1. Topology

Problem 1. Two metrics ρ_1, ρ_2 on X are called *equivalent* if there is a $C > 0$ such that

$$
C^{-1}\rho_1(x,y) \le \rho_2(x,y) \le C\rho_1(x,y) \qquad \forall x, y \in X.
$$

Show that equivalent metrics induce the same topology on X. That is, show that $U \subset X$ is open with respect to ρ_1 if and only if U is open with respect to ρ_2 .

Problem 2 (Sarason). Let (X, ρ) be a metric space.

- (1) Let $\alpha : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing function satisfying
	- $\alpha(s) = 0$ if and only if $s = 0$, and
	- $\alpha(s+t) \leq \alpha(s) + \alpha(t)$ for all $s, t \geq 0$.

Define $\sigma(x, y) := \alpha(\rho(x, y))$. Show that σ is a metric, and σ induces the same topology on X as ρ .

(2) Define $\rho_1, \rho_2 : X \times X \to [0, \infty)$ by

$$
\rho_1(x, y) := \begin{cases} \rho(x, y) & \text{if } \rho(x, y) \le 1 \\ 1 & \text{otherwise.} \end{cases}
$$

$$
\rho_2(x, y) := \frac{\rho(x, y)}{1 + \rho(x, y)}.
$$

Use part (1) to show that ρ_1 and ρ_2 are metrics on X which induce the same topology on X as ρ .

Problem 3. A collection of subsets of $(F_i)_{i\in I}$ of X has the *finite intersection property* if for any finite $J \subset I$, we have $\bigcap_{j \in J} F_j \neq \emptyset$. Prove that for a metric (or topological) space, the following are equivalent.

- (1) Every open cover of X has a finite subcover.
- (2) For every collection of closed subsets $(F_i)_{i\in I}$ with the finite intersection property, $\bigcap_{i\in I} F_i \neq$ \emptyset .

Problem 4 (Adapted from Wikipedia https://en.wikipedia.org/wiki/Locally_compact_space). Consider the following conditions:

- (1) Every point of X has a compact neighborhood.
- (2) Every point of X has a closed compact neighborhood.
- (3) Every point of X has a relatively compact neighborhood.
- (4) Every point of X has a local base of relatively compact neighborhoods.
- (5) Every point of X has a local base of compact neighborhoods.
- (6) For every point x of X, every neighborhood of x contains a compact neighborhood of x.

Determine which conditions imply which other conditions. Then show all the above conditions are equivalent when X is Hausdorff.

Problem 5. Suppose (X, τ) is a locally compact Hausdorff topological space and suppose $K \subset X$ is a non-empty compact set.

- (1) Suppose $K \subset U$ is an open set. Show there is a continuous function $f: X \to [0,1]$ with compact support such that $f|_K = 1$ and $f|_{U^c} = 0$.
- (2) Suppose $f: K \to \mathbb{C}$ is continuous. Show there is a continuous function $F: X \to \mathbb{C}$ such that $F|_K = f$.

Problem 6. Suppose (X, τ) is a locally compact topological space and (f_n) is a sequence of continuous $\mathbb{C}\text{-valued functions on } X$. Show that the following are equivalent:

- (1) There is a continuous function $f: X \to \mathbb{C}$ such that $f_n|_K \to f|_K$ uniformly on every compact $K \subset X$.
- (2) For every compact $K \subset X$, $(f_n|_K)$ is uniformly Cauchy.

Problem 7.

- (1) Show that every open subset of $\mathbb R$ is a countable union of open intervals where both endpoints are rational.
- (2) Suppose $U \subset \mathbb{R}$ is open and suppose $((a_j, b_j))_{j \in J}$ is a collection of open intervals which cover U :

$$
U \subset \bigcup_{j \in J} (a_j, b_j).
$$

Show there is a countable sub-cover, i.e., show that there is a countable subset $I \subset J$ such that

$$
U \subset \bigcup_{i \in I} (a_i, b_i).
$$

(3) Suppose $((a_j, b_j])_{j \in J}$ is a collection of half-open intervals which cover $(0, 1]$:

$$
(0,1] \subset \bigcup_{j \in J} (a_j, b_j].
$$

Show there is a countable sub-cover, i.e., show that there is a countable subset $I \subset J$ such that

$$
(0,1] \subset \bigcup_{i \in I} (a_i, b_i].
$$

Problem 8. Suppose X is a locally compact Hausdorff space, $K \subset X$ is compact, and $\{U_1, \ldots, U_n\}$ is an open cover of K. Prove that there are $g_i \in C_c(X, [0, 1])$ for $i = 1, \ldots, n$ such that $g_i = 0$ on U_i^c and $\sum_{i=1}^n g_i = 1$ everywhere on K.

Problem 9 (Pedersen Analysis Now, E 1.3.4 and E 1.3.6). A filter on a set X is a collection F of non-empty subsets of X satisfying

- $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, and
- $A \in \mathcal{F}$ and $A \subset B$ implies $B \in \mathcal{F}$.

Suppose τ is a topology on X. We say a filter F converges to $x \in X$ if every open neighborhood U of x lies in \mathcal{F} .

- (1) Show that $A \subset X$ is open if and only if $A \in \mathcal{F}$ for every filter \mathcal{F} that converges to a point in A.
- (2) Show that if F and G are filters and $\mathcal{F} \subset \mathcal{G}$ (G is a subfilter of F), then G converges to x whenever $\mathcal F$ converges to x .
- (3) Suppose (x_λ) is a net in X. Let F be the collection of sets A such that (x_λ) is eventually in A. Show that F is a filter. Then show that $x_{\lambda} \to x$ if and only if F converges to x.

Problem 10 (Pedersen Analysis Now, E 1.3.5). A filter $\mathcal F$ on a set X is called an *ultrafilter* if it is not properly contained in any other filter.

- (1) Show that a filter F is an ultrafilter if and only if for every $A \subset X$, we have either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$.
- (2) Use Zorn's Lemma to prove that every filter is contained in an ultrafilter.

Problem 11. Let (X, τ) be a topological space. A net $(x_{\lambda})_{\lambda \in \Lambda}$ is called *universal* if for every subset $Y \subset X$, (x_{λ}) is either eventually in Y or eventually in Y^c .

- (1) Show that every net has a universal subnet.
- (2) Show that (X, τ) is compact if and only if every universal net converges.

Note: You may use part (1) to prove part (2) even if you choose not to prove part (1) .

Hint for (1): Let (x_λ) be a net in X. Define a filter for (x_λ) to be a collection F of non-empty subsets of X such that:

- F is closed under finite intersections,
- If $F \in \mathcal{F}$ and $F \subset G$, then $G \in \mathcal{F}$, and
- (x_{λ}) is frequently in every $F \in \mathcal{F}$.
- (1) Show that the set of filters for (x_λ) is non-empty.
- (2) Order the set of filters for (x_λ) by inclusion. Show that if (\mathcal{F}_i) is a totally ordered set of filters for (x_λ) , then $\cup \mathcal{F}_j$ is also a filter for (x_λ) .
- (3) Use Zorn's Lemma to assert there is a maximal filter $\mathcal F$ for (x_λ) .
- (4) Show that F is an ultrafilter.
- (5) Find a subnet of (x_λ) that is universal.

Problem 12. Show the following collections of functions are uniformly dense in the appropriate algebras:

- (1) For $a < b$ in R, the polynomials $\mathbb{R}[t] \subset C([a, b], \mathbb{R})$.
- (2) For $a < b$ in R, the piece-wise linear functions $PWL \subset C([a, b], \mathbb{R})$.
- (3) For $K \subset \mathbb{C}$ compact, the polynomials $\mathbb{C}[z,\overline{z}] \subset C(K)$.
- (4) For \mathbb{R}/\mathbb{Z} , the trigonometric polynomials span $\{\sin(2\pi nx), \cos(2\pi nx)|n \in \mathbb{N} \cup \{0\}\}\subset C(\mathbb{R}/\mathbb{Z}, \mathbb{R})$.

Problem 13. Let X, Y be compact Hausdorff spaces. For $f \in C(X)$ and $g \in C(Y)$, define $(f \otimes g)(x, y) := f(x)g(y)$. Prove that span $\{f \otimes g | f \in C(X) \text{ and } g \in C(Y)\}$ is uniformly dense in $C(X \times Y)$.

Problem 14. Suppose X is locally compact Hausdorff and $A \subset C_0(X, \mathbb{C})$ is a subalgebra which separates points and is closed under complex conjugation. Show that either $A = C_0(X, \mathbb{C})$ or there is an $x_0 \in X$ such that $\overline{A} = \{f \in C_0(X, \mathbb{C}) | f(x_0) = 0\}.$

Problem 15 (Adapted from <http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf>). Let UN be the set of ultrafilters on N. For a subset $S \subset \mathbb{N}$, define $[S] := \{ \mathcal{F} \in \mathcal{U} \mathbb{N} | S \in \mathcal{F} \}$. Show that the function $S \mapsto [S]$ satisfies the following properties:

- (1) $[\emptyset] = \emptyset$ and $[\mathbb{N}] = \mathcal{U}\mathbb{N}$.
- (2) For all $S, T \subset \mathbb{N}$,
	- (a) $|S| \subset |T|$ if and only if $S \subset T$.
	- (b) $[S] = [T]$ if and only if $S = T$.
	- (c) $[S] \cup [T] = [S \cup T].$
	- (d) $[S] \cap [T] = [S \cap T].$
	- (e) $[S^c] = [S]^c$.
- (3) Find a sequence of subsets (S_n) of N such that $[\bigcup S_n] \neq \bigcup [S_n]$.
- (4) Find a sequence of subsets (S_n) of N such that $[\bigcap S_n] \neq \bigcap [S_n]$.

Problem 16 (Adapted from <http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf>). Assume the notation of Problem [15.](#page-2-0)

- (1) Show that $\{ [S] | S \subset \mathbb{N} \}$ is a base for a topology on $\mathcal{U} \mathbb{N}$.
- (2) Show that all the sets $[S]$ are both closed and open in $\mathcal{U}\mathbb{N}$.
- (3) Show that $U\mathbb{N}$ is compact.
- (4) For $n \in \mathbb{N}$, let $\mathcal{F}_n = \{ S \subset \mathbb{N} | n \in S \}$. Show \mathcal{F}_n is an ultrafilter on \mathbb{N} . Note: Each \mathcal{F}_n is called a principal ultrafilter on \mathbb{N} .
- (5) Show that $\{\mathcal{F}_n|n\in\mathbb{N}\}\)$ is dense in $\mathcal{U}\mathbb{N}.$

(6) Show that for every compact Hausdorff space K and every function $f : \mathbb{N} \to K$, there is a continuous function $f: \mathcal{U} \mathbb{N} \to K$ such that $f(\mathcal{F}_n) = f(n)$ for every $n \in \mathbb{N}$. Deduce that $\mathcal{U} \mathbb{N}$ is homeomorphic to the Stone-Cech compactification βN . Hint: Show that $f^*(\mathcal{F}) := \{ A \subset K | f^{-1}(A) \in \mathcal{F} \}$ is an ultrafilter on K. Show that since K is compact Hausdorff, every ultrafilter on K converges to a unique point in K . Set $\widetilde{f}(\mathcal{F}) := \lim f^*(\mathcal{F})$. For an open neighborhood U of $\lim f^*(\mathcal{F})$, there is an open V such that $\lim f^*(\mathcal{F}) \in V \subset \overline{V} \subset U$. Show that $[f^{-1}(V)]$ is an open neighborhood of \mathcal{F} whose image under f lies in U .

2. Measures

Problem 17. Let X be a set. A ring $\mathcal{R} \subset P(X)$ is a collection of subsets of X which is closed under unions and set differences. That is, $E, F \in \mathcal{R}$ implies $E \cup F \in \mathcal{R}$ and $E \setminus F \in \mathcal{R}$.

- (1) Let $\mathcal{R} \subset P(X)$ be a ring.
	- (a) Prove that $\emptyset \in \mathcal{R}$.
	- (b) Show that $E, F \in \mathcal{R}$ implies the symmetric difference $E \triangle F \in \mathcal{R}$.
	- (c) Show that $E, F \in \mathcal{R}$ implies $E \cap F \in \mathcal{R}$.
- (2) Show that any ring $\mathcal{R} \subset P(X)$ is an algebraic ring where the addition is symmetric difference and multiplication is intersection.
	- (a) What is $0_{\mathcal{R}}$?
	- (b) Show that this algebraic ring has *characteristic* 2, i.e., $E + E = 0_R$ for all $E \in \mathcal{R}$.
	- (c) When is the algebraic ring $\mathcal R$ unital? In this case, what is $1_{\mathcal R}$?
	- (d) Determine the relationship (if any) between an algebra of sets in the sense of measure theory and an algebra in the algebraic sense.
	- (e) Sometimes an algebra in measure theory is called a field. Why?

Problem 18. Let X be a set. A π -system on X is a collection of subsets $\Pi \subset P(X)$ which is closed under finite intersections. A λ -system on X is a collection of subsets $\Lambda \subset P(X)$ such that

- $X \in \Lambda$
- \bullet Λ is closed under taking complements, and
- for every sequence of disjoint subsets (E_i) in Λ , $\bigcup E_i \in \Lambda$.
- (1) Show that M is a σ -algebra if and only if M is both a π -system and a λ -system.
- (2) Suppose Λ is a λ -system. Show that for every $E \in \Lambda$, the set

$$
\Lambda(E) := \{ F \subset X | F \cap E \in \Lambda \}
$$

is also a Λ -system.

Problem 19 ($\pi - \lambda$ Theorem). Let Π be a π -system, let Λ be the smallest λ -system containing Π , and let $\mathcal M$ be the smallest σ -algebra containing Π .

- (1) Show that $\Lambda \subseteq \mathcal{M}$.
- (2) Show that for every $E \in \Pi$, $\Pi \subset \Lambda(E)$ where $\Lambda(E)$ was defined in Problem [18](#page-3-0) above. Deduce that $\Lambda \subset \Lambda(E)$ for every $E \in \Pi$.
- (3) Show that $\Pi \subset \Lambda(F)$ for every $F \in \Lambda$. Deduce that $\Lambda \subset \Lambda(F)$ for every $F \in \Lambda$.
- (4) Deduce that Λ is a σ -algebra, and thus $\mathcal{M} = \Lambda$.

Problem 20. Let Π be a π -system, and let $\mathcal M$ be the smallest σ -algebra containing Π . Suppose μ, ν are two measures on M whose restrictions to Π agree.

(1) Suppose that μ, ν are finite and $\mu(X) = \nu(X)$. Show $\mu = \nu$. Hint: Consider $\Lambda := \{ E \in \mathcal{M} | \nu(E) = \mu(E) \}.$

(2) Suppose that $X = \coprod_{j=1}^{\infty} X_j$ with $(X_j) \subset \Pi$ and $\mu(X_j) = \nu(X_j) < \infty$ for all $j \in \mathbb{N}$. (Observe that μ and ν are σ -finite.) Show $\mu = \nu$.

Problem 21 (Folland §1.3, #14 and #15). Given a measure μ on (X, \mathcal{M}) , define ν on \mathcal{M} by

 $\nu(E) := \sup \{ \mu(F) | F \subset E \text{ and } \mu(F) < \infty \}.$

- (1) Show that ν is a semifinite measure. We call it the *semifinite part* of μ .
- (2) Suppose $E \in \mathcal{M}$ with $\nu(E) = \infty$. Show that for any $n > 0$, there is an $F \subset E$ such that $n < \nu(F) < \infty$. This is exactly Folland $$1.3, #14$ applied to ν .
- (3) Show that if μ is semifinite, then $\mu = \nu$.
- (4) Show there is a measure ρ on M (which is generally not unique) which assumes only the values 0 and ∞ such that $\mu = \nu + \rho$.

Problem 22. Suppose $(\mu_i^*)_{i \in I}$ is a family of outer measures on X. Show that

$$
\mu^*(E) := \sup_{i \in I} \mu_i^*(E)
$$

is an outer measure on X.

Problem 23. Define the h-intervals

$$
\mathcal{H} := \{ \emptyset \} \cup \{ (-a, b] | -\infty \le a < b < \infty \} \cup \{ (a, \infty) | a \in \mathbb{R} \}.
$$

Let A be the collection of finite disjoint unions of elements of H . Show directly from the definitions that A is an algebra. Deduce that the σ -algebra $\mathcal{M}(\mathcal{A})$ generated by A is equal to the Borel σ-algebra $\mathcal{B}_\mathbb{R}$.

Problem 24. Denote by $\overline{\mathbb{R}}$ the extended real numbers $[-\infty, \infty]$ with its usual topology. Prove the following assertions.

- (1) The Borel σ -algebra on $\overline{\mathbb{R}}$ is generated by the open rays $(a,\infty]$ for $a\in\mathbb{R}$.
- (2) If $\mathcal{E} \subset P(\mathbb{R})$ generates the Borel σ -algebra on \mathbb{R} , then $\mathcal{E} \cup {\{\infty\}}$ generates the Borel σ -algebra on $\overline{\mathbb{R}}$.

Problem 25 (Adapted from Folland §1.4, $\#18$ and $\#22$). Suppose A is an algebra on X, and let M be the σ -algebra generated by A. Let μ_0 be a σ -finite premeasure on A, μ^* the induced outer measure, and \mathcal{M}^* the σ -algebra of μ^* -measurable sets. Show that the following are equivalent.

$$
(1) E \in \mathcal{M}^*
$$

- (2) $E = F \setminus N$ where $F \in \mathcal{M}$ and $\mu^*(N) = 0$.
- (3) $E = F \cup N$ where $F \in \mathcal{M}$ and $\mu^*(N) = 0$.

Deduce that if μ is a σ -finite measure on M, then $\mu^*|_{\mathcal{M}^*}$ on \mathcal{M}^* is the completion of μ on M.

Problem 26 (Folland §1.4, #20). Let μ^* be an outer measure on $P(X)$, \mathcal{M}^* the σ -algebra of μ^* -measurable sets, and $\mu := \mu^*|_{\mathcal{M}^*}$. Let μ^+ be the outer measure on $P(X)$ induced by the (pre)measure μ on the $(\sigma$ -)algebra \mathcal{M}^* .

- (1) Show that $\mu^*(E) \leq \mu^+(E)$ for all $E \subset X$ with equality if and only if there is an $F \in \mathcal{M}^*$ with $E \subset F$ and $\mu^*(E) = \mu^*(F)$.
- (2) Show that if μ^* was induced from a premeasure μ_0 on an algebra A, then $\mu^* = \mu^+$.
- (3) Construct an outer measure μ^* on the two point set $X = \{0, 1\}$ such that $\mu^* \neq \mu^+$.

Problem 27 (Sarason). Suppose μ_0 is a finite premeasure on the algebra $\mathcal{A} \subset P(X)$, and let $\mu^*: P(X) \to [0, \infty]$ be the outer measure induced by μ_0 . Prove that the following are equivalent for $E \subset X$.

(1) $E \in \mathcal{M}^*$, the μ^* -measurable sets.

(2)
$$
\mu^*(E) + \mu^*(X \setminus E) = \mu(X).
$$

Hint: Use Problem [25.](#page-4-0)

Problem 28. Assume the notation of Problem [23.](#page-4-1) Suppose $F : \mathbb{R} \to \mathbb{R}$ is non-decreasing and right continuous, and extend F to a function $[-\infty, \infty] \to [-\infty, \infty]$ still denoted F by

$$
F(-\infty) := \lim_{a \to -\infty} F(a)
$$
 and $F(\infty) := \lim_{b \to \infty} F(b)$.

Define $\mu_0 : \mathcal{H} \to [0, \infty]$ by

- $\mu_0(\emptyset) := 0$,
- $\mu_0((a, b]) := F(b) F(a)$ for all $-\infty \le a < b < \infty$, and
- $\mu_0((a,\infty)) := F(\infty) F(a)$ for all $a \in \mathbb{R}$.

Suppose $(a, \infty) = \coprod_{j=1}^{\infty} H_j$ where $(H_j) \subset \mathcal{H}$ is a sequence of disjoint h-intervals. Show that

$$
\mu_0((a,\infty)) = \sum_{j=1}^{\infty} \mu_0(H_j).
$$

Problem 29 (Folland, §1.5, $\#28$). Let $F : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous, and let μ_F be the associated Lebesgue-Stieltjes Borel measure on $\mathcal{B}_{\mathbb{R}}$. For $a \in \mathbb{R}$, define

$$
F(a-) := \lim_{r \nearrow a} F(r).
$$

Prove that:

(1) $\mu_F({a}) = F(a) - F(a-),$ (2) $\mu_F([a, b)) = F(b-) - F(a-),$ (3) $\mu_F([a, b]) = F(b) - F(a-),$ and (4) $\mu_F((a, b)) = F(b-) - F(a)$.

Problem 30. Let (X, ρ) be a metric (or simply a topological) space. A subset $S \subset X$ is called nowhere dense if \overline{S} does not contain any open set in X. A subset $T \subset X$ is called meager if it is a countable union of nowhere dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Problem 31 (Steinhaus Theorem, Folland §1.5, #30 and 31). Suppose $E \in \mathcal{L}$ and $\lambda(E) > 0$.

- (1) Show that for any $0 \leq \alpha < 1$, there is an open interval $I \subset \mathbb{R}$ such that $\lambda(E \cap I) > \alpha \lambda(I)$.
- (2) Apply (1) with $\alpha = 3/4$ to show that the set

$$
E - E = \{x - y | x, y \in E\}
$$

contains the interval $\left(-\lambda(I)/2, \lambda(I)/2\right)$.

Problem 32. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra of \mathbb{R} . Suppose μ is a translation invariant measure on $\mathcal{B}_{\mathbb{R}}$ such that $\mu((0,1]) = 1$. Prove that $\mu = \lambda|_{\mathcal{B}_{\mathbb{R}}}$, the restriction of Lebesgue measure on \mathcal{L} to $\mathcal{B}_{\mathbb{R}}.$

Problem 33 (Sarason). Suppose $E \in \mathcal{L}$ is Lebesgue null, and $\varphi : \mathbb{R} \to \mathbb{R}$ is a C^1 function (continuous with continuous derivative). Prove that $\varphi(E)$ is also Lebesgue null.

Problem 34. Find an uncountable subset of \mathbb{R} with Hausdorff dimension zero.

3. Integration

Problem 35. Suppose (X, \mathcal{M}) is a measurable space and (Y, τ) , (Z, θ) are topological spaces, $i: Y \to Z$ is a continuous injection which maps open sets to open sets, and $f: X \to Y$. Show that f is $M - B_{\tau}$ measurable if and only if $i \circ f$ is $M - B_{\theta}$ measurable.

Deduce that if $f : (X, \mathcal{M}) \to \mathbb{R}$ only takes values in R, then f is $\mathcal{M} - \mathcal{B}_{\mathbb{R}}$ measurable if and only if f is $M - B_ℝ$ measurable.

Problem 36. Prove the following assertions.

- (1) Suppose $f: X \to Y$ is a function. Define $\overleftarrow{f}: P(Y) \to P(X)$ by $\overleftarrow{f}(T) := \{x \in X | f(x) \in T\}.$ Then \overleftarrow{f} preserves unions, intersections, and complements.
- (2) Suppose $f: X \to Y$ is a function. Define $\overrightarrow{f}: P(X) \to P(Y)$ by $\overrightarrow{f}(S) := \{f(s) | s \in S\}.$ Then \overrightarrow{f} preserves unions, but not intersections nor complements.
- (3) Given $f: X \to Y$ and a topology θ on Y, →← $f(\theta) = \left\{ f^{-1}(U) | U \in \theta \right\}$ is a topology on X. Moreover it is the weakest topology on X such that f is continuous. ←←
- (4) Given $f: X \to Y$ and a topology τ on X, $f(\tau) = \{U \subset Y | f^{-1}(U) \in \tau\}$ is a topology on Y. Moreover it is the strongest topology on Y such that f is continuous.
- (5) Given $f: X \to Y$ and a σ -algebra $\mathcal N$ on Y , $f(\mathcal N) = \{f^{-1}(F) | F \in \mathcal N\}$ is a σ -algebra on X. →← Moreover it is the weakest σ -algebra on X such that f is measurable.
- (6) Given $f: X \to Y$ and a σ -algebra M on X, ←← $f(M) = \left\{ F \subset Y \middle| f^{-1}(F) \in \mathcal{M} \right\}$ is a σ -algebra on Y. Moreover it is the strongest σ -algebra on Y such that f is measurable.

Problem 37. Let (X, \mathcal{M}) be a measurable space.

(1) Prove that the Borel σ -algebra $\mathcal{B}_{\mathbb{C}}$ on \mathbb{C} is generated by the 'open rectangles'

$$
\{z \in \mathbb{C} | a < \operatorname{Re}(z) < b \text{ and } c < \operatorname{Im}(z) < d\}.
$$

- (2) Prove directly from the definitions that $f : X \to \mathbb{C}$ is $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable if and only if $\text{Re}(f)$ and $\text{Im}(f)$ are measurable.
- (3) Prove that the $M \mathcal{B}_{\mathbb{C}}$ measurable functions form a C-vector space.
- (4) Show that if $f: X \to \mathbb{C}$ is $M-\mathcal{B}_{\mathbb{C}}$ measurable, then $|f|: X \to [0,\infty)$ is $M-\mathcal{B}_{\mathbb{R}}$ measurable.
- (5) Show that if (f_n) is a sequence of $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable functions $X \to \mathbb{C}$ and $f_n \to f$ pointwise, then f is $M - B_{\mathbb{C}}$ measurable.

Problem 38. Let $(X, \overline{M}, \overline{\mu})$ be the completion of the measure space (X, \mathcal{M}, μ) .

- (1) Show that if f is M-measurable and $g = f$ a.e., then g is M-measurable. Optional: Does this hold with $\overline{\mathcal{M}}$ replaced by \mathcal{M} ?
- (2) Show that if f is $\mathcal M$ -measurable, there exists an $\mathcal M$ -measurable g such that $f = g$ a.e. Hint: First do the case f is $\mathbb{R}\text{-}valued$.
- (3) Show that if (f_n) is a sequence of $\overline{\mathcal{M}}$ -measurable functions and $f_n \to f$ a.e., then f is $\overline{\mathcal{M}}$ -measurable.

Optional: Does this hold with M replaced by M ?

(4) Show that if (f_n) is a sequence of M-measurable functions and $f_n \to f$ a.e., then f is $\overline{\mathcal{M}}$ -measurable. Deduce that there is an \mathcal{M} -measurable function g such that $f = g$ a.e., so $f_n \rightarrow g$ a.e.

For all parts, consider the cases of \mathbb{R} , $\overline{\mathbb{R}}$, and $\mathbb{C}\text{-valued functions.}$

Problem 39. Let (X, \mathcal{M}, μ) be a measure space.

- (1) Show that a simple function $\psi = \sum_{k=1}^{n} c_k \chi_{E_k}$ where $c_k > 0$ for all $k = 1, \ldots, n$ is integrable if and only if $\mu(E_k) < \infty$ for all $k = 1, \ldots, n$.
- (2) Show that if a simple function $\psi = \sum_{k=1}^{n} c_k \chi_{E_k}$ is integrable with $\mu(E_k) < \infty$ for all $k = 1, \ldots, n$, then $\int \psi = \sum_{k=1}^n c_k \mu(E_k)$.

In both parts of the question, we do not assume that ψ is written in its standard form.

Problem 40. Suppose $f : (X, \mathcal{M}, \mu) \to [0, \infty]$ is \mathcal{M} -measurable and $\{f > 0\}$ is σ -finite. Show that there exists a sequence of nonnegative simple functions (ψ_n) such that

- $\bullet \psi_n \nearrow f,$
- ψ_n is integrable for every $n \in \mathbb{N}$.

Optional: In what sense can you say $\psi_n \nearrow f$ uniformly?

Problem 41. Assume Fatou's Lemma and prove the Monotone Convergence Theorem from it.

Problem 42. Let (X, \mathcal{M}, μ) be a measure space.

- (1) Suppose $f \in L^+$ and $\int f < \infty$. Prove that $\{f = \infty\}$ is μ -null and $\{f > 0\}$ is σ -finite.
- (2) Suppose $f \in L^1(\mu, \mathbb{C})$. Prove that $\{f \neq 0\}$ is σ -finite.

Problem 43. Suppose (X, \mathcal{M}, μ) is a measure space and $f \in L^1(\mu, \mathbb{C})$. Prove that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $E \in \mathcal{M}$ with $\mu(E) < \delta$, $\int_E |f| < \varepsilon$.

Problem 44. Let (X, \mathcal{M}, μ) be a measure space.

- (1) Prove that $\|\cdot\|_1 : \mathcal{L}^1(\mu,\mathbb{C}) \to [0,\infty)$ given by $||f||_1 := \int |f|$ is a norm. That is, prove the following axioms hold:
	- (definite) $||f||_1 = 0$ if and only if $f = 0$.
	- (homogeneous) $\|\lambda \cdot f\|_1 = |\lambda| \cdot \|f\|_1$ for all $\lambda \in \mathbb{C}$.
	- (subadditive) $|| f + g ||_1 \le || f ||_1 + || g ||_1$.
- (2) Suppose $(V, \|\cdot\|)$ is a C-vector space with a norm (you may assume $V = \mathcal{L}^1(\mu, \mathbb{C})$ and $\|\cdot\| = \|\cdot\|_1$ if you wish). Prove that $\rho(x, y) := \|x - y\|$ defines a metric on V.
- (3) Prove that the metric ρ_1 on \mathcal{L}^1 induced by $\|\cdot\|_1$ is complete. That is, prove every Cauchy sequence converges in \mathcal{L}^1 .

Problem 45. Suppose (X, \mathcal{M}, μ) is a measure space, and let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be its completion. Find a canonical $\mathbb{C}\text{-vector space isomorphism } \mathcal{L}^1(\mu,\mathbb{C}) \cong \mathcal{L}^1(\overline{\mu},\mathbb{C})$ which preserves $\|\cdot\|_1$.

Problem 46. Let μ be a Lebesgue-Stieltjes Borel measure on R. Show that $C_c(\mathbb{R})$, the continuous functions of compact support $(\overline{f \neq 0} \overline{\ })$ compact) is dense in $\mathcal{L}^1(\mu,\mathbb{R})$. Does the same hold for $\overline{\mathbb{R}}$ and C-valued functions?

Hint: You could proceed in this way:

- (1) Reduce to the case $f \in L^1 \cap L^+$.
- (2) Reduce to the case $f \in L^1 \cap SF^+$.
- (3) Reduce to the case $f = \chi_E$ with $E \in \mathcal{B}_{\mathbb{R}}$ and $\mu(E) < \infty$.
- (4) Reduce to the case $f = \chi_U$ with $U \subset \mathbb{R}$ open and $\mu(U) < \infty$.
- (5) Reduce to the case $f = \chi_{(a,b)}$ with $a < b$ in \mathbb{R} .

Problem 47 (Lusin's Theorem). Suppose $f : [a, b] \to \mathbb{C}$ is Lebesgue measurable and $\varepsilon > 0$. There is a compact set $E \subset [a, b]$ such that $\lambda(E^c) < \varepsilon$ and $f|_E$ is continuous.

Problem 48. Suppose $f \in \mathcal{L}^1([0,1],\lambda)$ is an integrable non-negative function.

- (1) Show that for every $n \in \mathbb{N}$, $\sqrt[n]{f} \in \mathcal{L}^1([0,1],\lambda)$.
- (1) Show that for every $n \in \mathbb{N}$, $\sqrt{J} \in \mathcal{L}^1([0,1], \lambda)$.
(2) Show that $(\sqrt[n]{f})$ converges in \mathcal{L}^1 and compute its limit.

Hint for both parts: Consider $\{f \geq 1\}$ and $\{f < 1\}$ separately.

Problem 49. Suppose (X, \mathcal{M}, μ) is a measure space and $f_n \to f$ in measure and $g_n \to g$ in measure (these functions are assumed to be measurable). Show that

- (1) $|f_n| \rightarrow |f|$ in measure.
- (2) $f_n + g_n \rightarrow f + g$ in measure.
- (3) $f_n g_n \to fg$ if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$. Hint: First show $f_n g \to fg$ in measure. To do so, one could follow the following steps. (a) Show that for $g: X \to \mathbb{C}$ with $\mu(X) < \infty$, $\mu({\{|g| \ge n\}}) \to 0$ as $n \to \infty$. (b) Show that for any $\varepsilon > 0$, by step (a), $X = E \amalg E^c$ where $|g|_E$ | $\lt M$ and $\mu(E^c) \lt \varepsilon/2$. (c) For $\delta > 0$ and carefully chosen $M > 0$ and E,

$$
\{|f_ng - fg| > \delta\} = (\{|f_ng - fg| > \delta\} \cap E) \amalg (\{|f_ng - fg| > \delta\} \cap E^c)
$$

$$
\subseteq \left\{|f_n - f| > \frac{\delta}{M}\right\} \cup E^c.
$$

Problem 50 (Folland §2.4, #33 and 34). Suppose (X, \mathcal{M}, μ) is a measure space and $f_n \to f$ in measure (these functions are assumed to be measurable).

- (1) Show that if $f_n \geq 0$ everywhere, then $\int f \leq \liminf \int f_n$.
- (2) Suppose $|f_n| \leq g \in \mathcal{L}^1$. Prove that $\int f = \lim \int f_n$ and $f_n \to f$ in \mathcal{L}^1 .

4. Product measures and differentiation

Problem 51. For the following statement, either provide a proof or a counterexample. Let X, Y be topological spaces with Borel σ -algebras \mathcal{B}_X , \mathcal{B}_Y respectively and regular Borel measures μ, ν . Then the product measure $\mu \times \nu$ is also regular.

Optional: If you find a counterexample, can you find a weak modification under which it is true?

Problem 52. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is such that each x-section f_x is Borel measurable and f^y is continuous. Show f is Borel measurable.

Hint (Ratner): Let (x_n) be a countable dense subset of $\mathbb R$. Prove that

$$
f^{-1}(-\infty,r] = \bigcap_{m} \bigcup_{n} \left\{ (x,y) \middle| x \in B_{\frac{1}{m}}(x_n) \text{ and } f(x_n,y) < r + \frac{1}{m} \right\}.
$$

Problem 53. Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces and $(E_n) \subset \mathcal{M} \times \mathcal{N}$. Prove the following assertions about x -sections.

- (1) $(\bigcup E_n)_x = \bigcup (E_n)_x.$
- (2) $(\bigcap E_n)_x = \bigcap (E_n)_x$.
- (3) $(E_m \setminus \tilde{E}_n)_x = (E_m)_x \setminus (E_n)_x.$
- (4) $\chi_{E_n}(x, y) = \chi_{(E_n)_x}(y)$ for all $x \in X$ and $y \in Y$.

Problem 54 (Counterexamples: Folland $\S 2.5, \#46$ and $\#48$).

- (1) Let $X = Y = [0, 1], \mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}, \mu = \lambda$ Lebesgue measure, and ν counting measure. Let $\Delta = \{(x, x)|x \in [0, 1]\}$ be the diagonal. Prove that $\int \int \chi_{\Delta} d\mu d\nu$, $\int \int \chi_{\Delta} d\nu d\mu$, and $\int \chi_{\Delta} d(\mu \times \nu)$ are all unequal.
- (2) Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = P(\mathbb{N})$, and $\mu = \nu$ counting measure. Define

$$
f(m, n) := \begin{cases} 1 & \text{if } m = n \\ -1 & \text{if } m = n + 1 \\ 0 & \text{else.} \end{cases}
$$

Prove that $\int |f|d(\mu \times \nu) = \infty$, and $\int \int f d\mu d\nu$ and $\int \int f d\nu d\mu$ both exist and are unequal.

Problem 55. Show that the conclusions of the Fubini and Tonelli Theorems hold when (X, \mathcal{M}, μ) is an arbitrary measure space (not necessarily σ -finite) and Y is a countable set, $\mathcal{N} = P(Y)$, and ν is counting measure.

Problem 56. Suppose $f, g \in \mathcal{L}^1(\mathbb{R}, \lambda)$.

- (0) (Not required for 2024) Show that the function $(x, y) \mapsto x y$ is $\mathcal{L}^2 \mathcal{L}$ measurable. Hint: Recall that L is the completion of $\mathcal{B}_{\mathbb{R}}$. Show that the preimage of a λ -null set is λ^2 -null by considering the preimage of a G_{δ} Borel set N with measure zero, intersected with the unit square in \mathbb{R}^2 . If $N = \bigcap U_n$ with $\lambda(U_n) \searrow 0$ and V_n is the preimage of U_n intersected with the unit square in \mathbb{R}^2 , compute $\lim_{n} \int \chi_{V_n} d\lambda^2$.
- (1) Show that $y \mapsto f(x y)g(y)$ is measurable for all $x \in \mathbb{R}$ and in $\mathcal{L}^1(\mathbb{R}, \lambda)$ for a.e. $x \in \mathbb{R}$.
- (2) Define the *convolution* of f and g by

$$
(f * g)(x) := \int_{\mathbb{R}} f(x - y)g(y) d\lambda.
$$

Show that $f * g \in \mathcal{L}^1(\mathbb{R}, \lambda)$.

- (3) Show that $\mathcal{L}^1(\mathbb{R},\lambda)$ is a commutative C-algebra under $\cdot, +, *$.
- (4) Show that $\int_{\mathbb{R}} |f * g| \leq \int_{\mathbb{R}} |f| \int_{\mathbb{R}} |g|$, i.e., $\|\cdot\|_1$ is submultiplicative.

Problem 57. Suppose $f \in L^1(\lambda^n)$. Prove that for all $T \in GL_n(\mathbb{R}) := \{T \in M_n(\mathbb{R}) | \det(T) \neq 0\}$, $f \circ T \in \mathcal{L}^1(\lambda^n)$ and

$$
\int f(x) d\lambda^{n}(x) = |\det(T)| \cdot \int f(Tx) d\lambda^{n}(x).
$$

Does this also hold when $\det(T) = 0$? Find a proof or counterexample.

Problem 58 (Sarason). For $f \in L^1(\lambda^n)$, let M be the Hardy-Littlewood maximal function

$$
(Mf)(x) := \sup \left\{ \frac{1}{\lambda^n(Q)} \int_Q |f| \, d\lambda^n \, \middle| \, Q \in \mathcal{C}(x) \right\}
$$

where $\mathcal{C}(x)$ is the set of all cubes of finite length which contain x. Define

$$
f(x) := \begin{cases} \frac{1}{|x|(\ln|x|)^2} & \text{if } |x| \le \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}
$$

Show that $f \in \mathcal{L}^1(\lambda)$, but $Mf \notin \mathcal{L}^1_{loc}$.

Problem 59 (Sarason). Suppose $E \subset \mathbb{R}^n$ (not assumed to be Borel measurable) and let C be a family of cubes covering E such that

$$
\sup \{ \ell(Q) | Q \in \mathcal{C} \} < \infty.
$$

Show there exists a sequence $(Q_k) \subset \mathcal{C}$ of disjoint cubes such that

$$
\sum_{k=1}^{\infty} \lambda^n(Q_k) \ge 5^{-n}(\lambda_n)^*(E).
$$

Hint: Inductively choose Q_k such that $2\ell(Q_k)$ is larger than the sup of the lengths of all cubes which do not intersect Q_1, \ldots, Q_{k-1} , with $Q_0 = \emptyset$ by convention.

Problem 60. In this exercise, we will show that

$$
M := M(X, \mathcal{M}, \mathbb{R}) := \{ \text{finite signed measures on } (X, \mathcal{M}) \}
$$

is a Banach space with $||\nu|| := |\nu|(X)$.

(1) Prove $\|\nu\| := |\nu|(X)$ is a norm on M.

- (2) Show that $(\nu_n) \subset M$ Cauchy implies $(\nu_n(E)) \subset \mathbb{R}$ is uniformly Cauchy for all $E \in \mathcal{M}$. That is, show that for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that for all $n \geq N$ and $E \in \mathcal{M}$, $|\nu_m(E) - \nu_n(E)| < \varepsilon.$
- (3) Use part (2) to define a candidate limit signed measure μ on M. Prove that ν is σ -additive. Hint: first prove ν is finitely additive.
- (4) Prove that $\sum \nu(E_n)$ converges absolutely when $(E_n) \subset \mathcal{M}$ is disjoint, and thus ν is a finite signed measure.
- (5) Show that $\nu_n \to \nu$ in M.

Problem 61 (Folland §3.1, #3 and §3.2, #8). Suppose μ is a positive measure on (X, \mathcal{M}) and ν is a signed measure on (X, \mathcal{M}) .

- (1) Prove that the following are equivalent.
	- (a) $\nu \perp \mu$
	- (b) $|\nu| \perp \mu$
	- (c) $\nu_+ \perp \mu$ and $\nu_- \perp \mu$.
- (2) Prove that the following are equivalent.
	- (a) $\nu \ll \mu$
	- (b) $|\nu| \ll \mu$
	- (c) $\nu_+ \ll \mu$ and $\nu_- \ll \mu$.

Problem 62 (Folland §3.1, #3). Let ν be a signed measure on (X, \mathcal{M}) . Prove the following assertions:

(a) $\mathcal{L}^1(\nu) = \mathcal{L}^1(|\nu|).$ (b) If $f \in \mathcal{L}^1(\nu)$, $| \int f d\nu | \leq \int |f| d|\nu|$. (c) If $E \in M$, $|\nu|(E) = \sup \{ |\int_E f d\nu| | -1 \le f \le 1 \}.$

Problem 63 (Folland §3.1, #6). Suppose

$$
\nu(E) := \int_E f \, d\mu \qquad E \in \mathcal{M}
$$

where μ is a positive measure on (X, \mathcal{M}) and and f is an extended μ -integrable function. Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and μ .

Problem 64 (Adapted from Folland §3.2, #9). Suppose μ is a positive measure on (X, \mathcal{M}) . Suppose $\{\nu_i\}$ is a sequence of positive measures on (X, \mathcal{M}) and μ is a positive measure on (X, \mathcal{M}) . Prove the following assertions.

- (a) If $\{\nu_j\}$ is a sequence of positive measures on (X, \mathcal{M}) with $\nu_j \perp \mu$ for all j, then $\sum_{j=1}^{\infty} \nu_j \perp \mu$.
- (b) If ν_1, ν_2 are positive measures on (X, \mathcal{M}) with at least one of ν_1, ν_2 is finite and $\nu_i \perp \mu$ for $j = 1, 2$, then $(\nu_1 - \nu_2) \perp \mu$.
- (c) If $\{\nu_j\}$ is a sequence of positive measures on (X, \mathcal{M}) with $\nu_j \ll \mu$ for all j, then $\sum_{j=1}^{\infty} \nu_j \ll \mu$.
- (d) If ν_1, ν_2 are positive measures on (X, \mathcal{M}) with at least one of ν_1, ν_2 is finite and $\nu_i \ll \mu$ for $j = 1, 2$, then $(\nu_1 - \nu_2) \ll \mu$.

Problem 65. Suppose $F : [a, b] \to \mathbb{C}$.

- (1) Show that if F is continuous on [a, b], differentiable on (a, b) , and F' is bounded, then $F \in BV[a, b].$
- (2) Show that if F is absolutely continuous, then $F \in BV[a, b]$.

Problem 66. Suppose $F \in NBV$, and let ν_F be the corresponding Lebesgue-Stieltjes complex Borel measure.

(1) Prove that ν_F is regular.

- (2) Prove that $|\nu_F| = \nu_{T_F}$.
	- One could proceed as follows.
	- (a) Define $G(x) := |\nu_F|((-\infty, x])$. Show that $|\nu_F| = \nu_{T_F}$ if and only if $G = T_F$.
	- (b) Show $T_F \leq G$.
	- (c) Show that $|\nu_F(E)| \leq \nu_{T_F}(E)$ whenever E is an interval.
	- (d) Show that $|\nu_F| \leq \nu_{T_F}$.

Problem 67 (cf. Folland Thm. 3.22). Denote by λ^n Lebesgue measure on \mathbb{R}^n . Suppose ν is a regular signed or complex Borel measure on \mathbb{R}^n which is finite on compact sets (and thus Radon and σ -finite). Let $d\nu = d\rho + f d\lambda^n$ be its Lebesgue-Radon-Nikodym representation. Then for λ^n -a.e. $x \in \mathbb{R}^n$,

$$
\lim_{\substack{\ell(Q)\to 0\\Q\in\mathcal{C}(x)}}\frac{\nu(Q)}{\lambda^n(Q)}=f(x).
$$

Hint: One could proceed as follows.

- (1) Show that $d|\nu| = d|\rho| + |f| d\lambda^n$. Deduce that ρ and $fd\lambda^n$ are regular, and $f \in L^1_{loc}$.
- (2) Use the Lebesgue Differentiation Theorem to reduce the problem to showing

 $|l|$ $|l|$

$$
\lim_{\substack{\ell(Q)\to 0\\Q\in\mathcal{C}(x)}}\frac{|\rho|(Q)}{\lambda^n(Q)}=0 \qquad \lambda^n\text{-}a.e. \ x\in\mathbb{R}^n.
$$

Thus we may assume ρ is positive.

(3) Since $\rho \perp \lambda^n$, pick $P \subset \mathbb{R}^n$ Borel measurable such that $\rho(P) = \lambda^n(P^c) = 0$. For $a > 0$, define

$$
E_a := \left\{ x \in P \middle| \lim_{\substack{\ell(Q) \to 0 \\ Q \in \mathcal{C}(x)}} \frac{|\rho|(Q)}{\lambda^n(Q)} > a \right\}.
$$

Let $\varepsilon > 0$. Since ρ is regular, there is an open $U_{\varepsilon} \supset P$ such that $\rho(U_{\varepsilon}) < \varepsilon$. Adapt the proof of the HLMT to show there is a constant $c > 0$, depending only on n, such that for all $a > 0$,

$$
\lambda^{n}(E_{a}) \leq c \cdot \frac{\rho(U_{\varepsilon})}{a} = c \cdot \frac{\varepsilon}{a}
$$

(Choose your family of cubes to be contained in U_{ε} .) Deduce that $\lambda^{n}(E_{a})=0$.

Problem 68. Let $F : \mathbb{R} \to \mathbb{R}$ be a bounded, non-decreasing continuously differentiable function, and let μ_F be the corresponding Lebesgue-Stieltjes measure on R.

(1) Denoting Lebesgue measure by λ , prove that

$$
\mu_F(E) = \int_E F' d\lambda \qquad \forall E \in \mathcal{B}_{\mathbb{R}}.
$$

Hint: First prove the above equality for intervals. Then use Problem [20.](#page-3-1)

(2) Deduce that $\mu_F \ll \lambda$ and $\frac{d\mu_F}{d\lambda} = F'$ a.e.

5. Functional analysis

Problem 69. Suppose X is a normed space and $Y \subset X$ is a subspace. Define $Q: X \to X/Y$ by $Qx = x + Y$. Define

$$
||Qx||_{X/Y} = \inf \{ ||x - y||_X | y \in Y \}.
$$

- (1) Prove that $\|\cdot\|_{X/Y}$ is a well-defined seminorm.
- (2) Show that if Y is closed, then $\|\cdot\|_{X/Y}$ is a norm.
- (3) Show that in the case of (2) above, $Q: X \to X/Y$ is continuous and open. Optional: is Q continuous or open only in the case of (1) ?
- (4) Show that if X is Banach, so is X/Y .

Problem 70. Suppose F is a finite dimensional vector space.

- (1) Show that for any two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on F, there is a $c > 0$ such that $\|f\|_1 \leq c \|f\|_2$ for all $f \in F$. Deduce that all norms on F induce the same vector space topology on F. Note: You need only prove the result for one of $\mathbb R$ or $\mathbb C$. You may use that the unit sphere in K^n is compact with respect to the usual Euclidean topology.
- (2) Show that for any two finite dimensional normed spaces F_1 and F_2 , all linear maps T : $F_1 \rightarrow F_2$ are continuous. Optional: Show that for any two finite dimensional vector spaces F_1 and F_2 endowed with their vector space topologies from part (1), all linear maps $T : F_1 \to F_2$ are continuous.
- (3) Let X, F be normed spaces with F finite dimensional, and let $T : X \to F$ be a linear map. Prove that the following are equivalent:
	- (a) T is bounded (there is an $R > 0$ such that $T(B_1(0_X)) \subset B_R(0_F)$), and (b) ker (T) is closed.

Hint: One way to do (b) implies (a) uses Problem [69](#page-0-0) part (3) and part (2) of this problem.

Problem 71 (Folland §5.1, #7). Suppose X is a Banach space and $T \in \mathcal{L}(X) = \mathcal{L}(X, X)$. Let $I \in \mathcal{L}(X)$ be the identity map.

- (1) Show that if $||I T|| < 1$, then T is invertible. *Hint:* Show that $\sum_{n\geq 0} (I-T)^n$ converges in $\mathcal{L}(X)$ to T^{-1} .
- (2) Show that if $T \in \mathcal{L}(\overline{X})$ is invertible and $||S-T|| < ||T^{-1}||^{-1}$, then S is invertible.
- (3) Deduce that the set of invertible operators $GL(X) \subset \mathcal{L}(X)$ is open.

Problem 72 (Folland §5.2, $\#19$). Let X be an infinite dimensional normed space.

- (1) Construct a sequence (x_n) such that $||x_n|| = 1$ for all n and $||x_m x_n|| \geq 1/2$ for all $m \neq n$.
- (2) Deduce X is not locally compact.

Problem 73. Suppose $\varphi, \varphi_1, \ldots, \varphi_n$ are linear functionals on a vector space X. Prove that the following are equivalent.

- (1) $\varphi \in \sum_{k=1}^n \alpha_k \varphi_k$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$.
- (2) There is an $\alpha > 0$ such that for all $x \in X$, $|\varphi(x)| \leq \alpha \max_{k=1,\dots,n} |\varphi_k(x)|$.
- (3) $\bigcap_{k=1}^n \ker(\varphi_k) \subset \ker(\varphi)$.

Problem 74. Consider the following sequence spaces.

$$
\ell^{1} := \left\{ (x_{n}) \subset \mathbb{C}^{\infty} \Big| \sum |x_{n}| < \infty \right\}
$$

\n
$$
c_{0} := \left\{ (x_{n}) \subset \mathbb{C}^{\infty} \Big| x_{n} \to 0 \text{ as } n \to \infty \right\}
$$

\n
$$
c := \left\{ (x_{n}) \subset \mathbb{C}^{\infty} \Big| \lim_{n \to \infty} x_{n} \text{ exists} \right\}
$$

\n
$$
\ell^{\infty} := \left\{ (x_{n}) \subset \mathbb{C}^{\infty} \Big| \sup |x_{n}| < \infty \right\}
$$

\n
$$
\|x\|_{\infty} := \sup |x_{n}|
$$

\n
$$
\|x\|_{\infty} := \sup |x_{n}|
$$

\n
$$
\|x\|_{\infty} := \sup |x_{n}|
$$

- (1) Show that every space above is a Banach space.
- Hint: First show ℓ^1 and ℓ^{∞} are Banach. Then show c_0 , c are closed in ℓ^{∞} .
- (2) Construct isometric isomorphisms $c_0^* \cong \ell^1 \cong c^*$ and $(\ell^1)^* \cong \ell^\infty$.
- (3) Which of the above spaces are separable?
- (4) (Folland §5.2, #25) Prove that if X is a Banach space such that X^* is separable, then X is separable.
- (5) Find a separable Banach space X such that X^* is not separable.

Problem 75 (Folland §5.3, #42). Let $E_n \subset C([0,1])$ be the space of all functions f such that there is an $x_0 \in [0, 1]$ such that $|f(x) - f(x_0)| < n|x - x_0|$ for all $x \in [0, 1]$.

- (1) Prove that E_n is nowhere dense in $C([0, 1]).$
- (2) Show that the subset of nowhere differentiable functions is residual in $C([0,1])$.

Problem 76. Provide examples of the following:

- (1) Normed spaces X, Y and a discontinuous linear map $T : X \to Y$ with closed graph.
- (2) Normed spaces X, Y and a family of linear operators $\{T_\lambda\}_{\lambda\in\Lambda}$ such that $(T_\lambda x)_{\lambda\in\Lambda}$ is bounded for every $x \in X$, but $(\|T_\lambda\|)_{\lambda \in \Lambda}$ is not bounded.

Problem 77. Suppose X and Y are Banach spaces and $T : X \to Y$ is a continuous linear map. Show that the following are equivalent.

- (a) There exists a constant $c > 0$ such that $||Tx||_Y \ge c||x||_X$ for all $x \in X$.
- (b) T is injective and has closed range.

Problem 78. Let X be a normed space.

- (1) Show that every weakly convergent sequence in X is norm bounded.
- (2) Suppose in addition that X is Banach. Show that every weak* convergent sequence in X^* is norm bounded.
- (3) Give a counterexample to (2) when X is not Banach. Hint: Under $\|\cdot\|_{\infty}$, $c_c^* \cong \ell^1$, where c_c is the space of sequences which are eventually zero.

Problem 79 (Goldstine's Theorem). Let X be a normed vector space with closed unit ball B. Let B^{**} be the unit ball in X^{**} , and let $i: X \to X^{**}$ be the canonical inclusion. Show that $i(B)$ is weak^{*} dense in B^{**} .

Note: recall that the weak* topology on X^{**} is the weak topology induced by X^* .

Hint: You could use a Hahn-Banach separation theorem that we did not discuss in class. Or you could proceed as follows.

- (1) Show that for every $z \in B^{**}$, $\varphi_1, \ldots, \varphi_n \in X^*$, and $\delta > 0$, there is an $x \in (1 + \delta)B$ such that $\varphi_i(x) = z(\varphi_i)$ for all $1 \leq i \leq n$.
- (2) Suppose U is a basic open neighborhood of $z \in B^{**}$. Deduce that for every $\delta > 0$, $(1 +$ δ)i(B) $\cap U \neq \emptyset$. That is, there is an $x_{\delta} \in (1+\delta)B$ such that $i(x_{\delta}) \in U$.
- (3) By part (2), $(1 + \delta)^{-1} x_{\delta} \in B$. Show that for δ sufficiently small (which can be expressed in terms of the basic open neighborhood U), $(1 + \delta)^{-1}i(x_{\delta}) \in i(B) \cap U$.

Problem 80 (Banach Limits). Let $\ell^{\infty}(\mathbb{N}, \mathbb{R})$ denote the Banach space of bounded functions $\mathbb{N} \to \mathbb{R}$. Show that there is a $\varphi \in \ell^{\infty}(\mathbb{N}, \mathbb{R})^*$ satisfying the following two conditions:

- (1) Letting $S: \ell^{\infty}(\mathbb{N}, \mathbb{R}) \to \ell^{\infty}(\mathbb{N}, \mathbb{R})$ be the shift operator $(Sx)_n = x_{n+1}$ for $x = (x_n)_{n \in \mathbb{N}},$ $\varphi = \varphi \circ S.$
- (2) For all $x \in \ell^{\infty}$, lim inf $x_n \leq \varphi(x) \leq \limsup x_n$.

Hint: One could proceed as follows.

- (1) Consider the subspace $Y = \text{im}(S I) = \{Sx x | x \in \ell^{\infty}\}\$. Prove that for all $y \in Y$ and $r \in \mathbb{R}, \|y + r \cdot \mathbf{1}\| \geq |r|, \text{ where } \mathbf{1} = (1)_{n \in \mathbb{N}} \in \ell^{\infty}.$
- (2) Show that the linear map $f: Y \oplus \mathbb{R}$ $\longrightarrow \mathbb{R}$ given by $f(y+r \cdot 1) := r$ is well-defined, and $|f(z)| \leq ||z||$ for all $z \in Y \oplus \mathbb{R}1$.
- (3) Use the Real Hahn-Banach Theorem to extend f to a $g \in \ell^{\infty}(\mathbb{N}, \mathbb{R})^*$ which satisfies the desired properties.

Problem 81. Let X be a compact Hausdorff topological space. For $x \in X$, define $ev_x : C(X) \to \mathbb{F}$ by $ev_x(f) = f(x)$.

(1) Prove that $ev_x \in C(X)^*$, and find $|| ev_x ||$.

(2) Show that the map $ev: X \to C(X)^*$ given by $x \mapsto ev_x$ is a homeomorphism onto its image, where the image has the relative weak^{*} topology.

Problem 82. Suppose X, Y are Banach spaces and $T : X \to Y$ is a linear transformation.

- (1) Show that if $T \in \mathcal{L}(X, Y)$, then T is weak-weak continuous. That is, if $x_{\lambda} \to x$ in the weak topology on X induced by X^* , then $Tx_{\lambda} \to Tx$ in the weak topology on Y induced by Y^* .
- (2) Show that if T is norm-weak continuous, then $T \in \mathcal{L}(X, Y)$.
- (3) Show that if T is weak-norm continuous, then T has finite rank, i.e., TX is finite dimensional.

Hint: For part (3), one could proceed as follows.

- (a) First, reduce to the case that T is injective by replacing X with $Z = X/\text{ker}(T)$ and T with $S: Z \to Y$ given by $x + \text{ker}(T) \to Tx$. (You must show S is weak-norm continuous on Z.)
- (b) Take a basic open set $\mathcal{U} = \{z \in \mathbb{Z} | |\varphi_i(z)| < \varepsilon$ for all $i = 1, ..., n\} \subset S^{-1}B_1(0_Y)$. Use that S is injective to prove that $\bigcap_{i=1}^n \ker(\varphi_i) = (0)$.
- (c) Use Problem [73](#page-0-0) to deduce that Z^* is finite dimensional, and thus that Z and $TX = SZ$ are finite dimensional.

Problem 83. Suppose X is a Banach space. Prove the following are equivalent:

- (1) X is separable.
- (2) The relative weak^{*} topology on the closed unit ball of X^* is metrizable.

Deduce that the closed unit ball of X^* is weak^{*} sequentially compact.

Problem 84. Suppose X is a Banach space. Prove the following are equivalent:

- (1) X^* is separable.
- (2) The relative weak topology on the closed unit ball of X is metrizable.

Prove that in this case, X is also separable.

Problem 85 (Eberlein-Smulian). Suppose X is a Banach space. Prove the following are equivalent:

- (1) X is reflexive.
- (2) The closed unit ball of X is weakly compact.
- (3) The closed unit ball of X is weakly sequentially compact.

Optional: How do you reconcile Problems [83, 84,](#page-0-0) and [85?](#page-0-0) That is, how do you reconcile the fact that there exist separable Banach spaces which are not reflexive?

Problem 86. Consider the space $L^2(\mathbb{T}) := L^2(\mathbb{R}/\mathbb{Z})$ of Z-periodic functions $\mathbb{R} \to \mathbb{C}$ such that $\int_{[0,1]} |f|^2 < \infty$. Define

$$
\langle f, g \rangle := \int_{[0,1]} f \overline{g}.
$$

- (1) Prove that $L^2(\mathbb{T})$ is a Hilbert space.
- (2) Show that the subspace $C(\mathbb{T}) \subset L^2(\mathbb{T})$ of continuous Z-periodic functions is dense.
- (3) Prove that $\{e_n(x) := \exp(2\pi i n x) | n \in \mathbb{Z}\}\$ is an orthonormal basis for $L^2(\mathbb{T})$. Hint: Orthonormality is easy. Use (2) and the Stone-Weierstrass Theorem to show the linear span is dense.
- (4) Define $\mathcal{F}: L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ by $\mathcal{F}(f)_n := \langle f, e_n \rangle_{L^2(\mathbb{T})} = \int_0^1 f(x) \exp(-2\pi i n x) dx$. Show that if $f \in L^2(\mathbb{T})$ and $\mathcal{F}(f) \in \ell^1(\mathbb{Z})$, then $f \in C(\mathbb{T})$, i.e., f is a.e. equal to a continuous function.

Problem 87. Suppose H is a Hilbert space, $E \subset H$ is an orthonormal set, and $\{e_1, \ldots, e_n\} \subset E$. Prove the following assertions.

- (1) If $x = \sum_{i=1}^{n} c_i e_i$, then $c_i = \langle x, e_i \rangle$.
- (2) The set E is linearly independent.
- (3) For every $x \in H$, $\sum_{i=1}^{n} \langle x, e_i \rangle e_i$ is the unique element of span $\{e_1, \ldots, e_n\}$ minimizing the distance to x.
- (4) (Bessel's Inequality) For every $x \in H$, $||x||^2 \ge \sum_{i=1}^n |\langle x, e_i \rangle|^2$.
- (5) If H is separable, then E is countable.
- (6) The set E can be extended to an orthonormal basis for H .
- (7) If E is an orthonormal basis, then the map $H \to \ell^2(E)$ given by $x \mapsto (\langle x, \cdot \rangle : E \to \mathbb{C})$ is a unitary isomorphism of Hilbert spaces.

6. Radon measures

Problem 88. Let X be a locally compact Hausdorff space and suppose $\varphi : C_0(X) \to \mathbb{C}$ is a linear functional such that $\varphi(f) \geq 0$ whenever $f \geq 0$. Prove that φ is bounded. *Hint:* Prove that $\{\varphi(f)|0 \leq f \leq 1\}$ is bounded.

Problem 89. Suppose X is an LCH space, $K \subset X$ is compact, and U_1, \ldots, U_n are open sets such that $K \subset \bigcup_{i=1}^n U_i$. Show there exist $g_1, \ldots, g_n \in C_c(X)$ such that $g_i \prec U_i$ for all i and $\sum_{i=1}^n g_i = 1$ on K.

Problem 90. Suppose X is an LCH space, μ is a σ -finite Radon measure on X, and E is a Borel set. Prove that for every $\varepsilon > 0$, there is an open set U and a closed set F with $F \subset E \subset U$ such that $\mu(U \setminus F) < \varepsilon$.

Problem 91. Suppose X is an LCH space and $\varphi \in C_0(X)^*$. Prove there are finite Radon measures $\mu_0, \mu_1, \mu_2, \mu_3$ on X such that

$$
\varphi(f) = \sum_{k=1}^{3} i^k \int f d\mu_k \qquad \forall f \in C_0(X).
$$