
Dimension, Bases, and the Extension and Contraction Theorems

Throughout this note, V denotes a vector space.

Definition 1. A vector space is finite dimensional if there is a finite subset S ⊂ V such that
span(S) = V . We define the dimension of V , denoted dim(V ), to be the minimal number of
elements |S| of a set S which spans V .

From here on, V will denote a finite dimensional vector space.

Theorem 2. Let S ⊂ V .

• If S spans V , then dim(V ) ≤ |S|.
• If S is linearly independent, then |S| ≤ dim(V ).

Notice that the first statement above follows immediately from the definition of dim(V ).

Proof for n+ 1 vectors in V = Rn. Suppose we have n + 1 vectors v1, . . . , vn+1 in Rn. Form the
matrix

A :=
(
v1 · · · vn+1

)
,

which has rank at most n. This means if we row-reduce A, we get at most n pivots, so there must
be a non-trivial solution to A~x = ~0. Thus the columns of A are linearly dependent. This means
if S ⊂ Rn has more than n elements, then S is linearly dependent. The contrapositive of this
statement is that if S is linearly independent, S has at most n elements. �

Definition 3. A basis for V is a subset B ⊂ V which both is linearly independent and spans V .

Exercise 4. Let S = {v1, . . . , vn} ⊂ V be a spanning set for V . This means that every vector in V
can be written as a linear combination of the elements of S. Show that the following are equivalent.

• S is also linearly independent, so that S is a basis.
• Every vector in V can be uniquely expressed as a linear combination of the elements of S.
• The zero vector ~0 ∈ V can be uniquely expressed as a linear combination of the elements of
S.

Corollary 5. If B is a basis for V , then |B| = dim(V ).

Proof. As B spans V , dim(V ) ≤ |B| by Theorem 2. As B is linearly independent, |B| ≤ dim(V )
by Thereom 2. We conclude that |B| = dim(V ). �

The extension and contraction theorems play spanning sets off linearly independent sets for
strong results in dual ways. The idea of contraction is more fundamental as a finite dimensional
vector space assumes the existence of a finite spanning set.

One should think of linearly independent sets as “small” and spanning sets as “big,” and the
sets exactly in the middle are bases.

Exercise 6. Let S1 ⊂ S2 ⊂ V .
(1) If S2 is linearly independent, then so is S1.
(2) If S1 is linearly dependent, then so is S2.
(3) If S1 spans V , then S2 spans V .
(4) If S2 does not span V , then neither does S1.

The proofs of the Contraction and Extension Theorems are very similar in structure.
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Lemma 7 (Contraction Lemma). Suppose S = {v1, . . . , vn} spans V . If vk ∈ span(S \ {vk}), then
S \ {vk} spans V .

Proof. Since vk ∈ span(S\{vk}), we may express vk as a linear combination of v1, . . . , vk−1, vk+1, . . . , vn:

vk =
n∑

i 6=k

λivi.

Now if v ∈ V , then there are µ1, . . . , µn such that

v =
n∑

i=1

µivi

= µkvk +
n∑

i=6=k

µivi

= µk

n∑
i= 6=k

λivi +
n∑

i=6=k

µivi

=
n∑

i=6=k

µkλivi +
n∑

i= 6=k

µivi

=
n∑

i=6=k

(µkλi + µi)vi ∈ span(S \ {vk}).

Hence S \ {vk} spans V . �

Theorem 8 (Contraction). Let S = {v1, . . . , vn} ⊂ V be a finite subset such that S spans V . Then
there is a subset B ⊂ S such that B is a basis of V .

Proof. The proof is the following algorithm, represented as a flow chart:

S spans V

Is S linearly independent?

S is a basis S is linearly dependent ∃vk ∈ span(S \ {vk})

S \ {vk}) spans V

Replace S with S \ {vk})

yes no

Since S spans V , if S is also linearly independent, then S is a basis. If S is not linearly independent,
then S is linearly dependent. Then there is a vk ∈ S such that vk is a linear combination of the
other elements of S. By Lemma 7, the set S \ {vk} still spans V , so we may replace S with S \ {vk}
and repeat the above procedure with a new finite set with strictly fewer elements. This algorithm
must eventually terminate, since the empty set is linearly independent by definition. �
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Corollary 9 (Existence of Bases). Let V be a finite dimensional vector space. Then V has a basis.

Proof. Since V is finite dimensional, there is a finite spanning set S ⊂ V . The Contraction Theorem
8 ensures there is a basis B ⊂ S. �

Lemma 10 (Extension Lemma). Suppose S = {v1, . . . , vn} is a linearly independent subset of V ,
and suppose v /∈ span(S). Then S ∪ {v} is linearly independent.

Proof. Since S is linearly independent, we know that

(1)
n∑

i=1

λivi = 0 =⇒ λi = 0 for all i.

Now suppose

(2) µv +
n∑

i=1

λivi = 0.

If µ 6= 0, then

v =
−1

µ

n∑
i=1

λivi =
n∑

i=1

−λi
µ
vi ∈ span(S),

a contradiction. Hence µ = 0, and plugging this in to (2), we can conclude λi = 0 for all i by (1).
Hence all the scalars in equation (2) must be zero, so S ∪ {v} is linearly independent. �

Theorem 11 (Extension). Let S ⊂ V be a linearly independent subset. Then there is a finite set
B ⊃ S such that B is a basis for V .

Proof. The proof is the following algorithm, represented as a flow chart:

S is linearly independent

Does S span V ?

S is a basisV 6= span(S)∃v ∈ V \ span(S)

S ∪ {v} is linearly independent

Replace S with S ∪ {v}

yesno

Since S is linearly independent, if S spans V , then S is a basis for V . If S does not span V , then
there is a v ∈ V \ span(S), and S ∪{v} is linearly independent by Lemma 10. Thus we may replace
S with S ∪ {v} and repeat the above procedure with a new linearly independent set with strictly
more elements. This algorithm must eventually terminate, as once S has dim(V ) many elements,
it must span V . �

Corollary 12. Let W be a subspace of V , and suppose S is a basis of W . There is a basis B for
V with S ⊂ B.
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