Math 2568 Homework 9

Math 2568 Due: Monday, October 28, 2019

Problem 1

Consider the system of differential equations

$$\frac{dx}{dt} = 65x + 42y
\frac{dy}{dt} = -99x - 64y.$$
(1)

§6.1, Exercise 1. Verify that

$$v_1 = \begin{pmatrix} 2\\ -3 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -7\\ 11 \end{pmatrix}$

are eigenvectors of the coefficient matrix of (2) and find the associated eigenvalues.

Problem 2

Consider the system of differential equations

$$\frac{dx}{dt} = 65x + 42y$$

$$\frac{dy}{dt} = -99x - 64y.$$
(2)

§6.1, Exercise 2. Find the solution to (2) satisfying initial conditions $X(0) = (-14, 22)^t$.

Problem 3

Consider the system of differential equations

$$\frac{dx}{dt} = x - y
\frac{dy}{dt} = -x + y.$$
(3)

§6.1, Exercise 5. The eigenvalues of the coefficient matrix of (4) are 0 and 2. Find the associated eigenvectors.

Problem 4

Consider the system of differential equations

$$\frac{dx}{dt} = x - y
\frac{dy}{dt} = -x + y.$$
(4)

§6.1, Exercise 6. Find the solution to (4) satisfying initial conditions $X(0) = (2, -2)^t$.

Problem 5

Consider the system of differential equations

$$\frac{dx}{dt} = -2x + 7y
\frac{dy}{dt} = 5y,$$
(5)

§6.1, Exercise 13. Find a solution to (5) satisfying the initial condition (x(0), y(0)) = (1, 0).

Problem 6

In modern language De Moivre's formula states that

$$e^{ni\theta} = \left(e^{i\theta}\right)^n$$

In Exercises 2 - 3 use De Moivre's formula coupled with Euler's formula (6.2.5) to determine trigonometric identities for the given quantity in terms of $\cos \theta$, $\sin \theta$, $\cos \varphi$, $\sin \varphi$.

§6.2, Exercise 2. $\cos(\theta + \varphi)$.

Problem 7

Compute the general solution for the given system of differential equations.

§6.2, Exercise 4. $\frac{dX}{dt} = \begin{pmatrix} -1 & -4 \\ 2 & 3 \end{pmatrix} X.$

Problem 8

Compute the general solution for the given system of differential equations.

§6.2, Exercise 5. $\frac{dX}{dt} = \begin{pmatrix} 8 & -15 \\ 3 & -4 \end{pmatrix} X.$

Problem 9

Compute the general solution for the given system of differential equations.

§6.2, Exercise 6. $\frac{dX}{dt} = \begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix} X.$

Problem 10

Compute the general solution for the given system of differential equations.

§6.2, Exercise 7. $\frac{dX}{dt} = \begin{pmatrix} -4 & 4 \\ -1 & 0 \end{pmatrix} X.$