Math 3345 Homework 6

Problem 1. Falkner Section 5 Exercise 23
For this problem, you can also do the following:
Recall $F_{1}=F_{2}=1$, and for $n \geq 2, F_{n+1}=F_{n}+F_{n-1}$. For $n \in \mathbb{N}$, let $P(n)$ be the statement

- F_{n} is even if and only if 3 divides n.

Use the Principle of Strong Mathematical Induction to prove that for all $n \in \mathbb{N}, P(n)$ holds. To do so, you'll need to prove two base cases before your inductive step.

Problem 2. Falkner Section 7 Exercise 4
Read Definition 7.11 and Examples 7.12
Problem 3. Falkner Section 7 Exercise 14
We showed in class that if $d, n \in \mathbb{N}$ such that d divides n, then $d \leq n$. If $a, b \in \mathbb{N}$, we say that their greatest common divisor is the largest $d \in \mathbb{N}$ such that d divides a and d divides b. We denote the greatest common divisor of a and b by $\operatorname{gcd}(a, b)$. The greatest common divisor is well-defined, since 1 always divides a and b, and the largest $\operatorname{gcd}(a, b)$ can be is $\min \{a, b\}$.

Problem 4. Fix $p \in \mathbb{N}$ with $p \geq 2$. Prove the following two conditions are equivalent.
(a) p is prime.
(b) For all $d \in\{1, \ldots, p-1\}, \operatorname{gcd}(d, p)=1$.

Problem 5. Falkner Section 7 Exercise 15

Optional problem 1. Suppose $a, b, q, r \in \mathbb{N}$ such that $a=b q+r$. (In particular, $r \neq 0$.) Show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Hint: Use Problem 3.
Optional problem 2. Show that for every $a, b \in \mathbb{N}$, there are integers $k, \ell \in \mathbb{Z}$ such that $a k+b \ell=\operatorname{gcd}(a, b)$.
Hint: Proceed as follows:
(1) For $a \in \mathbb{N}$, let $P(a)$ be the statement

- For each $b \in \mathbb{N}$, there are $k, \ell \in \mathbb{Z}$ such that $a k+b \ell$ is a common divisor of a and b.

Use the Principal of Strong Mathematical Induction to prove for all $a \in \mathbb{N}, P(a)$ holds.
(2) Prove that if $d=a k+b \ell$ is a common divisor of a and b, and if $d>0$, then $d=\operatorname{gcd}(a, b)$.

Optional problem 3. Fix $m \in \mathbb{N}$.
(a) Suppose $a \in\{1, \ldots, m-1\}$ with $\operatorname{gcd}(a, m)=1$. Show there is a $b \in\{1, \ldots, m-1\}$ such that $\bar{a} \cdot \bar{b}=\overline{1}$.
Hint: Use Optional Problem 2 to write $1=a k+m \ell$ for some $k, \ell \in \mathbb{Z}$. Now pick b carefully.
(b) Suppose there is an $a \in\{1, \ldots, m-1\}$ such that there is no $b \in\{1, \ldots, m-1\}$ with $\bar{a} \cdot \bar{b}=\overline{1}$. Prove that m is not prime.

