Problem 1. Falkner Section 5 Exercise 23

For this problem, you can also do the following: Recall $F_1 = F_2 = 1$, and for $n \ge 2$, $F_{n+1} = F_n + F_{n-1}$. For $n \in \mathbb{N}$, let P(n) be the statement

• F_n is even if and only if 3 divides n.

Use the Principle of Strong Mathematical Induction to prove that for all $n \in \mathbb{N}$, P(n) holds. To do so, you'll need to prove *two* base cases before your inductive step.

Problem 2. Falkner Section 7 Exercise 4 *Read Definition 7.11 and Examples 7.12*

Problem 3. Falkner Section 7 Exercise 14

We showed in class that if $d, n \in \mathbb{N}$ such that d divides n, then $d \leq n$. If $a, b \in \mathbb{N}$, we say that their greatest common divisor is the largest $d \in \mathbb{N}$ such that d divides a and d divides b. We denote the greatest common divisor of a and b by gcd(a, b). The greatest common divisor is well-defined, since 1 always divides a and b, and the largest gcd(a, b) can be is $\min\{a, b\}$.

Problem 4. Fix $p \in \mathbb{N}$ with $p \geq 2$. Prove the following two conditions are equivalent.

- (a) p is prime.
- (b) For all $d \in \{1, \dots, p-1\}$, gcd(d, p) = 1.

Problem 5. Falkner Section 7 Exercise 15

Optional problem 1. Suppose $a, b, q, r \in \mathbb{N}$ such that a = bq + r. (In particular, $r \neq 0$.) Show that gcd(a, b) = gcd(b, r). *Hint: Use Problem 3.*

Optional problem 2. Show that for every $a, b \in \mathbb{N}$, there are integers $k, \ell \in \mathbb{Z}$ such that $ak + b\ell = \gcd(a, b)$. *Hint: Proceed as follows:*

- (1) For $a \in \mathbb{N}$, let P(a) be the statement
 - For each b ∈ N, there are k, l ∈ Z such that ak + bl is a common divisor of a and b.

Use the Principal of Strong Mathematical Induction to prove for all $a \in \mathbb{N}$, P(a) holds.

(2) Prove that if $d = ak + b\ell$ is a common divisor of a and b, and if d > 0, then d = gcd(a, b).

Optional problem 3. Fix $m \in \mathbb{N}$.

- (a) Suppose a ∈ {1,...,m-1} with gcd(a,m) = 1. Show there is a b ∈ {1,...,m-1} such that a · b = 1. *Hint:* Use Optional Problem 2 to write 1 = ak + mℓ for some k, ℓ ∈ Z. Now pick b carefully.
- (b) Suppose there is an $a \in \{1, ..., m-1\}$ such that there is no $b \in \{1, ..., m-1\}$ with $\overline{a} \cdot \overline{b} = \overline{1}$. Prove that m is not prime.