
Coordinates

Throughout this note, V denotes an n-dimensional vector space with a fixed ordered basis
B = {v1, . . . , vn}. We begin with the following two exercises from the book.

Exercise 1. For each v ∈ V , there are unique scalars c1, . . . , cn ∈ R such that

v =
n∑

j=1

cjvj.

Exercise 2. Suppose W is another vector space, and w1, . . . , wn ∈ W . There is a unique linear
map Φ : V → W such that Φ(vj) = wj for each j.

With these two exercises in hand, we can now define the coordinate map. We’ll do so in 2 ways.

Definition 3 (Coordinates, Definition 1). For v ∈ V , by Exercise 2, there are unique scalars
c1, . . . , cn such that

v =
n∑

j=1

cjvj.

We define

[v]B :=

c1
...
cn

 ∈ Rn.

The map [ · ]B : V → Rn is called the coordinate map.

Exercise 4. Using only Definition 3 for [ · ]B, prove that [ · ]B is linear and [vj] = ej for all j.

We’ll now give a second definition which is manifestly linear, but still requires one to check
something.

Definition 5 (Coordinates, Definition 2). By Exercise 2, there is a unique linear map [ · ]B : V → Rn

sending vj to ej for all j, i.e., [vj]B = ej for all j. We call [ · ]B : V → Rn the coordinate map.

Exercise 6. Using only Definition 3 for [ · ]B, prove that

[v]B =

c1
...
cn

 ⇐⇒ v =
n∑

j=1

cjvj.

By Exercises 4 and 6, the Definitions 3 and 5 are equivalent, i.e., they define the same map.
We’ll now compute explicit formulas for [ · ]B when V = Rn. Recall that for every linear map

Φ : Rn → Rm, there is a unique m×n matrix A such that Φ = LA, where LAx = Ax for all x ∈ Rn.

Proposition 7. Suppose V = Rn. Then [ · ]B = LS−1 where

(1) S =
(
v1 · · · vn

)
.

Proof. The inverse linear transformation of [ · ]B maps ej to vj for all j. We know that this matrix
is exactly LS where S is as in Equation (1) above. Now [ · ]B = L−1

S = LS−1 . �

We’ll now compute an explicit formula for the unique linear map L : V → W given by Lvj = wj

when V = Rn and W = Rm.
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Proposition 8. Suppose V = Rn, W = Rm, and w1, . . . , wn ∈ W . By Exercise 2, there is a unique
linear map Φ : V → W such that Φ(vj) = wj for all j. Then the matrix A such that Φ = LA is
given by

A =
(
w1 · · · wn

) (
v1 · · · vn

)−1︸ ︷︷ ︸
S−1

.

Proof. We can write Φ as a composite map:

Rn Rm

Rn

Φ

[ · ]B ej 7→wj

In more detail, by Exercise 2, there is a unique linear map Rn → W = Rm which maps ej to wj for
all j. We know that this linear map is given by left multiplication by the matrix

R :=
(
w1 · · · wn

)
.

Again by Exercise 2, we have Φ = LR ◦ [ · ]B, since both Φ and the composite map LR ◦ [ · ]B map
vj to wj for all j. Now by Proposition 7, we have

Φ = LR ◦ [ · ]B = LR ◦ LS−1 = LRS−1

where S is as in Equation (1). Hence A = RS as claimed. �

Proposition 8 above is a special case of the following more general proposition.

Proposition 9. Suppose V is a vector space with ordered basis B = {v1, . . . , vn}, W is a vector
space with ordered basis C = {w1, . . . , wm}, and Φ : V → W is a linear map. The matrix

[Φ]CB :=
(

[Φv1]C · · · [Φvn]C
)

is the unique m× n matrix such that

(2) [Φ]CB[v]B = [Φv]C ∀v ∈ V, i.e.,

V W

Rn Rm

Φ

[ · ]B [ · ]C
L

[Φ]C
B

commutes.

Proof. Recall that the j-th column of a matrix A is given by Aej. Since ej = [vj]B for all j, such a
matrix [Φ]CB exists satisfying Equation (2) if and only if its j-th column [Φ]CBej = [Φ]CB[v]B is equal
to [Φvj]C . So defining [Φ]CB in this way gives the unique m× n matrix satisfying Equation (2). �

Exercise 10. Let V be the vector space of polynomials of degree at most 4, and let B = {1, x, x2, x3, x4}.
Let W be the vector space of polynomials of degree at most 3, and let C = {1, x, x2, x3}.
(1) Show the derivative d

dx
: V → W given by p(x) 7→ p′(x) is a linear map, and compute [ d

dx
]CB.

(2) Show the second derivative d2

dx2 : V → W given by p(x) 7→ p′′(x) is a linear map, and compute

[ d2

dx2 ]CB.

(3) Show that the map d
dx

+ d2

dx2 : V → W given by p(x) 7→ p′(x) + p′′(x) is a linear map, and

compute [ d
dx

+ d2

dx2 ]CB. Compare your answer to [ d
dx

]CB and [ d2

dx2 ]CB.
Hint: Show that the sum of any two linear maps is again a llnear map.

Recall that two n× n matrices A1, A2 are called similar if there is an invertible n× n matrix S
such that S−1A1S = A2.
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Corollary 11. When V = W = Rn, B = C = {v1, . . . , vn}, and Φ = LA for an n × n matrix A,
then

[Φ]CB = S−1AS

where the matrix S is given as in Equation (1) by S =
(
v1 · · · vn

)
.

Proof. By Proposition 7 and Equation (2) above, we have that

L[Φ]CB
= [ · ]B ◦ LA ◦ [ · ]−1

B = LS−1 ◦ LA ◦ LS = LS−1AS,

and thus [Φ]CB = S−1AS as claimed. �

We thus see that the equivalence relation of matrix similarlity is exactly expressing one linear
transformation LA, which is expressed in terms of the standard basis, in terms of a second basis,
which is exactly the columns of S.

We now analyze the equivalence relation related to changing two bases for V and W separately.

Corollary 12. When V = Rn and B = {v1, . . . , vn}, W = Rm and C = {w1, . . . , wm}, and L = LA

for an m× n matrix A, then
[LA]CB = T−1AS

where the matrices T and S are given as in Equation (2) by

S =
(
v1 · · · vn

)
T =

(
w1 · · · wm

)
.

Proof. By Proposition 7 and Equation (2) above, we have that

L[Φ]CB
= [ · ]C ◦ LA ◦ [ · ]−1

B = LT−1 ◦ LA ◦ LS = LT−1AS,

and thus [Φ]CB = T−1AS as claimed. �

Definition 13. We say two m × n matrices A1, A2 are bi-similar 1 if there is an invertible m ×m
matrix T and an invertible n× n matrix S such that T−1A1S = A2.

Exercise 14. Show that two m × n matrices A1, A2 are row equivalent if and only if there is an
m ×m invertible matrix T such that TA1 = A2. Then show A1 and A2 are column equivalent if
and only if there is an invertible n× n matrix S such that A1S = A2.

Exercise 15. Show that any elementary row and column operations commute.
Hint: They are performed by multiplying by an elementary matrix on the left and on the right
respectively.

Exercise 16. Suppose that A is an m× n matrix. Show that one can obtain the matrix(
Ip 0p×(n−p)

0(m−p)×p 0(m−p)×(n−p)

)
from A by performing a sequence of elementary row and column operations if and only if p =
rank(A).

Theorem 17. The following are equivalent for two m× n matrices A1, A2:

(1) A1 and A2 are bi-similar.
(2) A2 can be obtained from A1 by performing a sequence of elementary row and column operations.
(3) rank(A1) = rank(A2).

Proof.

1This is not standard notation.
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(1)⇒ (2): Suppose A1 and A2 are bi-similar, so that T−1A1S = A2 for some invertible m×m matrix
T and some invertible n × n matrix S. Then by Exercise 14, A2 can be obtained from A1 by a
sequence of elementary row and column operations, and (2) holds.

(2)⇒ (1): Suppose A2 can be obtained from A1 by a sequence of elementary row and column opera-
tions. Since elementary row and column operations commute by Exercise 15, we may first perform
all the row operations, and then perform all the column operations to get from A1 to A2.

Let A3 be the matrix obtained from A1 by only performing the elementary row operations. By
Exercise 14, there is an invertible matrix T such that A3 = T−1A1. Now one can obtain A2 from
A3 by performing only elementary column operations, so there is an invertible n× n matrix S such
that A2 = A3S = T−1A1S. Hence A1 and A2 are bi-similar, and (1) holds.

(2)⇔ (3): Set r1 := rank(A1) and r2 := rank(A2), and define

E1 :=

(
Ir1 0p×(n−r1)

0(m−r1)×r1 0(m−r1)×(n−r1)

)
E2 :=

(
Ir2 0p×(n−r2)

0(m−r2)×r2 0(m−r2)×(n−r2)

)
Then by Exercise 16, for j = 1, 2, Ej can be obtained from Aj by a sequence of elementary row and
column operations.

If (2) holds, then A2 can be obtained from A1 by a sequence of elementary row and column
operations. Since elementary row and column operations are invertible, we see that E1 can be
obtained from E2 by elementary row and column operations. By the uniqueness statement from
Exercise 16, we must have r1 = r2, and (2) holds.

If (3) holds, then E1 = E2, so again as elementary row and column operations are invertible,
A2 can be obtained from A1 by a sequence of elementary row and column operations. Hence (2)
holds. �
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