Math 3345 Practice Exam 1 Answers

(1) (a) False. The negation is "The Buckeyes sometimes lose."
(b) False. It's a tautology.
(c) True
(d) True
(e) False. Zero divides zero. (Work out why this is true!)
(2) (a) We did this in class. Look at your notes to find a proof.
(b) We'll prove the contrapositive, which is the statement "If $x, y \in \mathbb{Z}$ are both even, then $x+y$ is even."

Proof. Suppose $x, y \in \mathbb{Z}$ are both even. Then there exist $k, \ell \in \mathbb{Z}$ such that $x=2 k$ and $y=2 \ell$. Then

$$
x+y=2 k+2 \ell=2(k+\ell) .
$$

Since $k+\ell \in \mathbb{Z}$, we see $x+y$ is even.
(3) (a) The negation of (a) is just False! It turns out that (a) is a tautology, and the negation of a tautology is False.
The negation is given by

$$
(P \Rightarrow Q) \wedge \neg[(Q \Rightarrow R) \Rightarrow(P \Rightarrow R)]
$$

which expands further to

$$
(P \Rightarrow Q) \wedge(Q \Rightarrow R) \wedge \neg(P \Rightarrow R)
$$

But we know that $[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)$, so the above implies $(P \Rightarrow R) \wedge \neg(P \Rightarrow R)$, which is False.
(b) The negation is given by

$$
(\exists a \in A)(\forall b \in B) P(a) \wedge \neg Q(b)
$$

(4) Suppose a divides b and b divides c. Then there are $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $c=b \ell$. Then $c=b \ell=(a k) \ell=a(k \ell)$. But since $k \ell \in \mathbb{Z}$, we see a divides c.
(5) We use the method of conditional proof.
(A1) Assume $P \Rightarrow Q$. We must show that $(P \wedge(Q \Rightarrow R)) \Rightarrow R$.
(A2) Assume $P \wedge(Q \Rightarrow R)$. We must show R.
By (A2), we have P. By (A1), we have $P \Rightarrow Q$. We have P and $P \Rightarrow Q$, so by modus ponens, we have Q.
By (A2) again, we have $Q \Rightarrow R$. We now have Q and $Q \Rightarrow R$, so by modus ponens, we have R.
Thus we see under (A2), we have $(P \wedge(Q \Rightarrow R)) \Rightarrow R$.
Discharging (A2), we see that $(P \wedge(Q \Rightarrow R)) \Rightarrow R$ under (A1) alone.
Discharging (A1), we see $(P \Rightarrow Q) \Rightarrow[(P \wedge(Q \Rightarrow R)) \Rightarrow R]$ under no assumptions.

