Problem 1. (Falkner Section 11 Exercise 20)

- (a) Let $g:[0,1)\to [0,\infty)$ by g(x)=x/(1-x). Prove that g is a bijection. Find its inverse function $g^{-1}:[0,\infty)\to [0,1)$.
- (b) Let $h:(-1,0)\to (-\infty,0)$ by h(x)=x/(1+x). Prove that h is a bijection and find its inverse function.

Problem 2. Falkner Section 11 Exercise 22

Problem 3. Falkner Section 11 Exercise 23

Let $f: A \to B$. For the remainder of the homework, we'll use some alternate notation for image and preimage of f. For $X \subseteq A$, we define the *image of* X *under* f as the set

$$\overrightarrow{f}(X) = \{f(x)|x \in X\} \subseteq B.$$

For $Y \subseteq B$, we define the *preimage of* Y under f as the set

$$\overleftarrow{f}(Y) = \{a \in A | f(a) \in Y\}.$$

Recall that the *power set* of A is the set $P(A) = \{X | X \subseteq A\}$. Define $\overrightarrow{f}: P(A) \to P(B)$ by $\overrightarrow{f}(X)$ is the image of X under f. Define $\overleftarrow{f}: P(B) \to P(A)$ by $\overleftarrow{f}(Y)$ is the preimage of Y under f.

Problem 4. Recall id_A: $A \to A$ by $a \mapsto a$ for all $a \in A$. Let $f: A \to A$.

- (a) Show that $\overrightarrow{f} = id_{P(A)}$ if and only if $f = id_A$.
- (b) Show that $\overleftarrow{f} = \mathrm{id}_{P(A)}$ if and only if $f = \mathrm{id}_A$.

Problem 5. Let $f: A \to B$, $g: B \to C$, and $h = g \circ f$. Prove that

- (a) $\overrightarrow{h} = \overrightarrow{g} \circ \overrightarrow{f}$, and
- (b) $\overleftarrow{h} = \overleftarrow{f} \circ \overleftarrow{g}$.

You must show that these functions have the same domain, codomain, and rule.

1