Math 2568 Homework 10

Math 2568 Due: Wednesday, November 13, 2019

Problem 1

§6.3, Exercise 2. Use (4.6.13) in Chapter 3 to verify that the traces of similar matrices are equal.

Let A and B be similar matrices such that $A = P^{-1}BP$ for some matrix P. Then, using (4.6.13),

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \operatorname{tr}(BP^{-1}P) = \operatorname{tr}(B).$$

Problem 2

Determine whether or not the given matrices are similar, and why.

§6.3, Exercise 3. $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -2 \\ -3 & 8 \end{pmatrix}$.

Answer: Matrices A and B are not similar.

Solution: When two matrices are similar, the traces are equal. In this case, tr(A) = 5 and tr(B) = 10, so the matrices are not similar.

Problem 3

§6.3, Exercise 5. Let $B = P^{-1}AP$ so that A and B are similar matrices. Suppose that v is an eigenvector of B with eigenvalue λ . Show that Pv is an eigenvector of A with eigenvalue λ .

Since, A and B are similar matrices, if $Bv = \lambda v$, then

 $A(Pv) = PP^{-1}APv = PBv = \lambda(Pv).$

Thus, Pv is an eigenvector of A with eigenvalue λ .

Problem 4

Determine whether or not the equilibrium at the origin in the system of differential equations $\dot{X} = CX$ is asymptotically stable. §6.4, Exercise 1. $C = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$.

Answer: The origin is not asymptotically stable.

Solution: Theorem 6.4.1 states that the origin is a stable equilibrium only if all eigenvectors have negative real part. The characteristic polynomial of C is $p_C(\lambda) = \lambda^2 - 2\lambda - 5$. Thus, the eigenvalues are $\lambda_1 = 1 + \sqrt{6}$ and $\lambda_2 = 1 - \sqrt{6}$. Since $\lambda_1 > 0$, the origin is not stable.

Problem 5

Determine whether the equilibrium at the origin in the system of differential equations $\dot{X} = CX$ is a sink, a saddle or a source.

§6.4, Exercise 5. $C = \begin{pmatrix} 3 & 5 \\ 0 & -2 \end{pmatrix}$.

Answer: The origin of the system $\dot{X} = CX$ is a saddle.

Solution: The characteristic polynomial of C is $p_C(\lambda) = \lambda^2 - \lambda - 6$. So the eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -2$. Since one eigenvalue is negative and one is positive, the origin is a saddle.

Problem 6

compute the determinants of the given matrix.

§7.1, Exercise 1. $A = \begin{pmatrix} -2 & 1 & 0 \\ 4 & 5 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

Answer: The determinant of the matrix is -28.

Solution: Expand along the third column, obtaining:

$$\det \begin{pmatrix} -2 & 1 & 0\\ 4 & 5 & 0\\ 1 & 0 & 2 \end{pmatrix} = 2 \det \begin{pmatrix} -2 & 1\\ 4 & 5 \end{pmatrix} = 2(-14) = -28.$$

Problem 7

compute the determinants of the given matrix.

§7.1, Exercise 3.
$$C = \begin{pmatrix} 2 & 1 & -1 & 0 & 0 \\ 1 & -2 & 3 & 0 & 0 \\ -3 & 2 & -2 & 0 & 0 \\ 1 & 1 & -1 & 2 & 4 \\ 0 & 2 & 3 & -1 & -3 \end{pmatrix}$$
.

Answer: The determinant of the matrix is 14.

Solution: Using Lemma 7.1.9, compute

$$det(A) = det\begin{pmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ -3 & 2 & -2 \end{pmatrix} det\begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix}$$

= $(2(-2)(-2) + 1 \cdot 3(-3) + (-1)1 \cdot 2 - (-1)(-2)(-3) - 1 \cdot 1(-2))$
 $-2 \cdot 3 \cdot 2)(-2)$
= $(-7)(-2)$
= 14.

Problem 8

Use row reduction to compute the determinant of the given matrix.

§7.1, Exercise 6. $A = \begin{pmatrix} -1 & -2 & 1 \\ 3 & 1 & 3 \\ -1 & 1 & 1 \end{pmatrix}$.

Answer: The determinant is det(A) = 18.

Solution: Compute by row reduction as follows:

$$\det \begin{pmatrix} -1 & -2 & 1 \\ 3 & 1 & 3 \\ -1 & 1 & 1 \end{pmatrix} = -\det \begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 6 \\ 0 & 3 & 0 \end{pmatrix}$$
$$= 3 \det \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & -5 & 6 \end{pmatrix}$$
$$= 3 \det \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & -5 & 6 \end{pmatrix} = 18.$$

Problem 9

Determine the characteristic polynomial and the eigenvalues of the given matrices.

§7.2, Exercise 2.
$$B = \begin{pmatrix} 2 & 1 & -5 & 2 \\ 1 & 2 & 13 & 2 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
.

Answer: The characteristic polynomial of *B* is $p_B(\lambda) = \lambda^4 - 8\lambda^3 + 23\lambda^2 - 28\lambda + 12$. The matrix *B* has single eigenvalues at $\lambda = 1$ and $\lambda = 3$ and a double eigenvalue at $\lambda = 2$.

Solution: Using Lemma 7.1.9, compute:

$$p_B(\lambda) = \det(B - \lambda I_3)$$

$$= \det\begin{pmatrix} 2 - \lambda & 1 & -5 & 2\\ 1 & 2 - \lambda & 13 & 2\\ 0 & 0 & 3 - \lambda & -1\\ 0 & 0 & 1 & 1 - \lambda \end{pmatrix}$$

$$= \det\begin{pmatrix} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{pmatrix} \det\begin{pmatrix} 3 - \lambda & -1\\ 1 & 1 - \lambda \end{pmatrix}$$

$$= ((2 - \lambda)^2 - 1)((3 - \lambda)(1 - \lambda) + 1)$$

$$= (\lambda - 3)(\lambda - 1)(\lambda - 2)^2.$$

Problem 10

§7.2, Exercise 3. Find a basis for the eigenspace of

$$A = \left(\begin{array}{rrrr} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 2 & 2 & 0 \end{array}\right)$$

corresponding to the eigenvalue $\lambda = 2$.

Answer: A basis for the eigenspace of A corresponding to the eigenvalue $\lambda = 2$ is:

$$\left\{ \left(\begin{array}{c} -1\\1\\0 \end{array}\right), \left(\begin{array}{c} 1\\0\\1 \end{array}\right) \right\}.$$

Solution: First, find all eigenvectors of A with eigenvalue $\lambda = 2$, that is, all vectors $v = (v_1, v_2, v_3)$ such that $(A - 2I_3)v = 0$. Solve the system

$$\begin{pmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 2 & 2 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

All solutions v to this system satisfy $v_1 = v_3 - v_2$. Thus:

$$v = \begin{pmatrix} v_3 - v_2 \\ v_2 \\ v_3 \end{pmatrix} = v_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore, the vectors $(-1, 1, 0)^t$ and $(1, 0, 1)^t$ form a basis for this eigenspace.

Problem 11

§7.2, Exercise 4. Consider the matrix

$$A = \left(\begin{array}{rrrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right).$$

- (a) Verify that the characteristic polynomial of A is $p_{\lambda}(A) = (\lambda 1)(\lambda + 2)^2$.
- (b) Show that (1,1,1) is an eigenvector of A corresponding to $\lambda = 1$.
- (c) Show that (1, 1, 1) is orthogonal to every eigenvector of A corresponding to the eigenvalue $\lambda = -2$.
- (a) Find the characteristic polynomial by solving

$$p_{A}(\lambda) = \det(A - \lambda I_{3})$$

$$= \begin{pmatrix} -1 - \lambda & 1 & 1 \\ 1 & -1 - \lambda & 1 \\ 1 & 1 & -1 - \lambda \end{pmatrix}$$

$$= (-1 - \lambda) \det \begin{pmatrix} -1 - \lambda & 1 \\ 1 & -1 - \lambda \end{pmatrix} - \det \begin{pmatrix} 1 & 1 \\ 1 & -1 - \lambda \end{pmatrix} + \det \begin{pmatrix} 1 & 1 \\ 1 & -1 - \lambda \end{pmatrix} + \det \begin{pmatrix} 1 & 1 \\ -1 - \lambda & 1 \end{pmatrix}$$

$$= -(\lambda^{3} + 3\lambda - 4)$$

$$= -(\lambda - 1)(\lambda + 2)^{2}.$$

(b) Verify by computation:

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

(c) Find the space of eigenvectors $v = (v_1, v_2, v_3)$ corresponding to $\lambda = -2$ by solving $(A - \lambda I_3)v = 0$ for $\lambda = -2$. That is, solve

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{r} v_1 \\ v_2 \\ v_3 \end{array}\right) = 0$$

to obtain

$$v = v_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Then compute

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\1\\0 \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\0\\1 \end{pmatrix} = 0.$$

Since $(-1,1,0)^t$ and $(-1,0,1)^t$ form a basis for the space of eigenvectors of A corresponding to $\lambda = -2$ and since $(1,1,1)^t$ is orthogonal to these vectors, $(1,1,1)^t$ is orthogonal to every eigenvector of A corresponding to $\lambda = -2$.

Problem 12

§7.2, Exercise 5. Let

$$A = \left(\begin{array}{rrrr} 0 & -3 & -2 \\ 1 & -4 & -2 \\ -3 & 4 & 1 \end{array}\right)$$

One of the eigenvalues of A is -1. Find the other eigenvalues of A.

Answer: The other two eigenvalues of A are $-1 \pm \sqrt{2}$.

Solution: The characteristic polynomial of *A* is

$$det(A - \lambda I_3) = \begin{pmatrix} -\lambda & -3 & -2\\ 1 & -4 - \lambda & -2\\ -3 & 4 & 1 - \lambda \end{pmatrix}$$
$$= -\lambda^3 - 3\lambda^2 - \lambda + 1$$

Since -1 is an eigenvalue of $A,\,\lambda+1$ is a factor of the characteristic polynomial. We can solve the equation

$$\begin{aligned} -\lambda^3 - 3\lambda^2 - \lambda + 1 &= -(\lambda+1)(\lambda^2 + a\lambda + b) \\ &= -\lambda^3 - (a+1)\lambda^2 - (a+b)\lambda + b \end{aligned}$$

 for

$$-\lambda^{3} - 3\lambda^{2} - \lambda + 1 = -(\lambda + 1)(\lambda^{2} + 2\lambda - 1).$$

Using the quadratic formula, the roots of $\lambda^2 + 2\lambda - 1$ are $-1 \pm \sqrt{2}$. Therefore, the eigenvalues are $-1, -1 + \sqrt{2}, -1 - \sqrt{2}$.

Problem 13

§7.2, Exercise 7. Find the characteristic polynomial and the eigenvalues of

$$A = \begin{pmatrix} -1 & 2 & 2\\ 2 & 2 & 2\\ -3 & -6 & -6 \end{pmatrix}.$$

Find eigenvectors corresponding to each of the three eigenvalues.

Answer: The characteristic polynomial of A is $p_A(\lambda) = -(\lambda^3 + 5\lambda^2 + 6\lambda) = -\lambda(\lambda+2)(\lambda+3)$. The eigenvalues are $\lambda_1 = 0$, $\lambda_2 = -2$, and $\lambda_3 = -3$, with eigenvectors $v_1 = (0, 1, -1)^t$, $v_2 = (2, -1, 0)^t$, and $v_3 = (1, 0, -1)^t$, respectively. **Solution:** The eigenvalues are the roots of the characteristic polynomial $p_A(\lambda) =$

Solution: The eigenvalues are the roots of the characteristic polynomial $p_A(\lambda) = \det(A - \lambda I_3)$. The eigenvectors are vectors v such that $Av = \lambda v$, where λ is an eigenvalue of A. Find them by solving the system $(A - \lambda I_3)v = 0$.