Problem 1. Suppose $A$ and $B$ are finite. Find necessary and sufficient conditions for there to be no surjections from $A$ to $B$.

Problem 2. Suppose $A$ and $B$ are finite. Compute $\# \operatorname{Bij}(A, B)$, the number of bijections from $A$ to $B$, in terms of $\# A$ and $\# B$.
Hint: You can look at Falkner Section 14 Exercise 11.
Problem 3. Falkner Section 13 Exercise 10
Problem 4. Prove that $A$ is countable and nonempty if and only if there is a surjection $\mathbb{N} \rightarrow A$.
Hint: Given a surjection $f: \mathbb{N} \rightarrow A$, we can inductively construct a bijection $g: \mathbb{N} \rightarrow A$ as follows. First, set $g(1)=f(1)$. Suppose $n \in \mathbb{N}$, and that we have defined $g(1), \ldots, g(n)$. Let $k_{n} \in \mathbb{N}$ be the smallest $k \in \mathbb{N}$ such that $f(k) \notin\{g(1), \ldots, g(n)\}$. Define $g(n+1)=f\left(k_{n}\right)$.
(a) Why does $k_{n}$ exist?
(b) Show that $g$ is injective.
(c) Show that $\left(k_{n}\right)$ is an increasing sequence, i.e., $k_{n}<k_{n+1}$.
(d) Show that $f\left(\left\{1, \ldots, k_{n}-1\right\}\right)=g(\{1, \ldots, n\})$ and $f\left(\left\{1, \ldots, k_{n}\right\}\right)=g(\{1, \ldots, n, n+1\})$.
(e) Show that $g$ is surjective.

Problem 5. Falkner Section 15 Exercise 1
Optional problem 1. Find a bijection between $\operatorname{Surj}(A, B)$, the set of surjections from $A$ to $B$, and the set of ordered partitions of $A$ with $\# B$ elements. That means $\# B$-tuples $\left(S_{1}, \ldots, S_{\# B}\right)$ of nonempty, pairwise disjoint subsets of $A$ whose union is $A$. Why do you need ordered partitions?

