Math 2568 Homework 7 Math 2568 Due: Monday, October 14, 2019

Problem 1

§5.4, Exercise 7. Show that the functions $f_1(t) = \sin t$, $f_2(t) = \cos t$, and $f_3(t) = \cos \left(t + \frac{\pi}{3}\right)$ are linearly dependent vectors in \mathcal{C}^1 .

Problem 2 (MATLAB)

Determine whether the given sets of vectors are linearly independent or linearly dependent.

§5.4, Exercise 9.(MATLAB)

$$v_1 = (2, 1, 3, 4)$$
 $v_2 = (-4, 2, 3, 1)$ $v_3 = (2, 9, 21, 22)$ (1*)

Problem 3 (MATLAB)

§5.4, Exercise 12.(MATLAB) Perform the following experiments.

- (a) Use MATLAB to choose randomly three column vectors in \mathbb{R}^3 . The MATLAB commands to choose these vectors are:
 - y1 = rand(3,1)
 y2 = rand(3,1)
 y3 = rand(3,1)

Use the methods of this section to determine whether these vectors are linearly independent or linearly dependent.

- (b) Now perform this exercise five times and record the number of times a linearly independent set of vectors is chosen and the number of times a linearly dependent set is chosen.
- (c) Repeat the experiment in (b) but this time randomly choose four vectors in \mathbb{R}^3 to be in your set.

Problem 4

§5.5, Exercise 1. Show that $\mathcal{U} = \{u_1, u_2, u_3\}$ where

 $u_1 = (1, 1, 0)$ $u_2 = (0, 1, 0)$ $u_3 = (-1, 0, 1)$

is a basis for \mathbb{R}^3 .

Problem 5

§5.5, Exercise 2. Let $S = \text{span}\{v_1, v_2, v_3\}$ where

 $v_1 = (1, 0, -1, 0)$ $v_2 = (0, 1, 1, 1)$ $v_3 = (5, 4, -1, 4).$

Find the dimension of S and find a basis for S.

Problem 6

§5.5, Exercise 4. Show that the set V of all 2×2 matrices is a vector space. Show that the dimension of V is four by finding a basis of V with four elements. Show that the space M(m, n) of all $m \times n$ matrices is also a vector space. What is dim M(m, n)?

Problem 7

§5.5, Exercise 5. Show that the set \mathcal{P}_n of all polynomials of degree less than or equal to n is a subspace of \mathcal{C}^1 . What is dim \mathcal{P}_2 ? What is dim \mathcal{P}_n ?

Problem 8

§5.6, Exercise 5. Let A be a 7×5 matrix with rank(A) = r.

- (a) What is the largest value that r can have?
- (b) Give a condition equivalent to the system of equations Ax = b having a solution.

- (c) What is the dimension of the null space of A?
- (d) If there is a solution to Ax = b, then how many parameters are needed to describe the set of all solutions?

Problem 9

§5.6, Exercise 6. Let

$$A = \left(\begin{array}{rrrr} 1 & 3 & -1 & 4 \\ 2 & 1 & 5 & 7 \\ 3 & 4 & 4 & 11 \end{array}\right).$$

- (a) Find a basis for the subspace $\mathcal{C} \subset \mathbb{R}^3$ spanned by the columns of A.
- (b) Find a basis for the subspace $\mathcal{R} \subset \mathbb{R}^4$ spanned by the rows of A.
- (c) What is the relationship between $\dim \mathcal{C}$ and $\dim \mathcal{R}$?

Problem 10

§5.6, Exercise 14. Let $\{v_1, v_2, v_3\}$ and $\{w_1, w_2\}$ be linearly independent sets of vectors in a vector space V. Show that if

$$\operatorname{span}\{v_1, v_2, v_3\} \cap \operatorname{span}\{w_1, w_2\} = \{0\}$$

then

$$\dim(\operatorname{span}\{v_1, v_2, v_3, w_1, w_2\}) = 5$$

Hint: First show that if $v \in \text{span}\{v_1, v_2, v_3\}$, $w \in \text{span}\{w_1, w_2\}$, and v + w = 0, then v = w = 0.

Problem 11

In Exercises 15-20 decide whether the statement is true or false, and explain your answer.

§5.6, Exercise 15. Every set of three vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 .

Problem 12

In Exercises 15-20 decide whether the statement is true or false, and explain your answer.

§5.6, Exercise 20. If U is a subspace of \mathbb{R}^3 of dimension 1 and V is a subspace of \mathbb{R}^3 of dimension 2, then $U \cap V = \{0\}$.