
Math 2568 Homework 11
Math 2568 Due: Monday, November 25, 2019

Problem 1

§7.2, Exercise 6. Consider the matrix A =

(
8 5

−10 −7

)
.

(a) Find the eigenvalues and eigenvectors of A.

(b) Show that the eigenvectors found in (a) form a basis for R2.

(c) Find the coordinates of the vector (x1, x2) relative to the basis in part (b).

(a) Answer: The eigenvalues of A are λ1 = 3 and λ2 = −2, with corresponding
eigenvectors v1 = (1,−1)t and v2 = (1,−2)t, respectively.

Solution: The characteristic polynomial is pA(λ) = λ2−λ−6 = (λ−3)(λ+2).
Then, solve Av = λv for each eigenvalue to find the corresponding eigenvectors.

(b) Two linearly independent vectors in R2 form a basis for R2. Note that
v1 6= αv2 for any scalar α. Therefore, v1 and v2 form a basis for R2.

(c) Answer: The coordinates of (x1, x2) in the basis {v1, v2} are (2x1+x2,−x1−
x2).

Solution: Find α1 and α2 such that α1v1 + α2v2 = (x1, x2)t. That is, solve:(
1 1
−1 −2

)(
α1

α2

)
=

(
x1
x2

)
to obtain α1 = 2x1 + x2 and α2 = −x1 − x2.

Problem 2

§7.2, Exercise 8. Let A be an n× n matrix. Suppose that

A2 +A+ In = 0.

Prove that A is invertible.

We are given A2 +A+ In = 0. Therefore, In = −A2 −A = A(−A− In). Thus,
A−1 = −A− In exists.
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Problem 3

§7.2, Exercise 12. When n is odd show that every real n × n matrix has a
real eigenvalue.

By Theorem 7.2.4, every n × n matrix has exactly n eigenvalues, which are
either real or complex conjugate pairs. Since complex eigenvalues are paired,
the number of complex eigenvalues must be even. Since n is odd, there can be
no more than n − 1 complex eigenvalues; so the matrix has at least one real
eigenvalue.

Problem 4

§7.3, Exercise 2. The eigenvalues of

A =

 −1 2 −1
3 0 1
−3 −2 −3


are 2,−2,−4. Find the eigenvectors of A for each of these eigenvalues and find
a 3× 3 invertible matrix S so that S−1AS is diagonal.

The eigenvectors of A are v1 = (1, 1,−1)t associated to eigenvalue λ1 = 2; v2 =
(1,−1,−1)t associated to eigenvalue λ2 = −2; and v3 = (1,−1, 1)t associated
to eigenvalue λ3 = −4. Find these vectors by solving (A − λI3)v = 0 for each
eigenvalue λ. The matrix S such that S−1AS is diagonal is

S = (v1|v2|v3) =

 1 1 1
1 −1 −1
−1 −1 1

 .

Problem 5

§7.3, Exercise 3. Let

A =

 −1 4 −2
0 3 −2
0 4 −3

 .

Find the eigenvalues and eigenvectors of A, and find an invertible matrix S so
that S−1AS is diagonal.

The eigenvalues of A are λ1 = 1 and λ2 = −1. The eigenvector associated to
λ1 is v1 = (1, 1, 1)t. There are two eigenvectors associated to λ2: v2 = (1, 0, 0)t
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and v3 = (0, 1, 2)t.

S = (v1|v2|v3) =

 1 1 0
1 0 1
1 0 2

 .

Problem 6

§7.3, Exercise 4. Let A and B be similar n× n matrices.

(a) Show that if A is invertible, then B is invertible.

(b) Show that A+A−1 is similar to B +B−1.

(a) Let B = P−1AP be a matrix similar to some invertible matrix A. Then

B−1 = (P−1AP )−1 = P−1A−1(P−1)−1 = P−1A−1P.

Since A−1 exists, B−1 exists also.

(b) If B = P−1AP , then B−1 = (P−1AP )−1 = P−1A−1P . Therefore,

B +B−1 = P−1AP + P−1A−1P = P−1(A+A−1)P

since matrix multiplication is associative. Therefore, A + A−1 is similar to
B +B−1.

Problem 7

§7.3, Exercise 6. Let A be an n × n real diagonalizable matrix. Show that
A+ αIn is also real diagonalizable.

Let S be a matrix such that D = S−1AS is a diagonal matrix. Then

S−1(A+ αIn)S = S−1AS + S−1(αIn)S = D + αIn.

The matrices D and αIn are both diagonal; so D+αIn is also diagonal. There-
fore, A+ αIn is diagonalizable.
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Problem 8

§7.3, Exercise 9. Let A be an n×n matrix all of whose eigenvalues equal ±1.
Show that if A is diagonalizable, the A2 = In.

Since A is diagonalizable, there is an invertible matrix S such that S−1AS is
diagonal. The diagonal entries of S−1AS are the eigenvalues of A; that is,
the diagonal entries equal ±1. Therefore, (S−1AS)2 = In. But (S−1AS)2 =
S−1A2S. Therefore, S−1A2S = In which implies that A2 = In.

Problem 9

§8.1, Exercise 1. Use Theorem 8.1.2 and (8.1.3) to construct matrix of a
linear mapping L from R3 to R2 with L(vi) = wi, i = 1, 2, 3, where

v1 = (1, 0, 2) v2 = (2,−1, 1) v3 = (−2, 1, 0)

and
w1 = (−1, 0) w2 = (0, 1) w3 = (3, 1).

Solution: Compute A, the matrix of L, using Equation (8.1.3):

A = (wt
1|wt

2|wt
3)(vt1|vt2|vt3)−1 =

(
−1 0 3

0 1 1

) 1 2 −2
0 −1 1
2 1 0

−1

=

(
−7 −11 3
−4 −7 2

)
.

Problem 10

§8.1, Exercise 2. Let Pn be the vector space of polynomials p(t) of degree less
than or equal to n. Show that {1, t, t2, . . . , tn} is a basis for Pn.

To show that the set {1, t, t2, . . . , tn} is a basis for Pn, we must show that the
n+ 1 polynomials are linearly independent and span Pn. The polynomials are
independent because the general polynomial of degree n:

α1 + α2t+ α3t
2 + · · ·+ αn+1t

n

is identically 0 for all values of t only when α1 = α2 = · · · = αn+1 = 0. The
polynomials span Pn because every polynomial p(t) of degree n has the form

p(t) = β1 + β2t+ · · ·+ βn+1t
n

which is a linear combination of the polynomials {1, t, t2, . . . , tn} for any p(t) in
Pn.
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Problem 11

§8.1, Exercise 3. Show that

d

dt
: P3 → P2

is a linear mapping.

Let d
dt be a transformation that maps p(t) 7→ d

dtp(t). For p(t) = p0 + p1t +

p2t
2 + p3t

3, then d
dtp(t) = p1 + 2p2t+ 3p3t

2, so d
dt is a mapping P3 → P2. From

calculus, we know that, for any functions f and g:

d

dt
(f + g)(t) =

d

dt
f(t) +

d

dt
g(t),

and that, for any scalar c:

d

dt
(cf)(t) = c

d

dt
f(t).

Let f and g be elements of P3. Then d
dt : P3 → P2 is a linear mapping.

Problem 12

§8.1, Exercise 4. Show that

L(p) =

∫ t

0

p(s)ds

is a linear mapping of P2 → P3.

Let p(t) = p1 + p2t + p3t
2. Then the transformation L maps p(t) 7→ L(p(t)) =

p1t+
1
2p2t

2 + 1
3p3t

3, so L is indeed a mapping P2 → P3. We know from calculus
that, for any functions f and g:∫ t

0

(f + g)(t) =

∫ t

0

f(t) +

∫ t

0

g(t)

And, for any scalar c ∈ R, ∫ t

0

(cf)(t) = c

∫ t

0

f(t).

Let f and g be elements of P2. Then L is a linear mapping.
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