Problem 1. (Falkner Section 11 Exercise 20)
(a) Let \(g : [0, 1) \to [0, \infty) \) by \(g(x) = x/(1 - x) \). Prove that \(g \) is a bijection. Find its inverse function \(g^{-1} : [0, \infty) \to [0, 1) \).

(b) Let \(h : (-1, 0) \to (-\infty, 0) \) by \(h(x) = x/(1 + x) \). Prove that \(h \) is a bijection and find its inverse function.

Problem 2. Falkner Section 11 Exercise 22

Problem 3. Falkner Section 11 Exercise 23

Let \(f : A \to B \). For the remainder of the homework, we’ll use some alternate notation for image and preimage of \(f \). For \(X \subseteq A \), we define the image of \(X \) under \(f \) as the set
\[
\overrightarrow{f}(X) = \{ f(x) \mid x \in X \} \subseteq B.
\]
For \(Y \subseteq B \), we define the preimage of \(Y \) under \(f \) as the set
\[
\overleftarrow{f}(Y) = \{ a \in A \mid f(a) \in Y \}.
\]
Recall that the power set of \(A \) is the set \(P(A) = \{ X \mid X \subseteq A \} \). Define \(\overrightarrow{f} : P(A) \to P(B) \) by \(\overrightarrow{f}(X) \) is the image of \(X \) under \(f \). Define \(\overleftarrow{f} : P(B) \to P(A) \) by \(\overleftarrow{f}(Y) \) is the preimage of \(Y \) under \(f \).

Problem 4. Recall \(\text{id}_A : A \to A \) by \(a \mapsto a \) for all \(a \in A \). Let \(f : A \to A \).

(a) Show that \(\overrightarrow{f} = \text{id}_{P(A)} \) if and only if \(f = \text{id}_A \).
(b) Show that \(\overleftarrow{f} = \text{id}_{P(A)} \) if and only if \(f = \text{id}_A \).

Problem 5. Let \(f : A \to B \), \(g : B \to C \), and \(h = g \circ f \). Prove that
(a) \(\overrightarrow{h} = \overrightarrow{g} \circ \overrightarrow{f} \), and
(b) \(\overleftarrow{h} = \overleftarrow{f} \circ \overleftarrow{g} \).

You must show that these functions have the same domain, codomain, and rule.