Math 3345 Homework 5

Recall from last week's class that we defined the equivalence class of an integer modulo m. Fix $m \in \mathbb{N}$. We define the equivalence class of a module m to be

$$
\bar{a}=\{b \in \mathbb{Z} \mid a \equiv b \quad \bmod m\} .
$$

Recall that we defined addition and multiplication for equivalence classes by

$$
\begin{aligned}
\bar{a}+\bar{b} & =\overline{a+b} \text { and } \\
\bar{a} \cdot \bar{b} & =\overline{a b} .
\end{aligned}
$$

To show these operations are well-defined, we must check that if $\overline{a_{1}}=\overline{a_{2}}$ and $\overline{b_{1}}=\overline{b_{2}}$, then

$$
\begin{aligned}
\overline{a_{1}+b_{1}} & =\overline{a_{2}+b_{2}} \text { and } \\
\overline{a_{1} b_{1}} & =\overline{a_{2} b_{2}}
\end{aligned}
$$

We did this in class assuming using the fact from the problem below.
Problem 1. Fix $m \in \mathbb{N}$. Suppose $a, b \in \mathbb{Z}$. Show that $\bar{a}=\bar{b}$ if and only if $a \equiv b \bmod m$.
Problem 2. Fix $m \in \mathbb{N}$ such that $m \geq 2$. Show that the following two properties are equivalent.
(a) m is prime.
(b) For all $a, b \in \mathbb{Z}, \bar{a} \cdot \bar{b}=\overline{0}$ implies $\bar{a}=\overline{0}$ or $\bar{b}=\overline{0}$.

Problem 3. (Falkner Section 5 Exercise 1) Use the Principle of Mathematical Induction to prove that for all $n \in \mathbf{N}$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Problem 4. (Edited from Falkner Section 5 Exercise 6) Prove that for each $n \in \mathbb{N}, 6$ divides $n^{3}-n$.

Problem 5.

(a) Falkner Section 5 Exercise 11
(b) Falkner Section 5 Exercise 12

Hint: Use part (a).
Optional problem 1. Suppose you have cards with 3 sides. Each card has a number on side 1 , a letter on side 2 , and a color (red or blue) on side 3 . You can only see one side at a time, and you know which way to flip the card to see the other two sides. You want to verify the following rule:

- If side 1 shows an even number then (if side 2 shows a vowel, then side 3 must show the color blue).
You see cards which display $1,2, \mathrm{~A}, \mathrm{~B}$, red, and blue. Which cards do you need to flip to verify the rule? Which ways do you need to flip them?

