COORDINATES

Throughout this note, V' denotes an n-dimensional vector space with a fixed ordered basis
B = {vy,...,v,}. We begin with the following two exercises from the book.

Exercise 1. For each v € V, there are unique scalars ¢y, ..., ¢, € R such that
n
v = Z CjVj.
j=1
Exercise 2. Suppose W is another vector space, and wiq,...,w, € W. There is a unique linear

map ¢ : V — W such that ®(v;) = w; for each j.
With these two exercises in hand, we can now define the coordinate map. We’ll do so in 2 ways.

Definition 3 (Coordinates, Definition 1). For v € V', by Exercise 2, there are unique scalars

Ci,...,Cy such that
n
v = E CjUj.
=1

We define

Cn
The map [-]g : V — R™ is called the coordinate map.

Exercise 4. Using only Definition 3 for [- ], prove that [-]p is linear and [v;] = e; for all j.

We’ll now give a second definition which is manifestly linear, but still requires one to check
something.

Definition 5 (Coordinates, Definition 2). By Exercise 2, there is a unique linear map [-|g : V — R"
sending v; to e; for all j, i.e., [v;]p =e; for all j. We call [- |5 : V' — R” the coordinate map.

Exercise 6. Using only Definition 3 for [-]p, prove that

C1 n
vlp=|: <~ v = chvj.
Cn j=1

By Exercises 4 and 6, the Definitions 3 and 5 are equivalent, i.e., they define the same map.
We'll now compute explicit formulas for |- ] when V' = R™. Recall that for every linear map
® : R™ — R™, there is a unique m x n matrix A such that ® = L4, where L x = Ax for all z € R™.

Proposition 7. Suppose V- =R". Then [-|p = Ls-1 where

(1) S=(uv]fon).
Proof. The inverse linear transformation of [- |5 maps e; to v; for all j. We know that this matrix
is exactly Lg where S is as in Equation (1) above. Now [-]z = Lg' = Lg-1. d

We’ll now compute an explicit formula for the unique linear map L : V' — W given by Lv; = w;
when V' =R" and W = R™.
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Proposition 8. Suppose V =R", W =R™, and wy,...,w, € W. By Exercise 2, there is a unique
linear map ® : V. — W such that ®(v;) = w; for all j. Then the matriz A such that ® = Ly is
given by
—1
A=(wn ] fwn ) (o] fon ) .

g

Sfl

Proof. We can write ¢ as a composite map:

\Rm

[\ /JH“’J

In more detail, by Exercise 2, there is a unique linear map R" — W = R™ which maps e; to w; for
all 7. We know that this linear map is given by left multiplication by the matrix

R::(wl"-- ‘wn)

Again by Exercise 2, we have ® = L o [+]p, since both ® and the composite map Lg o [-]p map
v; to w; for all j. Now by Proposition 7, we have

CI)ZLRO[']B:LROLsfl :LRS*l

where S is as in Equation (1). Hence A = RS as claimed. O
Proposition 8 above is a special case of the following more general proposition.
Proposition 9. Suppose V' is a vector space with ordered basis B = {vy,...,v,}, W is a vector
space with ordered basis C = {wy,...,wy}, and ® : V — W is a linear map. The matriz
[@]5 := ( [Pvi]e |- | [Pvn]c )
18 the unique m X n matrix such that
V—2 W
(2) @S] = [®v]e Vv eV, e, [.]Bl lHC commutes.

(@G

R* ———— R™

Proof. Recall that the j-th column of a matrix A is given by Ae;. Since e; = [v;]p for all j, such a
matrix [®]4 exists satisfying Equation (2) if and only if its j-th column [®]Ge; = [®]G[v]p is equal

to [Pvi]c. So defining [®]% in this way gives the unique m x n matrix satisfying Equation (2). O

Exercise 10. Let V be the vector space of polynomials of degree at most 4, and let B = {1, z, 2%, 2*, z}.
Let W be the vector space of polynomials of degree at most 3, and let C' = {1, x, 2% 23}.

(1) Show the derivative £ : V — W given by p(z) — p/(z) is a linear map, and compute [-£]%.

(2) Show the second derlvatwe 25 .V — W given by p(z) — p”(x) is a linear map, and compute
)5

(3) Show that the map dcfr + dIQ : V. — W given by p(x) — p'(x) + p”(x) is a linear map, and
compute [ + d‘fg] Compare your answer to [-£]G and [-L; de]g

Hint: Show that the sum of any two linear maps is again a llnear map.

Recall that two n x n matrices A, Ay are called similar if there is an invertible n X n matrix S
such that S71A;S = A,.
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Corollary 11. When V. =W =R", B=C = {vy,...,u,}, and ® = Ly for an n X n matriz A,
then
[®]4 = S™tAS
where the matriz S is given as in Equation (1) by S = ( vy ‘ ‘ Up )
Proof. By Proposition 7 and Equation (2) above, we have that
Ligig = [-]poLao[-]5' = Lg-10Lao Lg = Lg-14s,
and thus [®]§ = S71AS as claimed. O

We thus see that the equivalence relation of matrix similarlity is exactly expressing one linear
transformation L4, which is expressed in terms of the standard basis, in terms of a second basis,
which is exactly the columns of S.

We now analyze the equivalence relation related to changing two bases for V' and W separately.

Corollary 12. When V =R" and B = {vy,...,v,}, W =R"™ and C = {wy,...,wy}, and L = Ly
for an m x n matriz A, then

[Lalg =T7"'AS
where the matrices T and S are given as in Equation (2) by
S=(vf- o) T=(wi| [wm).
Proof. By Proposition 7 and Equation (2) above, we have that
Ligig = [‘locoLao[-]5' =Lp-10Ls0Ls= Ly,
and thus [®]§ = T71AS as claimed. O

Definition 13. We say two m x n matrices A;, Ay are bi-similar® if there is an invertible m x m
matrix 7" and an invertible n x n matrix S such that 7714, = As.

Exercise 14. Show that two m x n matrices A;, Ay are row equivalent if and only if there is an
m X m invertible matrix 7" such that TA; = A,. Then show A; and A, are column equivalent if
and only if there is an invertible n X n matrix S such that A5 = As.

Exercise 15. Show that any elementary row and column operations commute.
Hint: They are performed by multiplying by an elementary matriz on the left and on the right
respectively.

Exercise 16. Suppose that A is an m X n matrix. Show that one can obtain the matrix
( Iy Opx (n—p) )
Om—pyxp  Om—p)x(n—p)
from A by performing a sequence of elementary row and column operations if and only if p =
rank(A).

Theorem 17. The following are equivalent for two m X n matrices Ay, As:
(1) Ay and As are bi-similar.
(2) Ay can be obtained from Ay by performing a sequence of elementary row and column operations.

(3) rank(A;) = rank(As).
Proof.

IThis is not standard notation.



(1) = (2): Suppose A; and A, are bi-similar, so that 77! A;S = A, for some invertible m X m matrix
T and some invertible n x n matrix S. Then by Exercise 14, Ay can be obtained from A; by a
sequence of elementary row and column operations, and (2) holds.

(2) = (1): Suppose A, can be obtained from A; by a sequence of elementary row and column opera-
tions. Since elementary row and column operations commute by Exercise 15, we may first perform
all the row operations, and then perform all the column operations to get from A; to As.

Let A3 be the matrix obtained from A; by only performing the elementary row operations. By
Exercise 14, there is an invertible matrix 7" such that A3 = T-!'A;. Now one can obtain A, from
Az by performing only elementary column operations, so there is an invertible n x n matrix S such
that Ay = A3S = T-'A;S. Hence A; and A, are bi-similar, and (1) holds.

(2) < (3): Set ry :=rank(A;) and ry := rank(Asy), and define

B ( I, Ops(n—r1) ) B, = ( I, Ops (n—r) )
O(mfrl)xrl O(mfrl)x(nfrl) O(mfrz)xrz O(mf'r‘z)X(TLng)
Then by Exercise 16, for j = 1,2, F; can be obtained from A; by a sequence of elementary row and
column operations.

If (2) holds, then A, can be obtained from A; by a sequence of elementary row and column
operations. Since elementary row and column operations are invertible, we see that F; can be
obtained from Fy by elementary row and column operations. By the uniqueness statement from
Exercise 16, we must have r = rq, and (2) holds.

If (3) holds, then E; = E,, so again as elementary row and column operations are invertible,
Ay can be obtained from A; by a sequence of elementary row and column operations. Hence (2)
holds. 0
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