semilinear representation V of ΓK , there is a CK-linear en-
domorphism ΘV , the ‘Sen operator’ of V, satisfying the following functorial properties for a pair
V1, V2 of CK-semilinear representations:

• If V1
T
−→ V2 is a ΓK-equivariant map of CK-semilinear representations, then Lie(T )◦ΘV1 =

ΘV2 ◦ Lie(T ).
• ΘV1⊕V2 = ΘV1 ⊕ ΘV2 .
• ΘV1⊗V2 = ΘV1 ⊗ idV2 + idV1 ⊗ΘV2 .

The representation V is is Hodge-Tate6 if and only if ΘV is semi-simple with integer eigenvalues.
In general, we define the ‘Hodge-Tate-Sen’ weights of V to be the eigenvalues of ΘV .

Proof. See [Sen81] or, more specifically, [BC, Corollary 15.1.6, Theorem 15.1.7, Exercise
15.5.4]. �

We will now be more precise about how to work with ΓK-representations with coefficients in
Q`. We will also describe Sen operators for representations valued in a general linear algebraic
group. For some finite extension E/Q` inside Q`, our (arbitrary) ΓK-representation V descends
to an E-linear representation VE. For any embedding ι : Q` ↪→ CK , we have the Sen operator

6Strictly speaking, in §2.2.1 we only defined Hodge-Tate representations on finite-dimensional Q`-vector spaces.
This is a special case of a more general notion for CK-semi-linear ΓK-representations: see [BC, Definition 2.3.4].
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Θρ,ι ∈ EndCK (V ⊗Q`,ι CK). More precisely, let K′ = ι(E)K, so that VE ⊗E,ι CK is a CK-semilinear
representation of ΓK′ , to which we can in the usual way associate the Sen operator Θρ,ι. Note
that the Sen operator of a CK semi-linear representation is insensitive to finite restriction, so this
construction is independent of the choice of (sufficiently large) K′. Moreover, choosing a model
VE′ of V with coefficients in some finite extension E′/E inside Q` also yields the same Θρ,ι, since
we don’t change the CK-semilinear representation of ΓK′ (this may be a bigger K′, having enlarged
E). This allows the following Tannakian observation about Sen operators (§6 of [Con11]).

Lemma 2.2.5. Let G be a linear algebraic group overQ` with Lie algebra g and ρ : ΓK → G(Q`)
a (continuous) representation. Then for each embedding ι : Q` ↪→ CK , there exists a unique Sen
operator Θρ,ι ∈ g ⊗Q`,ι

CK such that for all linear representations r : G −−→
/Q`

GLV , Lie(r)(Θρ,ι) is

equal to the previously-defined Θr◦ρ,ι.

Proof. This follows from Tannaka duality for Lie algebras (a precise reference is [HC50]).
Namely, for each Q`-representation G → GLV we get an element ΘV,ι ∈ glV ⊗ιCK , and these satisfy
the functorial properties

• If V1
T
−→ V2 is a G-morphism, then Lie(T ) ◦ ΘV1,ι = ΘV2,ι ◦ Lie(T );

• ΘV1⊕V2,ι = ΘV1,ι ⊕ ΘV2,ι;
• ΘV1⊗V2,ι = ΘV1,ι ⊗ idV2 + idV1 ⊗ ΘV2,ι.

(If different fields E and K′ as above are needed to define the ΘVi,ι, we can pass to a common
extension and apply the remarks preceding the lemma.) Tannaka duality then implies that all ΘV,ι

arise from a unique element Θρ,ι ∈ g ⊗ι CK . �

Remark 2.2.6. The necessary functorial properties of the Sen operators are not automatic. All
the relevant statements are in §15 of [BC].

As mentioned previously, V⊗Q`,ιCK is Hodge-Tate if and only if Θρ,ι is semi-simple with integer
eigenvalues. We will need the following comparison:

Lemma 2.2.7. Suppose ρ : ΓK → AutQ`(V) is Hodge-Tate. Any embedding ι : Q` ↪→ CK induces
τι : K ↪→ Q`, and we then have

HTτι(ρ) = {eigenvalues of Θρ,ι}.

Proof. Let E and K′ be as above. The ΓK-representation VE is Hodge-Tate, and there is a
natural isomorphism of graded E ⊗Q` K′-modules

(VE ⊗Q` BHT )ΓK ⊗K K′
∼
−→ (VE ⊗Q` BHT )ΓK′ .

Restricting to the qth graded pieces, we get an E ⊗Q` K′-isomorphism

(VE ⊗Q` CK(−q))ΓK ⊗K K′
∼
−→ (VE ⊗Q` CK(−q))ΓK′ ,

which in turn is an E ⊗Q` K′-isomorphism⊕
τ : K↪→E

(VE ⊗τ,K CK(−q))ΓK ⊗K K′
∼
−→

⊕
ι : E↪→CK

(VE ⊗E,ι CK(−q))ΓK′ .

Projecting to the τ-component, we obtain an E ⊗τ,K K′-isomorphism

(VE ⊗τ,K CK(−q))ΓK ⊗K K′
∼
−→

⊕
ι : E↪→CK :τι=τ

(VE ⊗E,ι CK(−q))ΓK′ .
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Writing mq,τ for the multiplicity of q in HTτ(V), the left-hand side is a free E ⊗τ,K K′-module of
rank mq,τ. Meanwhile, the K′-dimension of the ι-factor of the right-hand side is by definition the
multiplicity of q as a Hodge-Tate weight of VE ⊗E,ι CK , hence is q’s multiplicity as an eigenvalue
of Θρ,ι. We deduce (applying the ι-projection in E⊗τ,K K′ �

∏
ι:τι=τ K′) that for all ι the eigenvalues

of Θρ,ι match the multi-set HTτι(V).

Remark 2.2.8. We will only apply this when V is in fact de Rham, with the exception of
Corollary 3.2.12.

2.2.3. Induction and `-adic Hodge theory. We will later need a result on compatibility of
Fontaine’s functors with induction. The following lemma is certainly well-known, but I don’t
know of a proof in the literature, so I record some details. For a finite extension K/Q`, we let (as
is standard notation in the subject) K0 ⊂ K denote the maximal unramified sub-extension of K.

Lemma 2.2.9. Let L/K/Q` be finite, and let W be a de Rham representation of ΓL. Then V =

IndK
L W is also de Rham, and DdR(V) is the image under the forgetful functor FilL → FilK of DdR(W).

Moreover, IndK
L W is crystalline if and only if W is crystalline and L/K is unramified.

Proof. This follows almost immediately from Frobenius reciprocity if one uses contravariant
Fontaine functors:

D∗dR(V) := HomΓK (V,BdR) � HomΓL(W,BdR|ΓL) = D∗dR(W).

Since D∗dR(V) � DdR(V∗), and IndK
L (W∗) � IndK

L (W)∗, this shows that DdR(V) is simply the filtered
K-vector space underlying DdR(W). Comparing dimensions, it is clear that V is de Rham if and
only if W is. In the crystalline case, the same observation yields D∗cris(V) � D∗cris(W), so

dimK0 Dcris(V) = dimK0 Dcris(W) = dimL0 Dcris(W)[L0 : K0],

and comparing dimensions we see that V is crystalline if and only if W is crystalline and [L0 :
K0] = [L : K], i.e. L/K is unramified. �

2.3. GL1

A detailed analysis of the GL1 theory provides both motivation and technical tools for address-
ing the more general Galois and automorphic lifting problems.

2.3.1. The automorphic side. We begin by reviewing some basic facts about Hecke charac-
ters ψ : A×F/F

× → C×. Any such ψ is the twist by | · |rAF
, for some r ∈ R, of a unitary Hecke

character. At each place v of F, ψv = ψ|F×v can be decomposed via projection to the maximal
compact subgroup in F×v ; at v|∞, this lets us write any unitary ψv in terms of a given embedding
ιv : Fv ↪→ C as

ψv(xv) = (ιv(xv)/|ιv(xv)|)mv |ιv(xv)|
itv
C ,

with mv = mιv an integer, and tv a real number. To avoid cumbersome notation, we will sometimes
omit reference to the embedding ιv. Hecke characters encode finite Galois-theoretic information
as well as rather subtle archimedean information; the latter will be particularly relevant in what
follows, and the basic observation ([Wei56]) is:
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Lemma 2.3.1. There is a (unitary, say) Hecke character ψ of F with archimedean parameters
{mv, tv}v|∞, as above, if and only if for some positive integer M, all global units α ∈ O×F satisfy∏

v|∞

(
ιv(α)
|ιv(α)|

)mv

|ιv(α)|itv


M

= 1.

Equivalently, the inside product is trivial for all α in some finite-index subgroup of O×F .
It follows that if F is a CM field, and {mv}v|∞ is a set of integers indexed by the archimedean

places of F , then there is a unitary Hecke character ψ of F with archimedean components given
by ψv(xv) = (ιv(xv)/|ιv(xv)|)mv , for all v|∞.

Using the notation we have just established, we recall Weil’s notions of type A0 and type A
Hecke characters:

Definition 2.3.2. A Hecke character ψ is said to be of type A if r ∈ Q and tv = 0 for all v|∞. ψ
is said to be type A0 if tv = 0 and mv

2 + r is an integer for all v|∞. Equivalently, ψ is type A0 if for
all v|∞, there exist integers pv and qv such that ψv(z) = ιv(z)pv ῑv(z)qv .

In particular, note that Lemma 2.3.1 implies the existence of all the type A Hecke characters
over CM fields that one could hope for. The situation is more interesting over general number
fields, as we will see in Lemma 2.3.4. First we note another result of Weil ([Wei56]), which
reveals the central role in the algebraic theory of automorphic forms (for GL1, here) played by the
notion of ‘type A.’

Lemma 2.3.3 (Weil). Let χ be a type A Hecke character locally trivialized by the modulus m
(i.e. unramified outside m, and, if p fv

v is the exact power of a prime ideal pv dividing m, trivial on
1 + p

fv
v ). The character χ then induces a character χm of Im, the group of non-zero, prime to m,

fractional ideals, whose values are all algebraic numbers.

Later we will be interested in a higher-rank version of the type A condition; in current discus-
sions of algebraicity of automorphic representations, people tend to focus on analogues of type A0.
We recall a basic result of Weil-Artin ([Wei56]), which will later inspire much of our discussion
in higher-rank as well. Recall that for Hecke characters, base-change (in the sense of Langlands
functoriality) from a field F to a field L containing F is simply precomposition with the norm NL/F;
we denote the base-change of a Hecke character ψ of F to one of L by BCL/F(ψ).

Lemma 2.3.4 (Weil-Artin). Let ψ be a type-A Hecke character of a number field F. Write Fcm

for the maximal CM subfield of F. Then there exists a finite-order Hecke character χ0 of F and a
type-A Hecke character ψ′ of Fcm such that ψ = χ0 · BCF/Fcm(ψ′). If Fcm is totally real, then ψ is a
finite-order twist of some power | · |r, r ∈ Q, of the absolute value.

Remark 2.3.5. We emphasize that the true content of this result, which should fully generalize
to higher-rank (see Proposition 2.4.8), is that the infinity-type of a type-A Hecke character descends
to the maximal CM subfield.

First Proof: Weil leaves it as an exercise, so we give a proof. We then indicate a second proof,
which we will apply more generally in Proposition 2.4.8. By twisting by a rational power of the
absolute value, and then if necessary squaring, we may assume that ψ is type A0. First assume F/Q
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is Galois, and set G = Gal(F/Q). We may regard F as a subfield of C (i.e., choose an embedding),
so the above relation becomes ∏

g∈G

g(α)mg = 1

for all α in some finite-index subgroup of O×F and some integers mg. Now take any embedding
ι : F ↪→ C, using it to define a complex conjugation cι on F, and thus on G. In particular, when F
is totally imaginary we can rewrite the above as∏

G/cι

g(α)mg(cιg)(α)mcιg = 1.

Applying log |ι(·)|, we get (for all α)∑
G/cι

(mg + mcιg) log |ι(g(α))|C = 0,

which by the unit theorem is only possible when mg + mcιg equals a constant wι independent of g;
the analogous argument in the totally real case shows that the mg themselves are independent of g,
concluding that case of the proof. But wι is independent of ι as well,7 hence mg+mcιg is independent
both of g and the choice of conjugation. This implies that for any two ι, ι′, mg = mcιcι′g, and since
Fcm is precisely the fixed field (in F) of the subgroup generated by all products cιcι′ , we are done.

Now let F be arbitrary, and let ψ be a type A Hecke character of F. As usual letting F̃ denote
the Galois closure, we know from the Galois case that ψ|F̃ has infinity-type descending to (F̃)cm.
Setting H1 = Gal(F̃/F) and H2 = Gal(F̃/(F̃)cm), the values mιv (for embeddings ιv : F̃ ↪→ C) are
constant on H1-orbits (by construction) and H2-orbits (by the Galois case), hence on H1H2-orbits.
But F ∩ (F̃)cm = Fcm, so H1H2 = Gal(F̃/Fcm), and the infinity-type descends all the way down to
Fcm, proving the lemma in general. �

Second Proof: Later, we will generalize the following argument (see Proposition 2.4.8 for
more details) in the totally imaginary case: for all σ ∈ Aut(C), there is a Hecke character σψ
whose finite part is σψ f (x) = σ(ψ f (x)) and whose infinity-type is given by the integers mσ−1ιv (the
key but easy check is F×-invariance). For some integer r, the twist |·|r/2ψ is unitary, so cψ = |·|−rψ−1,
and therefore the fixed field Q(ψ f ) ⊂ Q of all σ ∈ Aut(C) such that σψ f � ψ f is contained in Qcm.
The result follows from some Galois theory. �

As pointed out to me by Brian Conrad, a third, more algebraic, approach is possible, where
infinity-types of algebraic Hecke characters are related to (algebraic) characters of the connected
Serre group; compare the discussion of potentially abelian motives in §4.1.30. Of course, in all
arguments, the unit theorem is the essential ingredient.

We will have to analyze Hecke characters in the following setting: An automorphic represen-
tation π of an F-group G has a central character ωπ : ZG(F)\ZG(A) → C×, and we will want to
understand the possible infinity-types of extensions

ZG(F)\ZG(A)
ωπ
//

��

C×

Z̃(F)\Z̃(A)
ω̃

99

7For instance, whatever ι, 1
2 |G|wι =

∑
g∈G mg.
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where Z̃ is an F-torus containing ZG. The basic case to which this is reduced, for split groups at
least, is where ZG = µn and Z̃ = Gm, where we have to extend a character from µn(F)\µn(A) to the
full idele class group F×\A×.

Lemma 2.3.6. Let F be any number field. Given a continuous character ω : µn(F)\µn(A)→ S1,
with archimidean component ω∞, fix embeddings ιv : Fv ↪→ C and write

ω∞ : (xv)v|∞ 7→
∏

v

ιv(xv)mv

for some set of residue classes mv ∈ Z/nZ. Then:
• There exist type A (unitary) Hecke character extensions ω̃ : F×\A× → S1 if and only if

the images mv ∈ Z/nZ depend only on the restriction v|Fcm . There exists a finite-order
extension ω̃ if and only if for all complex v|∞, the classes mv ∈ Z/nZ are all zero.
• The extension ω̃ is unique up to the nth power of another type A Hecke character, except

in the Grunwald-Wang special case (see the proof), where one first has two choices of
extension to CF[n], and then the nth power ambiguity.
• In particular, if F is totally real or CM, then (unitary) type A extensions of ω always exist.

If F is totally real, they are finite-order, and if F is CM, a finite-order extension can be
chosen if and only if ω|F×∞ is trivial.

Proof. For the time being, let F be arbitrary. The cokernel of µn(F)\µn(A) → CF[n] is either
trivial or order 2, the latter case being the Grunwald-Wang special case (see [Con11, Appendix
A]), so we first choose an extension ω′ to CF[n] (we will use this flexibility in Proposition 3.1.4).
Then Pontryagin duality gives an isomorphism

CD
F /nCD

F
∼
−→ (CF[n])D,

so there exists some ω̃ ∈ CD
F extending ω′, and it is unique up to nth powers. Restricted to F×∞, we

can write (implicitly invoking ιv)

ω̃∞ : (xv)v|∞ →
∏
v|∞

(xv/|xv|)mv |xv|
itv
C

for integers mv and real numbers tv. Then a type A lift of ω′ exists if and only if there is a Hecke
character ψ with infinity-type

ψ∞ : (xv) 7→
∏
v|∞

(xv/|xv|) fv |xv|
itv/n
C

for some integers fv (the desired type A character is then ω̃ψ−n). Following Weil (Lemma 2.3.1),
the existence of a Hecke character ω̃ corresponding to the infinity-data {mv, tv}v is equivalent to the
existence of some integer M such that for all α ∈ O×F ,∏

v|∞

(α/|α|)mv M |α|itv M
v = 1,

and, similarly, such a ψ can exist if and only if there exists M′ ∈ Z such that∏
v|∞

(α/|α|) fv MM′n|α|itv MM′
v = 1
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for all α ∈ O×F . Substituting, the left-hand side is
∏

v|∞(α/|α|)( fvn−mv)MM′ , which can equal 1 for all
α ∈ O×F if and only if there exists a type A Hecke character with infinity-type

(xv) 7→
∏
v|∞

(xv/|xv|) fvn−mv .

By Weil’s classification of type A Hecke characters, this is possible if and only if fvn−mv depends
only on v|Fcm . This in turn is possible (for some choice of fv) if and only if mv ∈ Z/nZ depends
only on v|Fcm . In particular, over CM and totally real fields F, there is no obstruction, so a type A
lift of ω always exists.

The claim about existence of finite-order extensions is a simple variant: if all mv (v complex)
are zero in Z/nZ, then there is a type A lift ω̃ with infinity-type

ω̃∞ : (xv)v|∞ →
∏
v|∞

(xv/|xv|)mv

for some integers mv, all divisible by n and only depending on ιv|Fcm . But then there is also a type
A Hecke character ψ of F with infinity-type

ψ∞ : (xv)v|∞ →
∏
v|∞

(xv/|xv|)mv/n,

so ω̃ψ−n is a finite-order extension of ω.
As for uniqueness, once a type A lift of ω′ is chosen, any other is (by the discussion at the

start of the proof) a twist by the nth power of another Hecke character, which must itself clearly be
of type A. This is then the ambiguity in extending ω itself, except in the Grunwald-Wang special
case, in which there is the additional Z/2Z ambiguity noted above. �

Remark 2.3.7. • Of course any quasi-character of µn(A) is unitary, and to understand all
extensions it suffices (twisting by powers of | · |A) to understand unitary extensions–hence
the restriction to S1 instead of C×.
• This raises a tantalizing question: certainly over a non-CM field F we can produce char-

actersω that have no type A extensions (although they certainly all have some extension to
a Hecke character, by Pontryagin duality). What if ω actually arises as the central charac-
ter of a suitably algebraic cuspidal automorphic representation (on SLn(A), for instance)?
We return to this in §2.4.

A few consequences, either of the result or the method of proof, will follow; first, though, let
us make a definition:

Definition 2.3.8. Let F be any number field, and let ψ ∈ CD
F be a unitary Hecke character. We

say that ψ is of Maass type if for all v|∞, the restriction ψv : F×v → S1 has the form x 7→ |x|itv for
real numbers tv.

Corollary 2.3.9. Let ψ : CF → C
× be a Hecke character of a number field F.

• If F is totally real or CM, then ψ can be decomposed as

ψ = ψalgψMaassψfin| · |
w,

where w is the unique real number twisting ψ to a unitary character, ψalg is unitary type
A, ψMaass is of Maass type, and ψfin is finite order. The last three characters are all unique
up to finite-order characters.

31

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



• If ψ is of Maass type (after twisting to a unitary character), with F arbitrary, then ψ is
‘nearly divisible’: for any n ∈ Z there exist Hecke characters χ of Maass type and χ0 of
finite order such that χnχ0 = ψ. In particular, after a finite base-change ψ is n-divisible.
• WriteAF(1) for the space (topological group) of all Hecke characters of F. Suppose F is

CM, of degree 2s over Q. Then there is an exact sequence

1→ ΓD
F → AF(1)→ R × Zs × Qs−1 → 1.

(As always, ΓD
F denotes Homcts(ΓF ,S1); it is the space of Dirichlet characters.) For the totally real

subfield F+ of F, we have a similar sequence

1→ ΓD
F+
→ AF+

(1)→ R × Qs−1 → 1.

It is also possible (via the unit theorem) to compute all possible infinity-types of Hecke char-
acters of any number field, but we will make no use of this calculation. Roughly speaking, the
new transcendentals that arise in the ‘mixed’ case where algebraic and Maass parts cannot be sep-
arated are the arguments (angles) of fundamental units. It is very tempting to ask whether for CM
(or totally real fields) algebraic and spherical (‘Maass’) infinity-types on higher-rank groups can
twist together in a non-trivial way. If this question is too naı̈ve, is there any other higher-rank
generalization of part 1 of Corollary 2.3.9?

We include a couple other related useful results. For the first, note that in contrast with the
situation for `-adic Galois characters (see Lemma 2.3.15 below), a general Hecke character cannot
be written as an nth-power up to a finite-order twist.8

Lemma 2.3.10. Let ψ be a Hecke character of F, and suppose that L/F is a finite Galois
extension over which BCL/F(ψ) = ψ ◦ NL/F is an nth-power. Then up to a finite-order twist, ψ itself
is an nth-power.

Proof. Let ω be a Hecke character of L such that ψ ◦ NL/F = ωn. Then for any σ ∈ Gal(L/F),
ω−1 · (ω ◦ σ) has finite order. After passing to a further finite extension L̃ that kills all these
characters, we see that BCL̃/F ψ = BCL̃/L(ω)n, where BCL̃/L(ω) is now Gal(L̃/F)-invariant. The
next lemma shows that ω descends to F up to a finite-order twist. �

The next lemma completes the previous one, and also enables a slight refinement of a result of
Rajan (see Remark 2.3.12):

Lemma 2.3.11. Let L/F be a Galois extension of number fields, and let ψ be a Gal(L/F)-
invariant Hecke character of L. Then there exists a Hecke character ψF of F and a finite-order
Hecke character ψ0 of L such that ψ = (ψF ◦ NL/F) · ψ0.

Proof. We may assume ψ is unitary, and we may choose, for all infinite places w of L, embed-
dings ιw : Lw → C such that all ιw for w above a fixed place v of F restrict to the same embedding
ιv : Fv → C. Gal(L/F) acts transitively on the places w|v, so when we write

ψw(xw) =

(
ιw(xw)
|ιw(xw)|

)mw

· |ιw(xw)|itw ,

Gal(L/F)-invariance implies that the mw and tw depend only on the place v below w (from now on
in the proof, the embeddings ιw will be implicit). We therefore denote these by mv and tv. Lemma

8Consider, for example, a type A Hecke character whose integral parameters at infinity are not divisible by n.
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2.3.1 implies there is a Hecke character of F with infinity-type given by the data {mv, tv}v. Namely,
there is an integer M such that for all α ∈ O×L ,

1 =

∏
w|∞

(
α

|α|

)mw

|α|itwC


M

.

Restricting to α ∈ O×F , this becomes

1 =

∏
v|∞

∏
w|v

(
α

|α|

)mv

|α|itvC


M

=

∏
v|∞

(
α

|α|

)mv

|α|itvC


M#{w|v}

,

(#{w|v} is independent of v) which is simply the criterion for there to be a Hecke character of F
with infinity-type given by the collection {mv, tv}v. Any such character has base-change differing
from ψ by a finite-order character, so we are done. �

Remark 2.3.12. A theorem of Rajan describes the image of solvable base-change: precisely,
for a solvable extension L/F of number fields and a Gal(L/F)-invariant cuspidal automorphic
representation π of GLn(AL), Theorem 1 of [Raj02] asserts that there is a cuspidal representation
πF of GLn(AF) and a Gal(L/F)-invariant Hecke character ψ of L such that

BCL/F(π0) ⊗ ψ = π.

Lemma 2.3.11 shows that this ψ may be chosen to have finite-order; in particular, for some cyclic
extension L′/L (so L′/F is still solvable), BCL′/L(π) descends to F.

2.3.2. Galois GL1. We now discuss (continuous) Galois characters ψ̂ : ΓF → Q
×

` . For the time
being, F is any number field. These are necessarily almost everywhere unramified, and we focus
on `-adic Hodge theory aspects. The following is well-known, and is proven in [Ser98, Chapter
III]:

Theorem 2.3.13. Suppose that ψ̂ is de Rham. Then for all places v not dividing `, ψ̂|ΓFv
assumes

algebraic values in Q
ι`
−→ Q`, and there exists a type A0 Hecke character ψ : AF/F× → C× corre-

sponding to ψ̂ (via ι∞ : Q ↪→ C). Moreover, ψ̂ is motivic: the Fontaine-Mazur conjecture holds for
GL1/F.

Proof. We indicate how this follows from the arguments of [Ser98, III]; see Remark 2.3.14
for the explanation of a simple case. Since ψ̂ is Hodge-Tate at all v|`, it is (by a theorem of Tate:
see [Ser98, III-A6]) locally algebraic in the sense of [Ser98, III-1.1] (and therefore de Rham in
the language that post-dates [Ser98]). Then the argument of [Ser98, III.2.3 Theorem 2] implies
that, for a suitable modulus m, ψ̂ is the `-adic Galois representation associated to an algebraic
homomorphism S

m,Q`
→ Gm,Q`

, where Sm is the Q-torus of [Ser98, II-2.2]. Up to isomorphism,
this algebraic representation can be realized over some finite extension E of Q inside Q`. Taking
the ‘archimedean realization’ as in [Ser98, II-2.7], we obtain the desired type A0 Hecke character.
It then follows by Lemma 2.3.3 that ψ̂|ΓFv

assumes algebraic values for v - `. The Fontaine-Mazur
conjecture for ψ̂ follows from a theorem of Deligne ([DMOS82, Proposition IV.D.1]), which shows
the somewhat stronger statement that ψ̂ is the `-adic realization of a motive for absolute Hodge
cycles. �
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Remark 2.3.14. Consider the simple case in which F = Q. Then ψ̂|ΓQ` has a single labeled
Hodge-Tate weight; it therefore has the same (labeled) Hodge-Tate weights as an integer power ωr

`

of the `-adic cyclotomic character. It follows then from the above-cited theorem of Tate ([Ser98,
III-A6]) and global class field theory that ψ̂ω−r

` is finite-order, hence is the `-adic realization (via a
fixed isomorphism C

∼
−→ Q`) of some finite-order Hecke character χ. The Hecke character corre-

sponding to ψ̂ is then χ| · |rAQ . It is also easy to show that ψ̂ is motivic: ωr
` is the `-adic realization of

the Tate motive Q(r), and if ψ̂ω−r
` factors through a finite quotient Gal(F/Q), then it is a suitable di-

rect factor of H0(XQ,Q`), for the zero-dimensional variety X = ResF/Q(Spec F) whoseQ-points are
naturally indexed by embeddings τ : F ↪→ Q, with the ΓQ-action on H0 arising from permutation
of the set of embeddings (for more details, see the discussion of Artin motives in §4.1.2).

More generally, the idea behind establishing the Fontaine-Mazur conjecture in the abelian case
is to find a sub-quotient of the cohomology of a CM abelian variety having ‘labeled Hodge num-
bers’ matching those of ψ̂; that this is possible essentially follows from the constraints on the ∞-
type of the type A0 Hecke character underlying ψ̂ (as in Lemma 2.3.4). If the CM abelian variety
were actually defined over F, this would realize ψ̂ inside some finite-order twist of its cohomology.
The subtle part of the theorem is the need to have some control over the field of definition of the
CM abelian variety.

We make repeated use of the following well-known observation (see for instance Lemma 3.1
of [Con11]).

Lemma 2.3.15. Let χ : ΓF → Q
×

` be an `-adic Galois character. For any non-zero integer m,
there are characters χ1, χ0 : ΓF → Q

×

` , with χ0 finite-order, such that χ = (χ1)mχ0.

We will need to consider Galois characters somewhat outside the algebraic range. As is custom-
ary, we write HTτ(ρ) to indicate the τ : F ↪→ Q`-labeled Hodge-Tate weights of an `-adic Galois
representation ρ; see §2.2 for details, as well as for what we mean when we write non-integral
τ-labeled Hodge-Tate-Sen weights.

Corollary 2.3.16. Let F be a totally imaginary field, and n a non-zero integer. For all
τ : F ↪→ Q`, fix an integer kτ. Then there exists a Galois character ψ̂ : ΓF → Q

×

` with HTτ(ψ̂) = kτ
n

(respectively, with HTτ(ψ̂) ≡ kτ
n mod Z) if and only if

(1) kτ depends only on τ0 := τ|Fcm (respectively, only depends modulo n on τ0);
(2) and there exists an integer w such that kτ0 +kτ0◦c = w (respectively, kτ0 +kτ0◦c ≡ w mod n)

for all τ, and c the complex conjugation on Fcm.9

Proof. Suppose such a ψ̂ exists, with weights kτ
n . Then ψ̂n is geometric (the de Rham and

Hodge-Tate conditions are equivalent for characters, as noted in Theorem 2.3.13), and so (via ι`
and ι∞) there exists a type A0 Hecke character ψ of F corresponding to ψ̂n. For v|∞ and ιv : Fv

∼
−→ C,

ψ|F×v is given by
ψv(xv) = ιv(xv)kτ∗(ιv) ῑv(xv)kτ∗(ῑv) ,

where τ∗(ιv) = τ∗`,∞(ιv) denotes the embedding F ↪→ Q` induced by ιv, ι`, and ι∞. By purity for
Hecke characters–immediate from the description of characters of R× and C×–there is an integer w

9If F is Galois, we can rephrase this as kτ + kτ◦c = w for all choices of complex conjugation c on F.
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such that kτ∗(ιv) + kτ∗(ῑv) = w; moreover, by Weil’s descent result, kτ∗(ιv) depends only on ιv|Fcm . The
constraint on the weights follows.

Conversely, given a set of weights satisfying the purity constraint, we form a putative infinity-
type pιv = kτ∗(ιv) for a Hecke character of F; that this is in fact an achievable infinity-type follows
from Weil. We form the associated geometric Galois character and then use the fact that, up to a
finite-order twist, we can always extract nth roots of `-adic characters.

The mod n statement is a simple modification. For instance, to construct a character with
given weights satisfying the purity constraint modulo n, proceed as follows. Choose a maximal set
modulo c of embeddings τ0 : Fcm ↪→ C. Choose lifts to Q of the congruence classes

kτ0
n mod Z,

and declare kτ = kτ0 for all τ lying above these τ0. Then choose w ∈ Z lifting kτ0 + kτ0◦c (mod n),
which is possible by hypothesis, and set kτ0◦c = w − kτ0 . �

The same technique yields an easy example of the constraints on Galois characters over totally
real fields:

Lemma 2.3.17. Suppose F is totally real, and ψ̂ : ΓF → Q
×

` is a character with all Hodge-Tate-
Sen weights in Q. Then all of these weights are equal. Conversely, for x, d ∈ Z, there are global
characters with all HTS weights equal to x

d .

Proof. For some integer d, all the HTS weights lie in 1
dZ, so ψ̂d is geometric, and therefore

corresponds to a type A0 Hecke character. F is totally real, so ψ̂d must be, up to a finite-order twist,
an integer power of the cyclotomic character. �

It is worth remarking that the most general answer to the question ‘what Galois characters
ψ̂ : ΓF → Q

×

` exist’ is essentially Leopoldt’s conjecture.
Finally, we will need a lemma refining the construction of certain Galois characters over CM

fields:

Lemma 2.3.18. Let F be a totally real field, and ` , 2 a prime unramified in F. Let L = KF be
its composite with an imaginary quadratic field K in which ` is inert, and let ψ be any unitary type
A Hecke character of L. Then:

(1) There exists a Galois character ψ̂ : ΓL → Q
×

` such that ψ̂2 corresponds to ψ2 (which is
type A0).

(2) Moreover, the frobenius eigenvalues ψ̂(frv) at all unramified v lie in Qcm.

Proof. First, let mιv as before denote the integers giving the infinity-type of ψ. Using the
known algebraicity of ψ (Lemma 2.3.3) and the fixed embeddings ι∞, ι`, we can define the `-adic
representation associated to ψ2:

(ψ̂2)` ◦ rec−1
L : A×L/(L×L×∞)→ Q`

(xw) 7→
∏
w-`∞

ψw(xw)2
∏
w|`

ψw(xw)2
∏

τ : Lw↪→Q`

τ(xw)
mι∗
∞,`

(τ)

 .
By the dual Grunwald-Wang theorem ([Con11, Remark 1.1]), to show that (ψ̂2)` is the square of
some character ΓL → Q

×

` , it suffices to check that for all places w of L, the above character is locally
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on L×w a square. This in turn immediately reduces to seeing whether, for each w|`, the character
χw : L×w → Q

×

` given by
χw(xw) =

∏
τ : Lw↪→Q`

τ(xw)
mι∗
∞,`

(τ)

is a square. Writing
L×w = 〈`〉 × µ∞(L×w) × (1 + `Ow),

it suffices to check on each component of this factorization. On the 〈`〉 factor, this is clear (choose
a square root of χw(`)). On the 1 + `Ow factor, the `-adic logarithm, using our hypotheses that
` , 2 is unramified, lets us define a single-valued square-root function, and thus extract a square
root of χw|1+`Ow . Now note that the product over τ : Lw ↪→ Q` is a product over pairs of complex-
conjugate embeddings extending a given Fv ↪→ Q`, and mι∗(τ̄) = mι∗(τ) = −mι∗(τ) (ψ is unitary).
µ∞(L×w) is isomorphic to Z/(q − 1)Z, where q is the order of the residue field at w. Let ζ 7→ 1 give
the isomorphism, for ζ a primitive (q − 1)st root of unity. Complex conjugation must identify to
multiplication by an element r ∈ Z/(q − 1) satisfying r2 ≡ 1 mod q − 1; in particular, r is an odd
residue class. Then x 7→ τ(x)mι∗(τ) · (τ ◦ c)(x)−mι∗(τ) takes ζ to an even power of τ(ζ), hence χw|µ∞(L×w)

is a square.10

The second part of the lemma follows from the construction of ψ̂ and the corresponding state-
ment (Lemma 2.3.3) for the type A Hecke character ψ. �

2.4. Coefficients: generalizing Weil’s CM descent of type A Hecke characters

We now begin to pursue higher-rank analogues of two aspects of Weil’s paper [Wei56]. This
section extends to higher rank the important observation that type A Hecke characters of a number
field F descend, up to a finite-order twist, to the maximal CM subfield Fcm (see Lemma 2.3.4).
Of interest in its own right, this generalization also provides some of the intuition necessary for a
general solution to Conrad’s lifting question (Question 1.1.7).

2.4.1. Coefficients in Hodge theory. The guiding principle that allows us to reinterpret, and
correspondingly generalize, Weil’s result is that careful attention to the ‘field of coefficients’ of an
arithmetic object can yield non-trivial information about its ‘field of definition,’ or that of certain
of its invariants. We begin by recording in an abstract setting a lemma whose motivation is ‘doing
Hodge theory with coefficients.’ Let k be a field of characteristic zero, and let F and E be extensions
of k with F/k finite. Let D be a filtered F ⊗k E-module that is free of rank d. Let E′ be a Galois
extension of E large enough to split F over k. For all (k-embeddings) τ : F ↪→ E′, we define
as in Definition 2.2.3 the τ-labeled Hodge-Tate weights HTτ(D) as follows: for such τ we have
orthogonal idempotents eτ ∈ F ⊗k E′ giving rise to projections

F ⊗k E′
(eτ)
−−→
∼

∏
τ

E′

x ⊗ α 7→ (τ(x)α)τ .

The projection eτ(D⊗E E′) is then a filtered E′-vector space of dimension d, and we define HTτ(D)
to be the collection of integers h (with multiplicity) such that

grh(eτ(D ⊗E E′)) , 0.

10Note also that if ` is split in L/Q, χw cannot be a square when mι∗
∞,`

(τ) is odd.
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In §2.2.1 we applied this formalism to the filtered K ⊗Q` Q`-module DdR(V), when V was a rep-
resentation of ΓK (K/Q` finite) on a Q`-vector space. In this section, however, we emphasize the
general formalism: one should really keep in mind not `-adic Hodge theory, but rather the de Rham
realization of a motive over F with coefficients in E.

Lemma 2.4.1. Let D as above be a filtered F ⊗k E-module that is free of some rank d. Then the
set of integers HTτ(D) depends only on the Gal(E′/E)-orbit of τ : F ↪→ E′. If E/k is Galois, then
HTτ(D) depends only on the restriction τ|τ−1(E).

Proof. We decompose F ⊗k E into a product of fields
∏

Ei, writing qi : F ⊗k E � Ei for the
quotient map. This yields filtered Ei-vector spaces Di for all i. Any E-algebra homomorphism
τ : F ⊗k E → E′ factors through qi(τ) for a unique index i(τ), and then HTτ(D) is simply the multi-
set of weights of Di(τ). This implies the first claim, since the Gal(E′/E)-orbit of τ is simply all
embeddings τ′ for which i(τ′) = i(τ).

Now we assume E/k Galois and address the second claim. Having fixed a ‘reference’ embed-
ding τ0 : F ↪→ E′, it makes sense to speak of F ∩ E := F ∩ τ−1

0 (E) inside E. Obviously E splits
F ∩ E over k, so we can write

F ⊗k E � F ⊗F∩E (F ∩ E ⊗k E) �
∏
σ

F ⊗F∩E,σ E,

where the σ range over all embeddings F∩E ↪→ E. These factors F⊗F∩E,σE are themselves fields,
since E/k is Galois, and so this decomposition realizes explicitly the decomposition of F ⊗k E into
a product of fields. In particular, by the first part of the Lemma, HTτ(D) depends only on i(τ), i.e.
only on the σ : F ∩ E ↪→ E to which τ restricts. �

Definition 2.4.2. We call a filtered F ⊗k E-module D regular if the multi-sets HTτ(D) are
multiplicity-free.

A very simple application that we will use later is:

Corollary 2.4.3. Let D be a filtered L ⊗k E-module (globally free) for some finite extension
L/F, and suppose L does not embed in Ẽ. Then the restriction of scalars (image under the forgetful
functor) ResL/F(D) is not regular.

2.4.2. CM descent. We will see that Weil’s result (Lemma 2.3.4) is the conjunction of Lemma
2.4.1 with the fact that algebraic Hecke characters have CM ‘fields of coefficients.’ This observa-
tion will lead us naturally to the desired higher-rank generalization.

We recall some notation from §1.4. Let G be a connected reductive F-group. For each v|∞
fix an isomorphism ιv : Fv

∼
−→ C. For π an automorphic representation of G(AF), we can write (in

Langlands’ normalization) the restriction to WFv
of its L-parameter as

recv(πv) : z 7→ ιv(z)µιv ῑv(z)νιv ∈ T∨(C).

with µιv , νιv ∈ X•(T )C and µιv − νιv ∈ X•(T ). For v imaginary, µῑv = νιv . Unless there is risk of
confusion, we will omit reference to the embedding ιv, writing µv = µιv , etc. We also recall the
following terminology, introduced in [BG11]:

Definition 2.4.4. In the above notation, the automorphic representation π is L-algebraic if for
all v|∞, µv and νv lie in X•(T ); it is C-algebraic if µv and νv lie in ρ + X•(T ), where ρ denotes the
half-sum of the positive roots (with respect to our fixed Borel containing T used to define a based
root datum of G).
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Our starting point is a result (and, more generally, conjecture) of Clozel. We take G = GLn/F
and collect the data of π’s archimedean L-parameters as M = {µι}ι, which we will loosely refer to
as the ‘infinity-type’ of π. For σ ∈ Aut(C), define the action σM = {µσ−1ι}ι. Recall that π is said to
be regular if all roots of GLn are non-vanishing on all of the co-characters µι.

Theorem 2.4.5 (Théorème 3.13 of [Clo90]). Let F be any number field, and suppose π is
a cuspidal, C-algebraic automorphic representation of GLn(AF) that is moreover regular. Then
π f has a model over the fixed field Q(π f ) ⊂ Q ⊂ C of all automorphisms σ ∈ Aut(C) such
that σπ f � π f , and Q(π f ) is in fact a number field. For each σ ∈ Aut(C) there is a cuspidal
representation σπ with finite part σπ f = π f ⊗C,σ C and with infinity-type σM.

More generally, Clozel conjectures this for any C-algebraic isobaric automorphic representa-
tion of GLn(AF). Note that for GLn, the notions of C- and L-algebraic are equivalent when n is
odd, but they differ by a twist when n is even. I’m grateful to Kevin Buzzard for pointing out to
me that this twist suffices to make Theorem 2.4.5 fail for L-algebraic representations; our interest,
however, is a consequence (Proposition 2.4.8) with which this twist does not interfere.

Hypothesis 2.4.6. Throughout the rest of this section, we will assume that π is a cuspidal
C- or L-algebraic automorphic representation of GLn(AF) whose C-algebraic twists satisfy the
conclusion of Clozel’s theorem (if one such twist has this property, then all do).

We first note an elementary but crucial refinement of Hypothesis 2.4.6:

Corollary 2.4.7. Assume π satisfies Hypothesis 2.4.6. Continue to denote by Q(π f ) ⊂ Q ⊂ C
the fixed field of all σ ∈ Aut(C) such that σπ f = π f ⊗C,σ C � π f (this may no longer be a number
field). Then the field Q(π f ) is contained in Qcm, the union of all CM extensions of Q inside Q.

Proof. The conclusion of the corollary remains unchanged if we replace π by its twist by | · |r/2

for some integer r, since for all primes p, Q(
√

p) is a CM field. Therefore we may assume that
π is C-algebraic, and that either π or π| · |1/2 is unitary. Using the L2 inner product we deduce
that in the former case, cπ � π∨, and in the latter case cπ| · | � π∨ (note that for any automorphic
representation Π, cΠ makes sense as an automorphic representation–in contrast to twists by more
general σ ∈ Aut(C), which seem only to exist for C-algebraic Π). Either way, we see that for all
σ ∈ Aut(C), cσπ � σcπ, and therefore that the fixed field Q(π f ) is contained in Qcm. �

We can now formulate (and prove under Hypothesis 2.4.6) the appropriate higher-rank gener-
alization of Weil’s result that type A Hecke characters of F, up to a finite-order twist, descend to
Fcm.

Proposition 2.4.8. Assume π satisfies Hypothesis 2.4.6. Then the infinity-type of π descends to
Fcm.

Proof. This statement too is invariant under twisting by powers of the absolute value, so we
may assume π is C-algebraic. Let E denote the Galois closure (in C) ofQ(π f ); E is also a CM field.
Extend each ι : F ↪→ C to an embedding ι̃ : F̃ ↪→ C of the Galois closure F̃. The image ι̃(F̃) ⊂ C
does not depend on the extension. By the corollary, ι̃(F̃) is linearly disjoint from E over ι̃((F̃)cm),
and therefore we can find σ ∈ Aut(C/E) restricting (via ι̃) to any element we like of Gal(F̃/(F̃)cm);
the collection of such σ acts transitively on the set of embeddings F ↪→ C lying above a fixed
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F ∩ (F̃)cm = Fcm ↪→ C.11 For any two such ι, ι′ : F ↪→ C (related by σ ∈ Aut(C/E)), we deduce,
since σπ � π and hence σM = M, that µι = µσ−1ι = µι′ . �

Again, we remark that Hypothesis 2.4.6 is expected to hold for all cuspidal C- or L-algebraic
automorphic representations of GLn(AF). Any study of algebraic automorphic forms over non-CM
fields will need to take this result into account.

Remark 2.4.9. • If π is regular, this yields an unconditional descent result for its infinity-
type.
• Let F be a CM field and π be a regular L or C-algebraic cuspidal representation of

GLn(AF). Suppose that π = IndF
L (π0) for some extension L/F. Then L is CM. This modest

consequence of the proposition suggests that in the study of regular automorphic repre-
sentations/motives/Galois representations over CM fields, we will never have to grapple
with the (less well-understood) situation over non-CM fields. In §3.4.2 we discuss an
abstract Galois-theoretic analogue.
• If we know more about Q(π f ) than that it is CM (an extreme case: Q(π f ) = Q), the proof

of the proposition yields a correspondingly stronger result. For the related formalism, see
§2.4.1.

Remark 2.4.10. Let us also note that Proposition 2.4.8 is a ‘seed’ result (under Hypothesis
2.4.6); if we moreover assume functoriality (in a form that requires functorial transfers to be strong
transfers–i.e. of archimedean L-packets–at infinity), then it implies:

• Let G be a connected reductive group over a totally imaginary field F, and let π be a
cuspidal tempered L-algebraic automorphic representation of G(AF). Then the infinity-
type of π descends to Fcm.
• Let G and π be as above. Let G̃ ⊃ G be a connected reductive F-group obtained by enlarg-

ing the center of G to a torus Z̃ (see §3.1). Then the central characterωπ : ZG(F)\ZG(AF)→
C× extends to an L-algebraic Hecke character of Z̃(AF). (Compare Proposition 13.3.1.)

2.5. W-algebraic representations

The current section generalizes a second aspect of [Wei56], discussing a higher-rank analogue
of the type A, but not necessarily A0, condition, and begins to motivate its arithmetic significance.
As always, let G be a connected reductive group over a number field F. We continue with the
infinity-type notation of §2.4.

For many interesting questions about algebraicity of automorphic representations, and espe-
cially the interaction of algebraicity and functoriality, the framework of C and L-algebraic repre-
sentations does not suffice. Motivated initially by Weil’s study of type-A Hecke characters, we
make the following definition:

Definition 2.5.1. Let π be an automorphic representation of G(AF). We say that π is W-
algebraic if for all v|∞, µιv and νιv in fact lie in 1

2 X•(T ).

Example 2.5.2. For GL1, a unitary W-algebraic representation is precisely a unitary Hecke
character of type A in the sense of Weil ([Wei56]). Weil’s type A characters also include arbitrary

11G = Gal(F̃/Fcm) is generated by H = Gal(F̃/F) and H′ = Gal(F̃/F̃cm), with H′ normal. The set HomFcm (F,C) is
permuted transitively by G, with H acting trivially, so for any such embedding x, H′x = H′Hx = Gx = HomFcm (F,C).
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twists | · |r for r ∈ Q, since these also yield L-series with algebraic coefficients. The L- and C-
algebraic representations are the Hecke characters of type A0.

Example 2.5.3. Consider a Hilbert modular form f on GL2/F with (classical) weights {kτ}τ : F↪→R,
where the positive integers kτ are not all congruent modulo 2; these are called ‘mixed-parity’. f
then gives rise to an automorphic representation (in the unitary normalization, say) that is W-
algebraic but neither L- nor C-algebraic. The previous example yields a special case: choose a
quadratic CM (totally imaginary) extension L/F, and let ψ be a unitary Hecke character of L that
is type A but not type A0. Then the automorphic induction IndF

L ψ yields an example on GL2/F.
We will elaborate on the case of mixed-parity Hilbert modular forms in §2.6.

We are led to ask (compare §2.4 and Conjectures 3.1.5 and 3.1.6 of [BG11]):

Question 2.5.4. • Let π be a W-algebraic automorphic representation on G. Does the
G(AF, f )-module π f have a model over Q (or Qcm)?. Note that we do not seek a model over
a fixed number field. Alternatively, is πv defined over Q for almost all finite places v? By
analogy with the terminology of [BG11], let us call the latter condition W-arithmetic, and
ask whether some condition (which will not quite be W-algebraicity!) on infinity-types
characterizes W-arithmeticity.
• Similarly, we can ask the CM descent question of §2.4 for W-algebraic representations.

Example 2.5.6 below will be a cautionary tale: if non-induced cuspidal Π with infinity-
types as in that example exist, then there is no evidence that they would satisfy the ana-
logue of Clozel’s algebraicity conjecture. If they do not exist, or if they miraculously
still satisfy the conclusion of Clozel’s theorem, then we could confidently extend the CM
descent conjectures to the W-algebraic case.

For tori, the most optimistic conjecture holds:

Lemma 2.5.5. For arbitrary F-tori, W-algebraic implies W-arithmetic.

Proof. After squaring, this follows from the corresponding result for L-algebraic/L-arithmetic
(§4 of [BG11]). �

Continuing with Example 2.5.2, let us emphasize that the W-algebraic condition does not
capture all automorphic representations with algebraic Satake parameters; we nevertheless want
to make a case for isolating this condition, rather than allowing arbitrary rational parameters
µv, νv ∈ X•(T )Q, which would be the naı̈ve analogue of type A. First, note that if a unitary π
is tempered at infinity with real parameters µv, νv ∈ X•(T )R, then these parameters in fact lie in
1
2 X•(T ). In particular, the Ramanujan conjecture implies that all cuspidal unitary π on GLn/F with
real infinity-type are in fact W-algebraic. It is easy to construct non-cuspidal automorphic repre-
sentations with rational Satake parameters that do not twist to W-algebraic representations, but the
point is that all such examples will be degenerate, so W-algebraicity is the condition of basic impor-
tance. A more interesting question, concerning the difference between W, L, and C-algebraicity, is
the following:

Example 2.5.6. Let G = GL4/Q (for example; there are obvious analogues for any totally real
field). Let F/Q be real quadratic, and let π as in Example 2.5.3 be a mixed parity (unitary) Hilbert
modular representation. It cannot be isomorphic to its Gal(F/Q)-conjugate, so Π = IndQF(π) is

40

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



cuspidal automorphic on GL4/Q, and at infinity its Langlands parameter (restricted to C×) looks
like

z 7→


(z/z̄)

k1−1
2 0 0 0

0 (z/z̄)
1−k1

2 0 0
0 0 (z/z̄)

k2−1
2 0

0 0 0 (z/z̄)
1−k2

2 ,


where k1 and k2 are the classical weights of π at the two infinite places of F. This exhibits the
‘parity-mixing’ within a single infinite place, which implies the following:

Lemma 2.5.7. For any functorial transfer LGL4
r
−→ LGLN arising from an irreducible represen-

tation r, not equal to any power of the determinant, of GL4(C), the transfer Liftr(Π) cannot be
L-algebraic.

Proof. We have stated the lemma globally, and therefore conjecturally, but of course the anal-
ogous archimedean statement (which is well-defined since the local transfer of Π∞ via r is known
to exist) is all we are really interested in. The proof is elementary highest-weight theory. �

We will see (in §2.6) that mixed-parity Hilbert modular representations are W-arithmetic, using
the fact that they have L-algebraic functorial transfers; by contrast, if a representation Π with the
infinity-type of the above example is W-arithmetic, it may be harder to establish. Of course, in the
above example, Π is automorphically induced, so its W-arithmeticity is an immediate consequence
of that of π. We are led to ask whether there exist non-automorphically induced examples of such
Π, or more generally of cuspidal, non-induced Π on GLn/F that exhibit the ‘parity-mixing’ within
a single infinite place. The trace formula does not easily yield them, since such a Π is not the
transfer from a classical group of a form that is discrete series at infinity (in these cases there is a
parity constraint on regular elliptic parameters).

One further motivation for considering W-algebraic representations comes from studying the
fibers of functorial lifts, and their algebraicity properties. For instance, given two mixed-parity
Hilbert modular forms π1 and π2, with the (classical) weight of π1,v and π2,v having the same parity
for each v|∞, the tensor product Π = π1 � π2 is L-algebraic. The πi are not themselves twists of L-
algebraic automorphic representations, so Π cannot be expressed as a tensor product of L-algebraic
representations (this is proven in Corollary 2.6.3). This is, however, the ‘farthest’ from L-algebraic
that the πi’s can be:

Proposition 2.5.8. Let Π be an L-algebraic cuspidal automorphic representation of GLnn′(AF)
for some number field F. Assume that Π = π�π′ is in the image of GLn×GLn′

�
−→ GLnn′ for cuspidal

automorphic representations π and π′ of GLn(AF) and GLn′(AF).12 If F is totally real or CM, then
there are quasi-tempered (i.e., tempered up to a twist) W-algebraic automorphic representations π
of GLn(AF) and π′ of GLn′(AF) such that Π = π � π′.

Proof. The first part of the argument is similar to, and will make use of, Lemme 4.9 of [Clo90]
(Clozel’s ‘archimedean purity lemma’), which shows that Π∞ itself is quasi-tempered. First assume
F is totally imaginary. Let wΠ (the ‘motivic weight’) be the integer such that Π| · |−wΠ/2 is unitary,

12To be precise, we want Π to be a weak lift that is also a strong lift at archimedean places.
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and write zµv z̄νv and zµ
′
v z̄ν

′
v for the L-parameters at v|∞ of π and π′. Temperedness of Π implies that

for all i, j = 1, . . . , n,

Re(µv,i + µ′v, j + νv,i + ν′v, j) = wΠ.

Fixing j and varying i, we find that Re(µv,i +νv,i) is independent of i–call it wπv . Similarly, for wπ′v =

wΠ − wπv , we have Re(µ′v,i + ν′v,i) = wπ′v for all i. For each of π and π′ there is a unique real number
r, r′ such that each of π| · |−r/2, π′| · |−r′/2 is unitary. Thus, zµv−r/2z̄νv−r/2 (likewise for π′v) is a generic
(by cuspidality) unitary parameter.13 This implies (see the proof of Lemme 4.9 of [Clo90]) that
these parameters are sums of the parameters of unitary characters and 2 × 2 complementary series
blocks (what Clozel denotes J(χ, 1) and J(χ, α, 1), where α ∈ (0, 1/2) is the complementary series
parameter). Since Re(µv,i+νv,i) is independent of i, we can immediately rule out any complementary
series factors, and we deduce that each zµv−r/2z̄νv−r/2 is a direct sum of (parameters of) unitary
characters, and that wπv = r is independent of v (and wπ′v = r′), and r + r′ = wΠ ∈ Z. We may
replace π by π| · |

r′−r
2 and π′ by π′| · |

r−r′
2 , so that still π�π′ = Π but now each has half-integral ‘motivic

weight’ (namely, 1
2wΠ ∈

1
2Z). In particular, Re(µv),Re(νv),Re(µ′v), and Re(ν′v) all now consist of

half-integers (it is easily seen that all of these half-integers are moreover congruent modulo Z).
Now, Im(µv,i + µ′v, j) = 0 for all i, j, so there exists a tv ∈ R such that

Im(µv,i) = Im(νv,i) = −Im(µ′v,i) = −Im(ν′v,i) = tv

for all i. To conclude the proof, note that if there exists a Hecke character of F with infinity-
componenets |z|itvC for all v|∞, then we can twist π and π′ to arrange that both be W-algebraic (in
fact, either both L-algebraic or both C-algebraic). Looking at central characters, we are handed a
Hecke character with infinity-type

z 7→ zdet(Re(µv))+intv z̄det(Re(µv))+intv ,

and by Corollary 2.3.9, the desired Hecke character exists if and only if the set of half-integers
det(Re(µv)) :=

∑
i Re(µv,i) is the infinity-type of a type A Hecke character of F, i.e. descends to

Fcm. Of course, when F itself is CM, this is no obstruction, and the proof is complete.
Now assume F is totally real. By a global base-change argument (as in Clozel’s Lemme 4.9),

we may deduce temperedness of π and π′ from the totally imaginary (or even CM) case, and
to determine whether there are W-algebraic descents π and π′, as usual it suffices to look at the
archimedean L-parameters restricted to WFv

. The purity constraint (see Corollary 2.3.9) on the
half-integers det(Re(µv)) forces these to be independent of v, and we can argue as in the CM case
to finish the proof. �

In the non-CM case, we can describe the infinity-types of possible Hecke characters; this gives
rise to an explicit relation between the det(Re(µv)) and tv that needs to be satisfied if π and π′

are to have W-algebraic twists. Conversely, note that the tensor product transfer (only known
to exist locally, of course) GLn × GLm

�
−→ GLnm clearly preserves L- or W-algebraicity (but not

C-algebraicity).
In §3.1, we take up in detail the (algebraicity of the) fibers of the functorial transfer LG̃ → LG,

where G ⊂ G̃ with torus quotient.

13On GLn, L-packets are singletons, and we can identify which parameters correspond to generic representations.
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2.6. Further examples: the Hilbert modular case and GL2 × GL2
�
−→ GL4

In this section we will elaborate on the example of mixed-parity Hilbert modular forms: we
discuss W-arithmeticity in this context and make some initial forays on the Galois side. First,
however, we recall known results on the automorphic tensor product GL2 × GL2

�
−→ GL4 and

provide a description of its fibers.

2.6.1. General results on the GL2×GL2
�
−→ GL4 functorial transfer. Ramakrishnan ([Ram00])

has proven the existence of the automorphic tensor product transfer in the case GL2×GL2
�
−→ GL4.

Moreover, he establishes a cuspidality criterion:

Theorem 2.6.1 (Ramakrishnan, [Ram00, Theorem M]). Let π1 and π2 be cuspidal automorphic
representations on GL2/F. Then π1 �π2 is automorphic. The cuspidality criterion divides into two
cases:

• If neither πi is an automorphic induction, π1 � π2 is cuspidal if and only if π1 is not
equivalent to π2 ⊗ χ for some Hecke character χ of F.
• If π1 = IndF

L (ψ) for a Hecke character ψ of a quadratic extension L/F, then π1 � π2 is
cuspidal if and only if BCL(π2) is not isomorphic to its own twist by ψθψ−1, where θ is the
non-trivial automorphism of L/F.

Here is the Galois-theoretic heuristic for the first part of the cuspidality criterion. Assume V1

and V2 are two-dimensional, irreducible, non-dihedral representations. Non-dihedral implies that
each Sym2 Vi is irreducible. Suppose that V1 ⊗ V2 � W1 ⊕W2. Taking exterior squares, we get

(Sym2 V1 ⊗ det V2) ⊕ (det V1 ⊗ Sym2 V2) � ∧2W1 ⊕ (W1 ⊗W2) ⊕ ∧2W2.

We may therefore assume dim W1 = 3, dim W2 = 1 (so rename W2 as a character ψ), and thus

V1 ⊗ V2(ψ−1) � W1(ψ−1) ⊕ 1,

which implies that V1 and V2 are twist-equivalent.
We now describe the fibers of this tensor product lift, beginning with a Galois heuristic. Sup-

pose we have four irreducible 2-dimensional representations (over Q`, say) satisfying

V1 ⊗ V2 � W1 ⊗W2.

Taking exterior squares as above, we get

(Sym2 V1 ⊗ det V2) ⊕ (det V1 ⊗ Sym2 V2) � (Sym2 W1 ⊗ det W2) ⊕ (det W1 ⊗ Sym2 W2)

Assume V1 is non-dihedral, so Sym2 V1 is irreducible. Then we may assume

Sym2 V1 ⊗ det V2 � Sym2 W1 ⊗ det W2

and
det V1 ⊗ Sym2 V2 � det W1 ⊗ Sym2 W2.

Comparing determinants in this and the initial isomorphism, we find det V1 det V2 = det W1 det W2,
and so (for i = 1, 2)

Ad0(Vi) � Ad0(Wi).
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Vi and W1 therefore give rise to isomorphic two-dimensional projective representations, and so, by
the (not very) long exact sequence in continuous cohomology associated to

1→ Q
×

` → GL2(Q`)→ PGL2(Q`)→ 1, 14

Vi and Wi are twist-equivalent: we find a pair of characters ψi such that V1 � W1(ψ1) and V2 �
W2(ψ2). If V2 is also non-induced, then ψ2 = ψ−1

1 , else V1 ⊗ V2, and hence one of V1 or V2, is an
induction.

Because the functorial transfers GL2
Sym2

−−−→ GL3 ([GJ78]) and GL4
∧2

−−→ GL6 ([Kim03]) are
known, this argument works automorphically until the last step. To conclude a purely automorphic
argument, we have to know the fibers of Ad0. These were determined by Ramakrishnan as a
consequence of his construction of the tensor product lift (and his cuspidality criterion):

Theorem 2.6.2 (Ramakrishnan, [Ram00] Theorem 4.1.2). Let π and π′ be unitary cuspidal
automorphic representations on GL2/F such that Ad0 π � Ad0 π′. Then there exists a Hecke
character χ of F such that π � π′ ⊗ χ.

It would be remiss not to mention the special nature of this fiber description: by [LL79], it
is essentially multiplicity one for SL2. In any case, from this and the preceding calculation, we
conclude:

Corollary 2.6.3. Let π1, π2, π
′
1, π

′
2 be unitary cuspidal automorphic representations on GL2/F

satisfying π1 � π2 � π′1 � π
′
2 (it suffices to assume this almost everywhere locally). Assume that

π1 � π2 is cuspidal (equivalently, satisfies Ramakrishnan’s criterion). Up to reordering, we have
Ad0 πi � Ad0 π′i for i = 1, 2, and there are Hecke characters χi of F such that πi � π

′
i ⊗χi (i = 1, 2).

Moreover, χ1 = χ−1
2 , so the fibers of the lift are just twists by Hecke characters.

Proof. If at least one, say π1, of the πi is non-dihedral, then it only remains to check χ1 = χ−1
2 .

Since π1 � π2 � (π1 � π2) ⊗ (χ1χ2), we deduce from a theorem of Lapid-Rogawski–which we
elaborate on in Lemma 2.6.4 below–that either χ1χ2 = 1, or π1 � π2 is an automorphic induction
from the (quadratic or quartic) cyclic extension of F cut out by χ1χ2. In the latter case, there is a
cyclic base change L/F such that BCL(π1 � π2) = BCL(π1) � BCL(π2) is non-cuspidal. If both π1

and π2 are non-dihedral, or if π2 = IndF
K(ψ2) with K a quadratic extension of F not contained in L,

then the cuspidality criterion implies there exists a Hecke character ψ of L such that BCL(π1)⊗ψ �
BCL(π2). Since π1 is non-dihedral, ψ is invariant under Gal(L/F); for cyclic extensions, there is
no obstruction to descending invariant Hecke characters, so ψ descends to a character of F that we
also write as ψ, i.e. BCL(π1 ⊗ ψ) � BCL(π2). By cyclic descent (also Theorem B of [LR98]), π1

and π2 are twist-equivalent, contradicting cuspidality of π1 � π2. We conclude that χ1χ2 = 1.
We resume the above argument when π2 is dihedral with K ⊂ L. If L = K, then χ1χ2 is the

quadratic character χ of Gal(K/F), so π2 = π′2 ⊗ (χ−1
1 χ), and thus π2 = π′2 ⊗ χ

−1
1 since π2 ⊗ χ = π2.

If L/F is quartic, then the result of Lapid-Rogawski still implies π1 � π2 = IndF
L (ψ), where ψ is

now a Hecke character of L. Base-changing to L and comparing isobaric constituents, we again
contradict the assumption that π1 is non-dihedral.

Finally, we treat the case where both π1 and π2 are dihedral. Base-change implies that both π′1
and π′2 are dihedral as well, and moreover that we may assume that πi and π′i are both induced from

14Note that the surjection admits a topological section.
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the same field Li, say by characters ψi and ψ′i . Write σi for the non-trivial element of Gal(Li/F).
Then

IndF
L1

(
ψ1 ⊗ BCL1(IndF

L2
(ψ2))

)
= IndF

L1

(
ψ′1 ⊗ BCL1(IndF

L2
(ψ′2))

)
,

and up to replacing ψ1 by ψσ1
1 , we may assume that on GL2/L1 we have

ψ1

ψ′1
⊗ BCL1(IndF

L2
(ψ2)) = BCL1(IndF

L2
(ψ′2)).

If L1 , L2, then we find

IndL1
L1L2

(
ψ1

ψ′1
· ψ2) = IndL1

L1L2
(ψ′2),

and possibly replacing ψ2 by its conjugate ψσ2
2 , we may assume that as Hecke characters of L1L2,

ψ1/ψ
′
1 = ψ′2/ψ2. Let α be the Hecke character of L1 given by ψ1/ψ

′
1. This equality shows α is

σ1-invariant, and therefore descends to a Hecke character of F. Consequently, π1 = π′1 ⊗ α, and
π2 = π′2 ⊗ α

−1 as automorphic representations on GL2/F. The case L1 = L2 is similar, but easier,
and we omit the details. �

The above corollary made use of a characterization of the image of cyclic automorphic induc-
tion (in the quadratic and quartic case). This characterization in the case of non-prime-degree does
not follow from the results of [AC89], but it is now known thanks to work of Lapid-Rogawski.
The following is stated without proof in [LR98], as an easy application of their Statement B15. We
fill in the details:

Proposition 2.6.4. [Lapid-Rogawski] Let Π be a cuspidal automorphic representation on GLn/F,
and let L/F be a cyclic extension. Then Π is automorphically induced from L if (and only if)
Π � Π ⊗ ω for a Hecke character ω of F that cuts out the extension L/F.

Proof. Lapid-Rogawski establish the following, which implies the Proposition:16

Theorem 2.6.5 (Statement B, part (a) of [LR98]). Let E/F be a cyclic extension of number
fields, with σ a generator of Gal(E/F), and let ω be a Hecke character of E. Denote by ωF its
restriction to A×F ⊂ A×E. Suppose Π is a cuspidal automorphic representation on GLn/E satisfying
Πσ � Π⊗ω. Let K/F be the extension (necessarily of order dividing n) of F cut out by ωF , and let
L = KE. Then E ∩ K = F, and [K : F] divides n.

Suppose ω cuts out L/F, cyclic of order m, and suppose m is divisible by a prime ` (and m , `).
We see that Π � Π ⊗ ωm/l as well, and letting E/F be the (cyclic degree `) extension cut out by
ωm/l, the case of prime degree implies that Π = IndF

E(π) for some cuspidal representation π on
GLn/E. Moreover,

IndF
E(π) � IndF

E(π ⊗ (ω ◦ NE/F)),

so the description of the fibers in the prime case implies π and π⊗ (ω ◦NE/F) are Galois-conjugate:
writing τ for a generator of GalL/F (or for its restriction to E), there exists an integer i such that

πτ
i
� π ⊗ (ω ◦ NE/F).

15The proof of which was conditional on versions of the fundamental lemma that are now known.
16Which is in turn used to prove the more refined parts (b) and (c) of Statement B of [LR98].
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Part (a) of Theorem 2.6.5 implies that the restriction of ω ◦ NE/F to A×F/F
×, which is just ω`, cuts

out an extension K/F that is linearly disjoint from E/F,17 so in particular (ω◦NE/F)` is a non-trivial
Hecke character of E. But now, since τ` is trivial on E, we can iterate the previous conjugation
relation to deduce

π � π ⊗ (ω ◦ NE/F)`.

It now follows from induction on the degree [L : F] that π � IndE
L (π0) for some cuspidal π0 on

GL n
[L:F]

/L, so we’re done.
�

2.6.2. The Hilbert modular case. Now we take up the case of Hilbert modular forms, start-
ing with an observation of Blasius-Rogawski ([BR93]): while a ‘mixed parity’ Hilbert modular
representation π (Definition 2.6.6) does not itself twist to an L-algebraic representation, its base
changes to every CM field will.18 Since we work up to twist, we may assume the parameters of π
at places v|∞ have the form (restricted to F

×

v ⊂ WFv and implicitly invoking ι as above)

z 7→
(z/z̄)

kv−1
2 0

0 (z/z̄)
1−kv

2

 .
Definition 2.6.6. In the above notation, π is mixed parity if as v varies over all v|∞, kv takes

both even and odd values.

For a quadratic CM extension L/F, let ψ : A×L/L
× → S1 be a Hecke character whose infinity

type at v is given by
z 7→ (z/|z|)kv−1

for all v. Then BCL(π) ⊗ ψ is L-algebraic, with infinity type

z 7→
(
(z/z̄)kv−1 0

0 1

)
Given two such π1 and π2, both W- but not L-algebraic, and with Π = π1 � π2 L-algebraic, Blasius-
Rogawski (see Theorem 2.6.2 and Corollary 2.6.3 of [BR93]) can then associate an `-adic Galois
representation ρΠ,` to Π via the identity

BCL(Π) � (BCL(π1)(ψ1)) � (BCL(π2)(ψ2)) ⊗ (ψ1ψ2)−1,

since all three tensor factors on the right-hand side are L-algebraic with associated Galois repre-
sentations. (To get a Galois representation for Π over F itself, they vary L and use the now-famous
patching argument.) We pursue this a little farther, emphasizing the ‘W-algebraic’ and non-de
Rham/geometric aspects of this construction.

Proposition 2.6.7. Let Π be the tensor product π1 � π2 for πi as above corresponding to mixed
parity Hilbert modular forms (but π1 and π2 having common weight-parity at each infinite place).
Assume that Π is cuspidal, and for simplicity assume that the πi are non-dihedral.

(i) The `-adic Galois representation ρΠ,` is Lie irreducible.

17The point is that Π is cuspidal. For instance, in the simple case `2 - m, there’s no need to appeal to the
Lapid-Rogawski result: ` divides m

`
i, so `|i, and then π � π ⊗ (ω ◦ NE/F).

18This observation of Blasius-Rogawski is the only time I have seen substantive use made of type A but not A0
Hecke characters.
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(ii) ρΠ,` is isomorphic to a tensor product ρ1,` ⊗ ρ2,` of two-dimensional continuous, almost
everywhere unramified, representations of ΓF . No twist of either ρi,` is de Rham (or even
Hodge-Tate), and ρΠ,` is not a tensor product of geometric Galois representations (al-
though it is after every CM base change, by construction).19

(iii) Ad0(ρi,`) is geometric, corresponding to the L-algebraic Ad0(πi) (suitably ordering the
representations). In particular, a mixed-parity Hilbert modular representation π gives
rise to a geometric projective Galois representations ρ̄π,` : ΓF → PGL2(Q`); these are
the representations predicted by Conjecture 3.2.2 of [BG11] for irreducible SL2(AF)-
constituents of π|SL2(AF ).

(iv) With the πi normalized to be W-algebraic, they are also W-arithmetic (see Question 2.5.4).

Proof. To show ρΠ,` is a tensor product, observe that it is essentially self-dual, since

Π∨ � π∨1 � π
∨
2 � (π1 ⊗ ω

−1
π1

) � (π2 ⊗ ω
−1
π2

) � Π ⊗ (ωπ1ωπ2)
−1.

On the Galois side, we deduce that ρ∨
Π,` � ρΠ,` ⊗ µ

−1
Π

, where µΠ is the (geometric) Galois character
corresponding to the (L-algebraic) Hecke character ωπ1ωπ2 . Since after one of these quadratic
base changes L/F ρΠ,`|ΓL is irreducible and orthogonal (rather than symplectic), we see that it (as
ΓF-representation) is orthogonal, i.e.

ρΠ,` : ΓF → GO4(Q`).

Writing µ for the multiplier character on GO4, and observing that det2 = µ4 on this group, we find
an exact sequence of algebraic groups

1→ Gm → GL2 × GL2
�
−→ GO4

det ·µ−2

−−−−−→ {±1} → 1.

The image of ρΠ,` is contained in the kernel GSO4 of det ·µ−2: for this it suffices to know that ρΠ,` is
isomorphic to a tensor product after two disjoint quadratic base changes, for then (det ·µ−2)◦ρΠ,` is
a character of ΓF that is trivial on a set of primes of density strictly greater than 1/2, and therefore it
is trivial. We can then apply Proposition 2.1.4 to deduce that ρΠ,` lifts across GL2(Q`)×GL2(Q`)→
GSO4(Q`), i.e. it is isomorphic to a tensor product ρ1,` ⊗ ρ2,`. The same exact sequence implies
that any expression of ρΠ,` as a tensor product has the form (ρ1,` ⊗ χ) ⊗ (ρ2,` ⊗ χ

−1) for some
continuous character χ : ΓF → Q

×

` . Lie-irreducibility also follows since the Zariski closure of
the image of each ρi,` contains SL2 (otherwise ρΠ,`, and hence Π, is automorphically induced), and
thus the Zariski closure of the image of ρΠ,` contains SO4, which acts Lie-irreducibly in its standard
4-dimensional representation.

Now we show all twists ρi,` ⊗ χ are almost everywhere unramified, but none are geometric
(they fail to be de Rham). This follows from the Galois-theoretic arguments of the next section,
but here we give a more automorphic argument. Note that both the de Rham and almost everywhere
unramified conditions can be checked after a finite extension. By construction, for any L = FK
for K/Q imaginary quadratic, there exist (L-algebraic) cuspidal automorphic representations τi

(i = 1, 2) on GL2/L with associated geometric Galois representations σi : ΓL → GL2(Q`) such that

ρ1,`|ΓL ⊗ ρ2,`|ΓL � ρΠ,`|ΓL � σ1 ⊗ σ2.

19Compare Proposition 3.3.8.
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This implies there is a Galois character χ : ΓL → Q
×

` such that

σ1(χ) � ρ1,`|ΓL ,

σ2(χ−1) � ρ2,`|ΓL ,

and every abelian `-adic representation is unramified almost everywhere (easy), so each ρi,` is
almost everywhere unramified. We then have the equivalences

ρi,` is geometric ⇐⇒ ρi,`|ΓL is geometric ⇐⇒ χ is geometric.20

But if χ is geometric, then (Theorem 2.3.13) there exists a type A0 Hecke character χA of L such
that

τ1 ⊗ χA ∼w,∞ ρ1,`

τ2 ⊗ χ
−1
A ∼w,∞ ρ2,`,

where ∼w,∞ is the notation of §1.4. Gal(L/F)-invariance and cyclic base change then imply there
are cuspidal automorphic representations τ̃i on GL2/F lifting τ1 ⊗ χA and τ2 ⊗ χ

−1
A , and therefore

BCL(τ̃1 � τ̃2) � BCL(Π). This implies τ̃1 � τ̃2 and Π are twist-equivalent, and Corollary 2.6.3
ensures that (up to relabeling) πi and τ̃i are twist-equivalent. But τ̃i is L-algebraic since τi and χA
are, yet it is easy to see (because π is mixed-parity and F is totally real) that no twist of πi can be
L-algebraic.

That, suitably ordered, Ad0(ρi,`) is a geometric Galois representation whose local factors match
those of the L-algebraic cuspidal representation Ad0(πi) follows easily from the earlier ∧2 argument
(see §2.6.1)and the fact that our forms (representations) are all non-dihedral.

Part (iv): Normalize πi to be W-algebraic. Then πi � πi = Sym2(πi)�ωπi is L-algebraic, and by
[BR93] it has Satake parameters in Q at unramified primes. Writing {αi,v, βi,v} for the parameters
of πi,v (when unramified), we conclude that α2

i,v, β
2
i,v ∈ Q, hence αi,v, βi,v ∈ Q. This implies πi,v has

a model over Q for all such v,21 answering the weaker version of Question 2.5.4. In this case the
stronger version (that πi, f is defined over Q) follows as well, by a check (omitted) at the ramified
primes. �

Now we prove a more refined result in the case π1 = π2:

Proposition 2.6.8. Let π be a unitary, cuspidal, non-induced, mixed-parity Hilbert modular
representation, so that Π = π � π has an associated Galois representation, the sum of Galois
representations associated to the L-algebraic representations Sym2(π) and ωπ. As before, there
are `-adic representations ρi,` such that ρΠ,` = ρ1,` ⊗ ρ2,`.

• We can normalize the ρi,` so that ρi,`(frv) has characteristic polynomial in Q[X] for all
unramified v. Moreover, its eigenvalues in fact lie in Qcm, and are pure of some weight,
which we may take to be zero.
• For quadratic CM extensions L = KF with K/Q a quadratic imaginary field in which
` is inert, there is a ρ` : ΓF → GL2(Q`) for which Sym2(ρ`) ∼w,∞ Sym2(π). Later on
(Corollary 2.7.8), we will see this is not possible over a totally real field.

20Moreover, ρi,` is Hodge-Tate ⇐⇒ ρi,` |ΓL is Hodge-Tate ⇐⇒ χ is Hodge-Tate ⇐⇒ χ is geometric!
21Note that the fields of definition of πv and its Satake parameters may be different; but if one is algebraic, then

both are.
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• Nevertheless, we can choose ρ` and a finite-order character χ such that Sym2(ρ`) : ΓF →

GO3(Q`) is, viewing GO3(Q`) as the dual group (Gm × SL2)∨(Q`), associated to an auto-
morphic representation (ωπχ, π0) of (Gm × SL2)(AF), as in 3.2.2 of [BG11], with π0 any
irreducible constituent of π|SL2(AF ).

Proof. If we take π1 = π2 = π in the unitary normalization (this will ensure π � π has ‘motivic
weight zero,’ with an implicit–and provable–application of Ramanujan at infinity) and decompose
the Galois representation ρΠ,` associated to Π = π�π as ρ1⊗ρ2, then the now-familiar ∧2 argument
shows that Ad0(ρ1) � Ad0(ρ2). We can therefore write ρΠ,` � ρ⊗ (ρ⊗ χ) for some Galois character
χ. This χ need not be a square, but we can normalize ρ so that χ is finite order (by Lemma 2.3.15).
Now, the Ramanujan conjecture is known for Π22, and of course for χ, so ρ⊗ρ is pure of weight zero
(at unramified primes, say). Let αv and βv be frobenius eigenvalues of ρ(frv) at an unramified prime
v, so that α2

v and β2
v (being eigenvalues of Sym2(ρ)) have absolute value one under any embedding

Q` ↪→ C. The same then holds for αv and βv, so ρ itself is pure of weight zero. Therefore the
frobenius eigenvalues of ρ lie in Qcm.

We conclude by showing that, after certain CM base-changes, we can take the finite-order
character χ to be trivial. Restricting to L = KF as above, we can find a type A Hecke character
ψ of L such that π ⊗ ψ is L-algebraic, and then letting (ψ̂2)` be the geometric `-adic representation
associated to ψ2, we claim that, possibly replacing ψ by ψ−1, there exists a Galois character λ of L
such that

ρ|ΓL ⊗ λ � ρ|ΓL ⊗ (χ(ψ̂2)`λ−1).

Over L, π · ψ−1 has associated Galois representation r, and then r · (ψ̂2)` corresponds to π · ψ. Then
there exists a λ such that either r = ρ ·λ and r · (ψ̂2)` = ρ(χλ−1), or r = ρ · (χλ−1) and r · (ψ̂2)` = ρ ·λ.
Either way, plugging one equation into the other we get the claim.

ρ is not an induction, so χ|ΓL = λ2(ψ̂2)−1
` . In particular, χ|ΓL is a square if and only if (ψ̂2)` admits

a Galois-theoretic square-root. This was discussed in Lemma 2.3.18 above: it need not always be
the case (for instance, if ` is split in L/Q), but it is if ` is inert in K. Choosing such an L = KF, we
can now find χL : ΓL → Q` such that

ρΠ,`|ΓL � (ρ|ΓL ⊗ χL)⊗2.

Here χL = λψ̂ for ψ̂ a square-root of (ψ̂2)`, and we’re done.
For the final point, note that the inclusion Gm × SO3 → GO3 is an isomorphism, with inverse

map g 7→ (det
µ

(g), det
µ

(g)−1g). In particular, Sym2 : GL2 → GO3 becomes g 7→ (det(g),Ad0(g) in
these coordinates. The SL2(AF)-constituents of π have Langlands parameters corresponding to
the projectivization of those of π, and since Ad0 : GL2 → SO3 � PGL2 is just the quotient map
GL2 � PGL2, the claim follows. �

Remark 2.6.9. In particular, the Proposition tells us that there are pure `-adic Galois represen-
tations no twist of which are geometric. They do not, however, live in compatible systems.

These propositions would have no content if the only examples of mixed parity Hilbert modular
forms were the inductions described in Example 2.5.3; we end this section by showing

Lemma 2.6.10. Over any totally real field, non-CM mixed parity Hilbert modular forms exist.

22Of course, Π is not cuspidal, so literally this is for Sym2(π) and ωπ.
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Proof. Considering the (semi-simple, connected) Q-group G = ResF/Q(SL2/F), we can apply
Theorem 1B from §4 of Clozel’s paper [Clo86]. We fix a discrete series representation π∞ of
G(R) �

∏
τ : F↪→R SL2(R) corresponding to the desired mixed-parity infinity-type. Then fix an

auxiliary supercuspidal level Kp0 ⊂ G(Qp0) for some prime p0. At some other finite prime p, let πp

be a fixed (twist of) Steinberg representation. Finally, let S be a set of finite primes (disjoint from
p0, p) at which we will let the level go to infinity in the manner of Clozel’s paper (written KS → 1).
Letting K be any fixed compact open subgroup away from S , p, p0,∞, Clozel proves that

lim inf
KS→1

[
vol(KS ) ·mult

(
π∞ ⊗ πp, L2

cusp(G(Q)/G(AF))Kp0×KS×K
)]
> 0.

(He also determines an explicit but non-optimal constant.) This suffices for the Lemma: it implies
the existence of (infinitely many) cuspidal automorphic representations on G that are Steinberg at
p, and therefore not automorphically induced, and have the desired mixed parity at infinity. �

Remark 2.6.11. In [Shi12], Shin derives, as a corollary of very general existence results for
automorphic representations, an exact limit multiplicity formula for cohomological Hilbert mod-
ular forms. Unfortunately, this excludes precisely the mixed-parity forms we are interested in. It
seems, however, that his methods should extend to cover all discrete series infinity types.

2.6.3. A couple of questions. In Proposition 2.6.7, the key point was an understanding of
which type A Hecke characters–or their Galois analogues–could exist. I would like to raise here
a couple questions in higher rank about the existence of automorphic forms with certain infinity-
types.

Question 2.6.12. Are there automorphic representations π on GL2/F (F totally real) such that
at two infinite places v1 and v2,

• πv1 is discrete series and πv2 is limit of discrete series, but excluding the easily-constructed
dihedral cases, as in Example 2.5.3? Clozel’s result does not apply to this case; but after
the initial writing of this paper, Kevin Buzzard informed me that one such example, for
F = Q(

√
5), has been produced by computer calculation in [MS14];

• πv1 is discrete series (or limit of discrete series), and πv2 is principal series (looks like a
Maass form)?
• as in the previous item, but with algebraic infinity-type (so a ‘Plancherel density’-type

result will not suffice)?

2.7. Galois lifting: Hilbert modular case

2.7.1. Outline. We continue to elaborate on the examples of the previous section, now turning
to some preliminary cases of a problem raised by Conrad in [Con11]. Recall from the introduction
that he addresses lifting problems

H̃(Q`)

��

ΓF

ρ̃
==

ρ
// H(Q`)

,

where H̃ � H is a surjection of linear algebraic groups with central kernel, and the key remaining
question is:
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Question 2.7.1. Suppose that the kernel of H̃ � H is a torus. If ρ is geometric, when does
there exist a geometric lift ρ̃?

We will address this question in stages. Here is an outline of the coming sections:
• First we address, in the regular case, with F totally real, Conrad’s question for lifting

across GL2(Q`) → PGL2(Q`). Modulo the difference between potential automorphy and
automorphy, we find that all examples of ρ not having geometric lifts are accounted for
by mixed-parity Hilbert modular forms (a converse to Propositions 2.6.7 and 2.6.8).
• To give a higher-rank example in which potential automorphy theorems still allow us to

link the automorphic and Galois sides, we then carry out in §2.8 an analogous discussion
for GSpin2n+1(Q`) → SO2n+1(Q`) (§2.2 introduces the necessary background about Sen
operators and ‘labeled Hodge-Tate-Sen weights’ in `-adic Hodge theory; in the current
section, we use more elementary terminology, although some manipulations are justified
by the general theory).
• Before proceeding to the general solution (§3.2) of Conrad’s question, we (§3.1) discuss

the automorphic analogue. This is in some sense more intuitive, and it motivates the
Galois-theoretic solution. Note that in general we have neither constructions of automor-
phic Galois representations nor (potential) automorphy theorems, so we cannot uncondi-
tionally bridge the automorphic-Galois chasm. Proving a ‘modular lifting theorem’ from
H to H̃ in this context is an important remaining question.

2.7.2. GL2(Q`)→ PGL2(Q`). In this subsection we prove:

Theorem 2.7.2. Let F be totally real. Suppose ρ : ΓF → PGL2(Q`) is a geometric representa-
tion with no geometric lift to GL2(Q`). Then

• There exists a lift ρ̃ : ΓF → GL2(Q`) such that for all CM L/F, ρ̃|ΓL is the twist of a
geometric Galois representation (in particular, ρ|ΓL has a geometric lift, which ought to
be automorphic).

Now assume moreover that Ad(ρ) : ΓF → SO3(Q`) ⊂ GL3(Q`) satisfies the hypotheses of (the
potential automorphy theorem) Corollary 4.5.2 of [BLGGT14]23 Then:

• After a totally real base-change F′/F, Ad(ρ) is automorphic, and more precisely
• we may normalize ρ̃ such that Sym2(ρ̃)|ΓF′ is a geometric Galois representation corre-

sponding to Sym2(π) ⊗ χ for some mixed parity Hilbert modular representation π on
GL2/F and non-trivial finite order character χ. Furthermore, ρ̃ is totally odd.

Remark 2.7.3. If Ad0(ρ) is not regular, there are two possibilities: either it fails to be regular
everywhere, in which case Fontaine-Mazur conjecture that ρ (up to twist) has finite image. Such
ρ always have finite-image (hence geometric) lifts by Tate’s theorem (Proposition 2.1.4). If ρ is
totally odd, and Ad0(ρ) exhibits a mixture of regular and irregular behavior, it should be related to
the existence of a mixed-parity Hilbert modular form that is limit of discrete series at some infinite
places, and genuine discrete series at others. I know of no such examples not arising from Hecke
characters. The question of whether there exist non-dihedral ρ that are even at some and odd at
other infinite places is related to Question 2.6.12.

23Essentially: there is a lift ρ̃ of ρ such that (ρ̃ mod `)|ΓF(ζ` ) is irreducible and ρ̃ is regular (if true for one lift, this
is true for all), and ` is sufficiently large.
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We now make our first use of non-Hodge-Tate Galois representations; recall that in §2.2 we
have described the theory of (non-integral) Hodge-Tate-Sen weights. In fact, a reader unfamiliar
with this general theory will have no difficulty following the arguments of the current section.

Lemma 2.7.4. For any number field F and any geometric ρ : ΓF → PGL2(Q`), there is a lift
ρ̃ : ΓF → GL2(Q`) of ρ whose Hodge-Tate-Sen (HTS) weights at all v|` belong to 1

2Z. In this case,
Sym2(ρ̃) and det(ρ̃) are geometric.

Proof. Proposition 2.1.4 ensures that we can find some lift ρ̃. By assumption, Ad0(ρ̃) is geo-
metric, so

ρ̃ ⊗ ρ̃ ⊗ det(ρ̃)−1 � Ad0(ρ̃) ⊕ 1
is geometric. We ask whether det(ρ̃) is a square. There at least exists a Galois character ψ : ΓF →

Q
×

` such that det(ρ̃) = ψ2χ with χ finite order (Lemma 2.3.15). Thus

[ρ̃ ⊗ ψ−1]⊗2 � (Ad0(ρ̃) ⊗ χ) ⊕ χ

is also geometric, and in particular Hodge-Tate. Replacing ρ̃ with the new lift ρ̃ ⊗ ψ−1 we con-
clude that Sym2(ρ̃) and det ρ̃ are Hodge-Tate. The theorem of Wintenberger and Conrad (Theorem
2.1.6) then proves they must be de Rham, since the original projective ρ was. Any lift ρ̃ is almost
everywhere unramified by Lemma 5.3 of [Con11], so the proof is complete. �

We now proceed in the same spirit as in the construction of W-algebraic forms via type A
Hecke characters. The following lemma is an ad hoc version of Theorem 3.2.7; it may help in
navigating that rather formal proof:

Lemma 2.7.5. Consider ρ̃ : ΓF → GL2(Q`) as produced by Lemma 2.7.4. Let L/Q be a qua-
dratic CM extension. Then for all such L, the restriction of ρ̃ to ΓL is the twist of a geometric
Galois representation.

Proof. Recall that our fixed embeddings Q
ι∞
↪−→ C and Q

ι`
↪−→ Q` yield a map

ι∗∞,` :
⋃
v|`

HomQ`(Fv,Q`)→ HomQ(F,C).

Sym2(ρ̃) is de Rham, so for each place v|` of F and each τ : Fv ↪→ Q`, it has τ-labeled Hodge-Tate
weights24

HTτ

(
Sym2(ρ̃|ΓFv

)
)

= {Aτ,
Aτ + Bτ

2
, Bτ},

where the Aτ and Bτ are integers, necessarily having the same parity. We can distinguish the subset

{Aτ, Bτ} ⊂ HTτ

(
Sym2(ρ̃|ΓFv

)
)

(trivially in the non-regular case, easily otherwise). It follows that ρ̃|ΓFv
is Hodge-Tate (hence

de Rham) if and only if all Aτ and Bτ are even. Consider the map ι∗
∞,` for L as well as F; the

two versions are compatible, so conjugate archimedean embeddings ι, ῑ : L ↪→ C pull back to
embeddings L ↪→ Q` that lie above a common τ : F ⊂ Fv ↪→ Q`. To each τwe then unambiguously

24By duality, or by the Hodge-Tate-Sen theory.
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associate the parity ετ ∈ {0, 1} of Aτ (and Bτ), and at the unique archimedean place v∞,τ of L above
ι∗
∞,`(τ) we define a character

ψv∞,τ : L×v∞,τ → C
×

z 7→ ι(z)
kτ
2 ῑ(z)−

kτ
2 ,

where kτ is any integer with parity ετ.
L is a CM field, so Weil ([Wei56]) tells us that there exists a type A Hecke character ψ of

L with components at archimedean places given by these ψv∞,τ . We wish to twist ρ̃|ΓL by a Galois
realization of ψ, shifting all of its HTS weights to be integers (recall this can be checked by looking
at Sym2(ρ̃|ΓL)), but care is needed: there is no Galois representation canonically associated to a type
A (not A0) Hecke character. Instead, we associate (canonically, having specified ι∞ and ι`) an `-
adic representation (ψ̂2)` to the type A0 Hecke character ψ2, and then we non-canonically extract,
up to a finite-order character, a (Galois-theoretic, non-geometric) square root ψ̂. Then ρ̃|ΓL ⊗ ψ̂ is
Hodge-Tate, since the analogues of the Aτ and Bτ, but now for Sym2(ρ̃|ΓL ⊗ ψ̂) = Sym2(ρ̃|ΓL)⊗ (ψ̂2)`,
are all even. Thus ρ̃|ΓL ⊗ ψ̂ is geometric (again by Theorem 2.1.6). �

This completes the proof of the first part of Theorem 2.7.2. We need deeper tools to make
further progress. Let ρ̃ be the lift as above, with both Sym2(ρ̃) and det(ρ̃) geometric. Sym2(ρ̃)
factors through GO3(Q`) with totally even multiplier character det(ρ̃)2. We now make further
assumptions on ρ̃ (or ρ) in order to apply a potential automorphy theorem:

Hypothesis 2.7.6. (1) Assume ` > 7.
(2) Assume Sym2(ρ̃) is ‘potentially diagonalizable’ and regular at all v|`. For instance, we

require that for each v|` it be crystalline with τ-labeled Hodge-Tate weights distinct and
falling in the Fontaine-Laffaille range for all τ : Fv ↪→ Q`.

(3) Assume that the reduction mod ` of Sym2(ρ̃)|ΓF(ζ`) is irreducible. (We have taken ` , 2, so
this is equivalent to the analogous assumption for ρ̃.)

Then we can can apply Theorem C of [BLGGT14] to deduce that after base-change to some
totally real field F′, Sym2(ρ̃)|ΓF′ is automorphic, corresponding to a RAESDC automorphic rep-
resentation Π on GL3/F′. Let us abusively denote by det(ρ̃) the Hecke character (of type A0)
corresponding to det(ρ̃). Then Π ⊗ det(ρ̃)−1 is self-dual with trivial central character, and (by, for
instance, [Art13]–details, in greater generality, appear in Lemma 2.8.6–although in this case the
result is older) there exists a cuspidal π on GL2/F′ such that Ad0(π) � Π ⊗ det(ρ̃)−1. We may
assume that ωπ has finite order (applying Lemma 2.3.6 and Proposition 3.1.4, since F′ is totally
real), because the descent is originally to SL2/F′, and we then have control over the choice of
extension to GL2/F′.25

Lemma 2.7.7. Such a π on GL2/F′ satisfying Ad0(π) � Π ⊗ det(ρ̃)−1 is necessarily a mixed
parity Hilbert modular representation.

Proof. It is clear from the archimedean L-parameters that π is W-algebraic. If it were L-
algebraic, there would be a corresponding Galois representation ρπ26 with Ad0(ρπ) � Ad0(ρ̃), and
thus ρπ and ρ̃|ΓF′ would be twist-equivalent. Lemma 2.3.17 then implies ρ̃ has all integral or all
half-integral Hodge-Tate weights, which contradicts the assumption that ρ has no geometric lift

25We only sketch this here, because these matters will be discussed in greater detail and generality in §3.1.
26By [BR93].
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(note that both F′ and F are totally real). Similarly, if π were C-algebraic, then there would be a
geometric representation corresponding to π| · |1/2, and we can use the same argument. We conclude
that π must be mixed parity. �

Corollary 2.7.8. For any ρ : ΓF → PGL2(Q`) as in Theorem 2.7.2, and satisfying the auxiliary
potential automorphy Hypothesis 2.7.6, there exists a lift ρ̃ : ΓF → GL2(Q`) and, after a totally real
base change F′/F, a mixed-parity Hilbert modular representation π on GL2/F′, such that

Sym2(ρ̃)|ΓF′ ∼w,∞ Sym2(π) ⊗ χ

for some finite order Hecke character χ of F′. Moreover, any lift ρ̃ is totally odd, and the char-
acter χ is necessarily non-trivial. In contrast, restricting to L′ = F′K where K/Q is a quadratic
imaginary extension in which ` is inert, we can find a lift ρ̃ such that Sym2(ρ̃) corresponds to
BCL′/F′(Sym2(π)).

Conversely, starting with a mixed-parity π, we can produce such a χ and ρ̃.

Proof. In the notation of the previous Lemma, we have

Sym2(π) ⊗
det(ρ̃)
ωπ

� Π ∼w,∞ Sym2(ρ̃)|ΓF′ .

The character det(ρ̃)/ωπ is L-algebraic, hence equals χ| · |m for a finite-order character χ and an
integer m. Replacing π by π ⊗ | · |m/2, which is still mixed-parity, we are done except for the last
part.

Assume instead that we can take χ = 1. In particular, ωπ ∼w,∞ det(ρ̃), and thus det(ρ̃)(cv) =

ωπv(−1). By the description of discrete series representations of GL2(R) and purity of ωπ, we know
that the Langlands parameter φv : WR → GL2(C) takes the form

z 7→
(z/z̄)

kv−1
2 0

0 (z/z̄)
1−kv

2

 |z|−w/2
C

j 7→
(
0 (−1)kv−1

1 0

)
.

Hence ωπv(−1) = det(φv)( j) = (−1)kv . Since Ad0(ρ̃)|ΓF′ ∼w,∞ Ad0(π) is regular algebraic self-dual
cuspidal, Proposition A of [Tay12] shows that Ad0(ρ̃) is odd, and thus for all v|∞, the eigenvalues
of Ad0(ρ̃)(cv) are {−1, 1,−1}. We conclude that det(ρ̃)(cv) = −1 for all v|∞, proving the oddness
claim for ρ̃, and contradicting, when we assume χ = 1, the fact that the kv are both odd and even.

The remaining claims, constructing from π such a ρ̃ and χ, were established in Proposition
2.6.8. �

This concludes the proof of Theorem 2.7.2.

2.8. Spin examples

To address Conrad’s question in general, we will have to re-cast the arguments of §2.7 in
terms of root data. In the meantime we give another pleasantly concrete example, but one that
relies on root-theoretic manipulation, in the hopes of easing the transition to the general case;
moreover, specializing to discrete series/regular examples, we can also still exploit known results
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about automorphic Galois representations. The previous example (lifting across the surjection
GL2(Q`)→ PGL2(Q`)) is really just the first case of a family of spin examples,

GSpin2n+1(Q`)

��

ΓF

ρ̃
99

ρ
// SO2n+1(Q`),

where ρ is geometric but has no geometric lift ρ̃. F will be a totally real field, and we will again
see that over CM fields, geometric lifts do in fact exist. The case n = 1 will amount to the contents
of §2.7.

We first recall the basic setup for (odd) Spin groups. We will also make heavy use of this
notation, and its obvious analogues for even Spin groups, later on in some of our examples of
‘motivic lifting’ (see §4.2 and §4.3).

1

��

1

��

1 // {±1} //

��

Spin2n+1
//

��

SO2n+1
// 1

1 // Gm
//

z 7→z2
��

GSpin2n+1
//

ν
��

SO2n+1
// 1

Gm

��

Gm

��

1 1

where ν is the Clifford norm. We can then identify

GSpin2n+1

ν

��

Gm×Spin2n+1
{1,(−1,c)}∼

oo

(x,g)7→x2

��

Gm Gm

where c is the non-trivial central element of Spin2n+1. This yields an identification of Lie algebras

gspin2n+1
∼
←− gl1 × so2n+1,

where gl1 is identified with the center of gspin2n+1. Alternatively, GSpin2n+1 is the dual group to
GSp2n, and it will be convenient to keep both normalizations of (based) root data for GSpin2n+1–
one from the spin description, one from the dual description–in mind. Let (X,∆, X∨,∆∨) be the
based root datum for GSp2n (say defined with respect to J2n =

(
0 1n
−1n 0

)
), with its diagonal maximal

torus T and the Borel B ⊃ T for which ei − ei+1 and 2en − e0 form a set of positive simple roots,
with

ei : diag(t1, . . . , tn, νt−1
1 , . . . , νt−1

n ) 7→ ti

e0 : diag(t1, . . . , tn, νt−1
1 , . . . , νt−1

n ) 7→ ν.
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Then for GSpin2n+1, we have the based root datum (with X∨ the character group)

X∨ =

n⊕
i=0

Ze∗i

∆∨ = {α∨i = e∗i − e∗i+1}
n−1
i=1 ∪ {α

∨
n = e∗n}

X =

n⊕
i=0

Zei

∆ = {αi = ei − ei+1}
n−1
i=1 ∪ {αn = 2en − e0},

with X and X∨ in the duality 〈ei, e∗j〉 = δi j.
Alternatively, since Spin2n+1 is the connected, simple, simply-connected group with Lie algebra

so2n+1, we can write its character group as the weight lattice of so2n+1, i.e., as the submodule
of ⊕n

i=1Qχi spanned by χ1, . . . , χn,
χ1+...+χn

2 , and its co-character lattice as those
∑n

i=1 ciλi such that
ci ∈ Z and

∑
ci ∈ 2Z. The duality is 〈χi, λ j〉 = δi j. Letting χ0 and λ0 generate X•(GL1) and

X•(GL1), respectively, the description of GSpin2n+1 as GL1×Spin2n+1
{1,(−1,c)} then leads to another description

of the root datum as

Y• =

n⊕
i=1

Zχi ⊕ Z(χ0 +
χ1 + . . . + χn

2
) ⊂

n⊕
i=0

Qχi

∆• = {χi − χi+1}
n−1
i=1 ∪ {χn}

Y• =

n⊕
i=1

Z(λi +
λ0

2
) ⊕ Zλ0

∆• = {λi − λi+1}
n−1
i=1 ∪ {2λn}.

We summarize by comparing the two descriptions:

Lemma 2.8.1. There is an isomorphism of based root data

(X∨,∆∨, X,∆) � (Y•,∆•,Y•,∆•)

given by

e∗i 7→ χi for i = 1, . . . , n;

e∗0 7→ χ0 −
χ1 + . . . + χn

2
;

ei 7→ λi +
λ0

2
for i = 1, . . . , n − 1;

e0 7→ λ0.

For example, the center of GSpin2n+1 is generated by the co-character e0 ↔ λ0. The Clifford
norm is given by the character 2χ0 ↔ 2e∗0 +

∑n
1 e∗i .

Returning to our representation ρ, recall that to each v|` and ι : Q` ↪→ CFv we can associate the
Sen operator

Θρ,ι := Θρ|ΓFv
,ι ∈ so2n+1 ⊗Q`,ι

CFv .
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(The place v is implicit in ι.) Since ρ is Hodge-Tate, we can identify Θρ,ι up to conjugation with a
diagonal element 

m1

...
mn

0
−mn

...
−m1

 ,
where m j = m j(ι) are all integers.27

Proposition 2.8.2. Let ρ : ΓF → SO2n+1(Q`) be a geometric representation as above, with F
totally real. Then ρ lifts to a geometric, GSpin2n+1-valued representation if and only if the parity
of

∑
j m j(ι) is independent of v|` and ι : Q` ↪→ CFv .

Remark 2.8.3. By itself, this result is formal. Later we will see how such ρ arise, at least when
ρ is regular; but note that this Proposition makes no such assumption.

Proof. By Proposition 2.1.4, some lift ρ̃, necessarily unramified almost everywhere, exists.
All possible lifts differ from this ρ̃ by e0 ◦ χ for some χ : ΓF → Q

×

` . As before, we can write the
multiplier character ν(ρ̃) : ΓF → Q

×

` as χ2χ0, where χ0 has finite order, and then replace ρ̃ by a
twist having ν(ρ̃) of finite-order (Lemma 3.2.2 will explain this procedure in general). Then, since
finite-order characters have Hodge-Tate weights zero, functoriality of the Sen operator implies that
for all ι : Q` ↪→ CFv , Θρ̃,ι maps to (0,Θρ,ι) in (gl1)ι ⊕ (so2n+1)ι.28

Now consider the spin representation GSpin2n+1

rspin
−−−→ GL2n . In the above root datum notation

this corresponds to the highest weight −e∗0 ↔ −χ0+
χ1+...+χn

2 . The image of Θρ̃,ι is then a semi-simple
element with one eigenvalue m1+...+mn

2 , and all eigenvalues congruent to this (half-integer) modulo
Z. In particular, rspin ◦ ρ̃|ΓFv

is Hodge-Tate, and thus de Rham, if and only if for all ι : Q` ↪→ CFv ,
m1(ι) + . . . + mn(ι) is even. If all (for all v|` and all ι) of these sums are odd, then we twist
by a character χ with all Hodge-Tate-Sen weights 1/2 (see Lemma 2.3.17) to get a new ρ̃, now
geometric, lifting ρ. On the other hand, Lemma 2.3.17 shows that for F totally real we cannot
twist ρ̃ in a similar way if some

∑
j m j(ι) are even and others are odd. �

Corollary 2.8.4. Let ρ : ΓF → SO2n+1(Q`) be as in Proposition 2.8.2. Let L/F be a CM
extension. Then ρ|ΓL has a geometric lift.

Proof. With the framework of the previous proof, this follows by the same argument as Lemma
2.7.5. �

If we make additional assumptions so that potential automorphy theorems apply, we can of
course say more. The next two lemmas merely exploit some very deep recent results.

Lemma 2.8.5. Assume that ρ : ΓF → SO2n+1(Q`) ⊂ GL2n+1(Q`) as in the previous proposition
moreover satisfies:

• For all v|`, ρ|ΓFv
is regular and potentially diagonalizable;

• ρ̄|ΓF(ζ`) is irreducible.

27We choose the ‘anti-diagonal’ orthogonal pairing, so that SO2n+1 has a maximal torus consisting of diagonal
matrices.

28Writing gι as a short-hand for g ⊗Q` ,ι CFv .
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• ` ≥ 2(2n + 2).
Then after some totally real base change F′/F, there exists a regular L-algebraic self-dual cuspidal
automorphic representation π of GL2n+1(AF′) such that π ∼w,∞ ρ.

Proof. This is immediate from Theorem C (=Corollary 4.5.2) of [BLGGT14], since ρ is au-
tomatically totally odd self-dual.29 �

Lemma 2.8.6. Let ρ ∼w,∞ π be as in Lemma 2.8.5. Then π descends to a cuspidal automor-
phic representation on Sp2n(AF′), in a way compatible with unramified and archimedean local
L-parameters.

Proof. This follows from Arthur’s classification of automorphic representations of classical
groups ([Art13]). Namely, ρ∨ � ρ implies that π∨ � π, and det(ρ) = 1 implies that ωπ = 1. π
is cuspidal, so the associated formal A-parameter φ (see §1.4 of [Art13]) is simple generic and so
comes from a unique simple twisted endoscopic datum Gφ as in Theorem 1.4.1 of [Art13]; since
2n + 1 is odd, the parameter φ therefore factors through either SO2n+1(C) or O2n+1(C), but the latter
case is ruled out since ωπ = 1. It follows that Gφ = Sp2n/F.30 The local statement follows from
[Art13, Theorem 1.4.2]. �

Proposition 2.8.7. Continuing with the assumptions (and conclusions) of the previous two lem-
mas, ρ|ΓF′ has a geometric lift to GSpin2n+1(Q`) if and only if π admits an L-algebraic extension to
GSp2n(AF). In the other direction, we have, as in Lemma 2.6.10, an automorphic construction of
infinitely many such ρ, whose local behavior31 we can additionally specify at any finite number of
places, that do not admit a geometric lift.

Proof. (Some details of this argument are omitted, deferring to more general arguments in the
next section.) At each v|∞, we can write the L-parameter of πv as

φv : WFv → SO2n+1(C) ×WFv

φv|WFv
: z 7→



zm1 z̄l1

...
zmn z̄ln

1
z−mn z̄−ln

...
z−m1 z̄−l1 .


,

with all mi, li ∈ Z. Since the transfer of π to GL2n+1(AF) is cuspidal, Clozel’s archimedean purity
theorem (see Lemme 4.9 of [Clo90]) implies that mi + li = 0 for all i (and all v). To extend π in
an L or W-algebraic fashion, the key point is to construct an appropriate extension of the central
character. Any lift φ̃v to GSpin2n+1(C) of the parameter φv must, on WFv

, take the form z 7→ zµ̃v z̄ν̃v ,

29Note that those authors always work with C-algebraic automorphic representations, so the statements of their
theorems always have an extra, but easily unraveled, twist.

30One would like to say that since ρ lands in SO2n+1(Q`), Sym2(ρ) contains the trivial representation and therefore
L(s, π,Sym2) has a pole at s = 1; this would allow us to descend π to Sp2n(AF) using [CKPSS04]. Unfortunately,
nothing is known a priori about L(s,V) where Sym2(ρ) = 1 ⊕ V; in particular, we can’t say immediately it is non-
vanishing at s = 1, so this argument doesn’t seem to work. The argument we have given allows us to deduce that
L(s, π,Sym2) has a simple pole at s = 1, and therefore L(s,V) is non-vanishing at s = 1.

31i.e. inertial type
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where

µ̃v =

n∑
i=1

mv,i(λi +
λ0

2
) + µv,0λ0

ν̃v = −

n∑
i=1

mv,i(λi +
λ0

2
) + νv,0λ0.

The central character of this extension is (by pairing with 2χ0, the Clifford norm; this procedure
for computing central characters is explained in general in [Lan89])

ωv : z 7→ z
∑n

i=1 mv,i+2µv,0 z̄−
∑n

i=1 mv,i+2νv,0 .

If we can choose an extension of π to an automorphic representation π̃ of GSp2n(AF′) with finite-
order central character, then this calculation shows that φ̃v (the local L-parameter for π̃v) is always
‘W-algebraic,’32 and it is ‘L-algebraic’ if and only if

∑n
i=1 mv,i is even. The result would follow

easily, twisting our given π̃ by | · |1/2 if all
∑

i mv,i are odd (just as in the Galois case). That we can
find such an extension π̃ with finite-order central character will be proven in much more generality
in Proposition 3.1.14.

The construction of geometric ρ : ΓF → SO2n+1(Q`) having no geometric lift to GSpin2n+1(Q`)
(and with specified local behavior) follows as in Lemma 2.6.10, applying Clozel’s limit multiplicity
formula to G = Sp2n over F, transferring these forms to GL2n+1 (via [Art13]), and then invoking
the Paris Book Project, or, more precisely, Remark 7.6 of [Shi11]. �

We have therefore generalized some of the results of §2.7 (the case n = 1).

32Using this term abusively for the obvious local analogue.
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CHAPTER 3

Galois and automorphic lifting

This chapter begins (§3.1) by addressing the natural automorphic analogue of Conrad’s lifting
question. It is much easier to see what should be true in this setting, and the proofs are simpler
as well. Equipped with the intuition coming from the automorphic case, we address the original
Galois-theoretic question in §3.2. In §3.3, we combine the results of §3.1 and 3.2 to compare,
modulo the Fontaine-Mazur-Langlands conjecture, descent problems for certain automorphic rep-
resentations and Galois representations. The closing section, §3.4, is of a rather different nature,
assembling a few results about the images of compatible systems of `-adic Galois representations.
The results of that section continue the attempt to compare aspects of the automorphic and Galois-
theoretic formalisms.

3.1. Lifting W-algebraic representations

In this section, we make the simplifying assumption that G is a connected semi-simple split
group over F. This semi-simplicity assumption is not essential, and in §3.2 we will work more
generally. Let Z̃ be an F-split torus containing ZG, and set G̃ = (Z̃×G)/ZG, as before, with maximal
torus T̃ = (Z̃ × T )/ZG and center Z̃. In each case ZG is embedded anti-diagonally. We will study
lifting problems for automorphic representations from G to G̃, and also from G to intermediate
(connected reductive) groups G ⊂ G ⊂ G̃; here the reader should think of G ⊂ G as the general
case, but any such G embeds in a G̃ whose center Z̃ is a torus, simply by embedding the center Z
of G into a torus Z̃. We focus on the case G ⊂ G̃ because the general case reduces to this one.1

Note that the cases of greatest interest are when G is simply-connected (so G∨ is adjoint), such as
SLn or Sp2n, but we do not assume this.

Now let π be a (unitary) cuspidal automorphic representation of G(AF) that is W-algebraic. We
are interested in the problem of lifting π to a W-algebraic automorphic representation π̃ of G̃(AF);
when π is moreover L-algebraic, we similarly ask whether an L-algebraic lift exists. By ‘lift,’ we
simply mean the most naive thing: the restriction π̃|G(AF ) contains π. Corollary 3.1.6 justifies this
convention, showing that under the L-morphism LG̃ → LG, the L-packet of π is a functorial transfer
of the L-packet of π̃.

3.1.1. Notation and central character calculation. In order to do computations in terms of
root data, we choose coordinates (using invariant factors) such that

X•(Z̃) =

r⊕
i=1

Zwi ⊕

s⊕
j=1

Zw′j,

1To distinguish the two cases, consider for instance G = Spin2n ⊂ G = GSpin2n, which dualizes to a surjection
GSO2n � PSO2n. The center of G is not connected.
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and the kernel of X•(Z̃)→ X•(ZG) is
r⊕

i=1

diZwi ⊕

s⊕
j=1

Zw′j.

This is X•(S ) for the torus S = Z̃/ZG. We then write X•(ZG) = ⊕r
1(Z/diZ)w̄i. To relate parameters

for G̃ to those for G, we use the Cartesian diagram

X•(T̃ ) //

��

X•(Z̃)

��

X•(T ) // X•(ZG),

representing elements of X•(T̃ ) as pairs (χT , χZ̃) that are congruent in X•(ZG). Extending scalars
to Q (or any characteristic zero field), X•(T̃ )Q

∼
−→ X•(T )Q ⊕ X•(Z̃)Q. We will usually (out of sad

necessity) take F to be either CM or totally real. In the former case (or whenever an archimedean
place is complex) we compute local central characters (see page 21 ff. of [Lan89]) as follows:

Suppose v is complex, so there is an isomorphism ιv : Fv
∼
−→ C. Let

recv(πv) : z 7→ ιv(z)µv ῑ(z)νv ∈ T∨(C)2

be the associated Langlands parameter, with µv, νv ∈ X•(T )C with µv − νv ∈ X•(T ). Write
∑r

i=1[µv −

νv]iw̄i for the projection of µv − νv to X•(ZG). Choose any µv,i, νv,i ∈ C with µv,i − νv,i an integer
projecting to [µv − νv]i ∈ Z/diZ. We can then regard µ̃v = (µv,

∑r
1 µv,iwi) and ν̃v = (νv,

∑r
1 νv,iwi) as

elements of X•(T̃ )C parametrizing an extension of the local L-parameter of πv to a parameter for
G̃(Fv). Identifying, via our chosen basis, Z̃(Fv) with (C×)r+s, the central character ωπ̃v of this lift is
simply

ωπ̃v : (z1, . . . , zr, z′1, . . . , z
′
s) 7→

r∏
i=1

zµv,i−νv,i
i |zi|

νv,i

C .

Restricting to ZG(Fv) � µd1 × · · · × µdr ⊂ (C×)r, we find that the central character ωπv is given by

ωπv : (ζ1, . . . , ζr) 7→
r∏

i=1

ζ
µv,i−νv,i
i ,

where each ζi is a dth
i root of unity. Clearly this is independent of the choice of lifts µ̃v, ν̃v.

Definition 3.1.1. If F is a CM field, and π is a (unitary) automorphic representation of G(AF)
with archimedean parameters µv, νv as above at each v|∞, then we define ω̃ = ω̃(π) to be any choice
of Hecke character of Z̃ lifting ωπ and such that

ω̃v(z1, . . . , z′s) =

r∏
i=1

(zi/|zi|)µv,i−νv,i .

This is a unitary, type A Hecke character whose existence is assured by Lemma 2.3.6.

When v is real, the lifting process is more complicated (see [Lan89]), and the central character
computation depends very much on where the L-parameter of πv sends an element of WR − WC.
We can avoid this, however:

2From now on, we write z, z̄ in place of ιv(z), ῑv(z).
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Definition 3.1.2. Let π be as in the previous definition, but now suppose F is totally real. Then
we define ω̃ to be any choice of finite-order Hecke character of Z̃ extending ωπ (existence again by
Lemma 2.3.6).

3.1.2. Generalities on lifting from G(AF) to G̃(AF). We now try to find an automorphic
representation π̃ ⊂ L2

cusp(G̃(F)\G̃(AF), ω̃)3 lifting π, where ω̃ is any (unitary) lift of the central
character ωπ. We say that we are in the Grunwald-Wang special case if one of the pairs (F, di) is
in the usual Grunwald-Wang special case. Let HAF = G(AF)Z̃(AF) (a normal subgroup of G̃(AF)),
and let HF = HAF ∩ G̃(F).

Lemma 3.1.3. We are in the Grunwald-Wang special case if and only if HF strictly contains
G(F)Z̃(F).

Proof. Recall the characters diwi ∈ X•(S ) = X•(G̃) (since G is semi-simple). These induce an
isomorphism

HF/G(F)Z̃(F)
∏

diwi
−−−−→

r∏
i=1

(
F× ∩ (A×F)di

)
/(F×)di .

�

There are various ways to show forms on G(AF) extend to G̃(AF); the argument we use here is
modeled on one of Flicker for the case (G̃,G) = (GSp2n,Sp2n) (see Proposition 2.4.3 of [Fli06]).

Proposition 3.1.4. Let π be a cuspidal automorphic representation of G(AF), with central char-
acter ωπ. If we are not in the Grunwald-Wang special case, then for any extension ω̃ of ωπ to a
Hecke character of Z̃, there exists a cuspidal automorphic representation π̃ of G̃(AF) lifting π, and
having central character ω̃. If we are in the Grunwald-Wang special case, then for at least one
extension of ωπ to

r∏
i=1

CF[di] ⊃
r∏

i=1

µdi(F)\µdi(AF),

and for any extension of this character to a Hecke character ω̃ of Z̃, there exists a cuspidal π̃ lifting
π with central character ω̃.

For any intermediate connected reductive group G ⊂ G ⊂ G̃, any cuspidal automorphic repre-
sentation of G extends to a cuspidal automorphic representation of G.

Remark 3.1.5. In particular, in all cases, for all Hecke characters ω̃ extending ωπ, there exists a
Hecke character ω̃′ having the same infinity-type, and a cuspidal representation π̃ of G̃(AF) lifting
π, with central character ω̃′.

Proof. Choose an extension ω̃ : Z̃(F)\Z̃(AF)→ S1 of ωπ. By extending functions along Z̃(AF)
via ω̃, we embed the space Vπ of π into the space of cusp-forms on G(F)Z̃(F)\HAF , and thereby
obtain an extension of π to a representation πω̃ of HAF . We construct an intertwining map

IndG̃(AF )
HAF

(πω̃)
U
−→ L2

cusp(G̃(F)\G̃(AF), ω̃),

3That is, the space of measurable functions on G̃(F)\G̃(AF) with (unitary) central character ω̃, and square-
integrable modulo Z̃(F∞)0–or, equivalently, modulo AG̃(R)0, where AG̃ is the maximal Q-split central torus in
ResF/Q(G̃).
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where the induction consists of functions F : G̃(AF) → Vπ with the usual left-HAF -equivariance,
and the requirement of compact support modulo HAF . Write δ1 : Vπ → C for evaluation at 1 of the
cusp forms in Vπ, and set

L(F) =
∑

G(F)Z̃(F)\G̃(F)3u

δ1(Fu),

where we write Fu for the value at u of F ∈ Ind(πω̃). This sum is in fact finite: G̃(F) is discrete
in G̃(AF), the fibers of G(F)Z̃(F)\G̃(F) → HAF\G̃(AF) are finite, and we have assumed F has
compact support modulo HAF . It is also well-defined because for γ ∈ G(F)Z̃(F),

δ1(Fγu) = δ1(γ · Fu) = Fu(γ) = Fu(1) = δ1(Fu).

The map U is then given by
U(F) : g 7→ L(I(g)F),

where I(·) denotes the G̃(AF)-action on the induction. U is clearly G̃(AF)-equivariant and has
output U(F) which is left-G̃(F)-equivariant (by its construction as an average) and has central
character ω̃; U(F) is a cusp form by a simple calculation using the fact that the unipotent radical
of any parabolic of G̃ is in fact contained in G.

To see that U , 0, take a non-zero form f ∈ Vπ; we may assume (by translating) f (1) , 0.
Then define F ∈ Ind(πω̃) by

Fh : h′ 7→ f (h′h)
if h ∈ HAF , and Fg = 0 for g < HAF . Then

U(F)(1) =
∑

u

δ1(Fu) =
∑

u

 f (u) if u ∈ HAF ;
0 otherwise.

So, if we are not in the special case, we just get U(F)(1) = f (1) , 0. If we are in the special
case, then for each pair (F, di) in the special case there is an element αi ∈ F× which is everywhere
locally a dth

i -power–say αi = βdi
i , but not globally a dth

i -power. By abuse of notation, we also write
αi for an element of G̃(F) such that (diwi)(αi) is this element of F× and the other characters d jw j

( j , i) and w′j of G̃ are trivial on αi.4 Regarding βi as an element of the ith componenet of Z̃(AF),
we can therefore write αi = βi · γi, where each γi lies in G(AF). If only one pair (F, di) is in the
special case, then the above expression for U(F)(1) becomes f (1) + f (αi) = f (1) + ω̃(βi) f (γi).
This time we normalize f so that f (γi) , 0 (rather than f (1) , 0), and so necessarily either
f (1) + ω̃(βi) f (γi) , 0, or this expression is non-zero for any ω̃ extending the other extension of ωπ

to a character of CF[di]. Thus we can choose at least one initial extension to CF[di], and thereafter
the argument proceeds as in the non-exceptional case. If multiple (F, di) are in the special case, the
same argument applies: arrange some f (γi) , 0, and if U(F)(1) = 0, change the extension of ωπ

to CF[di] just in this ith component.
Finally, given that U , 0, we take π̃ to be the image of any irreducible constituent of IndG̃(AF )

HAF
(πω̃)

that survives under U, and we claim this is the desired extension of πω̃. The isomorphism classes
of HAF -representations appearing in the restriction to HAF of the full induction are precisely the
conjugates πg

ω̃, for g ∈ G̃(AF), and G̃(AF)-stability of π̃ implies that all of these in fact appear in
π̃|HAF

. In particular, this latter restriction contains πω̃.

4We use the assumption that G is split over F.
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For the final claim, we extend π from G to G̃, and then restrict to G; any constituent of the
restriction can be taken as the desired extension. �

We need to supplement this by understanding to what extent π is a ‘functorial transfer’ of π̃,
with respect to the L-homomorphism LG̃ � LG. Somewhat more generally, let G

η
−→ G̃ be a

morphism of connected reductive groups over Fv, with abelian kernel and cokernel; here we either
take v to be archimedean, or finite such that G and G̃ are unramified over Fv. By assumption,
there is a dual L-homomorphism Lη : LG̃ → LG. In both the archimedean and unramified cases,
the L-parameters φv and φ̃v, as well as the corresponding L-packets Πφv and Πφ̃v , of πv and π̃v have
been defined (as will be explained in Corollary 3.1.6).

Corollary 3.1.6. Continue in the setting of the proposition. Then π is a weak transfer of π̃,
which is also a strong transfer at archimedean places. More precisely, for all places v of F that are
either archimedean or such that G is unramified at v, the restriction π̃v|G(Fv) is a finite direct sum of
elements of Πφv , and φ̃v reduces to φv (i.e. Lη ◦ φ̃v = φv up to G∨(C)-conjugacy).

Proof. For infinite places v, the assertion follows from desideratum (iv) on page 30 of [Lan89].
Since the construction of the correspondence is inductive, the verification necessarily stretches out
through §3 of that paper; for the first (and most important) case of discrete series, see page 43.

Now we treat the unramified case. Suppose π̃v is unramified, i.e. there exists a hyperspecial
maximal compact subgroup K̃v of G̃(Fv) such that π̃K̃v

v , 0. Then for some unramified character
χ̃v of T̃ (Fv), π̃v is a sub-quotient of IG̃(Fv)

B̃(Fv)
χ̃v. The natural map G(Fv)/B(Fv) → G̃(Fv)/B̃(Fv) is an

isomorphism, so restriction of functions gives an isomorphism of G(Fv) representations(
IG̃(Fv)

B̃(Fv)
χ̃v

)
|G(Fv)

∼
−→ IG(Fv)

B(Fv) (χ̃v|B(Fv)).

Write χv for χ̃v|B(Fv). It is an unramified character of T (Fv), and under the identification of unrami-
fied characters of T (Fv) with Hom(X•(T )ΓFv ,C×) (and the analogue for T̃ ), and thus with the space
of unramified L-parameters, χv corresponds to the parameter φv = Lη ◦ φ̃v. By definition of unram-
ified L-packets (see [Bor79, §10.4]), to see that any constituent πv of π̃v|G(Fv) lies in the packet Πφv ,
we need only check that πv has invariants under some hyperspecial maximal compact subgroup of
G(Fv). To see this, let u be a non-zero vector in π̃K̃v

v . Decomposing π̃v|G(Fv) = ⊕M
1 π
⊕mi
i (with the πi

distinct isomorphism classes; in fact, the multiplicities mi are all equal), we see that u lies in one of
the isotypic componenets π⊕mi

i , since the induction I(χv) can only have one Kv := G(Fv) ∩ K̃v- in-
variant line. Fixing a decomposition u =

∑mi
j=1 u j with u j in the jth copy of πi, we find that the u j are

themselves also Kv-invariant, hence πi contains a Kv-invariant vector (this in turn implies the mul-
tiplicities mi must equal 1). Since G̃(Fv) acts transitively on the isomorphism classes πi, each πi,
and in particular our given πv, contains some vector of the form π̃v(g)u, which is gKvg−1-invariant;
gKvg−1 is also a hyperspecial maximal compact subgroup, so we’re done. �

Remark 3.1.7. According to expected properties of local L-packets, π should be a strong trans-
fer of π̃ (see §10.3 of [Bor79]), but of course this statement is meaningless until the local Langlands
correspondence is known for G and G̃.

Eventually, we will also want to understand the ambiguity in the choice of π̃. Strictly speak-
ing, we only need this in one direction of Proposition 3.1.14 below, but as a general problem, its
importance is basic. We will need to assume something from local representation theory, which
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was originally conjectured always to hold, more generally for quasi-split G and G̃, by Adler and
Prasad ([AP06]); in fact, in certain quasi-split, but not split, cases, Adler and Prasad have found
counterexamples to their conjecture (these and related questions will be taken up in [APP16]).

Hypothesis 3.1.8. Let v be any place F, and let G and G̃ be as above. Then for any irreducible
smooth representation π̃v of G̃(Fv), the restriction π̃v|G(Fv) decomposes with multiplicity one.

The motivation for this hypothesis is the uniqueness of Whittaker models for quasi-split groups,
and indeed it always holds for generic π̃v. The analogous statement for v archimedean is straight-
forward in many cases: for instance, for a simple G, it is easy because R×/(R×)n is cyclic for all n.
Moreover, the structure of archimedean L-packets may be well-enough understood to resolve the
question in general for archimedean v, but we do not pursue this here. For v non-archimedean, we
have verified it in the unramified case (see the proof of Lemma 3.1.6), and in general the hypoth-
esis is known for the following pairs (G̃,G): (GLn,SLn) (from the theory of, possibly degenerate,
Whittaker models; see [LL79] for the n = 2 case), and any pair (GU(V),U(V)) where (V, 〈, 〉) is a
vector space over Fv equipped with a non-degenerate symmetric or skew-symmetric form 〈, 〉, and
GU(V), respectively U(V), denote the similitude and isometry groups of the pairing (see Theorem
1.4 of [AP06]). So, whatever the status of the general hypothesis, the discussion below applies to
some interesting cases.

Lemma 3.1.9. Assume Hypothesis 3.1.8. Suppose π̃ and π̃′ are two lifts of π (i.e. their restric-
tions contain π) with the same central character ω̃.

• There exist continuous idele characters αi : A×F → C
×, for i = 1, . . . , r, such that, in the

notation of §3.1.1,

π̃ � π̃′ ·

 r∏
i=1

αi ◦ diwi

 ,
and each αdi

i factors as a genuine Hecke character αdi
i : A×F/F

× → C×.
• Since Hecke characters satisfy purity, so do the characters αi.

Remark 3.1.10. The point of the Lemma is that the idele characters αi need not be Hecke
characters, i.e. need not factor through CF . We are particularly interested in the constraint on the
infinity type of αi, which by the lemma must be just as rigid as the constraints for Hecke characters.
This will be applied in Proposition 3.1.14.

Proof. As before, write HAF = G(AF)Z̃(AF), and write Hv = G(Fv)Z̃(Fv) for its local analogue.
By hypothesis, both restrictions π̃|HAF

and π̃′|HAF
contain π� ω̃, so this holds everywhere locally as

well. Lemma 2.4 of [GK82] (applying Hypothesis 3.1.8) implies that for all finite v, there exists a
smooth character αv : G̃(Fv)/Hv → C

× such that π̃v � π̃
′
v ·αv. By duality (for finite abelian groups),

we can extend this to a character ᾱv:

1 // G̃(Fv)/Hv

αv

��

//
∏r

i=1 F×v /(F
×
v )di

ᾱv

vv
C×

We express αv in coordinates as
αv =

(
αi,v ◦ (diwi)

)r
i=1
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for smooth characters αi,v of F×v trivial on (F×v )di . Globally, we then have

π̃ � π̃′ ·

 r∏
i=1

(⊗′vαi,v) ◦ diwi

 .
Here the αi := ⊗′vαi,v are continuous5 characters A×F → C

×, but they need not be Hecke characters.
Taking central characters, however, we see that each αdi

i is in fact a Hecke character. �

Remark 3.1.11. Under Hypothesis 3.1.8, one should be able to refine the arguments of this
section to produce a multiplicity formula for cuspidal automorphic representations of G(AF) in
terms of those of G̃(AF), as in Lemma 6.2 of [LL79]). One can also axiomatize the passage
between local Langlands conjectures for G and for G̃; this would include verifying compatibility
of the conjectural formulae for the sizes of L-packets (a template, in the case of (GSp,Sp), is given
in the paper of [GT10]; their arguments will clearly apply much more generally).

3.1.3. Algebraicity of lifts: the ideal case. Now we return to questions of algebraicity, han-
dling the CM and totally real cases in turn. In each case, we carefully choose an extension of
the central character of π (as described in Definitions 3.1.1 and 3.1.2), and then find a π̃ as in
Proposition 3.1.4 with that central character, and whose restriction to G(AF) contains π. This will
yield enough information about the archimedean L-parameters of π̃ to deduce the desired alge-
braicity statements. To give a clean argument with broad conceptual scope, we will assume that π
is tempered at infinity6. As remarked before, this is not a serious assumption for algebraic repre-
sentations: it is satisfied for forms having cuspidal transfer to some GLN . For non-tempered forms,
analogous results for the discrete spectrum can be deduced from Arthur’s conjectures.

Proposition 3.1.12. Let F be CM, with π, π̃ as above, and with ω̃ the (type A) extension of ωπ

described in Definition 3.1.1. Assume π∞ is tempered.
(1) If π is L-algebraic, then π̃ is L-algebraic. In particular, there exists an L-algebraic lift of

π.
(2) If π is W-algebraic, then π̃ is W-algebraic.

Similarly, any L-algebraic (respectively, W-algebraic) π on G extends to an L-algebraic (respec-
tively, W-algebraic) automorphic representation of G(AF).

Proof. We use the notation of §3.1.1. We may of course take all µv,i and νv,i to be integers. By
the choice of central character ω̃, the archimedean L-parameter for π̃v corresponds to

µ̃v = (µv,
∑ µv,i − νv,i

2
wi) ∈ X•(T )C ⊕ X•(Z̃)C,

and

ν̃v = (νv,
∑ νv,i − µv,i

2
wi) ∈ X•(T )C ⊕ X•(Z̃)C.

We write this parameter as an obviously integral term plus a defect:

µ̃v = (µv,
∑

µv,iwi) + (0,−
∑ µv,i + νv,i

2
wi),

5Almost all αi,v are unramified, since the same holds for π̃v and π̃′v.
6No assumption at finite places.
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and likewise for ν̃v. Note that this lies in X(T̃ ) if and only if for all i = 1, . . . , r, we have µv,i+νv,i

2 ∈ diZ.
The discussion is so far general; if we now assume πv is tempered, then for all λ ∈ X•(T ), the
character

z 7→ z〈µv,λ〉z̄〈νv,λ〉

is unitary, i.e.
Re(〈µv + νv, X•(T )〉) = 0.

W-algebraic representations of course have real infinitesimal character, so µv = −νv, and therefore
in the initial choice of lift we may assume µv,i = −νv,i for all i. Then obviously µ̃v is L-algebraic.

If π is only W-algebraic, then we have to check that 2µ̃v = (2µv,
∑

(µv,i − νv,i)wi) lies in X•(T̃ ).
This element of X•(T ) ⊕ X•(Z̃) represents an element of X•(T̃ ) if and only if 2µv maps to

∑
i[µv −

νv]iw̄i in X•(ZG). The latter is also the image of µv−νv, so it is equivalent to ask that µv +νv ∈ X•(T )
map to zero in X•(ZG). As above, temperedness of πv guarantees this, so we are done.

For the final claim, we again apply the result to the inclusion G ⊂ G̃, and then restrict to G;
restriction of course preserves L-algebraicity and W-algebraicity. �

Remark 3.1.13. This result would immediately extend to totally imaginary fields if we knew
that ωπ extended to a type A0 Hecke character of Z̃(AF). As noted in Remark 2.4.10, this would
follow from the (‘CM descent’) conjectures of §2.4.

We now turn to the case of totally real F. I am grateful to Brian Conrad for urging a coordinate-
free formulation of the obstruction in part 2 of the proposition.

Proposition 3.1.14. Now suppose F is totally real, with π, ω̃, π̃ as before (ω̃ finite-order as
in Definition 3.1.2). Alternatively, let F be arbitrary, but assume that ωπ admits a finite-order
extension ω̃. Continue to assume π∞ is tempered.

(1) If π is L-algebraic, then it admits a W-algebraic lift π̃.
(2) Assume Hypothesis 3.1.8 for the ‘only if’ direction of this statement. Assume F is totally

real, and consider this W-algebraic lift π̃. Then the images of µv and νv under X•(T ) →
X•(ZG) lie in X•(ZG)[2], and π admits an L-algebraic lift if and only if these images are
independent of v|∞.

Similarly, any L-algebraic π on G admits a W-algebraic lift to G, and it admits an L-algebraic
lift if (and, under Hypothesis 3.1.8, only if) the images of the µv in coker (X•(Z)tor → X•(ZG)) =

X•(ZG ∩ Z0) are independent of v|∞.

Proof. We continue with the parameter notation of the previous proof. Let π be L-algebraic.
First we check that since ω̃ can be chosen finite-order (automatic in the totally real case, but an
additional assumption at complex places) µv − νv maps to zero in X•(ZG). If v is imaginary, then ω̃
cannot be finite order unless ωπv is trivial, hence µv and νv themselves are trivial in X•(ZG). If v is
real, then in T∨ ⊂ G∨ we have the relation

φ( j)zµv z̄νvφ( j)−1 = zνv z̄µv ,

writing φ for the L-parameter and j ∈ WFv −WFv
. Now, φ( j) ∈ NG∨(T∨) represents an element w of

the Weyl group of G∨, and this yields the relations wµv = νv and wνv = µv. Thus µv−νv = µv−wµv,
which lies in the root lattice Q of G. [This holds for wχ−χ for any χ ∈ X•(T ): reduce to the case of
simple reflections, where it is clear from the defining formula.] Restricting characters to ZG factors
through a perfect duality ZG × X•(T )/Q→ Q/Z, so µv − wµv ∈ Q has trivial image in X•(ZG).
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Any lift with finite-order central character has parameters µ̃v = (µv, 0) and ν̃v = (νv, 0); this
pair yields a well-defined representation of WFv

, i.e. µ̃v − ν̃v ∈ X•(T̃ ), and its projections to T and
Z̃ are what they have to be, so they are the only possible parameters; that this extends (possibly
non-uniquely) to an L-parameter on the whole of WFv follows from general theory (Langlands’
Lemma), but we do not need the details of this extension. Now we use the assumption that πv is
tempered: as in the previous proposition, we see that µv = −νv. Hence 2µv maps to zero in X•(ZG),
and so 2(µv, 0) ∈ X•(T̃ ), i.e. (µv, 0) is W-algebraic.

For F totally real, we now show the second part of the proposition. By Lemma 3.1.9, if a
second lift π̃′ is L-algebraic, then

π̃′ � π̃ ·

 r∏
i=1

αi ◦ diwi

 ,
where each αdi

i is a Hecke character of our totally real field, and therefore (since π̃ and π̃′ both have
rational infinitesimal character) takes the form χi · | · |

diyi for a finite-order character χi and a rational
number yi. The infinitesimal character of π̃′v (for v|∞) then corresponds to (µv,

∑
yidiwi) ∈ X•(T̃ )Q,

which is integral if and only if yi ∈
1
di
Z and yidi is the image of µv in Z/diZ for each i. The claim

follows easily.
It follows immediately that an L-algebraic π on G extends to a W-algebraic automorphic repre-

sentation on G. For the last claim, note that coker (X•(Z)tor → X•(ZG)) is canonically isomorphic
to X•(ZG ∩ Z0). Our previous arguments apply to the inclusion (enlarging a subgroup of ZG to a
torus) G ⊂ (G × Z0)/(ZG ∩ Z0)

∼
−→ G (this map is an isomorphism since G is connected reductive

with derived group G), showing the existence of an L-algebraic extension of π precisely when the
image of µv in X•(ZG ∩ Z0) is independent of v|∞. �

Corollary 3.1.15. Let F be totally real and π be L-algebraic on the F-group G.

(1) Suppose π∞ is tempered. If all di are odd, then π̃ is L-algebraic. In particular, if the simple
factors of G are all type A2n (i.e. SL2n+1), or of type E6, E8, F4, G2,7 then any L-algebraic
π has an L-algebraic lift.

(2) Assume F , Q (still totally real). For F-groups G that are simple simply-connected (and
split) of type Bn, Cn, D2n, and E7, there exist, assuming Hypothesis 3.1.8 for the pair
(G, G̃), L-algebraic π on G, tempered at infinity, that admit no L-algebraic lift to G̃.

Proof. The first part is immediate from the proof of the proposition: for di odd, if the image of
2µv in Z/diZ is trivial, then so of course is the image of µv. For the second part, we use existence
results for automorphic forms that are discrete series at infinity as in Lemma 2.6.10 and Proposition
2.8.7. For a semi-simple, simply-connected group, ρ lies in the weight lattice, so discrete series
representations will be L-algebraic. Choose a quotient G � G′ � Gad, with T ′ the induced maxi-
mal torus of G′, such that X•(T ′)/Q � X•(ZG)[2] under the isomorphism X•(T )/Q

∼
−→ X•(ZG).Then

we can find a discrete series representation of G(F∞) such that at two infinite places v1 and v2, the
parameters have the form (on C×)

z 7→ zρ+µvi z̄−ρ−µvi ,

7A2n and E6 are the interesting examples here, since in the other cases the adjoint group is simply-connected. The
index [X•(T ) : Q] for the simply-connected simple group of type E6 is Z/3Z.
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where the µvi are distinct in X•(T ′)/Q.8 This ensures that the ρ + µvi have distinct images in
X•(ZG)[2]. It remains therefore to check that the split real forms of these groups, except for A2n−1,
actually admit discrete series. Type Cn was treated previously. For type Bn, the (real) split group is
Spin(n, n + 1), which always admits discrete series (real orthogonal groups SO(p, q) have discrete
series whenever pq is even). Likewise, for type Dn, the split form Spin(n, n) has discrete series if
and only if n is even. The split real form of E7 also admits discrete series: its maximal compact
subgroup is SU(8), which contains a compact Cartan isomorphic to (S1)7 (see the table in Appendix
4 of [Kna02]). �

Remark 3.1.16. • Arthur constructs in [Art02] a conjectural candidate for the automor-
phic Langlands group LF , also giving an ‘automorphic’ construction of a candidate for
the motivic Galois group GF . (In §4.1 we will discuss motivic Galois groups in detail,
explaining both conjectural and unconditional constructions.) The ability to extend L-
algebraic representations of G to L-algebraic representations of G̃ is essential to Arthur’s
conjectural construction (see [Art02, §6]) of a morphism LF → GF . Roughly, the factor
of the motivic Galois group GF associated to π (or rather its almost-everywhere system of
Hecke eigenvalues; this construction is restricted to suitably ‘primitive’ π) is defined as a
sub-groupGπ of G̃∨×TF , with TF the Taniyama group (see §4.1.6 for background on TF);
then LF and GF are constructed as suitable fiber products over varying pairs (G, π).9 The
natural motivic Galois representation corresponding to ‘the motive of π’ is the projection
to G∨, and implicit in the construction is the fact that this lifts to G̃∨. Corollary 3.1.15
then gives concrete examples of automorphic representations (including ones that ought
to be ‘primitive,’ arranging the local behavior suitably) for which the Tannakian formal-
ism cannot behave in this way; that is, while Arthur’s construction is consistent with our
discussion in the CM case (Proposition 3.1.12), it must be modified for totally real fields
F.
• If our lifting results were generalized to quasi-split groups, we could presumably include

Dn for n odd in the second part of the Proposition, since the non-split quasi-split form has
signature (n + 1, n − 1), for which the associated orthogonal group admits discrete series.
Similarly, we could include type A2n−1 by using the quasi-split unitary group SU(n, n)
instead of SL2n.

3.2. Galois lifting: the general case

Now we discuss a general framework for Conrad’s lifting problem. We consider lifting prob-
lems of the form

H̃(Q`)

��

ΓF

ρ̃
<<

ρ
// H(Q`),

8We have shifted what was previously denoted µv by ρ in this case because of the description of discrete series
L-parameters as arising from elements of ρ + X•(T ). Note that ρ mapst to X•(ZG)[2] since 2ρ is in the root lattice Q.

9For non-split G, one works with the semi-direct product G̃∨ o TF , with TF acting via its projection to the global
Weil group WF .
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for any surjection H̃ � H, with central torus kernel, of linear algebraic groups over Q`. In this
picture, we want to understand when a geometric ρ does or does not admit a geometric lift ρ̃. We
will see that the general case reduces to the case where H̃ and H are connected reductive, and so to
reap the psychological benefits of the work of §3.1, we will begin by considering the case H̃ = G̃∨,
H = G∨, where G ⊂ G̃ is an inclusion of connected reductive10 split F-groups, constructed by
extending the center ZG of G to a central torus Z̃; that is

G̃ = (G × Z̃)/ZG.

The quotient Z̃/ZG is a torus S , and we get an exact sequence

1→ S ∨ → G̃∨ → G∨ → 1,

and a canonical isomorphism of Lie algebras g̃∨ � g∨ ⊕ s∨. We again caution the reader that, even
if H̃ and H are assumed connected reductive, this is not the most general situation: namely, the
center Z̃ need not be connected in order to have G̃∨ � G∨ a surjection with central torus kernel.
Nevertheless, at least for F totally imaginary, we will reduce the general analysis to this case. To
start, we elaborate on some of the associated group theory, slightly recasting the notation of the
previous section to take into account the fact that G may have positive-dimensional center. The
exact sequence

1→ ZG → Z̃ → S → 1

gives rise, by applying X•(·) and then Hom(·,Z), to an exact sequence

1→ Hom(X•(ZG),Z)→ X•(Z̃)→ X•(S )→ Ext1(X•(ZG),Z)→ 1.

Using invariant factors, it is convenient to fix a basis of X•(Z̃) such that the inclusion X•(S ) ⊂ X•(Z̃)
is in coordinates

X•(S ) // X•(Z̃) // X•(ZG)

⊕r
i=1 Zdiwi

//
⊕r+s

i=1 Zwi
//
⊕r

i=1 Z/diZw̄i ⊕
⊕s

j=1 Zw̄r+ j

Let w∗i denote the dual basis for X•(Z̃∨), and let ν∗i denote the basis of X•(S ∨) dual to diwi; in
particular, w∗i maps to diν

∗
i under X•(Z̃∨)→ X•(S ∨).

We work with the maximal torus T̃ = (T × Z̃)/ZG of G̃, and deduce from its definition an exact
sequence

1→ X•(T̃ )→ X•(T ) ⊕ X•(Z̃)→ X•(ZG)→ 1,

and thus a (crucial) exact sequence

(1) 1→ Hom(X•(ZG),Z)→ X•(T∨) ⊕ X•(Z̃∨)→ X•(T̃∨)→ Ext1(X•(ZG),Z)→ 1.

10Unlike in §3.1, whose results were largely intended to motivate the results of this section, we no longer require
G to be semi-simple.
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Note also that there is a canonical isomorphism X•(Z̃∨)
∼
−→ X•(G̃∨), which follows from exactness

of the row in the diagram:

1

��

S ∨

��

1 // G∨sc
//

  

G̃∨ //

��

Z̃∨ // 1

G∨

��

1

where G∨sc denotes the simply-connected cover of the derived group of G∨. Recall that we index
Sen operators Θρ,ι by embeddings ι : Q` ↪→ CFv , where v is a place above `. Given a geometric
ρ : ΓF → G∨(Q`), Conrad’s result (see Theorem 2.1.6, and Remark 2.1.5) implies that a lift ρ̃ is
geometric if and only if it is Hodge-Tate at all places above `; we will use this from now on without
comment. That is, we need to arrange ρ̃ such that each Sen operator Θρ̃,ι ∈ Lie(G̃∨)ι is conjugate
to an element of Lie(T̃∨)ι that pairs integrally with all of X•(T̃∨)11 under the natural map

X•(T̃∨)
Lie
−−→ Hom(Lie(T̃∨),Q`).

Here is our starting-point:

Lemma 3.2.1. There exists some lift ρ̃ of ρ. Any other lift is of the form

ρ̃(
r∑

i=1

νi ◦ χi) : g 7→ ρ̃(g) ·
r∏

i=1

(νi ◦ χi)(g),

where the νi = diwi range over the above basis of X•(S ∨), and each χi : ΓF → Q
×

` is a continuous
character.

Proof. A lift exists by Proposition 2.1.4. Although continuous cohomology does not in general
have good δ-functorial properties, short exact sequences do give (not very) long exact sequences
on H0 and H1, so any lift has the form ρ̃(χ) for some χ : ΓF → S ∨(Q`). We compose with the dual
characters ν∗i in X•(S ∨) to put χ in the promised form. �

The following lemma is the general substitute for choosing lifts with finite-order Clifford norm
in the spin examples; this result is also implicit in the proof of 2.1.4, but a little warm-up with our
notation is perhaps helpful.

11This condition is independent of the way Θρ̃,ι is conjugated into Lie(T̃∨)ι, since: (1) we already know that Θρ̃,ι

pairs integrally with the roots, which all lie in X•(T∨); (2) the ambiguity in conjugating into Lie(T̃∨)ι is an element of
the Weyl group; (3) for any weight λ ∈ X•(T̃∨) and w in the Weyl group, wλ − λ lies in the root lattice. Compare the
proof of Proposition 3.1.14.
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Lemma 3.2.2. Let ρ : ΓF → G∨(Q`) be a geometric representation. Then there exists a lift
ρ̃ : ΓF → G̃∨(Q`) such that, for all v|` and all ι : Q` ↪→ CFv , the Sen operator Θρ̃,ι pairs integrally
with all of X•(Z̃∨) � X•(G̃∨).

Proof. It suffices to find a lift whose composition with all elements of X•(Z̃∨) is Hodge-Tate.
We use the bases of the various character groups specified above. In particular, composing an
initial lift ρ̃ with the various w∗i ∈ X•(G̃∨), i = 1, . . . , r, we can write

w∗i ◦ ρ̃ = χdi
i χi,0 : ΓF → Q

×

` ,

where the χi and χi,0 are Galois characters with χi,0 finite-order. Then we consider the new lift

ρ̃′ = ρ̃(
r∑

i=1

(diwi) ◦ χ−1
i ),

which has the advantage that w∗i ◦ ρ̃
′ = (w∗i ◦ ρ̃) · χ−di

i is finite-order for all i = 1, . . . , r. Moreover,
for the characters w∗r+ j, j = 1, . . . , s, namely, the sub-module Hom(X•(ZG),Z) ⊂ X•(Z̃∨), the
compositions w∗r+ j◦ ρ̃

′ are all geometric, since ρ is. Therefore α◦ ρ̃′ is geometric for all α ∈ X•(Z̃∨),
as desired. �

Returning to equation (1) on page 71, we see that the obstruction to geometric lifts then comes
from Ext1(X•(ZG)tor,Z). For any weight λ ∈ X•(T̃∨), there is a positive integer d ∈ Z such that
dλ ∈ X•(T∨) ⊕ X•(Z̃∨), so with a ρ̃ as produced by Lemma 3.2.2, Θρ̃,ι pairs integrally with dλ for
all ι. We obtain a well-defined class, independent of the choice of ρ̃ as constructed in the proof of
Lemma 3.2.2 (namely, with the compositions w∗i ◦ ρ̃ finite-order for i = 1, . . . , r),

〈λ,Θρ̃,ι〉 ∈ Q/Z,

which can also be interpreted as the common value modulo Z of the eigenvalues of Θrλ◦ρ̃,ι =

Lie(rλ) ◦ Θρ̃,ι; here, and in what follows, we denote by rλ the irreducible representation of G̃∨

associated to the (dominant) weight λ ∈ X•(T̃∨). This pairing factors through a map

Ext1(X•(ZG),Z)→ Q/Z,

and since for any finite abelian group A, the long exact sequence associated to 0 → Z → Q →
Q/Z→ 0 yields an isomorphism

Hom(A,Q/Z)
∼
−→ Ext1(A,Z),

we can make the following definition:

Definition 3.2.3. Let θρ,ι be the element of X•(ZG)tor canonically corresponding to the above
map Ext1(X•(ZG),Z)→ Q/Z.

To make further progress, we need to assume that ρ satisfies certain Hodge-Tate weight sym-
metries.

Hypothesis 3.2.4. Let H be a linear algebraic group and ρ : ΓF → H(Q`) a geometric Ga-
lois representation with connected reductive algebraic monodromy group Hρ = (ρ(ΓF))Zar. We
formulate the following Hodge-Tate symmetry hypothesis for such a ρ:

• Let r be any irreducible algebraic representation r : Hρ → GL(Vr). Then:
(1) For τ : F ↪→ Q`, the set HTτ(r ◦ ρ) depends only on τ0 = τ|Fcm .

73

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



(2) Writing HTτ0 for this set common to all τ above τ0, there exists an integer w such
that12

HTτ0◦c(r ◦ ρ) = w − HTτ0(r ◦ ρ),

for c the unique complex conjugation on Fcm.
For ρ whose algebraic monodromy group is reductive but not necessarily connected, the corre-
sponding hypothesis is simply that some finite restriction (with connected monodromy group) of ρ
satisfies the above.

In particular, we note for later use that the lowest weight in HTτ0◦c(r ◦ρ) is w minus the highest
weight in HTτ0(r ◦ ρ). We will see that to establish lifting results for geometric representations
ρ : ΓF → G∨(Q`), we will only need to know Hypothesis 3.2.4 for some easily identifiable finite
collection of compositions rλ ◦ ρ, λ ∈ X•(T∨), but we do not make that explicit here. Most impor-
tant, Hypothesis 3.2.4 should in fact be no additional restriction on ρ, because of the following con-
jecture, which would follow from various versions of the conjectural Fontaine-Mazur-Langlands
correspondence and Tate conjecture (Conjecture 1.2.1):

Conjecture 3.2.5. Let F be a number field, and let ρ : ΓF → GLN(Q`) be an irreducible geo-
metric Galois representation. Then:

(1) For τ : F ↪→ Q`, the set HTτ(ρ) depends only on τ0 = τ|Fcm . (This will still hold if ρ is
geometric but reducible.)

(2) Writing HTτ0 for this set common to all τ above τ0, there exists an integer w such that

HTτ0◦c(ρ) = w − HTτ0(ρ),

for c the unique complex conjugation on Fcm.

Unfortunately, for an abstract Galois representation, this conjecture will be extremely diffi-
cult to establish. The next lemma explains it in the automorphic case; for a motivic variant, see
Corollary 4.1.26.13

Lemma 3.2.6. Suppose ρ : ΓF → GLN(Q`) is an irreducible geometric representation. If ρ is
automorphic in the sense of Conjecture 1.2.1, corresponding to a cuspidal automorphic represen-
tation π of GLN(AF), and if we assume that Proposition 2.4.8 is unconditional for π (i.e., admit
Hypothesis 2.4.6), then Conjecture 3.2.5 holds for ρ.

Proof. This is immediate from the passage between infinity-types and Hodge-Tate weights,
Conjecture 2.4.8, and Clozel’s archimedean purity lemma (which was proven as part of Proposition
2.5.8). �

We can now understand when geometric lifts ought to exist; the proof proceeds by reduction
to the following key case:

12Interpreted in the obvious way.
13But note for now that in the most basic motivic cases, where the Galois representation is given by H j(XF ,Q`)

for some smooth projective variety X/F, the Hodge-Tate symmetries are immediate (even when this representation is
reducible) from the `-adic comparison isomorphism of [Fal89]; if j is even, the symmetries similarly hold for primitive
cohomology. What is not obvious is that if this Galois representation decomposes, that the irreducible factors all satisfy
the conjecture.
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Proposition 3.2.7. Let F be a totally imaginary field, and let ρ : ΓF → G∨(Q`) be a geometric
representation with algebraic monodromy group equal to the whole of G∨. Assume ρ satisfies
Hypothesis 3.2.4. Then ρ admits a geometric lift ρ̃ : ΓF → G̃∨(Q`).

Proof. Choose a lift ρ̃ as supplied by Lemma 3.2.2. Recall that our weight-bookkeeping is
done within the diagram

0

X•(Z̃∨) // X•(S ∨)

OO

// Ext1(X•(ZG),Z) // 0

X•(T̃∨)

OO

X•(T∨)

OO

0

OO

We have the elements ν∗i ∈ X•(S ∨) dual to diwi ∈ X•(S ). Their images in Ext1(X•(ZG),Z) form a
basis. Let λi be a (dominant weight) lift to X•(T̃∨) that also satisfies 〈λi, d jw j〉 = δi j. Note that the
value 〈Θρ̃,ι, λi〉 ∈ Q/Z does not depend on the choice of lift of ν∗i , and it clearly lies in 1

di
Z/Z, so we

write it in the form kι,i
di

+ Z for an integer kι,i. By considering the geometric representation rdiλi ◦ ρ̃,
we find that Θrdiλi◦ρ̃,ι

has eigenvalues that depend only on τι (by Lemma 2.2.7; see that lemma for
the notation τι as well), and thus we can write kτ,i in place of kι,i. (Equivalently, we can work with
the elements θρ,τ ∈ X•(ZG)tor.) These classes kτ,i

di
mod Z serve as both highest and lowest τ-labeled

Hodge-Tate weights (modulo Z) for rλi ◦ ρ̃; we deduce that, modulo diZ, the highest and lowest
τ-labeled weights of rdiλi ◦ ρ̃ are both congruent to kτ,i14.

Now, the geometric Galois representations (rdiλi)◦ ρ̃ for i = 1, . . . , r are irreducible, because we
have assumed that G∨ is the monodromy group of ρ. Applying Hypothesis 3.2.4, we deduce that
kτ depends only on τ0 = τ|Fcm , along with the symmetry relation

kτ0,i + kτ0◦c,i ≡ wi mod di

for some integer wi (for all τ0 : Fcm ↪→ Q`).
This relation allows us, by Lemma 2.3.16, to find Galois characters ψ̂i : ΓF → Q

×

` with HTτ(ψ̂i) ∈
kτ,i
di

+ Z for all τ. We then form the twist ρ̃′ := ρ̃(
∑

i(diwi) ◦ ψ̂−1
i ); recall that 〈diwi, λ j〉 = δi j. This

new lift is then geometric:

〈Θρ̃′,ι, λi〉 = 〈Θρ̃,ι, λi〉 + 〈Θ∑
(d jw j)◦ψ̂−1

j ,ι
, λi〉 ≡

kτι,i
di
−

kτι,i
di
≡ 0 mod Z.

(Recall it suffices to check ρ̃′ is Hodge-Tate, by Conrad’s result, quoted here as Theorem 2.1.6.) �

14Note that all eigenvalues of Θrλi◦ρ̃
are congruent modulo Z; this does not imply that all elements of HTτ(rdiλi ◦ ρ̃)

are congruent modulo diZ, but this congruence does hold for the highest and lowest weights.
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Corollary 3.2.8. Let ρ : ΓF → G∨(Q`) be geometric with algebraic monodromy group G∨;
maintain the notation of the previous proof, but now suppose F is totally real. Then ρ has a
geometric lift if and only if for varying ι, the elements θρ,ι (see Definition 3.2.3) in X•(ZG)tor are
independent of ι.

Remark 3.2.9. More concretely, to determine whether ρ has a geometric lift, apply the follow-
ing criterion:

(1) Ignore any i for which di is odd; these do not obstruct geometric lifting;
(2) Then for fixed i the integers kτ,i mod di are all wi

2 translated by a two-torsion class in
Z/diZ;

(3) ρ has a geometric lift if and only if each of these classes kτ,i (or, equivalently, the associated
two-torsion class) is independent of τ.

Proof. By the previous proof and Lemma 2.3.17, ρ has a geometric lift if and only if the classes
kτ,i mod di (fixed i, varying τ) are independent of τ. The weight-symmetry relation becomes
2kτ,i ≡ wi mod di, and the claim follows easily. �

Over totally imaginary fields, we can now reduce the general lifting problem to the special case
of full monodromy:

Theorem 3.2.10. Let F be totally imaginary, and let π : H̃ � H be any surjection of linear
algebraic groups with central torus kernel. Suppose ρ : ΓF → H(Q`) is a geometric representation,
with arbitrary image, satisfying Hypothesis 3.2.4. Then ρ admits a geometric lift ρ̃ : ΓF → H̃(Q`).

Proof. We may assume H̃ and H are reductive since π induces an isomorphism on unipotent
parts (we take this observation from Conrad, who has exploited this reduction in the arguments of
[Con11]).

We next show that the theorem holds if Hρ := ρ(ΓF)
Zar
⊂ H is connected. In that case, let H̃ρ be

the preimage in H̃ of Hρ. Then H̃ρ → Hρ is a surjection of connected reductive groups with central
torus kernel, and we may write Hρ = G∨, H̃ρ = G̃∨ where G ⊂ G̃ is an inclusion of connected
reductive groups of the form G̃ = (G × Z̃)/ZG for some inclusion of ZG into a multiplicative group
Z̃. If Z̃ is not connected, Proposition 3.2.7 does not immediately apply, so we embed Z̃ into a
torus Z̃, with corresponding inclusions G ⊂ G̃ ⊂ G̃. Dually, G̃∨ � G∨ is a quotient to which
we can apply Proposition 3.2.7, and then projecting from G̃∨ to G̃∨, we obtain a geometric lift
ρ̃ : ΓF → H̃ρ(Q`) ⊂ H̃(Q`) of ρ.

For arbitrary ρ (i.e. Hρ not necessarily connected), let F′/F be a finite extension such that

ρ(ΓF′)
Zar

= H0
ρ is connected. Over F′, we can therefore find a geometric lift ρ̃F′ : ΓF′ → H̃ρ(Q`) ⊂

H̃(Q`), letting H̃ρ as before denote the preimage of Hρ in H̃. Thus, for any lift ρ̃0 : ΓF′ → H̃(Q`)
of ρ|ΓF′ , there exists a character ψ̂ : ΓF′ → S ∨(Q`) such that ρ̃0 · ψ̂ is geometric. In particular,
letting ρ̃ : ΓF → H̃(Q`) be any lift over F itself (with rational Hodge-Tate-Sen weights), there is
a ψ̂F′ : ΓF′ → S ∨(Q`) such that ρ̃|ΓF′ · ψ̂F′ is geometric. But by Corollary 2.3.16, there is a Galois
character ψ̂ : ΓF → S ∨(Q`) whose labeled Hodge-Tate-Sen weights descend those of ψ̂F′ . It follows
immediately that ρ̃ · ψ̂ : ΓF → H̃(Q`) is a geometric lift of ρ. �

Remark 3.2.11. (1) The theorem also lets us make explicit precisely which sets of labeled
Hodge-Tate weights can be achieved in a geometric lift ρ̃. We will exploit this in §4.2.
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(2) We will not treat the general totally real case here, since a somewhat different approach
seems more convenient in that case. For a succinct, coordinate-free treatment of the totally
real case, and another perspective on the arguments of this section, see [Pat14b], where
the following general result is obtained: for any H̃ � H as in our lifting setup, we write
H0 = G∨ and (H̃)0 = G̃∨, where G̃ = (G × Z̃)/ZG; here Z̃ is not necessarily connected. We
can define in this generality elements

θρ,τ ∈ coker
(
X•(Z̃)tor → X•(ZG)tor

)
,

and ρ admits a geometric lift to H̃ if and only if the θρ,τ are independent of τ. The argument
described in [Pat14b] has the disadvantage of not making explicit the parity obstruction
(assuming ‘Hodge symmetry’) found in Proposition 3.2.8; for this reason we have retained
the two different expositions of the totally real case.

The method of proof of Proposition 3.2.7 and Theorem 3.2.10 also implies the following local
result, which emerged from a conversation with Brian Conrad. Here local algebraicity of Hodge-
Tate representations replaces the appeal to the theory of algebraic Hecke characters. In fact, this
connection holds more generally when K is the fraction field of a complete discrete valuation ring
with perfect residue field: see [CCO14, §3.9].

Corollary 3.2.12. Let H̃ � H be a central torus quotient, and let ρ : ΓFv → H(Q`) be a
Hodge-Tate representation of ΓFv , for Fv/Q` finite. Then there exists a Hodge-Tate lift ρ̃ : ΓFv →

H̃(Q`).

Proof. We sketch a proof, replacing appeal to Hypothesis 3.2.4 and the existence of certain
Hecke characters by the simpler observation that local class field theory lets us find the necessary
twisting characters ψ̂ : ΓFv → Q

×

` by hand. That is, OFv sits in Iab
Fv

in finite index, and on the former
we can define the character

x 7→
∏

τ : K↪→Q`

τ(x)kτ

for any integers kτ; then up to a finite-order character we take a dth root for an integer d to build
(having extended to all of ΓFv) characters with any prescribed set of rational τ-labeled Hodge-Tate
weights (τ running over all Fv ↪→ Q`). This observation suffices (invoking Lemma 2.2.7 in the full
generality of Hodge-Tate, rather than merely de Rham, representations) for the previous arguments
to carry through. �

This Corollary combined with [Con11, Proposition 6.5] implies the following stronger result:

Corollary 3.2.13. Let H̃ � H be a central torus quotient, and let ρ : ΓFv → H(Q`) be a
representation of ΓFv , for Fv/Q` finite, satisfying a basic p-adic Hodge theory property15 P. Then
there exists a lift ρ̃ : ΓFv → H̃(Q`) also satisfying P.

3.3. Applications: comparing the automorphic and Galois formalisms

In §3.2, we took the Fontaine-Mazur-Langlands conjecture (or rather its weakened form Hy-
pothesis 3.2.4) relating geometric Galois representations ΓF → GLn(Q`) to L-algebraic automor-
phic representations of GLn(AF) as input to establish some of our lifting results. Now we want to

15Namely: crystalline, semi-stable, de Rham, or Hodge-Tate.
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apply these lifting results to give some evidence for the relationship between automorphic forms
and Galois representations on groups other than GLn. We will touch on the Buzzard-Gee conjec-
ture, certain cases of the converse problem, and some general thoughts about comparing descent
problems on the (`-adic) Galois and automorphic sides. We first digress to discuss what ‘automor-
phy’ of an LG(Q`)-valued representation even means.

3.3.1. Notions of automorphy. As usual we have fixed ι∞ : Q ↪→ C and ι` : Q ↪→ Q`. It is
sometimes more convenient simply to fix an isomorphism ι`,∞ : C → Q`, and to regard Q as the
subfield of algebraic numbers in C. G is a connected reductive F-group, and we take a Q-form
of the L-group LG. For an automorphic representation π of G(AF) and ρ : ΓF →

LG(Q`), always
assumed continuous and composing with ΓF-projection to the identity, there are (at least) four
relations between such ρ and π that might be helpful, of which only the first two can be stated
unconditionally. First we describe analogues that restrict to either the automorphic or Galois side,
borrowing some ideas from [Lap99] (and, inevitably, [LL79]). For automorphic representations π
and π′ of G(AF), three notions of similarity are:

• π ∼w π′ if almost everywhere locally, the (unramified, say) L-parameters are G∨(C)-
conjugate.
• π ∼w,∞ π′ if almost everywhere locally, and at infinity, the L-parameters are conjugate.

This also makes sense unconditionally, since archimedean local Langlands is known.
• π ∼ew π′ if everywhere locally, the L-parameters are G∨(C)-conjugate; this only makes

sense if one knows the local Langlands conjecture for G.
• π ∼s π

′ is the most fanciful condition: if the conjectural automorphic Langlands groupLF

exists, so π and π′ give rise to representations LF →
LG(C), then this condition requires

these representations to be globally G∨(C)-conjugate.
A fifth notion would compare L-parameters in a particular finite-dimensional representation of G∨.

We can unconditionally make the same sort of comparisons between `-adic Galois representa-
tions, writing ρ ∼w ρ

′, ρ ∼w,∞ ρ
′, ρ ∼ew ρ

′, and ρ ∼s ρ
′. By equivalence ‘at infinity’ here, we mean

that at real places the actions of complex conjugation are conjugate, and at places above `, the
associated Sen operators (i.e. labeled Hodge-Tate data) are conjugate. Since it is conjectured, but
totally out of reach, that frobenius elements act semi-simply in a geometric Galois representation,
we should only compare ‘frobenius semi-simplifications’ in these definitions of local equivalence.
For some nice examples, Lapid’s paper ([Lap99]) studies the difference between ∼w,∼ew, and ∼s

for certain Artin representations (and, when possible, the corresponding comparison on the auto-
morphic side).

We then have corresponding ways to relate an `-adic ρ and an automorphic π:
• ρ ∼w π
• ρ ∼w,∞ π
• ρ ∼ew π
• ρ ∼s π

First, write ρ ∼w π if for almost all unramified v (for ρ and π), ρ|ss
WFv

is G∨(Q`)-conjugate to

recv(πv) : WFv → G∨(C)oΓF; implicit is the assumption that the local parameter lands in G∨(Q)oΓF ,
so that we can apply ι` ◦ ι−1

∞ . Note that this definition does not distinguish between π and other
elements of its (conjectural) global L-packet L(π). The other relations are straightforward modifi-
cations (for compatibility with complex conjugation, we take the condition in Conjecture 3.2.1 of
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[BG11]), except for ρ ∼s π. Writing GF,E(σ) for the motivic Galois group for motives16over F with
E-coefficients, using a Betti realization via σ : F ↪→ C, one might hope that after fixing E ↪→ C
as well, one would obtain a map of pro-reductive groups over C, LF → (GF,E)(σ) ⊗E C (compare
Remark 3.1.16). If π corresponds to a representation rec(π) of LF , and ρ arises from (completing
at some finite place of E) a representation ρE of GF,E(σ), it makes sense to ask whether rec(π) fac-
tors through GF,E(σ)(C), and whether the resulting representation is globally G∨(C)-conjugate to
(the complexification via E ↪→ C of) ρE. Of course, any discussion of the automorphic Langlands
group and its relation with the motivic Galois group is pure speculation; but these heuristics do
provide context for the basic problems raised in Question 1.1.9 and Conjecture 1.1.10, as well as
the work of §4.2.

Although we don’t actually require it, it is helpful to keep in mind a basic lemma of Steinberg,
which implies that ∼w can be checked by checking in all finite-dimensional representations:

Lemma 3.3.1. Let x and y be two semi-simple elements of a connected reductive group G∨ over
an algebraically closed field of characteristic zero. If x and y are conjugate in every (irreducible)
representation of G∨, or even merely have the same trace, then they are in fact conjugate in G∨.

Proof. For semi-simple groups, this is Corollary 3 (to Theorem 2) in Chapter 3 of [Ste74];
the proof extends to the reductive case (and even more generally, see Proposition 6.7 of [Bor79]).
The key point is that the characters of finite-dimensional representations of G∨ restrict to a basis of
the ring of Weyl-invariant regular functions on a maximal torus; these in turn separate conjugacy
classes in the torus. �

3.3.2. Automorphy of projective representations.
�

Throughout this section, we assume the Fontaine-Mazur-Langlands conjecture on automorphy
of geometric (GLN-valued) Galois representations. It suffices to take a version that matches unram-
ified (almost everywhere) and Hodge-theoretic parameters; to be precise, assume Part 3 of Conjec-
ture 1.2.1, and note that this includes the requirement that cuspidality is equivalent to irreducibility
under the automorphic-Galois correspondence. We will show how our lifting results–both au-
tomorphic and Galois-theoretic–give rise to a ‘Fontaine-Mazur-Langlands’-type correspondence
between algebraic automorphic representations of SLN(AF) and PGLN(Q`)-valued geometric ΓF-
representations.17 The starting point is the following consequence of the results of §3.2:

Corollary 3.3.2. Let F be totally imaginary. Then any geometric ρ : ΓF → PGLn(Q`) is weakly
automorphic, i.e. there exists an L-algebraic automorphic representation π of SLn(AF) such that
ρ ∼w,∞ π (or ρ ∼ew π, if we assume a form of Fontaine-Langlands-Mazur that matches local factors
everywhere).

Proof. We have seen that ρ lifts to a geometric ρ̃ : ΓF → GLn(Q`), which by assumption is
automorphic, corresponding to some π̃ on GLn/F. The irreducible constituents of π̃|SLn(AF ) form a
global L-packet whose local unramified parameters correspond to those of ρ. �

16Either for absolutely Hodge cycles, for motivated cycles, or, assuming the standard conjectures, for homological
cycles. Again, we will deal more precisely with motivic Galois groups in §4.1.

17For some unconditional results in this direction, see [Pat14b, §4].
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We now give descent arguments that extend this automorphy result to F totally real. First we
need a couple of elementary lemmas.

Lemma 3.3.3. Let L/F be a cyclic, degree d, extension of number fields, with σ a generator of
Gal(L/F). Let χ be a Hecke character of L, and let δ be any Hecke character whose restriction
to CF ⊂ CL is δ = δL/F , a fixed order d character that cuts out the extension L/F. Assume that
χ1+σ+...+σd−1

= 1. Then for a unique integer i = 0, . . . , d − 1, χδi is of the form ψσ−1 for a Hecke
character ψ of L.

Proof. We may assume χ is unitary. Write CD as usual for the Pontryagin dual of a locally
compact abelian group C. We have the following exact sequences:

1

Gal(L/F)

OO

1 // CF

OO

// CL
σ−1
// CL

CL

NL/F

OO

,

dualizing to
1

��

Gal(L/F)D

��

1 // CD
F

NL/F

��

oo CD
L

res
oo CD

L
σ−1
oo

CD
L .

By assumption, NL/F ◦ res(χ) = 1, so res(χ) = δ−i ∈ Gal(L/F)D for some integer i, unique modulo
d. Then res(χδi) = 1, and we are done by exactness of the horizontal diagram. �

We need a special case of an `-adic analogue of the remark after Statement A of [LR98];18 that
remark is in turn the (much easier) analogue, for complex representations of the Weil group, of the
main result of their paper. We first record the simple case that we need, and then out of independent
interest we prove a general `-adic analogue of the Lapid-Rogawski result.

Lemma 3.3.4. Let L/F be a quadratic CM extension of a totally real field F, with σ ∈ ΓF

generating Gal(L/F) Suppose ψ̂ : ΓL → Q
×

` is a Galois character such that ψ̂1−σ is geometric.
Then there exists a unitary, type A Hecke character ψ of L such that ψ1−σ is the type A0 Hecke
character associated to ψ̂1−σ.

18In the proof of Corollary 3.3.6 below, we could replace appeal to this lemma by simply citing Statement B of
[LR98].
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Proof. Write (ψ̂1−σ)A for the Hecke character associated to ψ̂1−σ. By the previous lemma, it
suffices to check that (ψ̂1−σ)A is trivial on CF ⊂ CL. If a finite place v of L is split over a place
vF of F, and unramified for ψ̂, then for a uniformizer $v of FvF (embedded into the Lv and Lσv

components of A×L),

(ψ̂1−σ)A($v, $v) = ψ̂1−σ(frv)ψ̂1−σ(frσv) =
ψ̂(frv)
ψ̂(frσv)

·
ψ̂(frσv)
ψ̂(frv)

= 1.

Similarly for v inert, (ψ̂1−σ)A($v) =
ψ̂(frv)

ψ̂(σfrvσ−1) = 1. The Hecke character (ψ̂1−σ)A|CF is therefore
trivial. To see that we may choose ψ to be unitary and type A, we invoke Corollary 2.3.9: decom-
posing ψ as in that result, both the | · |w and ‘Maass’ components descend to the totally real subfield
F, so dividing out by them yields a new ψ, now unitary type A, and with ψ1−σ unchanged. �

Lemma 3.3.5. Let L/F be cyclic of degree d, with σ ∈ ΓF restricting to a generator of Gal(L/F).
Suppose ρ : ΓL → GLn(Q`) is an irreducible continuous representation satisfying ρσ � ρ · χ for
some character χ : ΓL → Q

×

` . Suppose further that χ is geometric (in particular, this holds if ρ is
geometric), necessarily of weight zero, so we may regard it as a character χA =

∏
w∈|L| χw : CL →

C×. Then the (finite-order) restriction of χA to CF ⊂ CL cannot factor through a non-trivial
character of Gal(L/F).

Proof. Iterating the relation ρσ � ρ · χ, we obtain ρ � ρ · χ1+σ+...+σd−1
, so that χ1+σ+...+σd−1

is finite-order. Each of the characters χσ
i

has some common weight w, so d · w = 0, and thus
w = 0. Moreover, writing as usual pιw for the algebraic parameter of χw (with respect to a choice
ιw : L ↪→ C representing the place w), we have

∑
pιw = 0 as ιw ranges over a Gal(L/F)-orbit of such

embeddings. If L has a real embedding, then χ has finite-order, and the passage from χ : Γab
L → Q

×

`

to χA : CL → C
× is simply via the reciprocity map CL � Γab

L .19 In particular, χ(x) = χA(x′) for any
representative x′ in CL of the image of x in Γab

L . If on the other hand L is totally imaginary, then
continuing to write x′ = (x′w)w∈|L|, we have

χ(x) =
∏
w-`∞

χw(x′w)
∏
w|`

χw(x′w)
∏

τ : Lw↪→Q`

τ(x′w)
pι∗
∞,`

(τ)

 .
If we further assume that the representative x′ can be chosen in CF ⊂ CL, with elements x′v ∈ F×v
giving rise to all x′w for w|v, then we can rewrite∏

w|`

∏
τ : Lw↪→Q`

τ(x′w)
pι∗
∞,`

(τ)

as ∏
v|`

∏
τ : Fv↪→Q`

∏
w|v,τ̃|τ

τ(x′v) =
∏
v|`

∏
τ : Fv↪→Q`

τ(x′v)
∑

w|v,τ̃|τ pι∗
∞,`

(τ̃)
= 1.

The last equality follows since χ1+σ+...+σd−1
is finite-order, and we are summing pι∗

∞,`
(τ̃) over a full

Gal(L/F)-orbit. A similar argument shows that∏
w|∞

χw(x′w) = 1.

19Throughout this argument we implicitly use our fixed embeddings ι`, ι∞, but omit any reference to them for
notational simplicity.
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We conclude that in this case (x′ ∈ CF), χ(x) can be computed simply as χA(x′).
Let V be the space on which ρ acts. Then the isomorphism ρσ � ρ · χ yields an operator

A ∈ Aut(V) satisfying Aρσ = ρ · χA. Fix g ∈ ΓL, and for any x ∈ ΓL we compute

tr(ρ(g)A) = tr(ρσ(x)ρ(g)Aρσ(x)−1)

= tr(ρσ(x)ρ(g)ρ(x−1)χ(x−1)A)

= χ(x−1) tr(ρ(σxgx−1)A).

(Here σx = σxσ−1.) So, if we can find an x ∈ ΓL such that σxgx−1 = g and χ(x−1) , 1, then we
will have tr(ρ(g)A) = 0. Doing this for all g ∈ ΓL, we see that by Schur’s Lemma ρ cannot be
irreducible, else A = 0. Now, y = g−1σ ∈ ΓF satisfies σygy−1 = g, so x = yd ∈ ΓL does as well. It
suffices to show that if χ|CF cuts out the extension L/F, then χ(x) , 1. In fact, the image of x in Γab

L
lies in the image of the transfer Ver : Γab

F → Γab
L . Explicitly,

Ver(y) =

d−1∏
i=0

σi(g−1σ)φ(σig−1σ)−1,

where φ : ΓF → {σ
i}i=0,...,d−1 records the representative of the ΓL-coset of an element of ΓF . It is

then easily seen20 that
Ver(y) = (g−1σ)d = x,

so by class field theory x ∈ Γab
L is represented by an element x′ of CF ⊂ CL under the reciprocity

map recL. This element is a generator of CF/NL/FCL, since y lifts a generator of Gal(L/F), and
thus χ(x) = χA(x′) , 1 if χA|CF factors through a non-trivial character of Gal(L/F). �

Finally we can (conditionally) prove automorphy of geometric projective representations over
totally real fields.

Corollary 3.3.6. Let F be totally real. Continue to assume Part 3 of Conjecture 1.2.1 (Fontaine-
Mazur-Langlands). Then for any geometric ρ : ΓF → PGLn(Q`), there exists an L-algebraic π on
SLn/F such that ρ ∼w π.

Proof. We will first treat the case of ρ having irreducible lifts to GLn(Q`). Choose a lift ρ̃ with
finite-order determinant, a CM quadratic extension L/F, and, by Theorem 3.2.7, a Galois character
ψ̂ : ΓL → Q

×

` such that ρ̃|ΓL · ψ̂
−1 is geometric. Let π̃ be the cuspidal automorphic representation of

GLn(AL) corresponding to this geometric twist. Write σ for the nontrivial element of Gal(L/F),
so that π̃σ � π̃ · χ where χ is the Hecke character corresponding to the geometric Galois character
ψ̂1−σ. Appealing either to Lemma 3.3.4 or Lemma 3.3.5, we can write χ = ψ1−σ for a unitary
type A Hecke character ψ. Then π̃ · ψ is σ-invariant, and by cyclic (prime degree) descent, there
is a cuspidal representation π of GLn(AF) whose base-change is π̃ · ψ. We want to compare the
projectivization of the unramified parameters of π with the unramified restrictions ρ|ΓFv

.
To do so, we repeat the argument but instead with infinitely many (disjoint) quadratic CM

extensions Li/F, showing that in all cases the descent π to GLn(AF) gives an L-packet for SLn(AF)
that is independent of the field Li. ρ̃ is still a fixed lift with finite-order determinant, and we can
write, for each τ : F ↪→ Q`, HTτ(ρ̃) ∈ kτ

n + Z for some integer kτ, which we fix (rather than just
its congruence class mod n). For some integer w, we have the purity relation 2kτ ≡ w mod n,

20Note that φ(σd−1g−1σ) = 1, while otherwise φ(σig−1σ) = σi+1.
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as follows, for instance, from (geometric) liftability after a CM base-change;21 as with kτ, we
fix an actual integer w, not just the congruence class. Now, for each such τ, let ι : F ↪→ C be
the archimedean embedding associated via ι∞, ι` (elsewhere denoted ι∗

∞,`(τ)). For each Li, fix an
embedding τ(i) : Li ↪→ Q` extending τ, so that the other extension is τ(i)◦c. Likewise write ι(i) and
ι(i) ◦ c = ι(i) for the corresponding complex embeddings. We can then construct Galois characters
ψ̂i : ΓLi → Q

×

` such that

HTτ(i)(ψ̂i) =
kτ
n

HTτ(i)◦c(ψ̂i) =
w − kτ

n
,

such that ρ̃|ΓLi
· ψ̂−1

i is geometric, corresponding to an L-algebraic cuspidal π̃i on GLn/Li. As
before, we find a Hecke character ψi of Li such that ψ1−σi

i is the type A0 Hecke character associated
to ψ̂1−σi

i ; here we write σi for the non-trivial element of Gal(Li/F), but of course all the σi are just
induced by complex conjugation. Again, for all i we find cuspidal automorphic representations πi

of GLn(AF) such that BCLi/F(πi) = π̃i · ψi. Restricting to composites LiL j, we have the comparison

ρ̃|LiL jψ̂
−1
i |LiL j ·

(
ψ̂i

ψ̂ j
|LiL j

)
= ρ̃|LiL jψ̂

−1
j |LiL j ,

and thus

BCLiL j/Li(π̃iψi) · BCLiL j

(
ψ j

ψi

)
· BCLiL j

(
ψ̂i

ψ̂ j

)
= BCLiL j/L j(π̃ jψ j), 22

so finally

BCLiL j(πi) · BCLiL j

(
ψ j

ψi
·
ψ̂i

ψ̂ j

)
= BCLiL j(π j).

If the character ψ j

ψi
·
ψ̂i

ψ̂ j
is finite-order–in the next paragraph, we check that we may assume

this–it cuts out a cyclic extension L′/LiL j, and we have BCL′(πi) = BCL′(π j). L′/F is solvable,
however, so the characterization of the fibers of solvable base-change in [Raj02] implies that πi

and π j are twist-equivalent, hence that πi|SLn(AF ) and π j|SLn(AF ) define the same L-packet of SLn(AF).
Let us denote by π0 any representative of this global L-packet. Now consider places v of F that
are split in a given Li/F. The semi-simple part ρ(frv)ss is equal (in PGLn(Q`)) to (ρ̃ψ̂−1(frw))ss

for any w|v, and this is conjugate in GLn(Q`) to ι`,∞ (recw(π̃w)(frw)), whose projectivization lies
in the same PGLn(Q`)-conjugacy class as ι`,∞

(
recv(π0,v)(frv)

)
. This verifies that for all such v,

ρ(frv)ss is PGLn(Q`)-conjugate to ι`,∞
(
recv(π0,v)(frv)

)
. Varying Li/F, and remembering that π0 is

independent of this variation, we get the same result for all v split in any single quadratic CM
extension Li/F (we have to throw out a finite number of such Li to ensure our representations
remain cuspidal/irreducible), we conclude that ρ ∼w π.

To finish the proof, we must check that ψ j

ψi
·
ψ̂i

ψ̂ j
may indeed be assumed finite-order. First,

recall that each ψi may be taken unitary and type A; in this case, the infinity-type is determined
21After such a base-change L/F, the character ψ̂ twisting ρ̃ to a geometric representation will have Hodge-Tate-

Sen weights congruent to kτ
n ∈ Q/Z at both embeddings L ↪→ Q` above τ; the integer w is then the weight of the Hecke

character associated to ψ̂n.
22Here ψ̂i

ψ̂ j
restricted to ΓLiL j is geometric, so we abusively write this for the associated Hecke character as well.
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by the relation ψ1−σi
i = ψ̂1−σi

i . Explicitly (using the above notation for the various embeddings),
ψ̂i

n corresponds to a Hecke character of Li with infinity-type (where we abusively denote ι(i)(z) by
simply z)

recι(i)(ψ̂i
n) : z 7→ zkτ z̄w−kτ ,

so
recι(i)(ψ

1−σi
i ) : z 7→ z

2kτ−w
n z̄

w−2kτ
n .

(Recall that 2kτ ≡ w mod n.) We then have, under our assumptions,

recι(i)(ψi) : z 7→
(

z
|z|

) 2kτ−w
n

.

Of course, recι(i)◦c is the same but with w−2kτ
n in the exponent. To make the parameter comparison

after restriction to a composite LiL j, we use the following notation for embeddings of LiL j into Q`
and C, lying above the given τ and ι:

τ1 extends τ(i) and τ( j),
τ2 extends τ(i) and τ( j) ◦ c,
ι1 extends ι(i) and ι( j),
ι2 extends ι(i) and ι( j) ◦ c.

We then have the conjugate embeddings τ1 ◦ c, etc. Computing the τk-labeled weights of ψ̂i

ψ̂ j
,

and translating them to the infinity-type at the place corresponding to ιk, with ιk as the chosen
embedding LiL j ↪→ C, we then find

recι1

(
ψ̂i

ψ̂ j

)
: z 7→ 1

recι2

(
ψ̂i

ψ̂ j

)
: z 7→ (z/z̄)

2kτ−w
n ,

whereas

recι1

(
ψ j

ψi

)
: z 7→ 1

recι2

(
ψ j

ψi

)
: z 7→ (z/z̄)

w−2kτ
n .

We conclude that ψ j

ψi
·
ψ̂i

ψ̂ j
is, with our normalization of the ψi, in fact finite-order, and the proposition

follows.
Finally, we quickly treat the case of general ρ, having reducible lifts. If ρ̃ as above decomposes

ρ̃ = ⊕m
i=1ρ̃i, say with ρ̃i of dimension ni, geometricity of ρ implies that over any CM L/F the same

Galois character ψ̂ twists ρ̃i, for all i, to a geometric representation. We can therefore use, for all
i, the same Hecke character ψ such that ψ1−σ = ψ̂1−σ. As above, we invoke automorphy of ρ̃iψ̂

−1,
and, twisting by ψ, descend to a cuspidal automorphic representation Πi of GLni/F. The same
local check (for v split in L/F) as above, but now crucially relying on the fact that ψ and ψ̂ were
independent of i, shows ρ(frv) is PGLn(Q`)-conjugate to ι

(
recv(�m

i=1Πi,v)(frv)
)
. �
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By a similar argument, we can ‘construct’ the Galois representations (assuming of course the
GLN correspondence) associated to (tempered) L-algebraic π on SLn/F for F CM (or imaginary,
assuming Conjecture 2.4.8) or totally real. By Proposition 3.1.12, we are reduced to the case of F
totally real.

Proposition 3.3.7. Continue to assume Fontaine-Mazur-Langlands. Let F be a totally real
field, and let π be an L-algebraic cuspidal automorphic representation of SLn(AF). Assume that
π∞ is tempered. Then there exists a (not necessarily unique) projective representation ρ : ΓF →

PGLn(Q`) satisfying ρ ∼w π.

Proof. By Proposition 3.1.14, there exists a W-algebraic cuspidal (and tempered at ∞) π̃ on
GLn/F lifting π. For all but finitely many quadratic CM L/F, we can find a type A Hecke character
ψ such that BCL/F(π̃) ·ψ is L-algebraic and cuspidal on GLn/L, hence corresponds to an irreducible
geometric representation ρ̃L : ΓL → GLn(Q`). Conjugating, we find ρ̃σL ≡ ρ̃L ·

̂(ψσ−1), the twist
being by the geometric character associated to the type A0 Hecke character ψσ−1. We wish to
write χ̂ = ̂(ψσ−1) in the form ψ̂σ−1 for some Galois character ψ̂ : ΓL → Q

×

` (reversing the process
in Corollary 3.3.6). Once this is managed, we have (ρ̃L · ψ̂

−1) is σ-invariant, hence descends
to ρ : ΓF → PGLn(Q`). Arguing as in Corollary 3.3.6, we find that this projective descent is
independent of L/F, and, again as in that proof, by varying L/F we obtain the compatibility
ρ ∼w π.

To construct ψ̂, we take as first approximation a Galois character ψ̂ such that ψ̂2 equals (̂ψ2) up
to a finite-order character χ0; recall that ψ2 is type A0, so we can attach the Galois character (̂ψ2).
Then

(ψ̂σ−1)2 = (ψ̂2)σ−1 = ((̂ψ2)χ0)σ−1 = χ̂2χσ−1
0 ,

and consequently χ̂ agrees with ψ̂σ−1 up to a finite-order character. Twisting ρ̃L, we may therefore
assume that χ̂ has finite-order. It still satisfies χ̂1+σ = 1, so invoking Lemma 3.3.3 and (a simple
case of) Lemma 3.3.5 we find a finite-order Hecke character,23 which may therefore be directly
regarded as a Galois character, that casts χ̂ in the desired form. �

Here is another example comparing the Tannakian formalisms:

Proposition 3.3.8. Continue to assume Fontaine-Langlands-Mazur and, in the totally imag-
inary but non-CM case, Conjecture 2.4.8. Let Π be a cuspidal L-algebraic representation of
GLn(AF), and suppose that ρΠ � ρ1 ⊗ ρ2, where ρi : ΓF → GLni(Q`). Then there exist cuspidal
automorphic representations πi of GLni(AF) such that Π = π1 � π2.

Remark 3.3.9. As the examples in §2.6 show, sometimes the πi cannot be taken L-algebraic.
Nevertheless, by Proposition 2.5.8, they can always be taken W-algebraic.

Proof. First suppose F is totally imaginary. For all v|`, the fact that ρ1|ΓFv
⊗ ρ2|ΓFv

is de
Rham implies that locally these ΓFv-representations are twists of de Rham representations. To
see this, we apply Corollary 3.2.12 (to find a Hodge-Tate lift) and Theorem 2.1.6 (to find a de
Rham lift, given that a Hodge-Tate lift exists) to the lifting problem (with central torus kernel)
GLn1 × GLn2

�
−→ Gn1,n2 ⊂ GLn1n2 , where Gn1,n2 denotes the image of the tensor product map. In

23Writing χ̂ = ψσ−1 where the infinity-components of ψ have the form zpz̄q, we see zp−qz̄q−p is the corresponding
component of χ̂, hence that p = q at each infinite place. Twisting ψ by the base-change of a character of the totally
real field F, we can then assume it is finite-order.
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particular, the projectivizations of the ρi|ΓFv
are de Rham, so the global projective representations

ρi : ΓF → PGLni(Q`) are geometric. We know that these geometric projective representations have
geometric lifts, and we may therefore assume our original ρi were in fact geometric. They then
correspond to L-algebraic πi, and we have Π = π1 � π2.

For F totally real, we perform a descent similar to previous arguments. Restricting to CM L/F,
we find a Galois character ψ̂ such that ρ1 ·ψ̂

−1 and ρ2 ·ψ̂ are geometric, corresponding to L-algebraic
cuspidal πi on GLni/L. Writing ψ̂1−σ = ψ1−σ for a Hecke character ψ, we find π1·ψ and π2·ψ

−1 areσ-
invariant, so descend to cuspidal representations π̄i of GLni/F. Since BCL/F(Π) = BCL/F(π̄1 � π̄2),
we deduce that Π and π̄1 � π̄2 are twist-equivalent, from which the result follows. (The same
argument applies to F that are neither totally real nor totally imaginary: just replace the restriction
to CM extensions L/F with restrictions to totally imaginary quadratic extensions L/F.) �

These examples (and, for instance, Corollary 2.7.8) motivate a comparison of the images of
r : LH → LG on the automorphic and Galois sides, when r is an L-morphism with central kernel.
The most optimistic expectation (for H and G quasi-split) is that if ker(r) is a central torus, then the
two descent problems for (L-algebraic) Π and (geometric) ρΠ are equivalent; whereas if ker(r) is
disconnected, there is an obstruction to the comparison, that nevertheless can be killed after a finite
base-change. If G is not GLn/F, then one will have to decide whether weak equivalence (π ∼w ρ)
suffices to connect the descent problems, or whether some stronger link (the mysterious π ∼s ρ)
must be postulated.

3.4. Monodromy of abstract Galois representations

In this section we discuss some general results about monodromy of `-adic Galois represen-
tations. Much of the richness of this subject comes from its blending of two kinds of representa-
tion theories, that of finite groups, and that of connected reductive algebraic groups. We will see
(Proposition 3.4.1) that the basic lifting result (Proposition 2.1.4) allows us to some extent to un-
derstand how these two representation theories interact. In §3.4.2 we develop more refined results
in the ‘Lie-multiplicity-free’ case (see Definition 3.4.5); this situation encapsulates the essential
difficulties of independence-of-` questions, such questions being trivial for Artin representations.

3.4.1. A general decomposition. The following result is a simple variant of a result of Katz
([Kat87, Proposition 1]), which he proves for lisse sheaves on affine curves over finite fields. We
can replace Katz’s appeal to the Lefschetz affine theorem by Proposition 2.1.4. Recall that a Galois
representation is Lie irreducible if it is irreducible after restriction to every finite-index subgroup
(i.e., the connected component or Lie algebra of its algebraic monodromy group acts irreducibly).

Proposition 3.4.1. Let F be any number field, and let ρ : ΓF → GLQ`(V) be an irreducible
representation of dimension n. Then either ρ is induced, or there exists d|n, a Lie irreducible
representation τ of dimension n/d, and an Artin representation ω of dimension d such that ρ �
τ ⊗ ω. Consequently, any (irreducible) ρ can be written in the form

ρ � IndF
L (τ ⊗ ω)

for some finite L/F and irreducible representations τ and ω of ΓL, with τ Lie-irreducible and ω
Artin.

Proof. Let G denote the algebraic monodromy group of ρ, with G0 the connected component
of the identity. Abusively writing ρ for the representation G ↪→ GL(V), we may assume ρ|G0 is
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isotypic (else ρ is induced, and we are done). If ρ|G0 is irreducible, then ρ itself is Lie-irreducible,
so again we are done. Therefore, we may assume that ρ|G0 � τ⊕d

0 for some d ≥ 2, with τ0 an irre-
ducible representation of G0, and consequently a Lie-irreducible representation of ΓL for any L/F
sufficiently large that ρ(ΓL) ⊂ G0(Q`). Since the irreducible ΓL-representation τ0 is ΓF-invariant,
it extends to a projective representation of ΓF . By the basic lifting result (Proposition 2.1.4), this
projective representation lifts to an honest ΓF-representation τ1, so for some character χ : ΓL → Q

×

` ,

τ⊕d
1 |ΓL � ρ|ΓL ⊗ χ.

The character α := det(ρ)/ det(τ⊕d
1 ) of ΓF has ΓL-restriction equal to χ−n, and over F itself we

can find characters α1, α0 : ΓF → Q
×

` , with α0 finite-order, such that α = αn
1α0. Then (χα1|ΓL)n =

(α−1αn
1)|ΓL = α−1

0 |ΓL , and replacing τ1 by τ1 ⊗ α1, and L by a finite extension trivializing α0, we find
a Lie-irreducible representation τ of ΓF and a finite extension L of F such that τ⊕d|ΓL � ρ|ΓL . The
ΓF-representation

ω := HomΓL(τ, ρ).
is therefore a d-dimensional Artin representation,24 and the natural map τ ⊗ ω → ρ (i.e. v ⊗ φ 7→
φ(v)) is an isomorphism of ΓF-representations. �

Corollary 3.4.2. Let ρ : ΓF → GLQ`(V) be a semi-simple representation (not necessarily irre-
ducible), and suppose that ρ is Lie-isotypic, i.e. for all F′/F sufficiently large, ρ|ΓF′ is isotypic. Then
there exists a Lie-irreducible representation τ and an Artin representation (possibly reducible) ω,
both of ΓF , such that ρ � τ ⊗ ω.

Proof. Decompose ρ into irreducible ΓF-representations as ⊕r
1ρi. Each ρi is Lie-isotypic: there

exists L/F and integers mi such that ρi|ΓL � τ
⊕mi
0 for all i, where τ0 is a Lie-irreducible representation

independent of i. By the argument of the previous proposition, after possibly enlarging L we
find a ΓF-representation τ whose restriction to L is isomorphic to τ0, and then there are Artin
representations ωi of ΓF such that τ ⊗ ωi � ρi. Consequently,

ρ � τ ⊗ (
r⊕
1

ωi).

�

Remark 3.4.3. • In general, the field L in Proposition 3.4.1 is not unique, even up to
ΓF-conjugacy. Examples of such non-uniqueness should not arise in the Lie-multiplicity
free case (see §3.4.2), but in the Artin case there are easy examples arising from the
representation theory of finite groups. Consider, for instance, the quaternion group Q8 =

{±1,±i,± j,±k}. The (unique) irreducible two-dimensional representation of Q8 can be
written in the form IndQ8

〈x〉(εx), where 〈x〉 denotes one of the subgroups generated by i, j, or
k, and εx is a generator of the character group of 〈x〉. None of these subgroups is conjugate
to any of the others.25 It would be interesting to achieve a more systematic understanding
of these ambiguities.

24As ΓL-representation, ω � HomΓL (τ|ΓL , τ|
⊕d
ΓL

) � Q
⊕d
` .

25Although these groups are not conjugate, they are related by (outer) automorphisms of Q8, but applying outer
automorphisms in this fashion will not in general preserve an irreducible induced character: consider the principal
series of GL2(Fp) and the outer automorphism of A1.
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• These structure theorems for Galois representations should have an analogue on the auto-
morphic side. In fact, Tate has shown (2.2.3 of [Tat79]) the analogue of Proposition 3.4.1
for representations of the Weil group WF , where it takes the particularly simple form that
any irreducible, non-induced ρ : WF → GLn(C) is isomorphic toω⊗χ, whereω is an Artin
representation and χ : WF → C

× is a character. A basic question is whether we should
expect Proposition 3.4.1 to hold for ‘representations of LF .’ If we had the formalism of
LF , then to carry out the argument of the proposition with complex representations of LF

in place of `-adic representations of ΓF requires two ingredients:
– That a homomorphism LF → PGLn(C) lifts to a homomorphism LF → GLn(C); but

this is ‘implied’ by Proposition 3.1.4. I should mention in this respect the theorem
of Labesse ([Lab85]), which establishes the analogue for lifting homomorphisms
WF →

LG across surjections LG̃ → LG with central torus kernel.
– That the analogue of the character α in the proof of Proposition 3.4.1 can be written

as a finite-order twist α0 of the nth power of a character α1. This is not automatic,
as it is for `-adic characters, but in this case we can exploit Lemma 2.3.10, which
applies to the α of the Proposition, since there the restriction to L is (continuing with
the notation of the Proposition) χ−n.

This discussion motivates the following conjecture, whose formulation of course requires
assuming deep cases of functoriality:

Conjecture 3.4.4. Let π be a cuspidal automorphic representation of GLn(AF); as-
sume π is not automorphically induced from any non-trivial extension L/F. Then there ex-
ist cuspidal automorphic representations τ andω of, respectively, GLd(AF) and GLn/d(AF)
such that π = τ � ω, with the following properties:

– for all finite extensions L/F, the base-change BCL/F(τ) remains cuspidal;
– for some finite extension L/F, BCL/F(ω) is isomorphic to the isobaric sum of n/d

copies of the trivial representation.

3.4.2. Lie-multiplicity-free representations. In this section, we focus on the cases antithet-
ical to that of Artin representations, putting ourselves in the following situation. Let F be any
number field, and recall from definition 1.2.3 the definition of a (weakly) compatible system of
λ-adic representations of ΓF , with coefficients in a number field E. Let

ρλ : ΓF → GLn(Eλ)

be such a (semi-simple, continuous) compatible system. Write Vλ for the space on which ρ` acts.

Definition 3.4.5. We say that Vλ is Lie-multiplicity free if after any finite restriction L/F, Vλ|ΓL

is multiplicity-free. Equivalently,
lim
−−→
L/F

EndEλ[ΓL](Vλ)

is commutative. We will often abbreviate ‘Lie-multiplicity-free’ to ‘LMF.’

Cases to keep in mind are Hodge-Tate regular (see Definition 2.4.2 and the preceding discus-
sion of §2.4.1) Vλ, or Vλ of the form H1(AF ,Q`) where A/F is an abelian variety with End0(AF)
a commutative Q-algebra (by Faltings’s proof of the Tate conjecture). Elementary representation
theory yields:
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Lemma 3.4.6. (1) Suppose Vλ is irreducible. Then Vλ is LMF if and only if it can be
written

Vλ � IndF
L(λ)(Wλ),

where we write L(λ) to show the a priori dependence on λ if Vλ belongs to a compatible
system, and where Wλ is a Lie-irreducible Eλ-representation of ΓL(λ), all of whose ΓF-
conjugates remain distinct after any finite restriction.

(2) Let Wλ be an irreducible representation of ΓL, and assume that Vλ = IndF
L (Wλ) is LMF.

Then Vλ is irreducible.

Proof. For (1), restrict to a finite-index subgroup of ΓF over which Vλ decomposes into a
direct sum of Lie-irreducible representations; take one such factor, and consider its stabilizer in
ΓF–Vλ is then induced from this subgroup. For (2), Mackey theory implies we need to check that
Wλ|gΓLg−1∩ΓL and (gWλ)|gΓLg−1∩ΓL are disjoint for all g ∈ ΓF − ΓL. These two representations occur as
distinct factors in the Vλ|gΓLg−1∩ΓL , so they are disjoint since Vλ is LMF. �

For general (possibly reducible) LMF representations, there is a decomposition into a sum of
terms as in the lemma. If Vλ belongs to a compatible system, we expect that the number of such
factors should be independent of λ; this is an extremely difficult problem (unlike the corresponding
question for Artin representations). Let us indicate the difficulties through an example.

Example 3.4.7. Suppose f is a holomorphic cuspidal Hecke eigenform on the upper half-plane
of some weight k ≥ 2 and level N and nebentypus ε. We normalize f so that its q-expansion at the
cusp ∞, f =

∑
an( f )qn, has leading coefficient a1( f ) = 1. Then work of Eichler-Shimura-Deligne

(see [Del71]) yields a compatible system

ρ f ,λ : ΓQ → GL2(Eλ)

of λ-adic representations (here E is the number field generated by the an( f )) characterized by the
property that for all p - N, the characteristic polynomial of ρ f ,λ(frp) is equal to

X2 − ap( f )X + pk−1ε(p).

Moreover, the eigenvalues of ρ f ,λ(frp) are p-Weil numbers of weight k − 1, i.e. have absolute value
p

k−1
2 in all complex embeddings, and ρ f ,λ is Hodge-Tate of weights 0, 1 − k. Since f is cuspidal,

we expect these Galois representations to be irreducible. This can be proven because the Fontaine-
Mazur-Langlands conjecture is known for the group GL1. Suppose ρ f ,λ � χ1 ⊕ χ2. Then (up to
re-ordering χ1, χ2) Theorem 2.3.13 implies26 that χ1 must be a finite-order character and χ2 must
be the product of a finite-order character and the (1 − k)th power of the cyclotomic character. This
contradicts the fact that the eigenvalues of ρ f ,λ(frp) are p-Weil numbers of weight k−1, so we have
proven the asserted irreducibility.

Therefore in this section we pursue a much more modest goal: restricting to the case of irre-
ducible compatible systems, we will be able to say something about independence of λ of the fields
L(λ) of Lemma 3.4.6.

26This special case of Theorem 2.3.13 is notably easier than the general case. It suffices to show that a character
χ : ΓQ → Q

×

` with all labeled Hodge-Tate weights equal to zero is finite-order; this follows from global class field
theory and the corresponding statement for characters ΓQ` → Q

×

` . This latter statement is a slight improvement of a
fundamental theorem of Tate: see [Ser98, §III.A-3].
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Our basic strategy is that the places v for which tr(ρλ(frv) equals zero should detect the field
L(λ). This is in marked contrast to the case of Artin representations: any irreducible (non-trivial)
representation of a finite group has elements acting with trace zero. Our main tool will be the
following (slight weakening of a) theorem of Rajan:

Theorem 3.4.8 (Theorem 3 of [Raj98]). Let E be a mixed characteristic non-archimedean
local field, and let H/E be an algebraic group. Let X be a subscheme of H (over E), stable under
the adjoint action of H. Suppose ρ : ΓF → H(E) is a Galois representation, unramified almost
everywhere, and let C = X(E) ∩ ρ(ΓF). Denote by Hρ ⊂ H the algebraic monodromy group

ρ(ΓF)
Zar

, and let Φ = Hρ/H0
ρ denote its group of connected components. For φ ∈ Φ, we write Hφ

for the corresponding component, and we set Ψ = {φ ∈ Φ|Hφ ⊂ X}. Then the density of the set of
places v of F with ρ(frv) ∈ C is precisely |Ψ|/|Φ|.

Rajan applies this to prove27 (Theorem 4 of [Raj98]) that an irreducible, but Lie reducible,
representation necessarily has a positive density of frobenii acting with trace zero; note that this
also follows immediately from Čebotarev and Proposition 3.4.1, which is a more robust version
of Rajan’s result (basically combining his argument with Proposition 2.1.4). Our next two results
establish a converse, also extending Corollaire 2 to Proposition 15 of [Ser81] to its natural level of
generality: that result handles the case of connected monodromy groups.

Proposition 3.4.9. Let ρλ : ΓF → GLn(Eλ) be a continuous, semi-simple, LMF representation.
Decompose Vλ as above, so

Vλ �

rλ⊕
i=1

IndF
L(λ)i

(Wλ,i)

for Lie-irreducible representations Wλ,i of ΓL(λ)i . Then:

(1) Up to a density zero set of places,

{v ∈ |F| : tr(ρλ(frv)) = 0} = {v : frv <
⋃

i

⋃
σ∈S λ,i

σΓL(λ)iσ
−1},

where S λ,i is a set of representatives of ΓF/ΓL(λ)i .
(2) Further assume that ρλ belongs to a compatible system {ρλ} of λ-adic representations

of ΓF (although in contrast to definition 1.2.3, we need not assume here that the ρλ are
geometric). Then up to a set of density zero, the set of places of F which have a split factor
in L(λ)i for some i is independent of λ. If we further assume that all Vλ are absolutely
irreducible (rλ = 1) and all L(λ)/F are Galois, then L(λ) is independent of λ.28

Proof. For the first part of the Proposition, we ignore the underlying ‘coefficient’ number field
E and just view ρλ as valued in GLn(E) for some sufficiently large finite extension E ofQ`. The “⊇”
direction follows from the usual formula for the trace of an induced representation. To establish
the reverse inclusion, let us consider, for each non-empty subset I ⊂

∐
i S λ,i, the set XI of places

v such that tr(ρλ(frv)) = 0, and frv ∈ σΓL(λ)i(σ)σ
−1 if and only if σ ∈ I [Notation: if σ ∈ I, then

27In addition to the main result of his paper, a beautiful ‘strong multiplicity one’ theorem for `-adic
representations.

28In the non-Galois case, see Exercise 6 in [Cp86]!
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σ ∈ S λ,i for a unique i =: i(σ)]. Also set

ΓI =
⋂
σ∈I

σΓL(λ)i(σ)σ
−1,

and let GI , resp. G, denote the algebraic monodromy group of ρλ|ΓI , resp. ρλ. To establish the “⊆”
(up to density zero) direction, we must show thatXI has density zero for every non-empty I. For all
I, GI contains G0, the identity component of G. We apply Rajan’s Theorem (3.4.8 above) to ρλ|ΓI :
if XI has positive density, then there is a full connected component TG0 ⊂ GI on which the trace
vanishes (here T is some coset representative for the component). Representing endomorphisms
of Vλ in block-matrix form corresponding to the decomposition

Vλ|ρ−1
λ (G0) =

⊕
i,σ

σWλ,i,

we have

tr

T ·

∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . . 0

0 0 · · · ∗


 = 0,

where the ∗’s represent arbitrary elements of the End(σWλ,i). For this, we use the fact that these
constituents are (absolutely) irreducible and distinct: either apply Wedderburn theory to the semi-
simple Eλ-algebra Eλ[[ρλ(ρ−1

λ (G0))]], or apply Schur’s lemma (using absolute irreducibility) and an
algebra version of Goursat’s lemma (using multiplicity-freeness). Then the above matrix equation
implies the automorphism T , written in block-matrix form, has all zeros along the (block)-diagonal.
But I is non-empty, so T ∈ GI preserves at least one subspace σWλ,i, and so its block-diagonal
entry corresponding to that sub-space must be non-zero (invertible). This contradiction forces
all components of GI to have non-zero trace (generically), for all non-empty I, and thus the “⊆”
direction is established.

Part 2 now follows from independence of λ of tr(ρλ(frv)) and Čebotarev, noting that

{v : frv ∈
⋃

i

⋃
σ∈S λ,i

Γσ(L(λ)i)}

is the set of places v of F that have at least one split factor in some L(λ)i. �

We make a few remarks about the limitations of this method:

Remark 3.4.10. (1) Without any information about how the various Vλ decompose into
irreducible sub-representations, this result yields frustratingly little, since it is easy to find
disjoint collections of number fields {Li}i∈I and {L′i}i∈I′ such that the union of primes with
a split factor (or even split) in the various Li equals the union of those with a split factor
in the various L′i . For, the simplest example, take L1 = Q, L′1 = Q(i), L′2 = Q(

√
2),

L′3 = Q(
√
−2).

(2) Even when the Vλ are irreducible, and even assuming that one field L(λ0) is Galois, care
must be taken when the other inducing fields L(λ) are not (known to be) Galois. We see
that L(λ0) is contained in L(λ) for all λ, but equality does not follow, as the following
example from finite group theory shows. We want an inclusion H ≤ K C G of groups
with K normal in G, H a proper subgroup of K, and ∪g∈GgHg−1 = K. Taking K C S 4 to
be the copy of the Klein four-group given by the (2, 2)-cycles, and H to be the subgroup
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generated by one of these permutations, meets the requirements. Note that such examples
require K to have non-trivial outer automorphism group: if G-conjugation acts by K-
inner automorphisms on K, then ∪GgHg−1 = ∪KkHk−1 = K implies H = K, since no
finite group is the union of conjugates of a proper subgroup.

(3) The group-theoretic counterexample of the previous item should not arise in practice: if
we assume that Wλ0 can be put in a compatible-system, say with λ-adic realization Wλ,0,
then conjecturally Wλ,0 will be Lie irreducible as well, and then the isomorphism

IndF
L(λ)(Wλ) � IndF

L(λ0)(Wλ,0)

implies, by Mackey theory, that there is a non-zero ΓL(λ0)-morphism

IndL(λ0)
s(L(λ))(sWλ)� Wλ,0

for some s ∈ ΓF . By part (2) of Lemma 3.4.6, this induction is irreducible, so this map is
an isomorphism. But Wλ,0 is (conjecturally) Lie-irreducible, so L(λ0) = L(λ).

In any case, the following corollary is the promised converse to Rajan’s result:

Corollary 3.4.11. An irreducible, LMF representations ρ` : ΓF → GLn(Q`) is Lie irreducible
precisely when the set of v with tr(ρ`(frv)) = 0 has density-zero. In particular, in a compatible
system of irreducible, LMF representations, Lie-irreducibility is independent of λ.

Remark 3.4.12. If we know general automorphic base-change for GLn, we can formulate the
conditions ‘Lie irreducible’ and ‘Lie multiplicity free’ on the automorphic side. This result then
suggests how to tell whether a ‘LMF’ automorphic representation is automorphically induced.
Finding an intrinsic characterization of the image of automorphic induction, even conjecturally,
is a mystery (in contrast to its close cousin base-change), so it may come as a surprise that there
should be such a simple condition at the level of Satake parameters, for this broad class of LMF
representations.

I originally developed Proposition 3.4.9 to prove that a regular compatible system of represen-
tations of ΓF for F a CM field, if induced, is necessarily induced from a CM field. See Remark 2.4.9
for an automorphic analogue. Here is a partial result; it is another application of the ’Hodge-theory
with coefficients’ in §2.4.1. For the most natural formulation of the result, recall the definition of
purity of a weakly compatible system (Definition 1.2.4).

Lemma 3.4.13. Let F be a CM field, and let R = {ρλ : ΓF → GLn(Eλ)} be a weakly compatible
system of λ-adic representations with coefficients in a number field E. Assume that the ρλ are
(almost all) Hodge-Tate regular, and pure. Finally, assume that there is a single number field L
such that for λ above a set of rational primes ` of density one,

ρλ � IndF
L (rλ),

for some Eλ-representation rλ of ΓL. Then L is CM.

Proof. We may assume E/Q is Galois. In yet another variant of the theme of §2.4, purity
implies we may take the number field E to be CM: simply observe that for any choice c of complex
conjugation in Gal(E/Q), the characteristic polynomials Qv(X) of ρλ(frv) satisfy

cQv(X) = XnQv(qw
v /X)/Qv(0),

92

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



and thus for any two complex conjugations c, c′, cc′R � R. It follows that for a density one set of
v, Qv(X) has coefficients in Ecm. The Čebotarev density theorem then yields a well-defined weakly
compatible system (in the sense of Definition 1.2.3) of λ-adic representations with coefficients
in Ecm. (This argument is taken from [PT15, Lemma 1.1, 1.2].29). Thus we take E to be CM.
By regularity, we may also assume that there is a CM extension E′/E such that for all finite-index
subgroups H of ΓF , and all primes λ of E′, all sub-representations r ⊂ ρλ|H are actually defined over
E′λ: this is an elementary argument (see [BLGGT14, Lemma 5.3.1(3)], with the CM refinement of
[PT15, Lemma 1.4]), the key idea being that regularity gives us an abundant supply of elements
in the image of ρλ with distinct eigenvalues, and that ρλ can then be defined over the extension of
E generated by these eigenvalues. Thus, after enlarging E, we may assume all ρλ and rλ act on
Eλ-vector spaces.

For simplicity enlarge E to contain Lcm, the maximal CM subfield of L, and take its Galois
closure–the result remains CM. If L , Lcm, then we can find a (positive-density) set of ` (unramified
in L and for the system ρλ) which are split in E (with, say, λ|`) but not in (the Galois closure of L,
hence) L. Consider a non-split prime w|` of L, above a place v of F, and the restriction

rλ|ΓLw
: ΓLw → GLn(Eλ) = GLn(Q`);

By Lemma 2.2.9, DdR(ρλ|ΓFv
) is the image under the forgetful functor (from filtered Lw-vector

spaces to filtered Fv-vector spaces) of DdR(rλ|ΓLw
). Since Lw does not embed in Eλ = Q`, we can

invoke Corollary 2.4.3 to show ρλ is not regular, a contradiction. Therefore L = Lcm. �

Combining this with Proposition 3.4.9, since regular clearly implies LMF,30 we deduce:

Corollary 3.4.14. Let F be a CM field, and let R = {ρλ}λ be an absolutely irreducible, pure,
Hodge-Tate regular weakly compatible system of representations of ΓF . Suppose that when we
write

ρλ � IndF
L(λ)(Wλ),

where Wλ is Lie irreducible, the extensions L(λ)/F are Galois. Then the field L = L(λ) is indepen-
dent of λ, and L is itself CM.

Remark 3.4.15. One way of interpreting this result is that to study regular motives, compatible
systems, or algebraic automorphic representations over CM fields, we will never have to leave the
comfort of CM fields; essentially all progress in the study of automorphic Galois representations
is currently restricted to this context. This is in particular the case for Galois representations
occurring as irreducible sub-quotients of the cohomology of a Shimura variety.

29Our definition of compatible system is somewhat weaker than that given in [PT15]; for our purposes, we can
just ignore the part of the proof of [PT15, Lemma 1.1] that computes Hodge numbers.

30This is the one case in which the LMF condition is provably independent of `.
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CHAPTER 4

Motivic lifting

As noted in the introduction (see Question 1.1.9), the results of Part 3 raise more questions
than they resolve. In this chapter, we discuss some cases of the motivic analogue of Conrad’s
lifting question; this is also the natural framework for the problem of finding compatible lifts of a
compatible system of Galois representations. Ideally, we would be able to work in Grothendieck’s
category of pure motives, defined using the relation of homological equivalence on algebraic cycles
(see §4.1.2 for a brief review). This category can only be proven to have the desirable categorical
properties–namely, equivalence to the category of representations of some pro-reductive (‘motivic
Galois’) group–if we assume Grothendieck’s Standard Conjectures on algebraic cycles, which are
far out of reach. (For the basic formalism (as relevant for the theory of motives) of algebraic cycles
and precise statement of the Standard Conjectures, see [Kle68].) We therefore need an uncondi-
tional variant of the motivic Galois formalism, and we adopt André’s approach, using his theory of
motivated cycles ([And96b]). In §4.1 we review André’s theory, prove some supplementary results
needed for the application to motivic lifting, and then treat the motivic lifting problem in the po-
tentially abelian case. In §4.2 we prove an arithmetic refinement of André’s work ([And96a]) on,
roughly speaking, the motivated theory of hyperkähler varieties. This provides a motivic analogue
of Theorem 3.2.10 in many non-abelian examples. Finally, in §4.3, we speculate on a generalized
Kuga-Satake construction, of which the results of §4.2 are the ‘classical’ case; we then prove this
for H2 of an abelian variety, generalizing known results for abelian surfaces.

4.1. Motivated cycles: generalities

4.1.1. Lifting Hodge structures. In trying to produce a motivic analogue either of Winten-
berger’s or of my lifting theorem, one is naturally led to try to lift all cohomological, rather than
merely the `-adic, realizations of a ‘motive.’ The easiest such lifting problem is for real Hodge-
structures, which are parametrized by representations of the Deligne torus S = ResC/R(Gm). Recall
that X•(S) = Zα1 ⊕ Zα2, where α1 and α2 are the first and second projections in the isomorphism

S(C) = (C ⊗R C)×
∼
−→ C× × C×

z1 ⊗ z2 7→ (z1z2, z1z2).

Here S(R) ⊂ S(C) is C× = (C ⊗R R)×, and the Gal(C/R)-action, induced by z1 ⊗ z2 7→ z1 ⊗ z2, is
given by c : (w, z) 7→ (z̄, w̄). In particular,

(c · α1)(w, z) = c(α1(z̄, w̄)) = z,

i.e. (c · α1) = α2, and similarly (c · α2) = α1. The group of characters over R, denoted X•R(S), is
then Z(α1 + α2), where α1 + α2 = N is the norm, satisfying N(z) = zz̄ on R-points.
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Let H̃0 → H0 be a surjection of linear algebraic groups over R with kernel equal to a central
torus Z0. We are interested in the lifting problem for algebraic representations over R:

H̃0

π

��

S

h̃
??

h
// H0.

Any such h lands in some (typically non-split) maximal torus T0, and any lift will land in the
preimage π−1(T0) =: T ′0, which is a maximal torus of H̃0. We are therefore reduced to studying the
dual diagram of free Z-modules with Gal(C/R) = ΓR-action:

0

X•(Z0)

OO

X•(T ′0)

zz

OO

X•(S) X•(T0)oo

OO

0

OO

As short-hand, we denote the vertically-aligned character groups, from bottom to top, by Y , Y ′,
and L, so we in fact are studying the sequence

0→ HomΓR(L, X
•(S))→ HomΓR(Y

′, X•(S))→ HomΓR(Y, X
•(S))→ Ext1

ΓR
(L, X•(S))→ . . .

Any real torus is isomorphic to a product of copies of Gm, S, and S1 = ker(N : S → Gm). The
character group X•(S1) is X•(S)/Z(α1 +α2). A generator is the image of α1−α2, which on R-points
is simply the character z 7→ z/z̄ of the (analytic) unit circle S1. Complex conjugation acts as −1 on
X•(S1). We can therefore completely address the lifting problem by understanding morphisms and
extensions between these three basic Z[ΓR]-modules. The case of immediate interest to us will be
when Z0 is split, so L is just some number of copies of Z with trivial ΓR-action. Now,

Ext1
ΓR

(Z, X•(S)) = H1(ΓR, X•(S)) = 0,

since ker(1+c) = im(c−1) = Z(α1−α2). Therefore any h : S→ H0 lifts, and the ambiguity in lifting
is a collection of elements (of order equal to the rank of Z0) of HomΓR(Z, X

•(S)) � Z(α1 + α2).1

1Note that if we dealt with representations of S1 we would find an obstruction in H1(ΓR, X•(S1)) = Z/2Z.
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Example 4.1.1. In §4.2.2 we will consider the following setup: VR will be an orthogonal space
with signature (m − 2, 2)2. Write m = 2n or m = 2n + 1. The lifting problem will be

GSpin(VR)

π

��

S

h̃
::

h
// SO(VR),

where h lands in a maximal anisotropic torus T0 � (S1)n. We can write

X•(T ′0) =

 n⊕
i=1

Zχi

 ⊕ Z(χ0 +

∑
χi

2
),

where conjugation acts by −1 on each χi, i = 1, . . . , n, and trivially on χ0. Here the characters χi

are conjugate in SO(VC) to the characters denoted χi in §2.8 (see page 56). The torus T0 is built
out of copies of SO(2) embedded in SO(m − 2, 2), and these are just the usual characters(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
7→ eiθ.

Moreover, ⊕n
i=1Zχi is the submodule X•(T0). A morphism S→ T0 ⊂ SO(VR) is given in coordinates

by χi 7→ mi(α1 − α2), for some integers mi. A lift to a morphism S → GSpin(VR) then amounts to
an extension

χ0 +

∑n
i=1 χi

2
7→

ε0

2
(α1 + α2) +

∑n
i=1 mi

2
(α1 − α2),

where ε0 is any integer having the same parity as
∑

mi. The Clifford norm N is given by the
character 2χ0, so the composition of such a lift with the Clifford norm is ε0(α1 + α2). In the K3 (or
hyperkähler) examples to be considered in the next section, m1 = 1 and all other mi = 0, so we find
there is a unique lift

GSpin(VR)

π

��

S

h̃
::

h
// SO(VR),

where N ◦ h̃ : S→ Gm is any odd power of the usual norm S→ Gm. The Kuga-Satake theory (see
§4.2.2 and following) takes the norm itself, which then gives rise to weight 1 Hodge structures.

4.1.2. Motives for homological equivalence and the Tannakian formalism. Our aim in this
sub-section is to review Grothendieck’s construction of the categoryMhom

F of pure motives for ho-
mological equivalence over a field F. As a preliminary, we provide some background on the theory
of neutral Tannakian categories. We can then describe the output of the Standard Conjectures, tak-
ing for simplicity F to be an abstract (i.e., not embedded) field of characteristic zero, small enough
to be embedded in C: Mhom

F is (conjecturally) a graded, semi-simple, Q-linear neutral Tannakian
category. With the exception of §4.3.2, in the rest of this paper we will not work directly with
Mhom

F , so much of this discussion serves only to orient the reader. For more background, the reader
should consult [And04], especially Chapter 4, or [Sch94].

2This part of the discussion applies to any signature (p, q) with at least one of p or q even, so that SO(VR) has a
compact maximal torus.
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4.1.2.1. Neutral Tannakian categories. We begin with an overview of the theory of neutral
Tannakian categories; [DM11] is a very readable and thorough introduction to which we refer
the reader for details (the original source is [SR72]). Note that we will always work with neutral
Tannakian categories, which simplifies the theory considerably; for deeper aspects in the non-
neutral case, see [Del90]. Let E be a field. The prototypical neutral Tannakian category is the
category VecE of finite-dimensional vector spaces over E. VecE is an abelian category with a
notion of tensor product (namely, the usual tensor product of E-vector spaces) satisfying certain
natural requirements: associativity, commutativity, and existence of a unit (E regarded as an E-
vector space) for the tensor product. Moreover, every object of VecE has a dual (more generally,
internal Hom’s exist), and the endomorphisms of the unit object are just the field E itself. The
main theorem of the theory in this context is the trivial observation that VecE is equivalent to the
category of finite-dimensional representations (over E) of the trivial group.

The general definition merely formalizes the notions in the previous paragraph; we will quickly
make the necessary definitions, and then give a number of examples (Example 4.1.6 below).

Definition 4.1.2. Let C be a category, and let ⊗ : C × C → C be a functor satisfying the usual
axioms of a symmetric monoidal category, namely:

(1) (Associativity constraint) There is a functorial isomorphism

AX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y) ⊗ Z

satisfying the pentagon axiom ([DM11, 1.0.1]).
(2) (Commutativity constraint) There is a functorial isomorphism

CX,Y : X ⊗ Y → Y ⊗ X

such that CY,X ◦ CX,Y = idX⊗Y , and that is compatible with the associativity constraint in
the sense of the hexagon axiom ([DM11, 1.0.2]).

(3) (Unit object) There is a pair (1, e) consisting of an object 1 and an isomorphism e : 1 →
1 ⊗ 1 such that the functor C → C given by X 7→ 1 ⊗ X is an equivalence of categories.

We call such a (C,⊗), equipped with its associativity and commutativity constraints (but omitted
from the notation), a tensor category, for short.

If (C,⊗) and (C′,⊗′) are tensor categories (whose associativity and commutativity constraints
we will write as A,C and A′,C′, respectively; unit elements will be (1, e) and (1′, e′)), then a tensor
functor from (C,⊗) to (C′,⊗′) is a pair (F, k) consisting of a functor F : C → C and a functorial
isomorphism kX,Y : F(X) ⊗ F(Y)→ F(X ⊗ Y) satisfying the following three compatibilities:

(1) For all objects X,Y,Z of C, the diagram

FX ⊗ (FY ⊗ FZ)

A′

��

id⊗k
// FX ⊗ F(Y ⊗ Z) k

// F(X ⊗ (Y ⊗ Z))

F(A)
��

(FX ⊗ FY) ⊗ FZ k⊗id
// F(X ⊗ Y) ⊗ FZ k

// F((X ⊗ Y) ⊗ Z)

is commutative.
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(2) For all objects X,Y of C, the diagram

FX ⊗ FY k
//

C′

��

F(X ⊗ Y)

F(C)
��

FY ⊗ FX k
// F(Y ⊗ X)

is commutative.
(3) If (1, e) is a unit object of C, then (F(1), F(e)) is a unit object of C′.

We have spelled out the precise conditions for (F, k) to be a tensor functor because of its rel-
evance for the structure ofMhom

F : the Künneth Standard Conjecture essentially ‘corrects’ the fact
that the Betti realization

HB : Mhom
F → VecQ

with the natural Künneth isomorphism kX,Y HB(X) ⊗ HB(Y)
∼
−→ HB(X × Y) does not intertwine the

(obvious) commutativity constraints onMhom
F and VecQ. See the discussion surrounding Conjec-

ture 4.1.8 for details.
For any unit object (1, e), we obtain isomorphisms lX : 1 ⊗ X

∼
−→ X and rX : X ⊗ 1

∼
−→ X.

For any additive tensor category (C,⊗) (for which we require ⊗ to be bi-additive), and any
unit object (1, e), EndC(1) = R is a commutative ring, unique up to unique isomorphism, and C is
naturally an R-linear category.

Definition 4.1.3. Let (C,⊗) be a tensor category. It is rigid if for every object X there is a
‘dual’ object X∨ along with evaluation and co-evaluation morphisms

X∨ ⊗ X
evX
−−→ 1

1
coevX
−−−−→ X ⊗ X∨

such that the composites (we suppress the unit isomorphisms and the associators)

X
coevX⊗idX
−−−−−−−→ X ⊗ X∨ ⊗ X

idX ⊗evX
−−−−−−→ X

X∨
idX∨ ⊗coevX
−−−−−−−−→ X∨ ⊗ X ⊗ X∨

evX⊗idX∨
−−−−−−→ X∨

are idX and idX∨ , respectively.

Note that in the absence of a commutativity constraint, X∨ is what would be called a ‘right
dual.’

Finally, we come to the main definition:

Definition 4.1.4. Let E be a field. A neutral Tannakian category over E is a rigid abelian tensor
category (C,⊗) such that End(1) = E, and for which there exists a faithful, exact, E-linear tensor
functor ω : C → VecE. Such an ω is called a fiber functor.

The main theorem of the theory of neutral Tannakian categories just says that every Tannakian
category is equivalent to the category of representations of some affine group scheme:
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Theorem 4.1.5 ([DM11, Theorem 2.11]). Let (C,⊗) be a neutral Tannakian category over E,
equipped with a fiber functor ω : C → VecE. Then the functor of E-algebras given by tensor-
automorphisms of ω (see [Del90, 1.9, 1.11]) is represented by an affine group scheme G, and the
functor C → RepE(G) defined by ω is an equivalence of tensor categories.3

Informally, we might call G the ‘Galois group’ of (C,⊗), whence the later terminology ‘motivic
Galois group’ in the (conjecturally Tannakian) case ofMhom

F .
At last, some examples:

Example 4.1.6. (1) The following example is crucial for the theory of motives. The cate-
gory VecZ/2E of Z/2Z-graded vector spaces over E, with the usual graded tensor product,
and with commutativity constraint given by the Koszul sign rule, i.e. CV,W : V ⊗ W

∼
−→

W ⊗ V given on homogeneous tensors by v ⊗ w 7→ (−1)deg(v)·deg(w)w ⊗ v, is a rigid E-linear
abelian tensor category. Note, however, that the forgetful functor VecZ/2ZE → VecE (with
the obvious isomorphisms kX,Y) is not a tensor functor, because it fails to intertwine the
commutativity constraints. Indeed, VecZ/2ZE is not a Tannakian category. Any rigid tensor
category has an intrinsic notion of rank for every object X, given by the element of End(1)
arising as the composition

1
coevX
−−−−→ X ⊗ X∨

CX,X∨

−−−−→ X∨ ⊗ X
evX
−−→ 1.

For a Z/2Z-graded vector space V = V0 ⊕V1, it is easy to check that the rank in VecZ/2ZE is
dim V0−dim V1. But this notion of rank is preserved by any tensor functor, so an obviously
necessary condition to admit a fiber functor is that all objects have non-negative rank. (In
fact, a deep result of Deligne gives a converse: [Del90, 7.1 Théorème].)

(2) The category Q-HSpol of pure polarizable Q-Hodge structures is a neutral Tannakian cat-
egory over Q, with fiber functor just given by taking the underlying Q-vector space of
a Hodge structure (here we take the commutativity constraint on Hodge structures to be
the same as the usual constraint on vector spaces). This is a useful ‘toy model’ for the
theory of pure motives over C. In particular, Theorem 4.1.5 identifies Q-HSpol with the
category of representations of some affine group scheme MT over Q; MT is the ‘uni-
versal Mumford-Tate group.’ We use this example to explain how properties of a Tan-
nakian category reflect those of its Galois group (see [DM11, §2 ‘Properties of G and
Rep(G)’]). From its Hodge-theoretic description, MT is obviously connected. This is
equivalent ([DM11, Corollary 2.22]) to the condition that for every non-trivial represen-
tation X of MT, the strictly full subcategory of Q-HSpol whose objects are isomorphic
to sub-quotients of some X⊕n is not stable under ⊗. But if X is not the trivial Hodge
structure Q (i.e. if X corresponds to a non-trivial representation of MT), then either it
has non-zero weight, in which case the result is clear, or some Hp,−p(X) is non-zero, for
some p , 0. Then Hmp,−mp(X⊗m) , 0, which for m large enough cannot be the case for
any sub-quotient of any X⊕n. In a similar spirit, MT is pro-reductive, since the category
Q-HSpol is semi-simple (by polarizability; see [DM11, Proposition 2.23]).

3That is, it is a tensor functor that is also an equivalence of categories; this ensures ([DM11, Proposition 1.11])
that there exists an inverse of F that is also a tensor functor.
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4.1.2.2. Homological motives. We begin by sketching the construction of Grothendieck’s cat-
egory of (pure) homological motives over a field F. References for more details are [Kle68, §1]
and [Sch94, §1]. Recall that for simplicity we take F to be a field that can be embedded in C (or
even a specified subfield of C)–this does not affect the construction, but does affect whether the
category of motives is (conjecturally) neutral Tannakian. Recall that for a fixed Weil cohomology
theory H∗ (see [Kle68, §1.2]), homological equivalence defines an adequate equivalence relation
on algebraic cycles on smooth projective varieties; for example, since F ⊂ C, we will always
have at our disposal Betti cohomology, H∗B. For a smooth projective X/F, we let A∗hom(X) denote
the Q-algebra of (Q-linear combinations of) algebraic cycles for homological equivalence, graded
by codimension. ‘Adequate’ ensures that the intersection product is well-defined as a linear map
Ar(X) ⊗ As(X) → Ar+s(X). For any two smooth projective F-varieties X and Y , with X connected
of (equi-)dimension d, we can then define the space of degree r correspondences

Cr
hom(X,Y) = Ad+r

hom(X × Y).

We obtain a composition of correspondences

Cr
hom(X,Y) ⊗C s

hom(Y,Z)→ Cr+s
hom(X,Z)

given by
f ⊗ g = g ◦ f 7→ p13,∗

(
p∗12 f · p∗23g

)
,

where the pi j are the projections from X × Y × Z to the products of two factors. In particular,
C0

hom(X, X) is a Q-algebra.

Definition 4.1.7. The category Mhom
F of motives over F for homological equivalence has as

objects triples (X, p,m), where X is a smooth projective variety over F, m is an integer, and p is an
idempotent correspondence in C0

hom(X, X). Morphisms inMhom
F are defined by

HomMhom
F

((X, p,m), (Y, q, n)) = qCn−m
hom (X,Y)p.

Mhom
F is an additive, Q-linear, pseudo-abelian category ([Sch94, Theorem 1.6]). There is a

bi-additive functor ⊗ : Mhom
F ×Mhom

F →Mhom
F given on objects by

(X, p,m) ⊗ (Y, q, n) = (X × Y, p ⊗ q,m + n)

(the fiber product is over F; we do not here specify ⊗ on morphisms). This satisfies associativity
and commutativity constraints induced by the tautological isomorphisms (X×Y)×Z � X× (Y ×Z)
and C : X × Y � Y × X. A unit object for ⊗ is given by (Spec F, id, 0), and we can define dual
objects by (again for simplicity take X of equi-dimension d)

(X, p,m)∨ = (X, t p, d − m);

In sum, these structures make (Mhom
F ,⊗) into a rigidQ-linear tensor category with EndMhom

F
(1) =

Q. Grothendieck’s Standard Conjectures anticipate that moreoverMhom
F should be a semi-simple

neutral Tannakian category. One must prove that

• Mhom
F is abelian;

• the abelian categoryMhom
F is moreover semi-simple;

• Mhom
F possesses a fiber functor to VecQ.

101

Jul 31 2016 19:25:06 EDT
Version 4 - Submitted to MEMO

NumberTheory



We begin by discussing the question of a fiber functor. The answer is simple: (Mhom
F ,⊗), with the

commutativity constraint defined above, does not have a fiber functor! For simplicity, let us take
F ⊂ C, so that there is a Betti realization

HB : Mhom
F → VecQ.

HB is not a tensor functor, however: the diagram

HB(X) ⊗ HB(Y)

C′

��

k
∼

// HB(X × Y)

HB(C)
��

HB(Y) ⊗ HB(X) k
∼
// HB(Y × X),

given by applying the naı̈ve commutativity constraints and the Künneth isomorphism, only com-
mutes up to sign, since cup-product is anti-commutative. More precisely, HB gives a tensor functor
valued in VecZ/2ZQ , and since objects of Mhom

F can then have negative rank, it cannot be neutral

Tannakian with the commutativity constraint induced by X × Y
∼
−→ Y × X. The Künneth Stan-

dard Conjecture would give Mhom
F a grading (corresponding to cohomological degree), allowing

for a modified commutativity constraint, for which HB : Mhom
F → VecQ is a tensor functor. More

precisely, for any Weil cohomology theory H∗, the isomorphism (again taking d = dim X)

H2d(X × X)(d) �
⊕

i

H2d−i(X) ⊗ Hi(X)(d) �
⊕

i

Hi(X)∨ ⊗ Hi(X) �
⊕

i

End(Hi(X))

gives a cohomology class πi
X corresponding to the composition H∗(X)� Hi(X) ↪→ H∗(X).

Conjecture 4.1.8. For all i = 0, 1, . . . , 2d, the cohomology class πi
X is algebraic, i.e. lies in the

image of the cycle class map Ad
hom(X × X)→ H2d(X × X)(d).

The modified commutativity constraint onMhom
F would then be given as follows: if the original

constraint is C : M ⊗ N
∼
−→ N ⊗ M, we can decompose C = ⊕r,sCr,s with

Cr,s : πr M ⊗ πsN
∼
−→ πsN ⊗ πr M,

and then the correct commutativity constraint is C′ = ⊕r,s(−1)rsCr,s.
The Künneth Standard Conjecture is in fact implied by a stronger conjecture, the Lefschetz

Standard Conjecture, which would also show that the primitive decomposition of cohomology’
makes sense in the categoryMhom

F . To state this, let X be a smooth projective variety over F, and
fix an ample line bundle η on X, giving rise to the Lefschetz operator

L = Lη,H∗ : Hi(X)(r)→ Hi+2(X)(r + 1),

and the hard Lefschetz isomorphisms

Ld−i : Hi(X)(r)
∼
−→ H2d−i(X)(d − i + r)

for all i ≤ d. As always with taking cup-product with the class of an algebraic cycle, these isomor-
phisms are given by algebraic correspondences.

Conjecture 4.1.9 (Lefschetz Standard Conjecture). For all i ≤ d, the inverse of Ld−i is given
by algebraic correspondences.
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Note that a priori both the Künneth and Lefschetz Standard Conjectures depend on the choice
of Weil cohomology. For the classical cohomologies (Betti, étale, de Rham) that are related by
comparison isomorphisms (respecting cycle class maps), these conjectures do not depend on the
choice of H∗.

Now we move to the question of whetherMhom
F is abelian. Here there is a marvelous theorem

of Jannsen:

Theorem 4.1.10 ( [Jan92, Theorem 1] ). For an adequate equivalence relation ∼, the category
of motives for ∼-equivalence is abelian semi-simple if and only if ∼ is numerical equivalence. In
particular,Mhom

F is abelian if and only if numerical and homological equivalence coincide.

Indeed, long before Jannsen proved his theorem, Grothendieck conjectured:

Conjecture 4.1.11. Homological and numerical equivalence coincide.

In summary, under the Standard Conjectures, we can equipMhom
F with a commutativity con-

straint for which it is a semi-simple neutral Tannakian category, hence:

Conjecture 4.1.12. Let F be a subfield of C. There is a pro-reductive Q-group Ghom
F , the

motivic Galois group for pure motives over F, and an equivalence (induced by the Betti fiber
functor H∗B : Mhom

F → VecQ)
Mhom

F � RepQ(Ghom
F ).

4.1.3. Motivated cycles. In the present Part 4 of these notes, most of our results can be stated
solely in terms of abelian varieties, but both the strongest assertions and the proofs will require in-
voking some version of the motivic Galois formalism; in the absence of the Standard Conjectures,
we use André’s theory of motives for motivated cycles ([And96b]). In this subsection, we provide
a brief review, elaborating on some points for later application. Although André’s theory is devel-
oped over any field F, to simplify we will always take F to be an abstract (i.e., not embedded) field
of characteristic zero, small enough to be embedded in C, and which we will eventually specify to
be a number field.

In [And96b], André defines a Q-linear category of motives for ‘motivated cycles’ whose con-
struction mirrors the classical construction of (Grothendieck) motives for homological equivalence,
but circumvents the standard conjectures by formally enlarging the group of ‘cycles’ to include the
Lefschetz involutions. Here is the precise definition of the space of motivated cycles:

Definition 4.1.13. Fix a reference Weil cohomology H•. A motivated cycle on X with coeffi-
cients in E is an element of H•(X) of the form

prXY
X,∗(α ∪ ∗Lβ),

where
• Y is a smooth projective F-scheme, with polarization ηY giving rise to a ‘product’ po-

larization ηX×Y = [X] ⊗ ηY + ηX ⊗ [Y], with corresponding Lefschetz involution ∗L, on
X × Y;
• α and β are algebraic cycles mod H•-homological equivalence with E-coefficients on

X × Y .
We denote by A•mot(X)E the E-vector space of motivated cycles on X with E-coefficients. A•mot(X)
will always mean the case E = Q.
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As in §4.1.2.2, we can then define spaces C•mot(X,Y)E of motivated correspondences (see also
[And96b, Définition 2]); for X = Y , this construction yields a graded E-algebra containing the
Lefschetz involutions and the Künneth projectors πi

X.
The first main result of this theory asserts that the spaces of motivated cycles in a precise sense

do not depend on the Weil cohomology H• used to define them:

Theorem 4.1.14 (Théorème 0.3 of [And96b]). For any smooth projective F-scheme X, let
A•mot(X) be the graded Q-algebra of ‘motivated cycles,’ constructed with respect to a fixed Weil
cohomology H•. A•mot(X) contains the classes of algebraic cycles modulo homological equivalence,
and there is a Q-linear injection

clH : A•mot(X)→ H2•(X)

extending the cycle class map for H. A•mot(X) has the following properties:
• A•mot(X) depends bifunctorially (push-forward and pull-back) on X, satisfying the usual

projection formula.
• (See [And96b, §2.3]) Two Weil cohomologies related by comparison isomorphisms yield

canonically and functorially isomorphic algebras A•mot(X) of motivated cycles. In partic-
ular, all the classical cohomology theories yield the same A•mot(X).

From here, André defines a categoryMF of motives for motivated cycles exactly as in Defini-
tion 4.1.7, replacing algebraic correspondences with motivated correspondences.4 André shows the
endomorphism algebras of objects of MF are semi-simple (finite-dimensional) Q-algebras, from
which it follows (see [Jan92]) that MF is an abelian semi-simple category. Since the Künneth
projectors πi

X are motivated cycles, we can define the modified commutativity constraint described
in §4.1.2.2, thereby makingMF into a neutral Tannakian category over Q:

Theorem 4.1.15 (Théorème 0.4 of [And96b]). MF is a neutral Tannakian category over Q. It
is graded, semi-simple, and polarized. Every classical cohomology factors throughMF .

Remark 4.1.16. We will often use the short-hand H(X) for the object (X, id, 0), and Hi(X) for
(X, πi

X, 0) (recall the notation from Definition 4.1.7). It will be clear from context when H(X) refers
to an object ofMF , and when it refers to the output of any particular Weil cohomology theory H∗.

In particular, this sets in motion the formalism of motivic Galois groups, and the theory be-
comes a very useful circumvention of the standard conjectures. Perhaps its most unsatisfactory
feature–present also in the theory of absolute Hodge cycles–is that its ‘motives’ are not known to
give rise to compatible systems of `-adic representations.

Now we specify fiber functors and no longer regard F as an abstract field. For any σ : F ↪→
C, MF is Tannakian and neutralized by the σ-Betti fiber functor (denoted Hσ), so we obtain its
Tannakian group, ‘the’ motivic Galois group, GF(σ). For the `-adic fiber functor X 7→ Hét(XF ,Q`),
we denote by GF,` the corresponding motivic group (over Q`). It is more convenient to choose an
embedding σ : F ↪→ C, since this allows us, via the comparison isomorphisms

Hét(XF ,Q`)
∼
−−→
σ∗

Hét(XF ⊗F,σ C,Q`) � Hσ(X,Q) ⊗Q Q`,

4André defines more generally a category of motives ‘modeled on’ a full sub-categoryV of the category of smooth
projective F-schemes, with V assumed stable under products, disjoint union, and passage to connected components.
This amounts to restricting the auxiliary varieties Y permitted in Definition 4.1.13. We will always take V to be all
smooth projective F-schemes.
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to deduce an isomorphism GF(σ)⊗QQ` � GF,`. Eventually, F will simply be regarded as a subfield
of C, with F its algebraic closure in C; in that case, we will omit the σ from the notation. For now,
however, we retain it.

As a variant on this formalism, to any object (or collection of objects) M of MF , we can
associate the smallest Tannakian subcategory 〈M〉⊗ generated by M (fully faithfully embedded
in MF), and we can then look at its Tannakian group, denoted GM

F (σ). A particularly important
example comes from taking M to range over (the objects of MF associated to) all finite étale
F-schemes; this defines the sub-category of Artin motives. The fully faithful inclusion of the
subcategoryMart

F of Artin motives over F induces a surjection

GF(σ)� Gart
F (σ) � ΓF ,

and when combined with the base-change functor MF → MF , we obtain an exact sequence5 of
pro-algebraic groups

1→ GF(σ)→ GF(σ)→ ΓF → 1.
By Proposition 6.23d of [DM11], for all ` there are continuous sections (homomorphisms) ΓF →

GF(Q`) (after unwinding everything, this is simply the statement that ΓF acts on `-adic cohomol-
ogy).

We can similarly compare the ‘arithmetic’ and ‘geometric’ versions of the motivic Galois group
of any object M ofMF: there is a commutative diagram, where the vertical morphisms are surjec-
tive:

1 // G
MF

F
(σ) // GM

F (σ)

1 // GF(σ)

OO

// GF(σ)

OO

// ΓF
// 1.

Lemma 4.1.17. Assume that GMF

F
(σ) is connected. Then there exists a finite extension F′/F

such that GMF′

F′ (σ) is connected.

Proof. Fix a prime `, a section s` : ΓF → GF(Q`), and a finite extension F′/F such that the
Zariski closure of the `-adic representation ρM`

: ΓF′ → GL(M`) is connected. The image of
G

MF′

F′ ⊗Q Q` in GL(M`) is then equal to the product of the two connected groups ρM`
(ΓF′)

Zar
and(

G
MF

F
⊗Q Q`

)
, hence is itself connected. �

Remark 4.1.18. If in 〈MF〉
⊗ all Hodge cycles are motivated, GMF

F
(σ) is connected.

The assertion that Hodge cycles are motivated is a (still fiercely difficult) weakened version
of the Hodge conjecture. We now describe what is essentially the only understood case of this
problem. Many of the results of [And96a] rest on earlier work of André (Théorème 0.6.2 of
[And96b]) showing that on a complex abelian variety, all Hodge cycles are motivated (a variant of
Deligne’s result that Hodge cycles on a complex abelian variety are absolutely Hodge). One useful
consequence is:

5See Proposition 6.23a, c of [DM11]. This is a corrected, TeXed version of the original article in [DMOS82]; it is
available at http://www.jmilne.org/math/xnotes/index.html. Note that part b is a modification of the (only conjectural)
statement in the original article.
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Corollary 4.1.19 (André). Let A/C be an abelian variety, and let M be the motive H1(A) (an
object ofMC). Then the motivic group GM

C (for the Betti realization) is equal to the Mumford-Tate
group MT (A), and in particular is connected.

Proof. MT (A), recall, is the smallest Q-sub-group of GL(H1
B(AC,Q)) whose R-points contain

the image of the S-representation corresponding to the R-Hodge structure H1
B(AC,R); by the gen-

eral theory of Mumford-Tate groups, this is equal to
• the Tannakian group for the Tannakian category ofQ-Hodge structures generated by MB =

H1
B(AC,Q); and

• the subgroup of GL(MB) fixing exactly the Hodge tensors in every tensor construction
T m,n(MB) := (MB)⊗m ⊗ (M∨

B)⊗n.
Similarly, the motivic group GM

C is the subgroup of GL(MB) fixing exactly the motivated cycles in
every tensor construction T m,n(MB). Of course (on any variety) all motivated cycles are Hodge cy-
cles, so there is a quite general inclusion MT (A) ⊂ GM

C . Applying André’s result to all powers of A,
we can deduce the reverse inclusion: if t ∈ T m,n(MB) is a Hodge cycle, then (by weight considera-
tions) m = n, and viewing this tensor space (via Künneth and polarization) inside H2m(A2m,Q)(m),
we see that t is motivated. �

The following point is implicit in the arguments of [And96a], but we make it explicit in part
to explain an important foundational point in the theory of motivated cycles.

Corollary 4.1.20. Let F be a subfield of C, with algebraic closure F in C, and let A/F be an
abelian variety. Let M be the object of MF corresponding to H1(AF). Then GM

F
(for the F ⊂ C

Betti realization) is connected, equal to MT (AC).

Proof. We deduce this from the previous result and the following general lemma, which is of
course implicit in [And96b]:

Lemma 4.1.21. Let L/K be an extension of algebraically closed fields, and let M be an object of
MK , with base-change M|L to L. Then via the canonical isomorphism Hét(M,Q`) � Hét(M|L,Q`),
the `-adic motivic groups GM

K,` and GM|L
L,` agree.

Proof. This follows from the fact (2.5 Scolie of [And96b]) that the comparison isomorphism
(for M = H∗(X)) identifies the spaces of motivated cycles A∗(X)

∼
−→ A∗(XL). This follows from stan-

dard spreading out techniques, but we provide some details, since they are omitted from [And96b].
Writing L = lim

−−→
λ

Kλ as the directed limit of its finite-type K-sub-algebras allows all the data required

to define a motivated cycle on XL (a smooth projective Y/L, algebraic cycles on XL × Y , the Lef-
schetz involution on cohomology of XL × Y) to be descended to some S λ = Spec(Kλ). The general
machinery allows us to assume (enlarging λ) that we have Yλ/S λ smooth projective (of course
Xλ = X ⊗K Kλ is smooth projective), a relatively ample invertible sheaf ηλ of ‘product-type’ on
Xλ ×S λ

Yλ, and various closed S λ-subschemes

Z ↪→ X := Xλ ×S λ
Yλ

that are smooth over S λ and whose linear combinations define spread-out versions of the algebraic
cycles on XL×Y . The purity theorem in this context (Théorème 3.7 of Artin’s Exp. XVI of [sga73])
yields an isomorphism

H2 j
Z (X,Q`)( j)

∼
−→ H0(Z,Q`),
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hence a cycle class [Z] in H2 j(X,Q`)( j). Regarding x̄ : Spec(L) → S λ as a geometric point
over some scheme-theoretic point x, and letting s̄ : Spec(K) → S λ be a geometric point over a
scheme-theoretic closed point s lying in the closure of x, the cospecialization map H2 j(Xs̄,Q`)

∼
−→

H2 j(Xx̄,Q`) is an isomorphism (X/S λ being smooth proper), and it carries the cycle class [Zs̄] to
the cycle class [Zx̄], since these are both restrictions of [Z], and the diagram

H2 j(Xs̄,Q`)

��

H2 j(X,Q`)

77

''

H2 j(Xx̄,Q`)

commutes. �

�

4.1.4. Motives with coefficients. We will need the flexibility of working with related cat-
egories of motives with coefficients. Let E be a field of characteristic zero. Given any E-linear
abelian (or in fact just additive, pseudo-abelian) categoryM, and any finite extension E′/E, we can
define the categoryME′ of objects with coefficients in E′ as either of the following (this discussion
is taken from §2.1 of [Del79] and 3.11, 3.12 of [DM11]):

(1) The category of ‘E′-modules inM,’ whose objects are pairs (M, α) of an object M ofM
and an embedding α : E′ → EndM(M), and whose morphisms are those commuting with
these E′-structures.

(2) The pseudo-abelian envelope of the category whose objects are formally obtained from
those of M (writing ME′ for the object in ME′ arising from M in M), and whose mor-
phisms are

HomME′ (ME′ ,NE′) = HomM(M,N) ⊗E E′.

This construction is valid for infinite-dimensional E′/E.

To pass from the first to the second description, let (M, α) be as in (1), so that EndME′ (ME′) =

EndM(M) ⊗E E′ contains, via α, E′ ⊗E E′. This E′-algebra (via the left factor) is isomorphic to a
product of fields, and there is a unique projection eid : E′ ⊗E E′ � E′ in which x⊗ 1 and 1⊗ x both
map to x. Then eid(ME′) is the object of (2) corresponding to (M, α).

There is a functor M → ME′ , which in the first language is M 7→ (M ⊗E E′, idM ⊗ idE′).
(See 2.11 of [DM11] for a precise description of M ⊗E E′.) IfM is semi-simple, then so isME′ .
If M is a neutral Tannakian category over E with fiber functor ω, then we can make ME′ into
a neutral Tannakian category over E′. Define an E′-valued fiber functor ωE′ : M → VecE′ by
ωE′(M) = ω(M) ⊗E E′. There is a diagram commuting up to canonical isomorphism,

M //

ωE′ ""

ME′

ω′E′
��

VecE′ ,
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where
ω′E′(M, α) := ωE′(M) ⊗

α⊗idE′ ,E′⊗E E′
E′.

This tensor product (and similar tensor products) means that E′ ⊗ E′ acts on E′ by the usual bi-
module structure, and acts on ωE′(M) via α on the left-hand copy of E′ and via E′-multiplication
on the right-hand copy (these two actions coincide on E). This ω′E′ neutralizes ME′ , and so we
can define the associated Tannakian group GE′ = Aut⊗(ω′E′). We wish to compare GE′ with G =

Aut⊗(ω). Note thatME′ is equivalent to RepE′(G) and G⊗E E′ = Aut⊗(ωE′). Then the composition
of functors

ME′
ω
−→
∼

RepE′(G)
F
−→
∼

RepE′(G ⊗E E′)

is given onME′ by (F just sends an object V of RepE′(G), corresponding to an E-homomorphism
G → ResE′/E(GLE′(V)), to E′ ⊗E′⊗E E′ V)

(M, α) 7→ (ω(M), ω(α)) 7→ E′ ⊗
E′⊗E′,ω(α)⊗1

(ω(M) ⊗ E′)

This composite is naturally isomorphic to ω′E′ , whence a tensor-equivalence

RepE′(GE′)
∼
−→ RepE′(G ⊗E E′).

We apply these constructions to André’s category of motivated motives over F, to form the
variant MF,E, motives over F with coefficients in E, for E any finite extension of Q. We de-
note the corresponding motivic Galois group (for the σ-Betti realization) by GF,E(σ); its E-linear
(pro-algebraic) representations correspond to objects of MF,E, and it is naturally isomorphic to
GF,Q(σ) ⊗Q E. For any object M ofMF,E, we also have the corresponding motivic group GM

F,E(σ).
As a more concrete variant, we can start with the (Q-linear, semi-simple) isogeny category AV0

F
of abelian varieties over F, and form the E-linear, semi-simple category AV0

F,E of isogeny abelian
varieties over F with complex multiplication by E. There is a (contravariant) functor AV0

F,E →

MF,E. Faltings’ theorem implies the following E-linear variant: fix an embedding E ↪→ Q`, and
consider an object A of AV0

F,E; then the natural map

EndAV0
F,E

(A) ⊗E Q` → EndQ`[ΓF ](H
1(AF ,Q`) ⊗E Q`)

is an isomorphism: simply take the usual isomorphism with Q in place of E, restrict to those
endomorphisms commuting with E → EndAV0

F
(A), and then project to the E ↪→ Q` component of

the resulting E ⊗Q Q`-module.

4.1.5. Hodge symmetry inMF,E. Our next goal is to show that objects ofMF,E satisfy (un-
conditionally) the Hodge-Tate weight symmetries, and the more fundamental symmetries in the
rational de Rham realization, needed for our abstract Galois lifting results. I expect these results
are well-known to experts, but they do not seem to have been explained in their natural degree of
generality, and in a context in which they can be proven unconditionally6. So, let M be an object
ofMF,E, of rank r. The de Rham realization MdR is a filtered F ⊗Q E-module, which is moreover

6Our discussion is an analogue of the standard discussion in the theory of motives of CM type–see §7 of [Ser94].
The Galois symmetries themselves have also been postulated in §5 of [BLGGT14], but since that paper is only
concerned with Galois representations arising from essentially conjugate self-dual automorphic representations, it has
no need to deal with this symmetry as a general principle.
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free of rank r. As in §2.4.1, we define the τ : F ↪→ E-labeled weights of M as follows: HTτ(M) is
an r-tuple of integers h, with h appearing with multiplicity

dimE grh
(
MdR ⊗F⊗QE,τ⊗1 E

)
.

In talking of τ-labeled weights, there is alway an ambient over-field, in this case E, but we will at
times want to change this to either C or Q`; that will require fixing an embedding ι : E ↪→ Q` or
ι : E ↪→ C. In either case, we can then speak of HTιτ(M), with E embedded into C or Q` via ι, and
there is an obvious equality HTτ(M) = HTιτ(M).

The essential point is that, as in the automorphic analogue Corollary 2.4.7, “motives have CM
coefficients”; compare the assertion in [And96b, §4.6(iii)] that GF splits (i.e., for any algebraic
quotient GF � H over Q, the connected component H0 has a maximal torus that splits) over Qcm.
For lack of reference for the proof, we give some details:

Lemma 4.1.22. Let N be an object ofMF,E. Then there exists an object N0 ofMF,Ecm such that
N � N0 ⊗Ecm E. Consequently, HTτ(N) depends only on the restriction of τ to Fcm.

Proof. By the formalism of Lemma 2.4.1, the second claim follows from the first. By Propo-
sition 3.3 (the analogue of the Hodge index theorem) of [And96b], C0

mot(X, X) is endowed, via a
choice of ample line bundle on X, with a positive-definite, Q-valued symmetric form, which we
call 〈·, ·〉. For any sub-object M ⊂ H(X) inMF , there follows a decomposition H(X) = M ⊕ M⊥,
by positivity and the fact that M is a semi-simple abelian category. 〈·, ·〉 therefore restricts to a
positive form on M itself, and in particular every simple object of MF carries a positive definite
form. Again by semi-simplicity, any such simple object M has End(M) isomorphic to a division
algebra D, on which we now have an involution ′ (transpose with respect to 〈·, ·〉) and a trace form
trM : D → Q (given by φ 7→ tr(φ|HB(M)) such that trM(φφ′) > 0 for all non-zero φ ∈ D. As in the
proof of the Albert classification (see [Mum70, §21, Theorem 2]), this implies that the center of
D is either a totally real or a CM field. Thus, End(M) splits over a CM field; in particular, for
any number field E and any factor N of M ⊗Q E (inMF,E), N can in fact be realized as (the scalar
extension of) an object ofMF,Ecm . �

Remark 4.1.23. When E = Q, Lemma 2.4.1 shows that HTτ(N) is independent of τ; this is
essentially the assertion that for a smooth projective X/F, the Hodge numbers of X do not depend
on the choice of embedding F ↪→ C. The next few results (culminating in Corollary 4.1.26) all
have corresponding strengthenings when E = Q.

We first record the de Rham-Betti version of the desired symmetry:

Lemma 4.1.24. Let N be an object ofMF,E lying in the k-component of the grading. Then for
any choice of complex conjugation c in Gal(E/Q),

HTc◦τ(N) = {k − h : h ∈ HTτ(N)}.

Proof. Any such object is built by taking one of the form M = Hk(X) ⊗ E, for X/F a smooth
projective variety and applying an idempotent α ∈ C0

mot(X, X)E.7 Fix an embedding ι : E ↪→ C, so
that ι ◦ τ : F ↪→ C. There is a functorial (Betti-de Rham) comparison isomorphism

MdR ⊗F,ιτ C � MB,ιτ ⊗Q C,

7And a Tate twist, but the statement of the lemma is obviously invariant under Tate twists.
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which commutes with the action of C0
mot(X, X)E on MdR and MB,ιτ, in particular making this an

isomorphism of free E ⊗Q C-modules. It induces an isomorphism on the corresponding gradeds
(with q = k − p):

grp(MdR ⊗F,ιτ C) � Hp,q
ιτ (M) � Hp,q(Xιτ) ⊗Q E,

again E ⊗Q C-linear. Just for orientation amidst the formalism, this says that

HTτ(MdR) = HTιτ(MdR) =
{
p : Hp,q(Xιτ) , 0, counted with multiplicity dimC Hp,q(Xιτ)

}
.

Now, the projection Xιτ ×C,c C→ Xιτ induces a transfer of structure isomorphism on rational Betti
cohomology, and then an E ⊗Q C-linear isomorphism

F∞ : Hp,q
ιτ (M)→ Hq,p

cιτ (M).

Let α ∈ C0
mot(X, X)E be an E-linear motivated idempotent correspondence defining an object N =

αM ofMF,E. There is a commutative diagram of E ⊗Q C-linear morphisms

Hp,q
ιτ (M)

F∞
//

αιτ
��

Hq,p
cιτ (M)

αcιτ

��

Hp,q
ιτ (M)

F∞
// Hq,p

cιτ (M).

Consider the images of the two vertical maps. Since the horizontal maps are isomorphisms, and
all the maps are E ⊗Q C-linear, we deduce an isomorphism

αιτHp,q
ιτ (M) ⊗E⊗QC,ι C

∼
−→ αcιτHq,p

cιτ (M) ⊗E⊗QC,ι C.

The left-hand side is isomorphic to

grp
(
(αM)dR ⊗F⊗QE,ιτ⊗ι C

)
,

and letting c′ be a complex conjugation in Gal(E/Q) such that ιc′τ = cιτ, the right-hand side is
isomorphic to

grk−p
(
(αM)dR ⊗F⊗QE,ιc′τ⊗ι C

)
.

It follows that
HTc′τ(αM) = {k − h : h ∈ HTτ(αM)} .

But by the previous lemma, HTc′τ(αM) = HTcτ(M), so we are done. �

Next we observe (as in §2.4 of [And96b], but with a few more details) that ‘p-adic’ comparison
isomorphisms hold unconditionally in MF,E; this is one of the main reasons for working with
motivated cycles rather than absolute Hodge cycles.

Lemma 4.1.25. Let N be an object of MF,E. Then for all v|`, the free E ⊗Q Q`-module M` is
a de Rham representation of ΓFv , and there is a functorial (with respect to morphisms in MF,E)
isomorphism of filtered Fv ⊗Q E � Fv ⊗Q` (Q` ⊗Q E)-modules

Fv ⊗F MdR � DdR(M`|ΓFv
).

Proof. It suffices to check for objects of the form M = H(X)⊗Q E, for X/F smooth projective.
Faltings’ theorem (of which there are now several proofs, including the necessary corrections to
the original [Fal89]; a ‘simple’ recent proof is [Bei12]) provides the comparison

H∗dR(XFv) ⊗Q E � DdR

(
H∗(XFv

,Q`)
)
⊗Q E,
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which is an isomorphism of filtered Fv ⊗Q E-modules. Let α ∈ C0
mot(X1, X2)E be a motivated

correspondence. Let d1 = dim(X1). The class α has realizations αdR and α` in cohomology groups
that are also compared by Faltings (note that α` is fixed by ΓFv):

H2d1
dR ((X1 × X2)Fv)(d1)) ⊗Q E � DdR

(
H2d1((X1 × X2)Fv

,Q`)(d1)
)
⊗Q E,

and the claim is that αdR maps to α`. The comparison isomorphism is compatible with cycle
class maps (see part (b) of the proof of [Bei12, Theorem 3.6]), and our cycle α is spanned by
elements of the form prX1×X2×Y

X1×X2,∗
(β ∪ ∗γ), with Y/F another smooth projective variety and β and γ

algebraic cycles on X1 × X2 × Y . Applying the comparison isomorphism also to X1 × X2 × Y ,
and applying compatibility with cycle classes, cup-product, (hence) Lefschetz involution, and the
projection prX1×X2×Y

X2,∗
–this last point because of compatibility with pull-back induced by morphisms

of varieties and, again, Poincaré duality–we can deduce that αdR maps to α`. �

Corollary 4.1.26. Let M be an object ofMF,E. Fix an embedding ι : E ↪→ Q`, and use this to
identify E as a subfield of Q`. Then for all τ : F ↪→ Q`, HTτ(M` ⊗E Q`) depends only on τ0 = τ|Fcm .
If M is moreover pure of some weight k, then

HTτ0◦c(M` ⊗E Q`) =
{
k − h : h ∈ HTτ0(M` ⊗E Q`)

}
.

Proof. Write ι−1τ for the embedding F ↪→ E induced by τ and ι. By the previous lemma,
HTτ(M` ⊗E Q`) = HTι−1τ(M). The latter depends only on τ|Fcm , and when M is pure satisfies the
required symmetry, by Lemmas 4.1.22 and 4.1.24. �

Finally, we can show that the Galois lifting results of §3.2 apply to representations arising from
objects ofMF,E. The result that follows is clumsily proven and has been superseded (and greatly
strengthened) by [Pat16, Corollary 1.1]. The reader would do better to turn there, but here is a
simpler argument in the special case in which motivic Galois groups over F are connected, which
is expected always to be the case; the complication in the present proof arises from the fact that the
proof of Theorem 3.2.7 requires an initial reduction to the case of connected monodromy group.
Fix an embedding E ↪→ Q`, inducing a place λ of E. For short-hand, we denote by GF,Q`

the
base-change to Q` of the Eλ-group GF,λ defined by the λ-adic étale fiber functor on the category
MF,E, and we make the analogous definition of GM

F,Q`
for objects M ofMF,E.

Corollary 4.1.27. Let F be a totally imaginary field. Let M be an object ofMF,E and E ↪→ Q`
a fixed embedding, to which we associate the `-adic representation M` ⊗E Q`, which is a represen-
tation both of ΓF and of the motivic group GM

F,Q`
. Make the following assumption

• G
MF

F,Q`
is connected.

Suppose that H̃ → H is any central torus quotient of linear algebraic groups over Q`, and that
there is a factorization

GM
F,Q`

↪→ H ↪→ GLQ`(M` ⊗E Q`),
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where of course the composition of these inclusions is the natural representation. Then there exists
a geometric lift ρ̃

H̃(Q`)

��

ΓF

ρ̃

55

ρ
// GM

F,Q`
(Q`) // H(Q`).

Similarly, if F is any number field, but E is Q, then without any assumption on the motivic group
G

MF

F
, such a ρ̃ exists.

Remark 4.1.28. The assumption that GMF

F,Q`
is connected is expected always to hold. In partic-

ular, this should not be necessary for the conclusion of the corollary to hold.

Proof. Corollary 4.1.26 tells us that composing ρ with any irreducible algebraic representation
of GM

F,Q`
yields an `-adic representation satisfying the Hodge symmetries of Conjecture 3.2.5. But

the arguments of Proposition 3.2.7 and Theorem 3.2.10 do not apply directly, because they assume
these symmetries after composition with irreducible representations of the connected component
(ρ(ΓF)

Zar
)0.8 The simplest (but imperfect) way around this is to assumeGMF

F,Q`
is connected, and then

run through the arguments of Proposition 3.2.7 and Theorem 3.2.10 with GMF′

F′,Q`
, for F′ sufficiently

large (see Lemma 4.1.17), in place of ρ(ΓF′)
Zar

: reduce to the connected case (replacing F by F′)
as in Theorem 3.2.10, and then note that the proof of Proposition 3.2.7 only requires identifying
a connected reductive group containing the image of ρ such that composition with irreducible
representations of this group yields Galois representations with the desired symmetry (whether or
not these Galois representations are themselves irreducible).

The second assertion (when E = Q) follows by the same argument: by Remark 4.1.23, the τ-
labeled Hodge-Tate co-character µτ of ρ is independent of τ. It can be interpreted as a co-character
of (ρ(ΓF)

Zar
)0, and composing with finite-dimensional representations of this group, we obtain the

necessary Hodge-Tate symmetries to apply the argument of Proposition 3.2.7. �

Remark 4.1.29. Similarly, there is a motivic version of Corollary 3.2.8.

4.1.6. Motivic lifting: the potentially CM case. One case of the desired motivic lifting result
is immediately accessible, when the corresponding Galois representations are potentially CM. We
denote by CMF the Tannakian category of motives (for motivated cycles) over F generated by
Artin motives and potentially CM abelian varieties. As before an embedding σ : F ↪→ C yields,
through the corresponding Betti fiber functor, a Tannakian group TF(σ) = Aut⊗(Hσ|CMF ). For a
number field E, we can also consider, as in §4.1.4, the category CMF,E of potentially CM motives
over F with coefficients in E, with its Tannakian group TF,E(σ).9 As with GF , there is a sequence

1→ TF,E → TF,E → ΓF → 1,

8If this group were, contrary to conjecture, not equal to GMF

F,Q`
, then it is not obvious in general how to relate the

two putative Hodge symmetries.
9From now on, σ will be implicit.
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where again the projection TF,E → ΓF has a continuous section sλ on Eλ-points. Deligne showed in
[DMOS82] (Chapter IV: ‘Motifs et groupes de Taniyama’) that TQ is isomorphic to the Taniyama
group constructed by Langlands as an explicit extension of ΓQ by the connected Serre group.10

Proposition 4.1.30. Let F be totally imaginary. Let H̃ → H be a surjection of linear algebraic
groups over a number field E with central torus kernel. For any homomorphism ρ : TF,E → H,
there is a finite extension E′/E such that ρ lifts to a homomorphism

H̃E′

��

TF,E′

ρ̃
<<

ρ
// HE′ .

Proof. Fix a finite place λ of E and consider the λ-adic representation ρλ = ρ◦sλ : ΓF → H(Eλ).
Since TF is isomorphic to the connected Serre group, we can unconditionally apply Corollary
4.1.27 to find, for some finite extension E′λ/Eλ a geometric lift ρ̃λ : ΓF → H̃(E′λ) of ρλ. Note that
ρ̃λ is potentially abelian, since ρλ is, and the kernel of H̃ → H is central. Proposition IV.D.1
of [DMOS82] implies that ρ̃λ arises from a homomorphism (of groups over E′λ) TF ⊗Q E′λ �

TF,E ⊗E E′λ → H̃ ⊗E E′λ. This in turn must be definable over some finite extension E′/E (E′ is thus
embedded in E′λ), i.e. there is a homomorphism ρ̃ : TF,E′ → H̃ ⊗E E′ whose extension to E′λ gives
rise to ρ̃λ. We explain this technical point in Lemma 4.1.31 below. To check that ρ̃ is actually a lift
of ρ ⊗E E′, it suffices to observe:

• The restriction to TF,E′ is a lift: the restrictions of ρ̃ and ρ are simply the algebraic homo-
morphisms of the connected Serre group (tensored with E′) corresponding to the labeled
Hodge-Tate weights of ρ̃λ and ρλ.
• The λ′-adic lift, for the place λ′ of E′ induced by E′ ↪→ E′λ, is a lift (by construction).
• It suffices to check that ρ̃ is a lift on E′λ′-points. First, it suffices to check that ρ̃⊗E′ E′λ′ lifts
ρ ⊗E E′λ′ . This in turn can be checked on E′λ′-points: we are free to replace TF,E′ ⊗E′ E′λ′
by some finite-type quotient T in which the E′λ′-points are Zariski-dense. Then the closed
subscheme T ×

H×H
H ↪→ T (where the two maps to H × H are the diagonal H → H × H

and the product of the two maps T → H × H given by ρ and ρ̃ followed by the quotient
H̃ → H) contains T (E′λ′), hence equals T .

Then we are done, since TF,E′(E′λ′) = TF,E′(E
′
λ′) · sλ′(ΓF). �

Here is the promised lemma showing that ρ̃ may be defined over a finite extension E′ of E:

Lemma 4.1.31. Let K/k be an extension of algebraically closed fields of characteristic zero.
Let T be a (not necessarily connected) reductive group over k, and let π : H̃ → H be a surjection
(defined over k) of reductive k-groups. Suppose that ρ : T → H is a k-morphism, and that the
scalar extension ρK lifts to a K-morphism ρ̃ : TK → H̃K . Then ρ lifts to a k-morphism T → H̃.

Proof. This is a simple spreading-out argument. Namely, writing K as the direct limit of its
finite-type k-sub-algebras, we can descend the relation πK ◦ ρ̃ = ρK to some finitely-generated

10More precisely, equipped with the data of the projection to ΓQ, a section on AF, f -points, and the co-character
Gm,C → TC giving the Hodge filtration on objects of CMC, TQ is uniquely isomorphic to the Taniyama group,
equipped with its corresponding structures.
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k-sub-algebra R of K, in particular obtaining ρ̃R : TR → H̃R such that ρ̃R ⊗R K = ρ̃. We then choose
a non-zero k-point α : R→ k (a morphism of k-algebras), and specializing the relation πR ◦ ρ̃R = ρR

via α, we obtain a lift ρ̃R ⊗R,α k of ρ over k.
�

Remark 4.1.32. • We have stated Proposition 4.1.30 only for imaginary fields for sim-
plicity, but of course there is a variant for general number fields taking into account Corol-
lary 3.2.8. When F is totally real, there will be such ρ that do not lift: simply take a
type A Hecke character ψ of a quadratic CM extension L/F as in Example 2.5.3. Then
Ad0(IndF

L (ψ)) will have a potentially abelian Galois `-adic realizations ΓF → SO3(Q`),
which arises from a representation of TF by Proposition IV.D.1 of [DMOS82]. As we
have seen, these representations do not lift geometrically to GSpin3.
• The method of checking that ρ̃–once we know it exists–actually lifts ρ will recur in §4.2;

this division into a geometric argument (lifting ρ|TF,E
and a Galois-theoretic argument

(lifting ρ◦ sλ) seems to be the natural way to make arguments about motivic Galois groups
over number fields (compare Lemma 4.1.17).
• On the automorphic side, representations of the global Weil group ought to parametrize

‘potentially abelian’ automorphic representations. In that case, the analogous lifting result
is a theorem of Labesse ([Lab85]).

Before proceeding to more elaborate examples, let us clarify here that, even though we study
lifting through central quotients, the nature of these problems is in fact highly non-abelian. That
is, suppose we have a lift ρ̃ : GF,E → H̃E of ρ : GF,E → HE (we may assume H̃ and H are reductive;
let us further suppose they are connected), and let r′ and r be irreducible faithful representations
of H̃E and HE. If the derived group of H is not simply-connected, but its simply-connected cover
Hsc injects into H̃, then typically r′ ◦ ρ̃ will not lie in the Tannakian subcategory ofMF,E generated
by r ◦ ρ and all potentially CM motives, i.e. objects of CMF,E (of course, it does in the example of
Proposition 4.1.30). We make this precise at the Galois-theoretic level:

Lemma 4.1.33. Let H̃ → H, r′, and r be as above. Let ρ : ΓF → H(Q`) be a geometric Galois
representation having a geometric lift ρ̃ : ΓF → H̃(Q`). Assume that

• the algebraic monodromy group of ρ is H itself;
• the kernel of Hsc ∩ (ρ̃(ΓF))

Zar
→ H is non-zero.

Then r′◦ρ̃ is not contained in the Tannakian sub-category of semi-simple geometricQ`-representations
of ΓF generated by r ◦ ρ and all potentially abelian geometric representations.

Proof. If r′◦ ρ̃were contained in this category, then there would exist an irreducible potentially
abelian representation τ of ΓF and an injection r′ ◦ ρ̃ ↪→ τ ⊗ (r1 ◦ ρ) for some irreducible algebraic
representation r1 of H. By Proposition 3.4.1, τ has the form IndF

L (ψ · ω) for some character ψ
and irreducible Artin representation ω of ΓL. By Frobenius reciprocity, there is a non-zero map
(r′ ◦ ρ̃)|ΓL → ψ · (r1 ◦ ρ)|ΓL ⊗ω; both sides are irreducible,11 so ω is one-dimensional, and absorbing
ω into ψ we may assume r′ ◦ ρ̃|ΓL

∼
−→ ψ · (r1 ◦ ρ)|ΓL . Comparing algebraic monodromy groups, we

obtain a contradiction, since by assumption Hsc ∩ (ρ̃(ΓF))
Zar

cannot inject into Gm × H. �

11For the right-hand side, see Proposition 3.4.1: the tensor product of a Lie-irreducible and an Artin representation
is irreducible; of course, for the purposes of this lemma, we could just further restrict L.
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In §4.2, we will see many examples of ρ with full SO monodromy group; their lifts to GSpin
will satisfy the conclusions of Lemma 4.1.33.

4.2. Motivic lifting: the hyperkähler case

4.2.1. Setup. The aim of this section is to produce a lifting not merely at the level of a single
`-adic representation, but of actual motives, in a very special family of cases whose prototype is
the primitive second cohomology of a K3 surface over F. So that the reader has some examples to
keep in mind, we recall the following definitions:

Definition 4.2.1. Let F be a subfield of C. A hyperkähler variety X over F is a geometrically
connected and simply-connected smooth projective variety over F of even dimension 2r such that
Γ(X,Ω2

X) is one-dimensional, generated by a differential form ω for which ωr is non-vanishing at
every point of X (i.e., as a linear functional on the top wedge power of the tangent space). A K3
surface over F is a hyperkähler variety X/F of dimension 2.

Example 4.2.2. The simplest example of a K3 surface is a smooth quartic hypersurface in P3.
Higher-dimensional examples of hyperkählers are notoriously difficult to produce. One standard
family is gotten by starting with any K3 surface X, and then for any integer r ≥ 1 considering
the Hilbert scheme X[r] of r points on X (more precisely, the moduli of closed sub-schemes of
length r); each X[r] is a hyperkähler variety, with of course X[1] = X. (This construction is due to
Beauville: see [Bea83, §6].)

More generally, we work in the axiomatized setup of [And96a]. By a polarized variety over a
subfield F of Cwe mean a pair (X, η) consisting of variety X/F and an F-rational ample line bundle
η on X. For a fixed k ≤ dim X, we will consider the motive of primitive cohomology (omitting the
η-dependence from the notation),

Prim2k(X)(k) = ker
(
ηdim X−2k+1 : H2k(X)(k)→ H2 dim X−2k+2(X)(dim X − k + 1)

)
,

as an object of MF . Cup-product with η lets us endow the motive H2k(X)(k) with the quadratic
form

〈x, y〉η = (−1)kx ∪ y ∪ ηdim X−2k ∈ H2 dim X(X)(dim X) � Q,
and we can equivalently define Prim2k(X)(k) as the orthogonal complement of H2k−2(X)(k− 1)∪ η.

The two Weil cohomologies we use are `-adic (with coefficients in Q` or some extension inside
Q`) and Betti cohomology; we will occasionally take integral Betti cohomology, where we will
always work modulo torsion, so that Prim2k(XC,Z)(k) is a sub-module of H2k(XC,Z)(k)/(torsion).
In that case, the primitive lattice defines a polarized (by 〈·, ·〉η) integral Hodge structure of weight
0; we write hp,q for the Hodge numbers. André proves his theorems, which include versions of the
Shafarevich and Tate conjectures, under the following axioms:

Ak: h1,−1 = 1, h0,0 > 0, and hp,q = 0 if |p − q| > 2.
Bk: There exist a smooth connected F-scheme S , a point s ∈ S (F), and a smooth projective

morphism f : X → S such that:
– X � Xs;
– the Betti class ηB ∈ H2(Xan

C ,Z)(1)/(torsion) extends to a section of R2 f an
C∗Z(1)/(torsion);

– letting S̃ denote the universal cover of S (C), and D denote the period domain of
Hodge structures on VZ := Prim2k(XC,Z)(k) polarized by 〈·, ·〉η, we require that the
image of S̃ → D contain an open subset.
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B+
k : For each t ∈ S (C), every Hodge class in H2k(Xt,Q)(k) is an algebraic class.

Ak is essential to the method, which relies on studying the associated Kuga-Satake abelian variety,
which exists for Hodge structures of this particular form. Bk is a statement about deforming X into
a ‘big’ family. B+

k is of course a case of the Hodge conjecture, which is always known when k = 1
(the theorem of Lefschetz). But we provide these axioms merely for orientation. Of interest is the
following collection of varieties for which they are known to hold:

Proposition 4.2.3 (See §2-3 of [And96a]). The axioms A1, B1, and B+
1 are satisfied by: abelian

surfaces; surfaces of general type with ample canonical bundle KX, h2,0(X) = 1, and KX · KX = 1;
and polarized hyperkähler varieties with b2 > 3 (in particular, K3 surfaces). Cubic fourfolds
(polarized via OP5(1)) satisfy A2, B2, and B+

2 .

This relies on the work of many people; see §2 and §3 of [And96a]. Finally, André observes
that these axioms are independent of the choice of embedding F ↪→ C; note that for Ak this is a
special case of Remark 4.1.23.

Remark 4.2.4. The proposition does not apply to hyperkähler varieties with Betti number 3,
since its argument (building on that of [Del72]) requires the variety X to have sufficiently robust
(projective) deformation theory, whereas a hyperkähler with b2(X) = 3 is rigid. In fact, it is
believed that such hyperkählers do not exist. Regardless, in that case one can still say something
about the motivic lifting problem, since the `-adic representation H2(XF ,Q`) is potentially abelian.
In principle, this should force the underlying motivic Galois representation to factor through TF ,
at which point we would apply Proposition 4.1.30; but this argument would require checking that
two GF-representations with isomorphic `-adic realizations are themselves isomorphic, i.e. an
unknown case of the Tate conjecture. At least we have (as in Proposition 4.1.30):

Lemma 4.2.5. Let X/F be a smooth projective variety with b2(X) = 3. If necessary, replace
F with a quadratic extension trivializing det H2(XF ,Q`). Then the `-adic realization ρ` : GF →

SO(H2(XF ,Q`)) has a lift ρ̃` to GSpin(H2(XF ,Q`)) that arises as the `-adic realization of a repre-
sentation of TF,E for suitable E.

Notation 4.2.6. • From now on we view F as a subfield of C, with F its algebraic clo-
sure in C. These embeddings will be used implicitly to define Betti realizations, motivic
Galois groups (for Betti realizations), and étale-Betti comparisons, for varieties (or mo-
tives) over extensions of F inside F.
• We write VQ for Prim2k(XC,Q)(k), and for a prime `, we will write V` for the `-adic real-

ization Prim2k(XF ,Q`)(k). As before, Prim2k(X)(k) will be used to indicate the underlying
motive, i.e. object ofMF .
• For fields E containing Q, we will sometimes denote the extension of scalars VQ ⊗Q E by

VE (or similarly for Q` and V`). This is the Betti realization of an object Prim2k(X)(k)E of
MF,E.
• The same subscript conventions will hold for other motives we consider, especially the

direct factors of Prim2k(X)(k) given by the algebraic cycles (to be denoted Alg) and its or-
thogonal complement, the transcendental lattice (T ). These motives will be discussed in
§4.2.4. In the meantime, we recall that the rational Hodge structure Prim2k(XC,Q)(k) has
a Q-subspace spanned by its Hodge classes; the orthogonal complement TQ, the transcen-
dental subspace, of this space of Hodge cycles is again a polarized Q-Hodge structure.
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• For an object M of MF , we will sometimes write ρM for the associated motivic Galois
representation. For the `-adic realization of this motivic Galois representation (i.e., the
representation of ΓF on H`(M)), we write ρM

` .
• First assume dim VQ = m is odd. The group GSpin(VQ) may not have a rationally-defined

spin representation, but it does after some extension of scalars, and over any suitably
large field E, we denote by rspin : GSpin(VE) → GL(WE) this algebraic representation. If
m is even, we similarly denote by WE = W+,E ⊕W−,E the direct sum of the two half-spin
representations. In contrast to VE = VQ ⊗Q E, this WE is not necessarily an extension of
scalars from an underlying Q-space.

Possibly after replacing F by a quadratic extension, we may assume that the ΓF-representation
V` is special orthogonal, i.e. ρ` : ΓF → SO(V`) ⊂ O(V`). Since for almost all finite places v,
the frobenius frv acts on H2k−2(XF ,Q`) and H2k(XF ,Q`) with eigenvalues that are independent of
` ([Del74]), and trivially on the `-adic Chern class η`, the eigenvalues of frv on Prim2k(XF ,Q`)(k)
are independent of `. Consequently, if det ρ` is trivial for one `, then it is for all `. We will from
now on assume, for technical simplicity, that this determinant condition is satisfied.

4.2.2. The Kuga-Satake construction. We review the classical Kuga-Satake construction
and outline André’s refinement, which implies a potential version (i.e., after replacing F by a
finite extension) of our motivic lifting result. See §4 and §5 of [And96a]. His approach is inspired
by that of [Del72], in which Deligne used the Kuga-Satake construction (in families) to reduce
the Weil conjectures for K3 surfaces to the (previously known) case of abelian varieties. Let VZ
be the polarized quadratic lattice Prim2k(XC,Z)(k) of the previous subsection. Write m = 2n or
m = 2n + 1 for its rank. Basic Hodge theory implies that the pairing on VR is negative-definite on
the sub-space (H1,−1 ⊕ H−1,1)R, and positive-definite on H0,0

R , hence has signature (2,m − 2). Re-
calling the discussion of §4.1.1, this real Hodge structure yields a homomorphism h : S→ SO(VR)
that lifts uniquely to a homomorphism h̃ : S → GSpin(VR) whose composition Nspin ◦ h̃ with the
Clifford norm Nspin is the usual norm S→ Gm,R.

Let C(VZ) and C+(VZ) denote the Clifford algebra and the even Clifford algebra associated to
the quadratic space VZ. Let LZ be a free left C+(VZ)-module of rank one. Denote by C+ the ring
EndC+(VZ)(LZ)op. Because of the ‘op,’ C+ naturally acts on LZ on the right, and we then correspond-
ingly have EndC+(LZ) � C+(VZ). The choice of a generator x0 of LZ induces a ring isomorphism

C+(VZ)
φx0
−−→ C+

c 7→(bx0 7→ bcx0).

Via h̃ and the tautological representation GSpin(VR) ↪→ C+(VR)×, LR := LZ ⊗Z R acquires a Hodge
structure of type (1, 0), (0, 1); the Hodge type is easily read off from the fact that EndC+(LZ) �
C+(VZ) is also an isomorphism of Hodge-structures,12 or by recalling the remarks of §4.1.1 and
listing the weights of the spin representation. Concretely (as in the original construction of Satake
[Sat66] and Kuga-Satake [KS67]), we can choose an orthogonal basis e1, e2 of (H1,−1 ⊕ H−1,1)R,
normalized so that 〈ei, ei〉 = −1 for i = 1, 2. Then the automorphism of C+(VR) given by multipli-
cation by e1e2 is a complex structure, by the defining relations for the Clifford algebra. In fact, this
integral Hodge structure is polarizable: this can be shown explicitly, or by a very soft argument

12Giving C+(VZ) the Hodge structure induced from that on the tensor powers of VZ.
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(apply Proposition 2.11.b.iii′ of [Del72]). We therefore obtain a complex abelian variety, the Kuga-
Satake abelian variety KS (X) = KS (XC, η, k), associated to our original VZ. The right-action of C+

on LZ commutes with the Hodge structure, so C+ acts as endomorphisms of KS (X). Generically,
this will be the full endomorphism ring; we will have to be attentive later to how much bigger the
endomorphism ring can be.

One of the main technical ingredients in [And96a] is the following descent result, which uses
rigidity properties of the Kuga-Satake construction:

Lemma 4.2.7 (Main Lemma 1.7.1 of [And96a]). Let (X, η) be a polarized variety over a subfield
F of C, satisfying properties Ak and Bk. Then there exists an abelian variety AF′ over some finite
extension F′/F such that

• The base-change AC is the Kuga-Satake variety KS (X);
• there is a subalgebra C+ of End(AF′) and an isomorphism of Z`[ΓF′]-algebras

EndC+

(
H1(AF ,Z`)

)
� C+(Prim2k(XF ,Z`)(k)).

We subsequently write L` for the `-adic realization H1(AF′ ⊗ F,Q`). The main result of the
‘motivated’ theory of hyperkählers, (the foundation of André’s results on the Tate and Shafarevich
conjectures) is:

Theorem 4.2.8 (see Theorem 6.5.2 of [And96a]). For some finite extension F′/F, Prim2k(XF′)(k)
is a direct factor (inMF) of End

(
H1(AF′)

)
, and both Prim2k(XF′)(k) and H1(AF′) have connected

motivic Galois group.

Write ρA : GF′ → GL(LQ) and ρV : GF → SO(VQ) for the motivic Galois (for the Betti realiza-
tion) representations associated to H1(AF′) and Prim2k(X)(k). We will somewhat sloppily use the
same notation ρA and ρV for various restrictions of these representations (eg, to GF). Note that by
Corollary 4.1.20, the image of ρA is the Mumford-Tate group of KS (X), which is easily seen to be
contained in GSpin(VQ) = {x ∈ C+(VQ)× : xVQx−1 = VQ}. More precisely:

Corollary 4.2.9. For some finite extension F′/F, ρA factors through GSpin(VQ) and lifts ρV |GF′ .
A fortiori, ρA

` lifts ρV
` |ΓF′ .

Proof. Over C (or F), the image of ρA is MT (AC), hence contained in GSpin(VQ). We can
therefore compare the two maps

GC
(ρV ,π◦ρA)
−−−−−−→ SO(VQ) × SO(VQ)→ GL

(
C+(VQ)

)
× GL

(
C+(VQ)

)
,

where π denotes the projection GSpin(VQ)→ SO(VQ). Under the motivated isomorphism

C+(Prim2k(XC)(k)) � End
(
H1(A)

)
the adjoint action of ρA on End(LQ) agrees with the action of π ◦ ρA on C+(VQ), so the two compo-
sitions GC → GL

(
C+(VQ)

)
above coincide. Now, if m is odd, SO(VQ) → GL(C+(VQ)) is injective,

so ρV = π ◦ ρA; that is, at least over C, ρA lifts ρV . If m is even, we deduce that the compositions

GC
(ρV ,π◦ρA)
−−−−−−→ SO(VQ) × SO(VQ)→ GL(∧2VQ) × GL(∧2VQ)
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agree.13 The kernel of ∧2 : SO(VQ) → GL(∧2VQ) is {±1} (and central), so we see that ρV and
π ◦ ρA agree up to twisting by some character χ : GC → {±1} ⊂ SO(VQ). But clearly this character
factors through GM

C , where M = Prim2k(XC)(k) ⊕ H1(A), and by Theorem 4.2.8, GM
C is connected.

Therefore χ is trivial, and ρA lifts ρV as GC-representations. By Lemma 4.1.21, the same holds
for the corresponding GF-representations, and then as in Lemma 4.1.17 the same holds over some
finite extension F′/F. �

Corollary 4.2.9 does not always hold with F′ = F, and it is our task in the coming sections
to achieve a motivic descent over F itself. The Kuga-Satake variety is highly redundant, and
it is technically convenient to work with a smaller ‘spin’ abelian variety, many copies of which
constitute the Kuga-Satake variety. Since the rational Clifford algebra C+

Q may not be split, this
requires a finite extension of scalars E/Q, after which we can work in the isogeny category AV0

F′,E
of abelian varieties over F′ with E-coefficients. We take F′ as in the Corollary, and now to ease
the notation, we write simply A for AF′ .

Lemma 4.2.10. There exists a number field E and an abelian variety B/F′ with endomorphisms
by E such that there is a decomposition in AV0

F′,E:

A ⊗Q E � B2n
if m = 2n + 1;

A ⊗Q E � B2n−1
if m = 2n.

The `-adic realization H1(BF ,Q`) is isomorphic to the composite rspin◦ρ
A
` as (E⊗Q`)[ΓF′]-modules,

where as before ρA
` denotes the representation ΓF′ → GSpin(V`⊗E) obtained from L`⊗E, and rspin

denotes either the spin (m odd) or sum of half-spin (m even) representations of GSpin(V`⊗E). When
m = 2n, B decomposes in AV0

F′,E as B+ × B−, corresponding to the two half-spin representations.

Proof. Choose a number field E splitting C+(VQ). Then, letting WE denote either the spin (m
odd) representation or the direct sum W+,E ⊕W−,E of the two irreducible half-spin representations
(m even), C+(VE) is isomorphic as GSpin(VE)-representations to W2n

E , or to W2n−1

E,+ ⊕ W2n−1

E,− . As E-
algebra it is then isomorphic either to End(WE) � M2n(E) or End(W+,E) ⊕ End(W−,E) � M2n−1(E) ⊕
M2n−1(E).14 Using the orthogonal idempotents in C+

E � C+(VE), we decompose the object AF′ ⊗Q E
of AV0

F′,E into 2n (when m is odd) or 2n−1 (when m is even) copies of an abelian variety B/F′ with
complex multiplication by E. �

From this lemma and Corollary 4.2.9, we deduce a partial resolution of Question 1.1.9 in this
setting; this question clearly warrants further attention, but we will settle in the remainder of this
book for a somewhat weaker result (see, eg, the statement of Theorem 4.2.13).

Corollary 4.2.11. Assume dim VQ is odd-dimensional. Then for some finite extension L/F′,
the `-adic realizations ρA

` : ΓL → GSpin(V`) of ρA form a weakly-compatible system of GSpin-
valued representations, in the sense of Definition 1.2.3.

Proof. Let dim VQ = 2n+1. We must show that for ` , `′, the semi-simple parts (under Jordan
decomposition) of ρA

` (frv) and ρA
`′(frv) belong to the same GSpin2n+1-conjugacy class (by [Del74],

13The filtration on C+(VQ) given by the image of V⊗≤2i is motivated, since O(V)-stable, so ρV and π ◦ ρA coincide
on the i = 1 graded piece, which is just ∧2(VQ).

14Note that the field E can be made explicit if we know the structure of the quadratic lattice VZ. See Example
4.2.14 for a case where E = Q.
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these conjugacy classes are defined over Q, so we may compare them as classes in GSpin2n+1(Q)
under some fixed embeddings of Q into, respectively, Q` and Q`′). First we observe that a semi-
simple element x ∈ GSpin2n+1 is determined up to conjugacy by its conjugacy classes under the
spin representation, standard representation, and Clifford norm: a semi-simple conjugacy class
in Spin2n+1 is determined by its conjugacy classes under the spin and standard representations
(which together imply conjugacy in all the fundamental representations of the simply-connected
group Spin2n+1), and further knowing N(x) allows us (twisting by a choice of N(x)−1/2) to re-
duce to the Spin case. From the main theorem of [Del74], we know weak compatibility (as ΓF′-
representations) of the representations V` and H1(BF ,Q`). It remains to show that for some finite,
independent-of-` extension L/F′, {N ◦ ρA

` |ΓL}` is a weakly compatible system of characters.
To see this, note that by Lemma 4.1.25, each (Tate-twisted) character χ` = (N ◦ ρA

` )(1) is de
Rham with Hodge-Tate weights zero, hence has finite-order. It suffices to show that a common
finite extension L/F′ trivializes χ` for all `, and for this it suffices to bound the conductors of the
finite-order characters χ`. Recall that the H1(BF ,Q`) are in fact known to form a strongly compat-
ible system, in the sense that for each finite place v of F′, there is a Weil-Deligne representation
(independent of `) of WF′v corresponding via the `-adic monodromy theorem to (the Frobenius
semi-simplification of) H1(BF′v

,Q`) (see [Fon94]). In particular, we obtain an independent-of-`
bound on the conductor of χ` at places away from `, since as GSpin2n+1-representation the Clifford
norm N is a direct summand of r⊗2

spin (see page 135 for the full decomposition of r⊗2
spin). Moreover,

χ` is crystalline for almost all ` (wherever A has good reduction, for instance); it is therefore un-
ramified (since the Hodge-Tate weights are zero) for almost all `, so we obtain an independent-of-`
bound on the entire conductor of every χ`. Consequently, (after identification with complex char-
acters) there are only finitely many possibilities for the characters χ`, and in particular they all
become trivial upon restriction to ΓL for some finite extension L/F′. �

Remark 4.2.12. • Under the Standard Conjectures, the motivic Galois representation
N ◦ ρA gives rise to a weakly compatible system of `-adic representations, so we expect
that we can take L = F′ in the conclusion of Corollary 4.2.11.
• For n ≥ 3, it does not suffice to know the conjugacy classes of a semi-simple element x ∈

GSpin2n+1 under the spin and standard representations–further knowledge of the Clifford
norm is essential. For example, let ζ be a primitive 8th root of unity, and, in the coordinates
of §2.8, let x = (λ1 − λ2)(ζ6)(λ2 − λ3)(ζ2)(2λ3)(ζ). Then x and x · λ0(ζ2) have the same
eigenvalues in the spin (i.e., highest-weight −χ0 +

χ1+χ2+χ3
2 ) and standard representations,

but they do not have the same Clifford norm, and in particular are not GSpin7-conjugate.
• More can be said about this question, but in what follows we will not descend this weak

compatibility result to a statement for ΓF-representations, even in situations where we
achieve a motivic lift ρ̃ of ρV over F itself. In short, we will not know compatibility of the
Clifford norms N ◦ ρ̃`.

We state a simple case of the main result of this section; for the proof, see §4.2.5. More general
versions will be proven in stages, depending on the complexity of the transcendental lattice of VQ.

Theorem 4.2.13. Let (X, η) be a polarized variety over a number field F ⊂ C for which
Prim2k(XC,Z)(k) satisfies axioms Ak, Bk, and B+

k . Possibly enlarging F by a quadratic extension,
we may assume as above that for all `, det V` = 1, so that the `-adic representation ρV

` maps ΓF to
SO(V`). We make the following hypothesis on the monodromy:
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• The transcendental lattice TQ has EndQ-HS(TQ) = Q.
• det(T`) = 1.15

Then there exists a lifting of motivic Galois representations

GSpin(VE)

��

GF,E

ρ̃
99

ρ
// SO(VE).

Moreover there exist:
• a finite extension E/Q;
• an object B of AV0

F,E;
• an Artin motive M inMF,E;

such that the composite rspin ◦ ρ̃ is isomorphic in MF,E to some (explicit) number of copies of
M ⊗E H1(B). In particular, for each prime λ of E, there are lifts ρ̃λ

GSpin(V` ⊗ Eλ)

��

rspin
// GLEλ(WEλ)

ΓF

ρ̃λ
66

// SO(V`) ⊂ SO(V` ⊗ Eλ)

such that the composites {rspin ◦ ρ̃λ}λ form a weakly (or even strongly: see the proof of Corollary
4.2.11) compatible system.

This theorem is an optimal (up to the O(V`) ⊃ SO(V`) distinction) arithmetic refinement of the
(a priori highly transcendental) Kuga-Satake construction, showing the precise sense in which it
descends to the initial field of definition F.

4.2.3. A simple case. To achieve the refined descent of Theorem 4.2.13, the basic idea is
to apply our Galois-theoretic lifting results (which apply over F) to deduce ΓF-invariance of the
abelian variety B that we know to exist over F′; Faltings’s isogeny theorem ([Fal83]) implies
that this invariance is realized by actual isogenies; then we apply a generalization of a technique
used by Ribet ([Rib92]; our generalization is Proposition 4.2.29) to study elliptic curves over Q
that are isogenous to all of their ΓQ-conjugates (so-called “Q-curves”). Ribet’s technique applies
to elliptic curves without complex multiplication, and we will have to keep track of monodromy
groups enough to reduce the descent problem to one for an absolutely simple abelian variety. In
some cases, a somewhat ‘softer’ argument than Ribet’s works–we give an example in Lemma
4.2.24–but in addition to being satisfyingly explicit, the Ribet method seems to be more robust.

But first we prove Theorem 4.2.13 in the simplest case, when the Hodge structure VQ is
‘generic,’ dim VQ = 2n + 1 is odd, and the even Clifford algebra C+(VQ) is split over Q. Our
working definition of ‘generic’ will be that VQ contains no trivial Q-Hodge sub-structures (i.e., it
is equal to its transcendental lattice), and that EndQ-HS(VQ) = Q.

Example 4.2.14. If X/F is a sufficiently general K3 surface, then these hypotheses are satisfied.
The K3-lattice H2(XC,Z) is an even unimodular lattice of rank 22 whose signature over R is (by

15Unlike the first hypothesis, this determinant condition is a technicality; it can again be arranged after an (inde-
pendent of `) quadratic extension. Of course, in the generic case in which VQ = TQ, it is no additional hypothesis.
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Hodge theory) (3, 19). The classification of even unimodular lattices implies it is isomorphic (over
Z) to (−E8)⊕2 ⊕ U⊕3, where E8 and U are the E8-lattice and the hyperbolic plane lattice. Over Q,
the orthogonal complement of the ample class η is isomorphic to (−E8)⊕2⊕U⊕2⊕〈−q(η)〉, where q
is the quadratic form and 〈α〉 denotes the one-dimensional quadratic space with a generator whose
square is α. Since Prim2(XC,Q) is odd-dimensional, the basic structure theory of Clifford algebras
(see Chapter 9, especially Theorem 2.10, of [Sch85]) implies that C+(Prim2(XC,Q) is a central
simple algebra over Q, whose Brauer class is simply twice the Brauer class of E8 plus twice the
(trivial) Brauer class of U. This is obviously the trivial class, so C+(VQ) is in this case isomorphic
to M210(Q). More generally, this argument applies to VQ = Prim2(XC,Q)(1) if X is a hyperkähler
satisfying:

• b2(X) > 3;
• the dimension of H2(XC,Z) is even;
• the number of copies of the E8-lattice is even.

Now, our ‘generic’ hypothesis implies that the Hodge group of VQ is the full SO(VQ) (more
generally, see Zarhin’s result, quoted as Proposition 4.2.21, below); it follows without difficulty
that the Mumford-Tate group MT (AC) is the full GSpin(VQ), and End0(AC) = C+

Q. By our sec-
ond simplifying hypothesis, this Clifford algebra is isomorphic to a matrix algebra M2n(Q), and,
writing WQ for the spin representation of GSpin(VQ), we have two isomorphisms of GSpin(VQ)-
representations:

C+(VQ) � W2n

Q ;

C+(VQ)ad � End(WQ),

where GSpin(VQ) acts on the first C+(VQ) by left-multiplication, and on C+(VQ)ad by conjugation
(i.e., through the natural SO(VQ)-action).

We may certainly enlarge F′ to a finite extension over which all endomorphisms of AC are
defined, and the complex multiplication by C+

Q then gives an isogeny decomposition A ∼ B2n
, where

B/F′ is an abelian variety with End0(B) = Q. We can take the spin representation WQ to be equal to
H1(BC,Q) (and, extending scalars and invoking comparison isomorphisms, we get identifications
with other cohomological realizations of B–in particular, the `-adic realization Wλ = WQ ⊗Q Q`).

Proof of Theorem 4.2.13 when VQ is generic. We sketch the argument, with some details post-
poned until later sections–the goal here is to review Ribet’s method and outline the argument in
a simple case. We will now apply the technique of [Rib92] in combination with our abstract
Galois-theoretic lifting results. By Corollary 4.1.27, there exists a lift

ρ̃` : ΓF → GSpin(VQ`)

of ρV
` , and we can normalize this lift so that in the spin representation its labeled Hodge-Tate

weights HTτ(rspin◦ ρ̃`) are of ‘abelian variety’-type, i.e. 2n−1 zeroes and 2n−1 ones, for each τ : F ↪→

Q` (for details, see Lemma 4.2.23). This normalization determines ρ̃` up to finite-order twist, and it
implies that ρ̃`|ΓF′ is a finite-order twist of ρA

` , since they both lift ρV
` |ΓF′ with the same Hodge-Tate

data. We may therefore replace F′ by a finite extension and assume

ρA
` = ρ̃`|ΓF′ .

Since ρ̃` begins life over F, we see that ρA
` is ΓF-conjugation invariant. The composition of ρA

`

with the Clifford representation is 2n copies of the `-adic representation ρB
` associated to B, so ρB

`
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is also ΓF-invariant. By Faltings’s theorem, for each σ ∈ ΓF , there exists an isogeny µσ : σB→ B;
we can and do arrange that µσ is defined first for a (finite) system of representatives σi in ΓF for
Gal(F′/F), and then defined in general by µσih = µσi for all h ∈ ΓF′ . The collection of µσ yields an
obstruction class

[cB] ∈ H2(ΓF ,End0(B)×) = H2(ΓF ,Q
×), 16

given by
cB(σ, τ) = µσ ◦

σµτ ◦ µ
−1
στ.

That is, cB measures the failure of the diagram

στB
µστ

//

σµτ
��

B

σB
µσ

==

to commute. Now, the class cB may be non-trivial, and the abelian variety B may not descend (up
to isogeny) to F: in fact, that triviality of this class is equivalent to isogeny-descent is Theorem 8.2
of [Rib92]. Nevertheless, Tate’s vanishing result H2(ΓF ,Q

×

) = 0 tells us that there is a continous
1-cochain α : ΓF → Q

×

whose coboundary equals cB, i.e. cB(σ, τ) = α(στ)α(τ)−1α(σ)−1. By
continuity, α is locally constant with respect to ΓF′′ for some finite F′′/F′, and it takes values
in some finite extension Q(α) of Q. We now consider the restriction of scalars abelian variety
C := ResF′′/F(B) (here B is really the base-change to F′′, but we omit this not to clutter the
notation). The endomorphism algebra R = End0(C) of the abelian variety C is isomorphic as
Q-vector space to

HomF′′

 ∏
σ∈Gal(F′′/F)

σB, B

 =
⊕
σ

Qµσ,

where again we use the fact that End0(BF) = Q. Write λσ for the element of R corresponding to
µσ under this isomorphism.

Lemma 4.2.15 (Lemma 6.4 of [Rib92]). The algebra structure of R is given by

λσλτ = cB(σ, τ)λστ,

so there is a Q-algebra homomorphism α : R → Q(α) given by the Q-linear extension of λσ 7→
α(σ).

Since the isogeny category of abelian varieties over F is a semi-simple abelian category, we
can form the object

M = ResF′′/F(B) ⊗R,α Q(α).

We regard M as an object of AV0
F,Q(α), with Q(α)-rank (in the obvious sense) equal to the Q-rank of

B. Moreover, for any place λ|` of Q(α), the λ-adic realization

ρM
λ : ΓF → GLQ(α)λ(Mλ)

16The local constancy of the isogenies µσ implies this is a continuous cohomology class, with Q× equipped with
the discrete topology.
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has projectivization isomorphic to the canonical projective descent to ΓF of the ΓF-invariant, ir-
reducible representation of ΓF′′ on H1(BF ,Q(α)λ).17 So, ρM

λ |ΓF′′ and ρB
` |ΓF′′ � rspin ◦ ρ̃`|ΓF′′ are

isomorphic up to twist, hence rspin ◦ ρ̃` and ρM
λ are twist-equivalent as ΓF-representations. The

representation rspin : GSpin(VQ) → GL(WQ) is the identity on the center, so after identifying ρM
λ

to a representation on Wλ ⊗ Q(α)λ, we see that it factors through GSpin(V` ⊗ Q(α)λ) as a lift of
ρV
` ⊗ Q(α)λ. The required motivic lift is the representation of GF,Q(α) corresponding to H1(M) (for

more details on how to check this carefully, see Corollary 4.2.20); and the various ρM
λ form a

compatible system because they are formed from Tate modules of abelian varieties. �

4.2.4. Arithmetic descent: preliminary reduction. Now we proceed to a more general ar-
gument, making first some preliminary reductions to the analogous lifting problem for the tran-
scendental lattice. We must invoke André’s work on the Tate conjecture for X.

Theorem 4.2.16 (see Theorem 1.6.1 of [And96a]). Let (X, η) be a polarized variety over a
number field18 F satisfying Ak, Bk, and B+

k . Then:
• Prim2k(XF ,Q`)(k) is a semi-simple ΓF-representation
• the Galois invariants Prim2k(XF ,Q`)(k)ΓF are all Q`-linear combinations of algebraic cy-

cles;

The Tate conjecture for H2k(X) then implies:

Lemma 4.2.17. There is an Artin motive Alg over F whose Betti realization is the subspace
of VQ spanned by algebraic cycle classes, and whose `-adic representation is the (Artin) ΓF-
representation on VΓF′

` for any F′/F large enough (and Galois) that all of these cycle classes are
defined over F′. The transcendental lattice T likewise descends to an object ofMF . In particular,
there is an orthogonal decomposition

V` = Alg` ⊕ T`

of ΓF-representations (not merely ΓF′-representations).

Proof. Giving an Artin motive over F is equivalent to giving a representation of ΓF on a (finite-
dimensional) Q-vector space. In our case, the space (Q-span) of cycles for homological equiva-
lence

Zk
hom(XF′) ↪→ H2k(XF ,Q`)(k),

or rather its intersection with V`, does the trick. Since the object Prim2k(X)(k) ofMF is polarized,
we can define T inMF as the orthogonal complement of Alg. �

We will enlarge F′ as in the Lemma, so that all algebraic classes in Prim2k(XC,Q)(k) are already
defined over F′, and so that the motivic group GT

F′ is connected (see Lemma 4.1.17). Note that TQ
is an orthogonal Hodge structure of type (1,−1), (0, 0), (−1, 1), with h1,−1 = 1, so the Kuga-Satake
construction applies to it as well (see Variant 4.1.5 of [And96a]). Since the Kuga-Satake variety
associated to VQ is simply an isogeny power of that associated to TQ, the latter, to be denoted A(T ),
also descends to some finite extension F′/F.

17Under the homomorphism R → EndΓF′′ (⊕
σH1(B,Q`), the λσ permute the factors in the direct sum; the projec-

tion via R
α
−→ Q(α) collapses all the factors to a single copy with scalars extended to Q(α), i.e. to H1(B,Q`) ⊗Q Q(α).

This implies the claim about projective descents.
18Faltings’s theorem works for finitely-generated extensions of Q, so this does as well.
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We introduce a little more notation. After extending scalars to a sufficiently large field E (omit-
ted from the notation unless we want to emphasize it) we denote by (rspin,V ,WV), (rspin,Alg,WAlg),
and (rspin,T ,WT ) the spin representations of these three spin groups; as before, by ‘the’ spin repre-
sentation in the Dn case we will mean the direct sum of the two half-spin representations.

Lemma 4.2.18. Suppose that ρV
` factors through SO(Alg`) × SO(T`) ↪→ SO(V`) (at worst, en-

suring this requires making a quadratic extension of F). If we have found lifts ρ̃Alg
` and ρ̃T

` to
GSpin(Alg` ⊗ Q`) and GSpin(T` ⊗ Q`) such that rspin,Alg ◦ ρ̃

Alg
` and rspin,T ◦ ρ̃

T
` are motivic, then

ρV
` has a lift ρ̃` : ΓF → GSpin(V` ⊗ Q`) such that rspin,V ◦ ρ̃` is also motivic. If the individual lifts

rspin,Alg ◦ ρ̃
Alg
` and rspin,T ◦ ρ̃

T
` belong to compatible systems of `-adic representations, then the same

holds for rspin,V ◦ ρ̃`.19

Proof. The isomorphism of graded algebras (for the graded tensor product ⊗̂)

C(AlgQ)⊗̂C(TQ)
∼
−→ C(VQ)

induces an inclusion C+(AlgQ) ⊗C+(TQ) ↪→ C+(VQ), and then a map (not injective)

C+(AlgQ)× ×C+(TQ)× → C+(VQ)×,

which in turn induces a commutative diagram

GSpin(AlgQ) × GSpin(TQ) //

��

GSpin(VQ)

��

SO(AlgQ) × SO(TQ) // SO(VQ).

As long as ρV
` : ΓF → SO(V`) factors through SO(Alg`) × SO(T`), this shows that we can lift Alg`

and T` in order to lift V`. We next want to understand the restriction to GSpin(AlgE)×GSpin(TE) of
the spin representation of GSpin(VE); Just for this argument, we will ignore the similitude factor,
i.e. work with weights of Spin rather than GSpin. We can write bases of the character lattices of
SO(AlgE), SO(TE), and SO(VE) as, respectively, χ1, . . . , χa, χa+1, . . . , χa+t, and

χ1, . . . , χa+t if either dim(T ) or dim(Alg) is even;
χ1, . . . , χa+t+1 if both dim(T ) and dim(Alg) are odd.

The set of weights of the spin representation of so(AlgE) (and similarly for the other cases) is then
all 2a weights of the form

a∑
i=1

±χi

2
.

In the case where at least one of dim(T ) and dim(Alg) is even, we see that the weights of WAlg�WT

are precisely those of WV |GSpin(AlgE)×GSpin(TE), and therefore WV � WAlg � WT as GSpin(AlgE) ×
GSpin(TE)-representations. When both dim(T ) and dim(Alg) are odd, weight-counting gives WV �
(WAlg �WT )⊕2.

Thus, if we have found lifts ρ̃Alg
` and ρ̃T

` (to GSpin(Alg` ⊗ Q`) and GSpin(T` ⊗ Q`)) such that
rspin,Alg ◦ ρ̃

Alg
` and rspin,T ◦ ρ̃

T
` are motivic (respectively, belong to compatible systems of `-adic

representations), then the resulting lift to GSpin(V` ⊗Q`), in its spin representation, is a direct sum

19Recall that objects ofMF are not in general known to give rise to compatible systems.
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of tensor products of motivic Galois representations (respectively, Galois representations belonging
to compatible systems), hence is motivic. �

Corollary 4.2.19. If det T` = 1 as ΓF-representation, and if we can find a lift ρ̃T
` of ρT

` such
that rspin,T ◦ ρ̃

T
` is motivic (respectively, belongs to a compatible system), then we can do the same

for ρV
` .

Proof. Since Alg` is an Artin representation, Tate’s vanishing result allows us to lift to an Artin
representation ρ̃Alg

` : ΓF → GSpin(Alg` ⊗ Q`). The corollary follows. �

Corollary 4.2.20. As in Corollary 4.2.19, assume that det T` = 1, and that for some number
field E, and place λ|` of E, we can find a lift ρ̃T

λ : ΓF → GSpin(T` ⊗Q` Eλ) such that rspin,T ◦ ρ̃
T
λ is

the λ-adic realization of an object M ofMF,E whose base-change to some F′/F is one of the spin
direct factors of the Kuga-Satake motive (with scalars extended to E) associated to TQ (see Lemma
4.2.10). Then possibly enlarging E to a finite extension E′, there is a lifting of representations of
the motivic Galois group GF,E′:

GSpin(VQ ⊗ E′)

��

GF,E′

77

ρV
// SO(VQ ⊗ E′).

Proof. The Artin representation ρAlg
` is definable overQ, and lifts to GSpin(AlgE1) after making

some finite extension E1/Q. The conclusion of the corollary will hold with E′ equal to the compos-
ite E1E. We check it using the same principle as in the proof of Proposition 4.1.30: that is, we check
‘geometrically’ (for the restriction to GF,E′) and for the λ-adic realization. By Corollary 4.2.9, the
motivic representation ρA(T ) of GF , and by extension of GF,E′ , factors through GSpin(TE′) and lifts
ρT : GF,E′ → SO(TE′). Since H1(A(T )) ⊗Q E′ is just some number of copies20 of M, the same is
true of ρM. By assumption, the λ-adic realization ρM

λ is just rspin ◦ ρ̃
T
λ , so this also factors through

GSpin(Tλ), lifting ρT
λ . Using the section sλ : ΓF → GF,E′(E′λ), so that GF,E′(E′λ) = sλ(ΓF) ·GF,E′(E

′
λ),

we conclude as in Proposition 4.1.30 that ρM lifts ρT ⊗ E′.
Combining ρM with the lift of ρAlg

` , as in Lemma 4.2.18, we similarly find a lift to GSpin(VQ⊗Q
E′) of our given ρV : GF,E′ → SO(VQ ⊗Q E′). �

4.2.5. Arithmetic descent: the generic case. To summarize, we have reduced the problem
of finding motivic lifts of the motive (over F) Prim2k(X)(k) to the corresponding problem for the
transcendental lattice T . In this section we treat the ‘generic’ case in which the Hodge structure TQ
has trivial endomorphism algebra, using a variant of Ribet’s method (which will return in §4.2.6)
We isolate this case both to demonstrate a slightly different argument, and because the non-generic
cases will require even deeper input, André’s proof of the Mumford-Tate conjecture in this context
(see Theorem 4.2.27). The starting-point of the analysis of the motive T is Zarhin’s calculation in
[Zar83] of the Mumford-Tate group:

Proposition 4.2.21 (Zarhin). Let TQ be a Q-Hodge structure with orthogonal polarization and
Hodge numbers h1,−1 = 1, h0.0 > 0, and hp,q = 0 if |p − q| > 2. Moreover assume that TQ contains

202t for dim T odd; 2t−1 for dim T even.
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no copies of the trivial Q-Hodge structure. Then ET = EndQ-HS(TQ) is a totally real or CM field,
and TQ is a simple MT (TQ)-module. There is a non-degenerate ET -hermitian21 pairing

〈·, ·〉 : TQ × TQ → ET

such that
MT (TQ) = Aut(TQ, 〈·, ·〉E) ⊂ SO(TQ).

For the rest of this section, we assume that EndQ-HS(TQ) = Q; the Mumford-Tate group MT (TQ)
is then the full SO(TQ).

Lemma 4.2.22. Assume EndQ-HS(TQ) = Q. Then the Mumford-Tate group, and therefore the
motivic Galois group, of the Kuga-Satake variety A(T ) is equal to GSpin(TQ). Consequently,
End0(A(T )) = C+

Q � C+(TQ).

Proof. Easy. �

We now choose a number field E/Q splitting C+(TQ), and consider the decomposition in AV0
F′,E

A(T ) ∼ B(T )2t
if dim(TQ) = 2t + 1;

A(T ) ∼ B(T )2t−1
∼ (B+(T ) × B−(T ))2t−1

if dim(TQ) = 2t,

as in Lemma 4.2.10. We saw in Corollary 4.2.9 that ρA(T ) factors through GSpin(TQ) and lifts
ρT ; viewing ρA(T ) in GSpin(TQ), we then have the relation rspin ◦ (ρA(T ) ⊗ E) = ρB(T ), taking the
Betti realization of B(T ) to be our model for the spin representation. We let B0 equal B(T ) in
the odd case and B+(T ) in the even case. Similarly, we let r0 denote rspin or one of the half-spin
representations (which we may assume corresponds to B+(T )). We also for convenience fix an
embedding E ↪→ Q`.

Lemma 4.2.23. (Without any assumption on EndQ-HS(TQ)) There exist a lift

ρ̃T
` : ΓF → GSpin(T` ⊗ Q`)

of ρT
` and a finite extension F′′/F′ such that

rspin ◦ ρ̃
T
` |ΓF′′ � H1(B(T )F ,Q`) ⊗E Q`|ΓF′′ .

Proof. As in the arguments of §3.2, we first choose a lift ΓF → GSpin(T` ⊗ Q`) with finite-
order Clifford norm. In the root datum notation of §2.8, the Hodge-Tate cocharacters µτ of ρT

` , for
all τ : F ↪→ Q`, are (conjugate to) λ1, and the finite-order Clifford norm lifts have Sen operators
(up to conjugacy) corresponding to the elements µ̃τ = λ1 of the co-character lattice tensored with
Q. We can modify this initial lift by twisting by λ0 ◦ ω

′, where ω′ : ΓF → Q
×

` is a Galois character
whose square differs from the inverse ω−1 of the cyclotomic character by a finite-order twist (such
ω′ exists for any F). This gives a new lift ρ̃T

` whose composition with the Clifford norm (which,
recall, is 2χ0 in our notation) is ω−1, up to a finite-order twist, and whose τ-labeled Hodge-Tate
weights in the spin representation are 1 and 0 with equal multiplicity (compare the argument of
§4.1.1). Then rspin ◦ ρ̃

T
` |ΓF′ differs from H1(B(T )F ,Q`) ⊗E Q` by a finite-order twist, hence they are

isomorphic after some additional finite base-change F′′/F′. �

21In the case of totally real ET , this means symmetric.
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Lemma 4.2.24. There is a factor M of ResF′′/F(B0) (viewed as an object of AV0
F,E), having

endomorphisms by a finite extension E′/E, and an embedding E′ ↪→ Q` extending our fixed E ↪→

Q` such that the associated `-adic realization M` := H1(MF ,Q`) ⊗E′ Q` is isomorphic as Q`[ΓF]-
representation to r0 ◦ ρ̃

T
` .

Proof. By the (E-linear) Tate conjecture,

EndAV0
F,E

(
ResF′′/F(B0)

)
⊗E Q` � EndQ`[ΓF ]

(
IndF

F′′(H
1(B0,F ,Q`) ⊗E Q`)

)
.

The Galois representation being induced is r0 ◦ ρ̃
T
` , and inside this endomorphism ring we can

consider
HomQ`[ΓF ]

(
r0 ◦ ρ̃

T
` , IndF

F′′(r0 ◦ ρ̃
T
` )

)
,

which by Frobenius reciprocity is just

EndQ`[ΓF′′ ]

(
r0 ◦ ρ̃

T
`

)
= Q`,

since EndAV0
F′′ ,E

(B0) = E. In other words, there is a unique Q`-line in EndAV0
F,E

(
ResF′′/F(B0)

)
⊗E Q`

consisting of projectors onto the r0 ◦ ρ̃
T
` -isotypic piece of the `-adic representation. Decomposing

the semi-simple E-algebra EndAV0
F,E

(
ResF′′/F(B0)

)
into simple factors, we see that this line lives in

a unique simple component (tensored with Q`), which itself must be just a finite field extension E′

of E (else the r0 ◦ ρ̃
T
` -isotypic piece would have multiplicity greater than 1); it then corresponds

to exactly one of the simple factors of E′ ⊗E Q`, i.e. a particular embedding E′ ↪→ Q`. We
can therefore take M to be the abelian variety corresponding to this factor E′; M has complex
multiplication by E′, and via this specified embedding E′ ↪→ Q`, the `-adic realization M` is
isomorphic to r0 ◦ ρ̃

T
` . �

Remark 4.2.25. This is at its core the same proof as given in §4.2.3; the latter proof is probably
more transparent, but this one is somewhat ‘softer.’ I don’t think it translates as well to the more
general context of §4.2.6, however.

Corollary 4.2.26. Theorem 4.2.13 holds for the motive Prim2k(X)(k) over F.

Proof. When dim(TQ) is odd, we are done, by the previous lemma and Corollaries 4.2.19 and
4.2.20. When dim(TQ) is even, we take the output M in AV0

F,E′ of the previous lemma, view it
inMF,E′ , and form the twisted dual M∨(−1). Here there are two cases: if dim TQ is not divisible
by four, this object corresponds to the composition of the other half-spin representation with ρ̃T

` :
the two half-spin representations of GSpin2n have highest weights −χ0 + 1

2 (
∑n−1

i=1 χi + χn) (for r0)
and −χ0 + 1

2 (
∑n−1

i=1 χi − χn) (for the other half-spin representation), so the lowest weight of r∨0 ⊗
(−2χ0) is −χ0 −

1
2 (

∑n
i=1 χi), which, when n is even, is visibly the lowest weight of the other half-

spin representation. In that case, we can apply the earlier corollaries to M ⊕ M∨(−1). If dim TQ
is divisible by four (so the half-spin representations are self-dual), apply Lemma 4.2.24 to the
composition of ρ̃T

` with the other half-spin representation as well; so instead of a single motive
M, we now have two motives M+ and M− (enlarge the coefficient fields of M+ and M−, viewed
as subfields of Q` via the respective embeddings produced by Lemma 4.2.24, to some common
over-field) such that the `-adic realization (M+ ⊕ M−)` is isomorphic to rspin ◦ ρ̃

T
` . Then as before,

we may apply Corollary 4.2.20. �
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4.2.6. Non-generic cases: dim(TQ) odd. To study the non-generic case EndQ-HS(TQ) , Q,
we have to understand the `-adic algebraic monodromy groups of the representations ρT

` , i.e. the
`-adic analogue of Zarhin’s result. André has proven ([And96a, Theorem 1.6.1]) the Mumford-
Tate conjecture in this context; a gap in the argument of [And96a, §7.4] is completed in a preprint
([Moo15]) of Ben Moonen, in the course of generalizing some of André’s work. Here is the precise
result:

Theorem 4.2.27 (André). Let (X, η) be a polarized variety over a finitely-generated extension
F of Q satisfying Ak, Bk, and B+

k . Then the inclusion ρ`(ΓF)
Zar

↪→ GV
F ⊗Q Q` of the algebraic

monodromy group into the `-adic motivic Galois group of V = Prim2k(X)(k) is an isomorphism on
connected components of the identity.

Recall that over the field F′, we may assume the groups ρ`(ΓF′)
Zar

and GV
F′ are connected,

and therefore isomorphic. Combining Theorem 6.5.1 of [And96a] with André’s result that Hodge
cycles on abelian varieties are motivated, and with Zarhin’s description ([Zar83]) of the Mumford-
Tate group of the transcendental lattice T 2k(XC,Q)(k), we obtain (see Corollary 1.5.2 of [And96a]):

Corollary 4.2.28. The semisimple Q-algebra ET := EndGT
F′

(T ) is a totally real or CM field,
and there is a natural ET -hermitian pairing 〈·, ·〉ET : T ×T → ET . The motivic group (which equals
the Mumford-Tate group, and equals, after ⊗QQ`, the `-adic algebraic monodromy group) GT

F′ is
then isomorphic to the full orthogonal (ET totally real) or unitary (ET CM) group

Aut(T, 〈·, ·〉ET ) ↪→ SO(TQ).

Before continuing, we formulate a variant of Ribet’s method with coefficients:

Proposition 4.2.29. Let F′/F be an extension of number fields, and let E/Q be a finite exten-
sion. Suppose we are given an object B of AV0

F′,E such that for some embedding E ↪→ Q`, the
associated `-adic realization B` = H1(BF ,Q`) ⊗E Q` satisfies the invariance condition σB` � B`

for all σ ∈ ΓF . Further assume that EndAV0
F,E

(BF) = E (in particular, EndAV0
F′ ,E

(B) = E). Then

there exist a finite extension E′/E, an extension E′ ↪→ Q` of the embedding E ↪→ Q`, a number
field F′′/F′, and an object M of AV0

F,E′ such that(
H1(MF ,Q`) ⊗E′ Q`

)
|ΓF′′ � B`|ΓF′′ .

That is, B, up to twist, has a motivic descent to F.

Proof. This is proven as on page 122, using the E-linear variant of Faltings’ theorem:

HomAV0
F′ ,E

(σB, B) ⊗E Q`
∼
−→ HomQ`[ΓF′ ]

(
H1(σBF ,Q`) ⊗E Q`,H

1(BF ,Q`) ⊗E Q`
)
.

In the notation of the earlier proof, M = ResF′′/F(B) ⊗R,α Q(α) is the required motivic descent, to
an isogeny abelian variety over F with Q(α)-multiplication (so in the statement of the proposition,
E′ ↪→ Q` is Q(α) ⊂ Q ↪→ Q`, extending the initial E ↪→ Q`). �

We now assume that dimQ TQ is odd, say of the form cd where d = 2d0 + 1 = [ET : Q]. In
particular, ET is totally real. Let ρ̃T

` and B(T ) be as in Lemma 4.2.23, and replace F′ by a large
enough extension to satisfy the conclusion of that lemma, and such that (ρT

` (ΓF′))Zar is connected.
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Recall that B(T ) is an object of AV0
F′,E for some finite extension E/Q large enough to split C+(TQ).

Corollary 4.2.28 implies that

(ρT
` ⊗ Q`)(ΓF′)

Zar
�

d∏
1

SOc(Q`) ⊂ SOcd(Q`).

Restricting the spin representation Wcd of socd(Q`) to
∏d

1 soc(Q`), we obtain (via a weight calcula-
tion as in Lemma 4.2.18, and writing Wc for the spin representation of soc)

Wcd|
∏
soc � (�d

1Wc)2d0
.

The Lie algebra of the lift ρ̃T
` is one copy of the additive group ga times the Lie algebra of ρT

` ⊗Q`,
and this ga acts by scalars in the spin representation, so rspin◦ρ̃

T
` |ΓF′ has an analogous decomposition

as 2d0 copies of some (absolutely, Lie) irreducible representation W ′ of ΓF′ . For a suitable enlarge-
ment E′ of E (and extension E′ ↪→ Q`), and F′′ of F′, we can realize W ′ as H1(B(T )′,Q`)⊗E′Q` for
an object B(T )′ of AV0

F′′,E′ . More precisely, we need the decomposition of Wcd|
∏

soc to be defined
over E′; the first claim then follows from Faltings. The extension F′′/F′ is needed to decom-
pose B(T )F ⊗E E′ over some finite extension. Then EndAV0

F′′ ,E′
(B(T )′) = E′, and the isomorphism

rspin ◦ ρ̃
T
` � (W ′)2d0 implies ΓF-conjugation invariance of W ′. Thus we can apply Ribet’s method to

deduce:

Lemma 4.2.30. There exist a finite extension E′′/E′, an embedding E′′ ↪→ Q` extending the
given E′ ↪→ Q`, and an object M of AV0

F,E′′ such that(
H1(MF ,Q`) ⊗E′′ Q`|ΓF′′′

)
� W ′|ΓF′′′

for some still further finite extension F′′′/F′′.

Let M` denote the associated `-adic realization (via E′′ ↪→ Q`). Since rspin ◦ ρ̃
T
` is Lie-isotypic,

and M` is a descent to ΓF of its unique (after finite restriction) Lie-irreducible constituent, Corollary
3.4.2 shows that there is an Artin representation ω of ΓF such that

rspin ◦ ρ̃
T
` � M` ⊗ ω.

Possibly enlarging the field of coefficients yet again, we deduce:

Theorem 4.2.31. Suppose dim TQ is odd, and that for some (hence for all) `, det T` = 1 as
ΓF-representation. Then there exist

• a number field Ẽ and an embedding Ẽ ↪→ Q`;
• an object M̃ of MF,Ẽ that is a tensor product of an Artin motive and (the image of) an

object of AV0
F,Ẽ

;
• and a lifting ρ̃T : GF,Ẽ → GSpin(TẼ) of ρT ;

such that rspin ◦ ρ̃
T is isomorphic to M̃. On λ̃-adic realizations (for places λ̃ of Ẽ), ρ̃T gives rise

to lifts ρ̃T
λ̃

of ρT
` ⊗Q` Ẽλ̃ such that {rspin ◦ ρ̃

T
λ̃
}λ̃ is a weakly-compatible system. Moreover, the same

conclusions hold with the motive V = Prim2k(X)(k) in place of its transcendental lattice T (and,
again, a possible enlargement of Ẽ).
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Proof. The number field Ẽ is the composite (inside the ambient Q`) of the field E′′ and the
field needed to define the Artin representation ω. To conclude the proof of the theorem, we make
three observations:

• MF,Ẽ is Tannakian (note that we already know that M ⊗E′′ Ẽ and ω are motivic);
• M and ω both give rise to compatible systems of `-adic representations;
• Corollary 4.2.20 applies to lift the representations of motivic Galois groups.

�

4.2.7. Non-generic cases: dim TQ even. We do not fully treat the case of even-rank transcen-
dental lattice, but here give a couple examples, describing the ‘shape’ of the Galois representations
in light of Proposition 3.4.1.

First, continue to assume ET is totally real. Let dim TQ = 2n = cd, with d = [ET : Q]. For any
N, denote by W2N,± (for each choice of ±) the two half-spin representations of so2N , and continue
to write W2N+1 for the spin representation of so2N+1.

Lemma 4.2.32. When c is even, the restriction Wcd,+|
∏
soc is given by

Wcd,+|∏d
1 soc

�
⊕

ε=(εi)∈{±}d∏
εi=1

�d
i=1Wc,εi ,

where the indexing set ranges over all choices of signs with “−” occurring an even number of
times. This is a direct sum of distinct Lie-irreducible representations.

When c is odd, so d = 2d0 is even,

Wcd,+|∏d
1 soc

� 2d0−1 �d
1 Wc,

a single Lie-irreducible representation occurring with multiplicity 2d0−1.

Now, recall (Lemma 4.2.23) that after a sufficient base-change F′/F, we can find an abelian
variety B+(T ) (with coefficients in a number field E, embedded in Q`; we may by extending scalars
assume E is large enough that the above decomposition of spin representations is defined over E),
and a lift ρ̃T

` such that r+ ◦ ρ̃
T
` |ΓF′ is isomorphic to H1(B+(T ),Q`) ⊗E Q`. We assume F′ sufficiently

large that this Galois representation is a sum of Lie-irreducible representations.

Proposition 4.2.33. Suppose c is even. Then motivic lifting holds for ρT .

Proof. Since c is even, the previous lemma shows that r+ ◦ ρ̃
T
` is Lie-multiplicity-free, hence

is a direct sum of inductions of non-conjugate, Lie-irreducible Galois representations. If π0(ρT
` ) is

trivial, in which case ρ̃T
` also has connected monodromy group,22 then no inductions occur in this

decomposition, so each factor �d
1Wc,εi in Lemma 4.2.32 corresponds to a Lie-irreducible factor of

r+ ◦ ρ̃
T
` , as ΓF-representation. Each of these factors is, over F′, of the form

H1(Bε ,Q`) ⊗E Q`,

where Bε is an object of AV0
F′,E with endomorphism algebra just E itself (the usual application of

Faltings’ theorem, using the Lie-multiplicity-free property, and the fact that the spin representation
decomposition holds over E). By ΓF-invariance of each factor, we can apply Proposition 4.2.29 to

22Since it contains the center of GSpin; the sort of example this avoids is ρ f ,`⊗ω
1−k

2 , where f is a classical modular
form of odd weight k.
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produce an object Mε of AV0
F,Eε

, for some finite extension Eε/E inside Q`, with Mε,`|ΓF′ isomorphic
to a finite-order twist of H1(Bε ,Q`)⊗EεQ`. By Lie-irreducibility, some finite-order twist (a character
of Gal(F′/F), in fact, and, again, we may have to enlarge Eε) M′

ε of Mε has `-adic realization
isomorphic to the corresponding factor of r+ ◦ ρ̃

T
` . Inside the ambient Q`, we take the compositum

E′ of the various Eε , extending scalars on each M′
ε . Then the object ⊕εM′

ε of MF,E′ satisfies the
hypotheses of Corollary 4.2.20, so we deduce the existence of the desired motivic lift.

We sketch the case of non-connected monodromy. Take the (motivic) Lie-irreducible factors
of r+ ◦ ρ̃

T
` |ΓF′ , and partition them into ΓF-orbits. Fix a representative Wi of each orbit, and consider

the stabilizer ΓFi in ΓF of Wi. Arguing as in Proposition 4.2.33, we can apply Ribet’s method to
descend each Wi to an object Mi ofMFi,Ei for some extension Ei of E insideQ`. Moreover, twisting
yields an M′

i whose `-adic realization is isomorphic to a factor of r+ ◦ ρ̃
T
` : the isomorphisms

HomΓF′ (M1,V) = HomΓFi
(IndFi

F′(Mi),V) = HomΓFi
(Mi ⊗ Q`[Gal(F′/Fi)],V), with V = r+ ◦ ρ̃

T
` ,

imply this claim, using the fact that Mi is Lie-irreducible and after finite restriction occurs with
multiplicity one in r+ ◦ ρ̃

T
` . Then we can induce (the representation of motivic Galois groups) from

Fi to F to obtain our motives over F. This completes the case of even c (and ET totally real). �

Having demonstrated the available techniques in a couple of quite different situations (namely,
where the lifts range between the extremes of being Lie-multiplicity-free and Lie-isotypic), we
stop here, remarking only that when ET is CM, the analysis must begin not from Lemma 4.2.32 but
from the restriction Wcd,+|

∏
glc , the product ranging over pairs of complex-conjugate embeddings

ET ↪→ Q`. This restriction is given by:

Lemma 4.2.34. Suppose d = 2d0 is even, with notation otherwise as above. We denote irre-
ducible representations of glc by W(r), where W is an irreducible representation of slc, and (r)
indicates that the restriction to the center ga ⊂ glc is multiplication by r. Then, letting Vi denote
the standard representation of the ith copy of slc

Wcd,+|∏d0
1 glc

�
⊕

i1,...,id0 :∑
i j∈2Z

∧i1V∗1(
c
2
− i1) � . . . � ∧id0 V∗d0

(
c
2
− id0).

Remark 4.2.35. • Note that the representations occurring here do not necessarily extend
to representations of GLc, since c may be odd; they do extend on the (connected) double-
cover of GLc.
• In particular, we see that when ET is CM, r+ ◦ ρ̃

T
` is Lie-multiplicity-free. This suggests

proceeding as in Proposition 4.2.33, although we will stop here.

4.3. Towards a generalized Kuga-Satake theory

4.3.1. A conjecture. It is fair to assume that one could establish a motivic lifting result for
the remaining hyperkähler cases. More important, these lifting results clamor for generalization.
Motivated by the Fontaine-Mazur conjecture, Theorem 3.2.10, Proposition 4.1.30, and Theorem
4.2.31, we are led to the following much more ambitious conjecture:

Conjecture 4.3.1. Let F and E be number fields, and let H̃ � H be a surjection, with central
torus kernel, of linear algebraic groups over E. Suppose we are given a homomorphism ρ : GF,E →

H. Then if F is imaginary, there is a finite extension E′/E and a homomorphism ρ̃ : GF,E′ → H̃E′
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lifting ρ ⊗E E′. If F is totally real, then such a lift exists if and only if the Hodge number parity
obstruction of Corollary 3.2.8 vanishes.

To indicate the scope of this conjecture, let X/F be any smooth projective variety, and con-
sider for any k ≤ dim X the motive H2k(X)(k) (or Prim2k(X)(k), having chosen an ample line
bundle). This gives rise to an orthogonal representation of GF , and the conjecture in this case (for
GSpin → SO, or the variant with the full orthogonal group in place of SO) amounts to a gen-
eralization of the Kuga-Satake construction to arbitrary orthogonally-polarized motivic (over F)
Hodge structures. For other choices of H̃ and H (for instance, GLn → PGLn, where necessarily we
will have coefficient field larger than Q), the conjectured generalization is even more mysterious
(compare Lemma 4.1.33).

Note the role of Lemma 4.1.31 in building our confidence in this conjecture. Let H̃ → H be
a morphism of groups, say over Q, as in the conjecture. One way of formulating the Fontaine-
Mazur conjecture is that GF ⊗QQ` should be isomorphic to the Tannakian group for the Tannakian
category Repg,ss

Q`
(ΓF) of semi-simple geometric Q`-representations of ΓF . In particular, a geometric

lift ρ̃` : ΓF → H̃(Q`) of ρ` : ΓF → H(Q`) should arise from an algebraic homomorphism of Q`-
groups GF ⊗ Q` → H̃Q` . Lemma 4.1.31 then tells us that if ρ arises from some GF ⊗ Q→ H, then
we can find a lift ρ̃ : GF ⊗ Q→ H̃ of homomorphisms of Q-groups.

Now that we know to look for such a thing, we conclude by giving one more example in which
it is easy to construct a ‘generalized Kuga-Satake motive.’

4.3.2. Motivic lifting: abelian varieties. If A/C is an abelian surface, then H2(A,Q) �
∧2H1(A,Q) has Hodge numbers h2,0 = 1 and h1,−1 = 4. The classical Kuga-Satake construc-
tion then associates to A another abelian variety, KS (A), with rational cohomology C+(H2(A,Q))
(or the analogue with Prim2(A,Q), if we have fixed a polarization), and a theorem of Morrison
([Mor85]) asserts that KS (A) is isogenous to A8 (or A4 if we work with Prim2(A,Q)). We now
show that this construction can be generalized to abelian varieties of any dimension.

Let F be any subfield of C, and let A/F be an abelian variety of dimension g with a fixed
polarization. Consider the algebraic representation

ρ : GF → GSp(H1(AC,Q)) � GSp2g,

or, for the theory over C, its restriction to GC. We will compose ρ with a homomorphism GSp2g →

GSpinN for suitable N to produce the generalized Kuga-Satake motive. Let W = H1(AC,Q), and
let re1+e2 : Sp(V) → GL(Ve1+e2), in the weight notation of §2.8, denote the irreducible represen-
tation of Sp(V) obtained as the complement of the trivial representation in ∧2(W). This abso-
lutely irreducible representation, defined over Q, has image in SO(Ve1+e2), where the quadratic
form is induced from the pairing canonically induced on ∧2(W), and which coincides with the
induced polarization on Prim2(AC,Q). Since Sp(W) is simply-connected, there is a lift to an al-
gebraic homomorphism r̃ : Sp(W) → Spin(Ve1+e2). Over C this follows from standard Lie theory,
and such a homomorphism descends to Q (see Lemma 4.1.31); since the map of Lie algebras
sp(W) → so(Ve1+e2) is defined over Q, we see that the map over Q is ΓQ-invariant, hence descends
to a morphism over Q. The dimension of Ve1+e2 is

(
2g
2

)
− 1, which is odd (= 2n + 1) if g is even,
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and even (= 2n) if g is odd. In either case, we have the representation r$n of Spin(Ve1+e2)Q having

highest weight $n =
∑n

i=1 χi

2 .23

Lemma 4.3.2. Let c denote the non-trivial (central) element of the kernel of Spin(Ve1+e2) →
SO(Ve1+e2). If g ≡ 2, 3 (mod 4), then r̃(−1) = c, and if g ≡ 0, 1 (mod 4), then r̃(−1) = 1.

Proof. In all cases, re1+e2(−1) = 1, so r̃(−1) equals either 1 or c. Since c acts as −1 in any of the
spin representations (c is the element −1 of the Clifford algebra), it suffices to compute r$n ◦ r̃(−1).
The weights of Ve1+e2 are

{±(ei + e j)}1≤i< j≤g ∪ {ei − e j}i, j,

except with one copy of the weight zero deleted (so that zero has multiplicity g − 1 rather than g).
It follows that r$n ◦ r̃ has a weight equal to

1
2

 ∑
1≤i< j≤g

(ei + e j) +
∑

1≤i< j≤g

(ei − e j)

 =

g∑
i=1

(g − i)ei.

In particular, r$n ◦ r̃(−1) is multiplication by (−1)g(g−1)/2, and the lemma follows. �

Corollary 4.3.3. r̃ : Sp(W)→ Spin(Ve1+e2) extends to an algebraic homomorphism GSp(W)→
GSpin(Ve1+e2). If g ≡ 2, 3 (mod 4), then this map can be chosen so the Clifford norm coincides
with the symplectic multiplier; if g ≡ 0, 1 (mod 4), then this map can be chosen to factor through
Spin(Ve1+e2). The composition

GF
ρ
−→ GSp(W)

r̃
−→ GSpin(Ve1+e2) ↪→ GL(C+(Ve1+e2))

defines the generalized Kuga-Satake lift of A.

Proof. This follows immediately from Lemma 4.3.2 and the identifications:
Gm × Sp(W)
〈(−1,−1)〉

∼
−→ GSp(W)

Gm × Spin(Ve1+e2)
〈(−1, c)〉

∼
−→ GSpin(Ve1+e2).

When g ≡ 2, 3 (mod 4), we take the map Gm → Gm to be the identity, and when g ≡ 0, 1 (mod 4),
we take it to be trivial. �

Remark 4.3.4. • Repeating the above arguments with ∧2(W) in place of Ve1+e2 , we can
similarly construct lifts GF → GSpin(∧2(W)).
• When g = 2, this recovers the classical construction. In that case, the composition r$n ◦ r̃

is the identity, and, decomposing C+(Ve1+e2) as 4 copies of r$n (as GSpin(Ve1+e2) represen-
tation), the identification (up to isogeny) KS (A) ∼ A4 is nearly a tautology.

The motivic formalism now tells us that r$n ◦ r̃ ◦ ρ is (the Betti realization of) an object of
MF . Since the `-adic realizations of ρ form a weakly (in fact, strictly) compatible system, the
same is true for the `-adic realizations of this Kuga-Satake motive. In this case, however, we can
say more, and will realize this explicitly (and unconditionally) as a Grothendieck motive. The first
step is to compute the plethysm r$n ◦ r̃; we will do this, but first mention an equivalent, structurally

23We use the common fundamental weight notation here. This is the spin representation in the odd case; one of
the half-spin representations in the even case.
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appealing plethysm. First we treat the Dn case, that is when d = 2g = dim H1(X) satisfies 2n =
(

d
2

)
;

this amounts to dim X being even. Let V = H2(X) = ∧2W. We use the following (common)
notation for fundamental weights of Dn:

• $i = χ1 + . . . + χi, and r$i = ∧iV , for i = 1, . . . , n − 2;
• $n−1 =

χ1+...+χn−1−χn
2 , $n =

∑n
1 χi

2 , and r$n−1 , r$n are the two half-spin representations.
As representations of so2n, we have the following identity:

2n⊕
i=0

∧i(V) =
(
r$n−1 ⊕ r$n

)⊗2 .

The plethysm problem that we expect to solve, then, is to describe a representation rKS (X) of Sp(W)
such that

2n⊕
i=0

∧i(∧2W) = (rKS (X))⊗2.

(More ambitiously, we could attempt this with ∧2k(W) instead.) Similarly, in the Bn case, we have
fundamental weights $i =

∑i
1 χi for i = 1, . . . , n − 1, and $n =

∑
χi

2 , corresponding, respectively
to the wedge powers ∧iV of the standard representation (r$1) and the spin representation. As
representations of so2n+1, we have the identity

n⊕
i=0

∧i(V) = r⊗2
$n
,

so in this case we want a representation rKS of Sp(W) satisfying
n⊕

i=0

∧i(∧2(W)) = r⊗2
KS .

Proposition 4.3.5. Writing ωi (i = 1, . . . , g) for the usual fundamental weights24 of Cg, then in
all cases (g odd or even) we have

∧•(∧2(W)) � 2g(Vω1+...+ωg−1)
⊗2,

as Sp(W)-representations. Here ∧• denotes the full exterior algebra. This is deduced from the
above discussion and the two calculations:

• (even) As Sp(W)-representations,

(r$n−1 ⊕ r$n) ◦ r̃ � 2g/2Vω1+...+ωg−1 .

• (odd) As Sp(W)-representations,

r$n ◦ r̃ � 2(g−1)/2Vω1+...+ωg−1 .

Proof. We treat the even case, the odd case being essentially identical. There are g2−g non-zero
weights in ∧2(W), and the weight zero occurs with multiplicity g. The weights of (r$n−1 ⊕ r$n) ◦ r̃
are sums of plus or minus any n = g2−

g
2 weights of ∧2(W), then the total divided by two. It follows

that the highest weight of (r$n−1 ⊕ r$n) ◦ r̃ is, as previously computed,
∑g−1

i=1 ωi, but moreover that
it occurs with multiplicity 2g/2 (here g

2 = n − (g2 − g); we can choose the weight +0 or −0 this

24ωi = e1 + . . . + ei in the standard coordinate system
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many times). It follows that (r$n−1 ⊕ r$n) ◦ r̃ contains 2g/2Vω1+...+ωg−1; by dimension count (see the
following Lemma 4.3.6), they are isomorphic. �

Lemma 4.3.6. With the above notation, the dimension of the irreducible Sp(W)-representation
Vω1+...+ωg−1 is 2g(g−1).

Proof. Simplifying the Weyl dimension formula, we find

dim Vω1+...+ωg−1 = 2|Φ
+ |

∏
1≤i≤ j≤g

2g + 1 − (i + j)
2g + 2 − (i + j)

,

where the number |Φ+| of positive roots is 2g2
. The product telescopes: fix an i, and the correspond-

ing product over j is equal to 1
2 . The lemma follows. �

Corollary 4.3.7. Let F be any subfield of C, and let X/F be an abelian variety of any dimen-
sion g, giving rise to a representation

ρH1(X) : GF → GSp(H1(X,Q)).

Then the Kuga-Satake lift (Corollary 4.3.3 and remark following) of the representation

GF → SO(H2(X,Q)(1))

can be explicitly realized in the spin (or sum of half-spin) representation as 2b
g
2 c copies of the com-

position rω1+...+ωg−1 ◦ρH1(X) with the highest weight ω1 + . . .+ωg−1 representation of Sp(H1(X,Q)).25

Let us call this object ofMF the Kuga-Satake motive KS (X). Then KS (X) is in fact a Grothendieck
motive, for either numerical or homological equivalence.

Proof. It remains to check that KS (X) can be cut out by algebraic cycles. We start with the
explicit description (due to Weyl; see §17.3 of [FH91]) of the representation Vω1+···+ωg−1 . From now
on, abbreviate λ =

∑g−1
1 ωi, and r =

∑g−1
1 i (the length of λ); in fact, what follows applies to an

arbitrary partition λ. Then
Vλ = W 〈r〉 ∩ Sλ(W)

as Sp(W)-representation. We have to explain this notation: Sλ(W) denotes the Schur functor asso-
ciated to the partition λ, which explicitly is equal to the image of the Young symmetrizer cλ acting
on W⊗r; and W 〈r〉 is the subspace of W⊗r given by intersecting the kernels of all the contractions
(1 ≤ p < q ≤ r)

cp,q : W⊗r −→ W⊗(r−2)

v1 ⊗ . . . ⊗ vr 7→ 〈vp, vq〉 · v1 ⊗ . . . ⊗ v̂p ⊗ . . . ⊗ v̂q ⊗ . . . ⊗ vr,

where 〈·, ·〉 represents the symplectic form on W. The result will now follow from some basic facts
about algebraic cycles and, crucially, the Lefschetz and Künneth Standard Conjectures for abelian
varieties (due to Lieberman; for a proof, see [Kle68]). We will write πi

X for the algebraic cycle
on X × X inducing H(X) � Hi(X) ↪→ H(X). Fix a polarization of X, giving rise to a Lefschetz
operator LX. Recall Jannsen’s fundamental result ([Jan92]) that numerical motives form a semi-
simple abelian category. This and the Künneth Standard Conjecture for abelian varieties imply that
the category of numerical motives generated by abelian varieties over F is a semi-simple Tannakian
category. We deduce that the following are (numerical) sub-motives of H(Xr):

25Extended to GSp on the center by the prescription of Corollary 4.3.3. Throughout this argument we will ignore
these extra scalars to simplify the notation.
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• M = (X, π1
X, 0), i.e. the object corresponding to H1(X);

• The kernel of each contraction H1(X)⊗r → H1(X)⊗(r−2). For notational simplicity, take
p = 1, q = 2. If we were working in cohomology, we would compute the kernel of c1,2 as

ker
(
H1(X) ⊗ H1(X)

〈·,·〉
−−→ Q(−1)

)
⊗ H1(X)⊗r−2,

where recall that the polarization 〈·, ·〉 is defined by 〈w1,w2〉 = Ld−1
X (w1∪w2). Now, W⊗2 =

Sym2(W)⊕∧2(W), and cup-product kills Sym2(W), while mapping ∧2(W) isomorphically
to H2(X). The kernel of c1,2 is therefore isomorphic to(

Sym2(H1(X)) ⊕ Prim2(X)
)
⊗ H1(X)⊗r−2.

To realize the analogous numerical motive, we can define Sym2(M) as

(X × X,
1
2

(1 + (12)) · (π1
X × π

1
X), 0).

For the projector, we have taken the product of two commuting idempotents, the first
one being the Young symmetrizer associated to the Schur functor Sym2. There is also a
projector p2 onto primitive cohomology (see 1.4.4, 2.3, and 2A11 of [Kle68]), so (X, p2, 0)
realizes Prim2(X) as a numerical motive. Finally, since direct sums and tensor products
exist in our category, we can therefore describe the kernel of any cp,q as a numerical
motive Mp,q.
• In general, the Young symmetrizer cλ is not quite an idempotent. Write c2

λ = x−1cλ (x
depends on λ, but we have fixed a λ), making xcλ an idempotent algebraic correspondence
on Xr. cλ commutes with the r-fold Künneth projector (π1

X)r (this is easily checked at the
level of cohomological correspondences, so a fortiori holds for numerical equivalence),
so

(Xr, xcλ · (π1
X)r, 0)

defines a numerical motive, denoted Sλ(H1(X)).
• We would like to conclude the proof by intersecting the objects Mp,q (p < q) and Sλ(H1(X)).

This is possible for numerical motives since the category is abelian. Finally, since all of
the cycles considered in the proof are cycles on (disjoint unions of) abelian varieties in
characteristic zero, where numerical and homological equivalence coincide,26 we also de-
duce the existence of a homological motive corresponding to KS (X).

�

Remark 4.3.8. A weight calculation yields the Hodge numbers of KS (X).

4.3.3. Coda. Identifying among all rational Hodge structures those that are motivic is one of
the fundamental problems of complex algebraic geometry, and this generalized Kuga-Satake theory
would systematically construct new motivic Hodge structures from old, in a way not achievable by
simply playing the Tannakian game. I hope that investigation of these phenomena will provide a
stimulating testing-ground for thinking about Hodge theory in non-classical weights.

It is also tempting to ask what should be true if we replace F by other fields, especially finitely-
generated subfields of C. Our motivic descent in the hyperkähler case works as written, except

26In the presence of the Standard Conjecture of Hodge type, the Lefschetz conjecture implies ‘num = hom’: see
Proposition 5.1 of [Kle94].
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for the critical absence of Tate’s basic vanishing result; in other contexts, it might be hoped that
a similar descent works, conditional on the relevant cases of the Tate conjecture. I suspect only
a qualitative potential lifting result will hold in this generality–that would suffice to imply the
analogous lifting conjecture for C itself. But another clearly important question to ask is: what, if
any, is the analogue of Tate’s vanishing theorem when the number field F is replaced by any field
finitely-generated over Q?
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Index of symbols

(·)D, with argument a topological group, 16
(̃·), with argument a field, 16
∼s, 78
∼w, 15, 78
∼ew, 78
∼w,∞, 16, 78
ΓF , 15
Θρ,ι, 26
θρ,ι, 73
ι`, 15
ι∗
∞,`(τ), ι∗(τ), 15
ι∞, 15
µv, νv, 2
µιv , νιv , 2
πi

X , 102
σπ, 38
ρA, 118
ρM
` , 117
ρV , 118
ρM , for a motive M: the associated motivic Galois

representation, 117
τ∗`,∞(ι), τ∗(ι), 15
ω̃, 62
A: short-hand for the abelian variety AF′ , 119
A(T ), 124
A∗hom(X), 101
Ak, 115
AF′ : André’s descent of the classical Kuga-Satake

abelian variety, 118
Alg: space of algebraic cycle classes as an object of

MF , 124
B: ‘spin representation’ abelian variety, 119
B(T ), 127
BdR, 23
BHT, 23
B+, 119
B−, 119
B0, 127
Bk, 115
B+

k , 115
cλ, 136
C(VZ), 117

C∗hom(X,Y), 101
C+, 117
C+(VZ), 117
C•mot(X,Y)E , 104
CF , 15
DdR, 23
DHT, 23
Fcm, 16
G, 61
G̃, 61, 71
G, 39, 61, 71
GM

F , 105
GSpin, 55
G∨, LG, 15
G∨sc, 72
H̃, 50
H, 50
HTτ, 25, 36
HTτ(ρ), 34
H∗B, 101
KS (X), 118
KS (X), for an abelian variety X, 136
L(λ), 89
LF , 70
LZ, 117
L`, 118
MF , 104
MT (A), 106
mv, 27
Prim2k(X)(k), 115
Qcm, 16
Q(π f ), 38
r0, 127
recv, 15
rspin,V , rspin,Alg, rspin,T : homomorphisms giving the

spin representations associated to the various
orthogonal spaces V , Alg, T , 125

rspin, 117
Sλ, 136
S , 71
Spin, 55
T̃ , 61
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T : transcendental lattice as an object ofMF , 124
TF , 70
TF,E , 112
tv, 27
VE , 116
VQ, 116
VZ, 117
V`, 116
W〈r〉, 136
WE , 117
WV , WAlg, WT : spin representations associated to the

various orthogonal spaces V , Alg, T , 125
Wn, for some odd integer n, 131
W+,E , 117
W−,E , 117
Wn,+, Wn,−, for some even integer n, 131
Z, 61
Z̃, 61, 71
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Index of terms and concepts

L-packet
archimedean, 65
unramified, 65

W-algebraic automorphic representation, 3, 39
W-arithmetic, 40
Q-curves, 121
`-adic Hodge theory property P, 5

algebraic correspondence, 101
archimedean purity lemma of Clozel, 41
Artin motive, 105
automorphic Langlands group, 70

C-algebraic, 37
C-algebraic automorphic representation, 3
central character of an automorphic representation, 29
central character of an automorphic

representation–how to compute, 62
CM coefficients, 10
CM descent prototype, 28
CM field, 16
compatible system of `-adic representations valued in

linear algebraic group, 22
correspondence between automorphic representations

and Galois representations, 15

de Rham Galois representation, 23

equivalence of automorphic representations and
`-adic representations, 78

fiber functor, 99
fiber of a functorial transfer

Tate’s lifting problem, 65
fibers of a functorial transfer

GL2 × GL2 tensor product, 44
Fontaine-Mazur conjecture, 12
Fontaine-Mazur-Langlands conjecture, 13
Fontaine-Mazur-Tate conjecture, 12

Galois lifting problem, 4, 50
geometric Galois representation, 12
Grunwald-Wang special case, 63

Hodge symmetry, 109
Hodge-Tate Galois representation, 23
Hodge-Tate-Sen weights, 25
hyperkähler variety, 115

image of a functorial transfer, 33
cyclic automorphic induction, 45
Tate’s lifting problem, 63

infinity-type of a Hecke character, 27
infinity-type of an automorphic representation, 38
infinity-types of automorphic representations:

questions about, 50
infinity-types of Hecke characters, all possible, 32

K3 surface, 115
Künneth Standard Conjecture, 102
Kuga-Satake construction, 118
Kuga-Satake motive associated to an abelian variety,

136

L-algebraic, 37
L-algebraic automorphic representation, 3
labeled Hodge-Tate weights, 24, 34, 36
labeled Hodge-Tate weights of a Hodge-Tate

representation, 25
Lie irreducible, 86
Lie multiplicity free, 88
Lie-multiplictiy free, or LMF, 10
LMF, 88
local reciprocity map, 15

mixed-parity Hilbert modular form, 40
mixed-parity Hilbert modular representation, 46
modified commutativity constraint forMhom

F , 102
motivated correspondences, 104
motivated cycles, 103
motive for homological equivalence, 101
motives for motivated cycles, 104
motivic Galois group of an object M ofMF , 105
Mumford-Tate conjecture for hyperkähler varieties,

129
Mumford-Tate group of a Q-Hodge structure, 106

neutral Tannakian category, 99
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polarized variety, 115
potential automorphy theorem, 53
primitive cohomology, as a motive, 115
pure weakly compatible system, 14

Ramanujan conjecture (archimedean), 40
regular automorphic representation for the group GLn,

38
regular filtered module, 37
rigid tensor category, 99
root data for Spin and GSpin groups, 56

Sen operator, 25, 26
solvable base-change, 33
Standard Conjectures, 12

Taniyama group, 70, 112
Tate conjecture for hyperkähler varieties, 124
Tate’s theorem, 17
tensor category, 98
transcendental lattice, or subspace, of the Hodge

structure Prim2k(XC,Q)(k), 116
type A Hecke character, 3, 28
type A0 Hecke character, 2, 28

weak transfer of automorphic representations, 65
weakly compatible system of λ-adic representations

valued in a reductive group, 14
weakly compatible system of λ-adic, or `-adic,

representations, 13
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