DIMENSION, BASES, AND THE EXTENSION AND CONTRACTION THEOREMS
Throughout this note, V' denotes a vector space.

Definition 1. A vector space is finite dimensional if there is a finite subset S C V such that
span(S) = V. We define the dimension of V, denoted dim(V'), to be the minimal number of
elements |S| of a set S which spans V.

From here on, V' will denote a finite dimensional vector space.

Theorem 2. Let S C V.
o [fS spans V, then dim(V') < |S|.
o [f S is linearly independent, then |S| < dim(V').

Notice that the first statement above follows immediately from the definition of dim(V).

Proof for n 4+ 1 vectors in V = R". Suppose we have n + 1 vectors vy,...,v,11 in R”. Form the
matrix

A::(Ul"" "UnJrl ),
which has rank at most n. This means if we row-reduce A, we get at most n pivots, so there must
be a non-trivial solution to AZ = 0. Thus the columns of A are linearly dependent. This means
if S C R™ has more than n elements, then S is linearly dependent. The contrapositive of this
statement is that if S is linearly independent, S has at most n elements. 0

Definition 3. A basis for V' is a subset B C V which both is linearly independent and spans V.

Exercise 4. Let S = {vy,...,v,} CV be a spanning set for V. This means that every vector in V'
can be written as a linear combination of the elements of S. Show that the following are equivalent.

e S is also linearly independent, so that S is a basis.
e Every vector in V' can be uniquely expressed as a linear combination of the elements of S.
e The zero vector 0 € V' can be uniquely expressed as a linear combination of the elements of

S.
Corollary 5. If B is a basis for V, then |B| = dim(V).

Proof. As B spans V, dim(V') < |B| by Theorem 2. As B is linearly independent, |B| < dim(V)
by Thereom 2. We conclude that |B| = dim(V). O

The extension and contraction theorems play spanning sets off linearly independent sets for
strong results in dual ways. The idea of contraction is more fundamental as a finite dimensional
vector space assumes the existence of a finite spanning set.

One should think of linearly independent sets as “small” and spanning sets as “big,” and the
sets exactly in the middle are bases.

Exercise 6. Let S; C S, C V.

(1) If Sy is linearly independent, then so is 5.
(2) If S) is linearly dependent, then so is Ss.
(3) If S spans V, then S, spans V.

(4) If Sy does not span V, then neither does Sj.

The proofs of the Contraction and Extension Theorems are very similar in structure.



Lemma 7 (Contraction Lemma). Suppose S = {vy,...,v,} spans V. If vy € span(S \ {vr}), then
S\ {vr} spans V.

Proof. Since vy, € span(S\{vy}), we may express vy as a linear combination of vy, ..., Vg1, Vks1, - - -, Up:
n
Vr = Z )\zvz
itk

Now if v € V, then there are uy, ..., i, such that
v = ZMM’
i=1

= kU + Z HiV;
i=#k

= Wk Z Aiv; + Z HiVi

i=#k i=#k

= Z HrAiv; + Z HiV;

i=£k i=#k
= > (prAi+ pi)v; € span(S\ {vg}).
i=#k
Hence S\ {vx} spans V. O

Theorem 8 (Contraction). Let S = {vy,...,v,} CV be a finite subset such that S spans V. Then
there is a subset B C S such that B is a basis of V.

Proof. The proof is the following algorithm, represented as a flow chart:

S spans V' 4 Replace S with S\ {vg})
A
Is S linearly independent? S\ {vx}) spans V
A
yes no

S is linearly dependent ——p Jvy, € span(S \ {vx})

Since S spans V| if S is also linearly independent, then S is a basis. If S is not linearly independent,
then S is linearly dependent. Then there is a vy € S such that v, is a linear combination of the
other elements of S. By Lemma 7, the set S\ {v;} still spans V, so we may replace S with S\ {vy}
and repeat the above procedure with a new finite set with strictly fewer elements. This algorithm

must eventually terminate, since the empty set is linearly independent by definition. 0J
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Corollary 9 (Existence of Bases). Let V' be a finite dimensional vector space. Then V' has a basis.

Proof. Since V is finite dimensional, there is a finite spanning set S C V. The Contraction Theorem
8 ensures there is a basis B C S. OJ

Lemma 10 (Extension Lemma). Suppose S = {v1,...,v,} is a linearly independent subset of V,
and suppose v ¢ span(S). Then S U {v} is linearly independent.

Proof. Since S is linearly independent, we know that

(1) i Av; =0 - A = 0 for all 1.
Now suppose B

(2) [ + i Aiv; = 0.

If u# 0, then -

v=— Z)‘ivi = Z ——w; € span(S),
- i1 M
a contradiction. Hence p = 0, and plugging this in to (2), we can conclude \; = 0 for all ¢ by (1).

Hence all the scalars in equation (2) must be zero, so S U {v} is linearly independent. O

Theorem 11 (Extension). Let S C V be a linearly independent subset. Then there is a finite set
B D S such that B is a basis for V.

Proof. The proof is the following algorithm, represented as a flow chart:

Replace S with S U {v} P S is linearly independent
A
S U {v} is linearly independent Does S span V7
A
no yes

Jv € V'\ span(S) (4 V # span(S)

Since S is linearly independent, if S spans V', then S is a basis for V. If S does not span V', then
there is a v € V' \ span(5), and S U {v} is linearly independent by Lemma 10. Thus we may replace
S with S U {v} and repeat the above procedure with a new linearly independent set with strictly
more elements. This algorithm must eventually terminate, as once S has dim(V') many elements,
it must span V. O

Corollary 12. Let W be a subspace of V', and suppose S is a basis of W. There is a basis B for
V with S C B.
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