For Problem 1 below, you may use the following fact without proof:

Fact 1. For every $a, b \in \mathbb{N}$, there are integers $k, \ell \in \mathbb{Z}$ such that $ak + b\ell = \gcd(a, b)$.

If you wish to prove the above fact, you may do so below in Optional Problem 1.

Problem 1. Fix $m \in \mathbb{N}$ with $m \geq 2$.

- (a) Suppose $a \in \{1, ..., m-1\}$ with gcd(a, m) = 1. Show there is a $b \in \{1, ..., m-1\}$ such that $\overline{a} \cdot \overline{b} = \overline{1}$. Hint: Use Fact 1 above.
- (b) Deduce from part (a) that if m is prime and $a \in \{1, \ldots, m-1\}$, then there is a $b \in \{1, \ldots, m-1\}$ such that $\overline{a} \cdot \overline{b} = \overline{1}$.

Problem 2. Suppose A and B are sets. Show that the following are equivalent.

- (a) $A \subseteq B$
- (b) $A \cup B = B$
- (c) $A \cap B = A$
- (d) $A \setminus B = \emptyset$

Hint: To show they are all equivalent, you can prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$, or any other cycle of your choice.

Problem 3.

(a) Falkner Section 10 Exercise 12

(b) Falkner Section 10 Exercise 13

Problem 4.

- (a) Falkner Section 10 Exercise 14
- (b) Falkner Section 10 Exercise 15

Problem 5. Falkner Section 10 Exercise 19

Optional problem 1. Show that for every $a, b \in \mathbb{N}$, there are integers $k, \ell \in \mathbb{Z}$ such that $ak + b\ell = \gcd(a, b)$.

Hint: Proceed as follows:

(1) For $a \in \mathbb{N}$, let P(a) be the statement

For each b ∈ N, there are k, l ∈ Z such that ak + bl is a common divisor of a and b.

Use the Principal of Strong Mathematical Induction to prove for all $a \in \mathbb{N}$, P(a) holds.

(2) Prove that if $d = ak + b\ell$ is a common divisor of a and b, and if d > 0, then d = gcd(a, b).