Math 2568 Homework 10

Math 2568 Due: Wednesday, November 13, 2019

Problem 1

§6.3, Exercise 2. Use (4.6.13) in Chapter 3 to verify that the traces of similar matrices are equal.

Problem 2

Determine whether or not the given matrices are similar, and why.

§6.3, Exercise 3. $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -2 \\ -3 & 8 \end{pmatrix}$.

Problem 3

§6.3, Exercise 5. Let $B = P^{-1}AP$ so that A and B are similar matrices. Suppose that v is an eigenvector of B with eigenvalue λ . Show that Pv is an eigenvector of A with eigenvalue λ .

Problem 4

Determine whether or not the equilibrium at the origin in the system of differential equations $\dot{X} = CX$ is asymptotically stable.

§6.4, Exercise 1. $C = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$.

Problem 5

Determine whether the equilibrium at the origin in the system of differential equations $\dot{X} = CX$ is a sink, a saddle or a source.

§6.4, Exercise 5. $C = \begin{pmatrix} 3 & 5 \\ 0 & -2 \end{pmatrix}$.

Problem 6

compute the determinants of the given matrix.

§7.1, Exercise 1. $A = \begin{pmatrix} -2 & 1 & 0 \\ 4 & 5 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

Problem 7

compute the determinants of the given matrix.

		~				
(2	1	$^{-1}$	0	0 \	
[1	-2	3	0	0	
-	-3	2	-2	0	0	.
	1	1	-1	2	4	
	0	2	3	-1	-3 /	
	($ \left(\begin{array}{c} 2\\ 1\\ -3\\ 1\\ 0 \end{array}\right) $	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Problem 8

Use row reduction to compute the determinant of the given matrix.

§7.1, Exercise 6. $A = \begin{pmatrix} -1 & -2 & 1 \\ 3 & 1 & 3 \\ -1 & 1 & 1 \end{pmatrix}$.

Problem 9

Determine the characteristic polynomial and the eigenvalues of the given matrices.

§7.2, Exercise 2. $B = \begin{pmatrix} 2 & 1 & -5 & 2 \\ 1 & 2 & 13 & 2 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.

Problem 10

§7.2, Exercise 3. Find a basis for the eigenspace of

$$A = \left(\begin{array}{rrrr} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{array}\right)$$

corresponding to the eigenvalue $\lambda = 2$.

Problem 11

§7.2, Exercise 4. Consider the matrix

$$A = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}.$$

- (a) Verify that the characteristic polynomial of A is $p_{\lambda}(A) = (\lambda 1)(\lambda + 2)^2$.
- (b) Show that (1, 1, 1) is an eigenvector of A corresponding to $\lambda = 1$.
- (c) Show that (1, 1, 1) is orthogonal to every eigenvector of A corresponding to the eigenvalue $\lambda = -2$.

Problem 12

§7.2, Exercise 5. Let

$$A = \left(\begin{array}{rrrr} 0 & -3 & -2\\ 1 & -4 & -2\\ -3 & 4 & 1 \end{array}\right)$$

One of the eigenvalues of A is -1. Find the other eigenvalues of A.

Problem 13

§7.2, Exercise 7. Find the characteristic polynomial and the eigenvalues of

$$A = \left(\begin{array}{rrrr} -1 & 2 & 2\\ 2 & 2 & 2\\ -3 & -6 & -6 \end{array}\right).$$

Find eigenvectors corresponding to each of the three eigenvalues.