Problem 1. True or false? Explain your reasoning.

- (1) If A and B are matrices such that $AB = I_n$, then $BA = I_n$.
- (2) If A, B, C are matrices such that $AB = I_n$ and $BC = I_n$, then A = C.
- (3) If the system of equations Ax = b has a unique solution, then A is invertible.
- (4) If $L: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation and A is a 3×3 matrix, then the map $x \mapsto A(Lx)$ is linear.
- (5) If A is an $m \times n$ matrix and Ax = b is inconsistent, then m > n.

Problem 2. Find all solutions to the system of linear equations

$$x_1 + 2x_2 + 2x_4 + x_5 = 2$$
$$x_1 + 2x_3 + x_5 = -2$$
$$x_2 - x_3 + x_4 = 2$$

Express your answer as a particular solution plus a superposition of solutions to the homogeneous system.

Problem 3. Suppose $L: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that

$$L\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}0\\1\\2\end{pmatrix}$$
 and $L\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}2\\1\\0\end{pmatrix}$.

Find the 3×2 matrix A such that $L = L_A$.

Problem 4. Determine whether the following matrices are invertible. If they are, find their inverses. Explain all your reasoning.

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -3 & -2 \\ 1 & -4 & -2 \\ -3 & 4 & 1 \end{pmatrix}$$

Problem 5. Consider the system of equations

$$x_1 + 2x_2 + x_3 = 3$$

 $x_2 + x_3 = b$
 $ax_1 - x_3 = 1$.

For which values of $a, b \in \mathbb{R}$ does this system have no solutions, a unique solution, or infinitely many solutions? Your answer should split the possibilities for $a, b \in \mathbb{R}$ into 3 disjoint sets.

Problem 6. Suppose A is an invertible $n \times n$ matrix and B is an $m \times n$ matrix. Prove that B and AB are row equivalent.