Let $f: A \to B$. For $X \subseteq A$, we define the *image of* X under f as the set

$$f(X) = \{f(x) | x \in X\} \subseteq B.$$

For $Y \subseteq B$, we define the *preimage of* Y under f as the set

$$f^{-1}(Y) = \{a \in A | f(a) \in Y\}.$$

Problem 1. Let $f : A \to B$.

- (a) Show that if $X \subseteq A$, then $X \subseteq f^{-1}(f(X))$.
- (b) Find an example where $X \neq f^{-1}(f(X))$. Hint: try using finite sets.
- (c) Find a condition on f which implies $X = f^{-1}(f(X))$.

Problem 2. Let $f : A \to B$.

- (a) Show that if $Y \subseteq B$, then $f(f^{-1}(Y)) \subseteq Y$.
- (b) Find an example where $f(f^{-1}(Y)) \neq Y$. Hint: try using finite sets.
- (c) Find a condition on f which implies $f(f^{-1}(Y)) = Y$.

Problem 3. Falkner Section 17 Exercise 6

Problem 4.

- (a) Falkner Section 17 Exercise 9
- (b) Falkner Section 17 Exercise 14

Problem 5. Falkner Section 17 Exercise 16

Hint: Use the Principle of Strong Mathematical Induction. Argue as follows for the inductive step. Look at the set of all partitions of $\{1, ..., n+2\}$. We can partition the set of all partitions by the size of the set containing 1. For example, if n = 1, we can partition the 5 partitions of $\{1, 2, 3\}$ into:

$$\left\{\{\{1\},\{2\},\{3\}\},\{\{1\},\{2,3\}\}\right\} \cup \left\{\{\{1,2\},\{3\}\}\{\{1,3\},\{2\}\}\right\} \cup \left\{\{\{1,2,3\}\}\right\},$$

For each $k \in \{0, ..., n+1\}$, how many partitions of $\{1, ..., n+2\}$ are there for which 1 is in a subset of size k + 1? First, you need to choose k other elements of $\{2, ..., n+1\}$. How many ways are there to do this? Then you need to look at the number of ways to partition the remaining (n + 2) - (k + 1) = n - k + 1 elements. Use the Inductive Hypotheses here. (You **don't** need the recursive relation on $\binom{n}{k}$.)