## Math 3345 Homework 8

Let $f: A \rightarrow B$. For $X \subseteq A$, we define the image of $X$ under $f$ as the set

$$
f(X)=\{f(x) \mid x \in X\} \subseteq B
$$

For $Y \subseteq B$, we define the preimage of $Y$ under $f$ as the set

$$
f^{-1}(Y)=\{a \in A \mid f(a) \in Y\} .
$$

Problem 1. Let $f: A \rightarrow B$.
(a) Show that if $X \subseteq A$, then $X \subseteq f^{-1}(f(X))$.
(b) Find an example where $X \neq f^{-1}(f(X))$.

Hint: try using finite sets.
(c) Find a condition on $f$ which implies $X=f^{-1}(f(X))$.

Problem 2. Let $f: A \rightarrow B$.
(a) Show that if $Y \subseteq B$, then $f\left(f^{-1}(Y)\right) \subseteq Y$.
(b) Find an example where $f\left(f^{-1}(Y)\right) \neq Y$.

Hint: try using finite sets.
(c) Find a condition on $f$ which implies $f\left(f^{-1}(Y)\right)=Y$.

Problem 3. Falkner Section 17 Exercise 6

## Problem 4.

(a) Falkner Section 17 Exercise 9
(b) Falkner Section 17 Exercise 14

Problem 5. Falkner Section 17 Exercise 16
Hint: Use the Principle of Strong Mathematical Induction. Argue as follows for the inductive step. Look at the set of all partitions of $\{1, \ldots, n+2\}$. We can partition the set of all partitions by the size of the set containing 1. For example, if $n=1$, we can partition the 5 partitions of $\{1,2,3\}$ into:

$$
\{\{\{1\},\{2\},\{3\}\},\{\{1\},\{2,3\}\}\} \cup\{\{\{1,2\},\{3\}\}\{\{1,3\},\{2\}\}\} \cup\{\{\{1,2,3\}\}\},
$$

For each $k \in\{0, \ldots, n+1\}$, how many partitions of $\{1, \ldots, n+2\}$ are there for which 1 is in a subset of size $k+1$ ? First, you need to choose $k$ other elements of $\{2, \ldots, n+1\}$. How many ways are there to do this? Then you need to look at the number of ways to partition the remaining $(n+2)-(k+1)=n-k+1$ elements. Use the Inductive Hypotheses here. (You don't need the recursive relation on $\binom{n}{k}$.)

