
5. Functional analysis

5.1. Normed spaces and linear maps. For this section, X will denote a vector space
over F = R or C. (We will assume F = C unless stated otherwise.)

Definition 5.1.1. A seminorm on X is a function k · k : X ! [0,1) which is

• (homogeneous) k�xk = |�| · kxk

• (subadditive) kx+ yk  kxk+ kyk

We call k · k a norm if in addition it is

• (definite) kxk = 0 implies x = 0.

Recall that given a norm k · k on a vector space X, d(x, y) := kx � yk is a metric which
induces the norm topology on X. Two norms k · k1, k · k2 are called equivalent if there is a
c > 0 such that

c
�1
kxk1  kxk2  ckxk1 8 x 2 X.

Exercise 5.1.2. Show that all norms on Fn are equivalent. Deduce that a finite dimensional
subspace of a normed space is closed.
Note: You may assume that the unit ball of Fn is compact in the Euclidean topology.

Exercise 5.1.3. Show that two norms k · k1, k · k2 on X are equivalent if and only if they
induce the same topology.

Definition 5.1.4. A Banach space is a normed vector space which is complete in the induced
metric topology.

Examples 5.1.5.

(1) If X is an LCH topological space, then C0(X) and Cb(X) are Banach spaces.
(2) If (X,M, µ) is a measure space, L1(X,M, µ) is a Banach space.
(3) `1 := {(xn) ⇢ F1

|
P

|xn| < 1}

Definition 5.1.6. Suppose (X, k · k) is a normed space and (xn) ⇢ (X, k · k) is a sequence.
We say

P
xn converges to x 2 X if

P
N
xn ! x as N ! 1. We say

P
xn converges

absolutely if
P

kxnk < 1.

Proposition 5.1.7. The following are equivalent for a normed space (X, k · k).

(1) X is Banach, and
(2) Every absolutely convergent sequence converges.

Proof.
(1) ) (2): Suppose X is Banach and

P
kxnk < 1. Let " > 0, and pick N > 0 such thatP

n>N
kxnk < ". Then for all m � n > N ,

�����

mX
xi �

nX
xi

����� =

�����

mX

n+1

xi

����� 

mX

n+1

kxik 

X

n>N

kxik < ".

(2) ) (1): Suppose (xn) is Cauchy, and choose n1 < n2 < · · · such that kxm � xnk < 2�k

whenever m,n > nk. Define y0 := 0 (think of this as xn0 by convention), and inductively
define yk := xnk

� xnk�1
for all k 2 N. Then

X
kykk  kxn1k+

X

k�1

2�k = kxn1k+ 1 < 1.
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Hence x := lim xnk
=
P

yk exists in X. Since (xn) is Cauchy, xn ! x. ⇤

Proposition 5.1.8. Suppose X, Y are normed spaces and T : X ! Y is linear. The
following are equivalent:

(1) T is uniformly continuous (with respect to the norm topologies),
(2) T is continuous,
(3) T is continuous at 0X , and
(4) T is bounded, i.e., there exists a c > 0 such that kTxk  ckxk for all x 2 X.

Proof.
(1) ) (2) ) (3): Trivial.
(3) ) (4): Suppose T is continuous at 0X . Then there is a neighborhood U of 0X such that
TU ⇢ {y 2 Y |kyk  1}. Since U is open, there is a � > 0 such that {x 2 X|kxk  �} ⇢ U .
Thus kxk  � implies kTxk  1. Then for all x 6= 0

����� ·
x

kxk

����  � =)

����� ·
Tx

kxk

����  1 =) kTxk  �
�1
kxk.

(4) ) (1): Let " > 0. If kx1 � x2k < c
�1
", then

kTx1 � Tx2k = kT (x1 � x2)k  ckx1 � x2k < ". ⇤

Exercise 5.1.9. Suppose X is a normed space and Y ⇢ X is a subspace. Define Q : X !

X/Y by Qx = x+ Y . Define

kQxkX/Y = inf {kx� ykX |y 2 Y } .

(1) Prove that k · kX/Y is a well-defined seminorm.
(2) Show that if Y is closed, then k · kX/Y is a norm.
(3) Show that in the case of (2) above, Q : X ! X/Y is continuous and open.

Optional: is Q continuous or open only in the case of (1)?
(4) Show that if X is Banach, so is X/Y .

Exercise 5.1.10.

(1) Show that for any two finite dimensional normed spaces F1 and F2, all linear maps
T : F1 ! F2 are continuous.
Optional: Show that for any two finite dimensional vector spaces F1 and F2 endowed
with their vector space topologies from Exercise 5.1.2, all linear maps T : F1 ! F2

are continuous.
(2) Let X,F be normed spaces with F finite dimensional, and let T : X ! F be a linear

map. Prove that the following are equivalent:
(a) T is bounded (there is an c > 0 such that T (B1(0X)) ✓ Bc(0F )), and
(b) ker(T ) is closed.
Hint: One way to do (b) implies (a) uses Exercise 5.1.9 part (3) and part (1) of this
problem.

Definition 5.1.11. Suppose X, Y are normed spaces. Let

L(X ! Y ) := {bounded linear T : X ! Y }.
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Define the operator norm on L(X ! Y ) by

kTk := sup {kTxk|kxk  1}

=sup {kTxk|kxk = 1}

=sup

⇢
kTxk

kxk

����kxk 6= 0

�

= inf {c > 0|kTxk  ckxk for all x 2 X} ,

Observe that if S 2 L(Y ! Z) and T 2 L(X ! Y ), then ST 2 L(X ! Z) and

kSTxk  kSk · kTxk  kSk · kTk · kxk 8 x 2 X.

So kSTk  kSk · kTk.

Proposition 5.1.12. If Y is Banach, then so is L(X ! Y ).

Proof. If (Tn) is Cauchy, then so is (Tnx) for all x 2 X. Set Tx := limTnx for x 2 X. One
verifies that T is linear, T is bounded, and Tn ! T . ⇤
Corollary 5.1.13. If X is complete, then L(X) := L(X ! X) is a Banach algebra (an
algebra with a complete submultiplicative norm).

Exercise 5.1.14 (Folland §5.1, #7). Suppose X is a Banach space and T 2 L(X). Let
I 2 L(X) be the identity map.

(1) Show that if kI � Tk < 1, then T is invertible.
Hint: Show that

P
n�0

(I � T )n converges in L(X) to T
�1.

(2) Show that if T 2 L(X) is invertible and kS � Tk < kT
�1
k
�1, then S is invertible.

(3) Deduce that the set of invertible operators GL(X) ⇢ L(X) is open.

Exercise 5.1.15. Consider the measure space (Mn(C) ⇠= Cn
2
,�

n
2
). Show that GLn(C)c ⇢

Mn(C) is �n
2
-null.

Exercise 5.1.16 (Folland §5.2, #19). Let X be an infinite dimensional normed space.

(1) Construct a sequence (xn) such that kxnk = 1 for all n and kxm � xnk � 1/2 for all
m 6= n.

(2) Deduce X is not locally compact.

5.2. Dual spaces.

Definition 5.2.1. Let X be a (normed) vector space. A linear map X ! F is called a
(linear) functional. The dual space of X is X⇤ := Hom(X ! F). Here, Hom means:

• linear maps if X is a vector space, and
• bounded linear maps if X is a normed space.

Exercise 5.2.2. Suppose ','1, . . . ,'n are linear functionals on a vector space X. Prove
that the following are equivalent.

(1) ' =
P

n

k=1
↵k'k for some ↵1, . . . ,↵n 2 F.

(2) There is an ↵ > 0 such that for all x 2 X, |'(x)|  ↵maxk=1,...,n |'k(x)|.
(3)

T
n

k=1
ker('k) ⇢ ker(').
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Exercise 5.2.3. Let X be a locally compact Hausdor↵ space and suppose ' : C0(X) ! C
is a linear functional such that '(f) � 0 whenever f � 0. Prove that ' is bounded.
Hint: Argue by contradiction that {'(f)|0  f  1} is bounded using Proposition 5.1.7.

Proposition 5.2.4. Suppose X is a complex vector space.

(1) If ' : X ! C is C-linear, then Re(') : X ! R is R-linear, and for all x 2 X,

'(x) = Re(')(x)� iRe(')(ix).

(2) If f : X ! R is R-linear, then
'(x) := f(x)� if(ix)

defines a C-linear functional.
(3) Suppose X is normed and ' : X ! C is C-linear.

• In Case (1), k'k < 1 implies kRe(')k  k'k

• In Case (2), kRe(')k < 1 implies k'k  kRe(')k.
Thus k'k = kRe(')k.

Proof.
(1) Just observe Im('(x)) = �Re(i'(x)) = �Re(')(ix).
(2) It is clear that ' is R-linear. We now check

'(ix) = f(ix)� if(i2x) = f(ix)� if(�x) = if(x) + f(ix) = i(f(x)� if(ix)) = i'(x).

(3, Case 1) Since |Re(')(x)|  |'(x)| for all x 2 X, kRe(')k  k'k.
(3, Case 2) If '(x) 6= 0, then

|'(x)| = sgn('(x))'(x) = '(sgn('(x)) · x) = Re(')(sgn('(x)) · x).

Hence |'(x)|  kRe(')k · kxk, which implies k'k  kRe(')k. ⇤
Exercise 5.2.5. Consider the following sequence spaces.

`
1 :=

n
(xn) ⇢ C1

���
X

|xn| < 1

o
kxk1 :=

X
|xn|

c0 := {(xn) ⇢ C1
|xn ! 0 as n ! 1} kxk1 := sup |xn|

c :=
n
(xn) ⇢ C1

��� lim
n!1

xn exists
o

kxk1 := sup |xn|

`
1 := {(xn) ⇢ C1

|sup |xn| < 1} kxk1 := sup |xn|

(1) Show that every space above is a Banach space.
Hint: First show `

1 and `1 are Banach. Then show c0, c are closed in `1.
(2) Construct isometric isomorphisms c⇤

0
⇠= `

1 ⇠= c
⇤ and (`1)⇤ ⇠= `

1.
(3) Which of the above spaces are separable?

Warning 5.2.6. If X is a normed space, constructing a non-zero bounded linear functional
takes a considerable amount of work. One cannot get by simply choosing a basis for X as
an ordinary linear space and mapping the basis to arbitrarily chosen elements of F.

Definition 5.2.7. Suppose X is an R-vector space. A sublinear (Minkowski) functional on
X is a function p : X ! R such that

• (positive homogeneous) for all x 2 X and r � 0, p(rx) = rp(x), and
• (subadditive) for all x, y 2 X, p(x+ y)  p(x) + p(y).
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Theorem 5.2.8 (Real Hahn-Banach). Let X be an R-vector space, p : X ! R a sublinear
functional, Y ⇢ X a subspace, and f : Y ! R a linear functional such that f(y)  p(y)
for all y 2 Y . Then there is an R-linear functional g : X ! R such that g|Y = f and
g(x)  p(x) for all x 2 X.

Proof.
Step 1: For all x 2 X \Y , there is a linear g : Y �Rx ! R such that g|Y = f and g(z)  p(z)
on Y � Rx.

Proof. Any extension g of f to Y �Rx is determined by g(y+ rx) = f(y) + r↵ for all
r 2 R, where ↵ = g(x). We want to choose ↵ 2 R such that

f(y) + r↵  p(y + rx) 8 y 2 Y and 8 r 2 R. (5.2.9)

Since f is R-linear and p is positive homogeneous, we need only consider the cases
r = ±1. Restricting to these 2 cases, (5.2.9) becomes:

f(y)� p(y � x)  ↵  p(z + x)� f(z) 8 y, z 2 Y.

Now observe that

p(z+x)�f(z)�f(y)+p(y�x) = p(z+x)+p(y�x)�f(y+z) � p(y+z)�f(y+z) � 0.

Hence there exists an ↵ which lies in the interval

[sup {f(y)� p(y � x)|y 2 Y } , inf {p(z + x)� f(z)|z 2 Y }]. ⇤

Step 2: Observe that Step 1 applies to any extension g of f to Y ⇢ Z ⇢ X such that g|Y = f

and g  p on Z. Thus any maximal extension g of f satisfying g|Y = f and g  p on its
domain must have domain X. Note that⇢

(Z, g)

����
Y ✓ Z ✓ X is a subspace and g : Z ! R
such that g|Y = f and g  p on Z

�

is partially ordered by (Z1, g1)  (Z2, g2) if Z1 ✓ Z2 and g2|Z1 = g1. Since every ascending
chain has an upper bound, there is a maximal extension by Zorn’s Lemma. ⇤
Remark 5.2.10. Suppose p is a seminorm on X and f : X ! R is R-linear. Then f  p if
and only if |f |  p. Indeed,

|f(x)| = ±f(x) = f(±x)  p(±x) = p(x).

Theorem 5.2.11 (Complex Hahn-Banach). Let X be an C-vector space, p : X ! [0,1) a
seminorm, Y ⇢ X a subspace, and ' : Y ! R a linear functional such that |'(y)|  p(y)
for all y 2 Y . Then there is a C-linear functional  : X ! C such that  |Y = ' and
| (x)|  p(x) for all x 2 X.

Proof. By the Real Hahn-Banach Theorem 5.2.8 applied to Re(') which is bounded above
by p, there is an R-linear extension g : X ! R such that g|Y = Re(') and |g|  p. Define
 (x) := g(x)� ig(ix). By Proposition 5.2.4,  |Y = '. Finally, for all x 2 X,

| (x)| = sgn (x) ·  (x) =  (sgn (x) · x) = g(sgn (x) · x)  p(sgn (x) · x) = p(x). ⇤
Facts 5.2.12. Here are some corollaries of the Hahn-Banach Theorems 5.2.8 and 5.2.11. Let
X be an F-linear normed space.
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(HB1) If x 6= 0, there is a ' 2 X
⇤ such that '(x) = kxk and k'k = 1.

Proof. Define f : Fx ! F by f(�x) := �kxk, and observe that |f |  k · k. Now
apply Hahn-Banach. ⇤

(HB2) If Y ⇢ X is closed and x /2 Y , there is a ' 2 X
⇤ such that k'k = 1 and

'(x) = kx+ Y kX/Y := inf
y2Y

kx� yk.

Proof. Apply (HB1) to x + Y 2 X/Y to get f 2 (X/Y )⇤ such that kfk = 1
and

f(x+ Y ) = kx+ Y k = inf
y2Y

kx� yk.

By Exercise 5.1.9, the canonical quotient map Q : X ! X/Y is continuous.
Since

kx+ Y k = inf
y2Y

kx� yk  kxk 8x 2 X,

we have kQk  1. Thus ' := f �Q works. ⇤

(HB3) X
⇤ separates points of X.

Proof. If x 6= y, then by (HB1), there is a ' 2 X
⇤ such that '(x � y) =

kx� yk 6= 0. ⇤

(HB4) For x 2 X, define evx : X⇤
! F by evx(') := '(x). Then ev : X ! X

⇤⇤ is a linear
isometry.

Proof. It is easy to see that ev is linear. For all ' 2 X
⇤,

k evx(')k = |'(x)|  k'k · kxk =) k evx k  kxk.

Thus evx 2 X
⇤⇤. If x 6= 0, by (HB1) there is a ' 2 X

⇤ such that '(x) = kxk

and k'k = 1. Thus k evx k = kxk. ⇤

Exercise 5.2.13 (Banach Limits). Let `1(N,R) denote the Banach space of bounded func-
tions N ! R. Show that there is a ' 2 `

1(N,R)⇤ satisfying the following two conditions:

(1) Letting S : `1(N,R) ! `
1(N,R) be the shift operator (Sx)n = xn+1 for x = (xn)n2N,

' = ' � S.
(2) For all x 2 `

1, lim inf xn  '(x)  lim sup xn.

Hint: One could proceed as follows.

(1) Consider the subspace Y = im(S � I) = {Sx� x|x 2 `
1
}. Prove that for all y 2 Y

and r 2 R, ky + r · 1k � |r|, where 1 = (1)n2N 2 `
1.

(2) Show that the linear map f : Y � R1 ! R given by f(y + r · 1) := r is well-defined,
and |f(z)|  kzk for all z 2 Y � R1.

(3) Use the Real Hahn-Banach Theorem 5.2.8 to extend f to a g 2 `
1(N,R)⇤ which

satisfies (1) and (2).
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Definition 5.2.14. For a normed space X, its completion is X := ev(X) ⇢ X
⇤⇤, which is

always Banach. Observe that if X is Banach, then ev(X) ⇢ X
⇤⇤ is closed. In this case, if

ev(X) = X
⇤⇤, we call X reflexive.

Exercise 5.2.15. Show that X is reflexive if and only if X⇤ is reflexive.
Hint: Instead of the converse, try proving the inverse, i.e., if X is not reflexive, then X

⇤ is
not reflexive.

Exercise 5.2.16.

(1) (Folland §5.2, #25) Prove that if X is a Banach space such that X
⇤ is separable,

then X is separable.
(2) Find a separable Banach space X such that X⇤ is not separable.

5.3. The Baire Category Theorem and its consequences.

Theorem 5.3.1 (Baire Category). Suppose X is either:

(1) a complete metric space, or
(2) an LCH space.

Suppose (Un) is a sequence of open dense subsets of X. Then
T
Un is dense in X.

Proof. Let V0 ⇢ X be non-empty and open. We will inductively construct for n 2 N a
non-empty open set Vn ⇢ Vn ⇢ Un \ Vn�1.
Case 1: Take Vn to be a ball of radius < 1/n.
Case 2: Take Vn such that Vn is compact, so (Vn) are non-empty nested compact sets.

Claim. K :=
T

Vn is not empty.

Proof of Claim.
Case 1: Let xn be the center of Vn for all n. Then (xn) is Cauchy, so it converges. The
limit lies in K by construction.
Case 2: Observe (Vn) is a family of closed sets with the finite intersection property.
Since V1 is compact, we have K 6= ;. ⇤

Now observe ; 6= K ⇢ (
T
Un) \ V0. Thus

T
Un is dense in X. ⇤

Corollary 5.3.2. If X is as in the Baire Category Theorem 5.3.1, then X is not meager,
i.e., a countable union of nowhere dense sets.

Proof. If (Yn) is a sequence of nowhere dense sets, then (Un := Yn

c

) is a sequence of open
dense sets. Then \

Un =
\

Yn

c

=
⇣[

Yn

⌘c

✓

⇣[
Yn

⌘c

is dense in X, so
S

Yn 6= X. ⇤
Lemma 5.3.3. Suppose X, Y are Banach spaces and T 2 L(X ! Y ). Let U ⇢ X be an
open ball centered at 0X and V ⇢ Y be an open ball centered at 0Y . If V ⇢ TU , then
V ⇢ TU .

Proof. Let y 2 V . Take r 2 (0, 1) such that y 2 rV . Let " 2 (0, 1) to be decided later.
Observe that

y 2 rV ⇢ rTU = TrU,
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so there is an x0 2 rU such that

y � Tx0 2 "rV ⇢ "rTU = T ("rU).

Then there is an x1 2 "rU such that

y � Tx0 � Tx1 2 "
2
rV ⇢ T ("2rU).

Hence by induction, we can construct a sequence (xn) such that

xn 2 "
n
rU and y �

nX

j=0

Txj 2 "
n+1

rV.

Observe that
P

xj converges as kxjk < "
j
rR (which is summable!), where R := radius(U).

Moreover,

T

X
xj = lim

n!1
T

nX
xj = lim

n!1

nX
Txj = y.

Finally, we have
���
X

xj

��� 

X
kxjk <

1X

j=0

"
j
rR =

rR

1� "
,

so
P

xj 2
r

1�"
U . Thus if " < 1� r, then

P
xn 2 U , so y 2 TU . ⇤

Theorem 5.3.4 (Open Mapping). Suppose X, Y are Banach spaces and T 2 L(X ! Y ) is
surjective. Then T is an open map.

Proof. It su�ces to prove T maps an open neighborhood of 0X to an open neighborhood of
0Y . Note Y =

S
n
TBn(0X). By the Baire Category Theorem 5.3.1, there is an n 2 N such

that TBn(0) contains a non-empty open set, say Tx0 + V where x0 2 TBn(0X) and V is an
open ball in Y with center 0Y . Then V ⇢ TBn(0) � Tx0 ⇢ TB2n(0X). By Lemma 5.3.3,
V ⇢ TB2n(0X). ⇤
Facts 5.3.5. Here are some corollaries of the Open Mapping Theorem 5.3.4.

(OMT1) Suppose X, Y are Banach spaces and T 2 L(X ! Y ) is bijective. Then T
�1

2

L(Y ! X), and we call T an isomorphism.

Proof. When T is bijective, T�1 is continuous if and only if T is open. ⇤

(OMT2) Suppose X is Banach under k ·k1 and k ·k2. If there is a c � 0 such that kxk1  ckxk2

for all x 2 X, then k · k1 and k · k2 are equivalent.

Proof. Apply (OMT1) to the identity map id : (X, k · k2) ! (X, k · k1). ⇤

Definition 5.3.6. Suppose X, Y are normed spaces and T : X ! Y is linear. The graph of
T is the subspace

�(T ) := {(x, y)|Tx = y} ⇢ X ⇥ Y.

Here, we endow X ⇥ Y with the norm

k(x, y)k1 := max{kxkX , kykY }.

We say T is closed if �(T ) ⇢ X ⇥ Y is a closed subspace.
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Remark 5.3.7. If T 2 L(X ! Y ), then �(T ) is closed. Indeed, (xn, Txn) ! (x, y) if and
only if xn ! x and Txn ! y. Since T is continuous, Txn ! Tx. Since Y is Hausdor↵,
Tx = y.

Theorem 5.3.8 (Closed Graph). Suppose X, Y are Banach. If T : X ! Y is a closed linear
map, then T 2 L(X ! Y ), i.e., T is bounded.

Proof. Since X, Y are Banach, so is X ⇥ Y . Consider the canonical projection maps ⇡X :
X ⇥ Y ! X and ⇡Y : X ⇥ Y ! Y , which are continuous. Since ⇡X |�(T ) : �(T ) ! X by
(x, Tx) 7! x is norm decreasing and bijective, ⇡X |

�1

�(T )
is bounded by (OMT1). Now observe

x (x, Tx) Tx

⇡X |�1
�(T ) ⇡Y |�(T )

=) T = ⇡Y |�(T ) � ⇡X |
�1

�(T )

which is bounded as the composite of two bounded linear maps. ⇤
Exercise 5.3.9. Suppose X, Y are Banach spaces and S : X ! Y and T : Y ⇤

! X
⇤ are

linear maps such that

'(Sx) = (T')(x) 8 x 2 X, 8' 2 Y
⇤
.

Prove that S, T are bounded.

Definition 5.3.10. A subset S of a topological space (X, T ) is called:

• meager if S is a countable union of nowhere dense sets, and
• residual if Sc is meager.

Exercise 5.3.11. Construct a (non-closed) infinite dimensional meager subspace of `1.

Theorem 5.3.12 (Banach-Steinhaus/Uniform Boundedness Principle). Suppose X, Y are
normed spaces and S ⇢ L(X ! Y ).

(1) If sup
T2S kTxk < 1 for all x in a non-meager subset of X, then sup

T2S kTk < 1.
(2) If X is Banach and sup

T2S kTxk < 1 for all x 2 X, then sup
T2S kTk < 1.

Proof.
(1) Define

En : =

⇢
x 2 X

����sup
T2S

kTxk  n

�
=

\

T2S

{x 2 X|kTxk  n}

=
\

T2S

(k · k � T| {z }
cts

)�1([0, n]),
(5.3.13)

which is closed in X. Since
S

En is a non-meager subset of X, some En is non-meager. Thus
there is an x0 2 X, r > 0, and n > 0 such that Br(x0) ⇢ En. Then Br(0) ⇢ E2n:

kTxk  kT ( x� x0| {z }
2Br(x0)⇢En

)k+ kTx0k  2n when kxk  r.

Thus for all T 2 S and kxk  r, we have kTxk  2n. This implies

sup
T2S

kTk 
2n

r
.
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(2) Define En as in (5.3.13) above. Since X =
S
En is Banach, the sets cannot all be meager

by Corollary 5.3.2 to the Baire Category Theorem 5.3.1. The result now follows from (1). ⇤
Exercise 5.3.14. Provide examples of the following:

(1) Normed spaces X, Y and a discontinuous linear map T : X ! Y with closed graph.
(2) Normed spaces X, Y and a family of linear operators {T�}�2⇤ such that (T�x)�2⇤ is

bounded for every x 2 X, but (kT�k)�2⇤ is not bounded.

Exercise 5.3.15. Suppose X and Y are Banach spaces and T : X ! Y is a continuous
linear map. Show that the following are equivalent.

(1) There exists a constant c > 0 such that kTxkY � ckxkX for all x 2 X.
(2) T is injective and has closed range.

Exercise 5.3.16 (Folland §5.3, #42). Let En ⇢ C([0, 1]) be the space of all functions f

such that there is an x0 2 [0, 1] such that |f(x)� f(x0)|  n|x� x0| for all x 2 [0, 1].

(1) Prove that En is nowhere dense in C([0, 1]).
(2) Show that the subset of nowhere di↵erentiable functions is residual in C([0, 1]).

Exercise 5.3.17. Suppose X, Y are Banach spaces and (Tn) ⇢ L(X ! Y ) is a sequence of
bounded linear maps such that (Tnx) converges for all x 2 X.

(1) Show that Tx := limTnx defines a bounded linear map.
(2) Does Tn ! T in norm? Give a proof or a counterexample.

Hint: Think about shift operators on a sequence space.

5.4. Topological vector spaces.

Definition 5.4.1. An F-vector space X equipped with a topology T is called a topological
vector space if

+ : X ⇥X �! X

· : F⇥X �! X

are continuous.
A subset C ✓ X is called convex if if

x, y 2 C =) tx+ (1� t)y 2 C 8 t 2 [0, 1].

A topological vector space is called locally convex if for all x 2 X and open neighborhoods
U ⇢ X of x, there is a convex open neighborhood V of x such that V ✓ U .

Facts 5.4.2. Suppose P is a family of seminorms on the F-vector space X. For x 2 X,
p 2 P , and " > 0, define

Ux,p," := {y 2 X|p(x� y) < "} .

Let T be the topology generated by the sets Ux,p,", i.e., arbitrary unions of finite intersections
of sets of this form.

(LCnvx1) Suppose x1, . . . , xn 2 X, p1, . . . , pn 2 P , and "1, . . . , "n > 0 and x 2
T

n

i=1
Uxi,pi,"i .

Then there is a " > 0 such that
n\

i=1

Ux,pi," = {y 2 X|pi(x� y) < " 8 p1, . . . , pn 2 P} ⇢

n\

i=1

Uxi,pi,"i .
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Hence sets of the form
T

n

i=1
Ux,pi," = {y 2 X|pi(x� y) < " 8 p1, . . . , pn 2 P} form a

neighborhood base for T at x.

Proof. Define " := min {"i � pi(x� xi)|i = 1, . . . , n}. Then for all y 2T
n

i=1
Ux,pi," and j = 1, . . . , n,

pj(xj � y)  pj(xj � x) + pj(x� y)  ("j � ") + " = "j.

Thus y 2
T

n

i=1
Uxi,pi,"i , and thus

T
n

i=1
Ux,pi," ✓

T
n

i=1
Uxi,pi,"i . ⇤

(LCnvx2) If (xi) ⇢ X is a net, xi ! x if and only if p(x� xi) ! 0 for all p 2 P .

Proof. By (LCnvx1) xi ! x if and only if (xi) is eventually in Ux,p," for all
" > 0 and p 2 P if and only if p(x� xi) ! 0 for all p 2 P . ⇤

(LCnvx3) T is the weakest topology such that the p 2 P are continuous.

Proof. Exercise. ⇤

(LCnvx4) (X, T ) is a topological vector space.

Proof.
+ cts: Suppose xi ! x and yi ! y. Then for all p 2 P ,

p(x+ y � (xi + yi))  p(x� xi) + p(y � yi) ! 0.

· cts: Suppose xi ! x and ↵i ! ↵. Then for all p 2 P ,

p(↵ixi � ↵x)  p(↵ixi � ↵xi) + p(↵xi � ↵x)

 |↵i � ↵|| {z }
!0

· p(xi)| {z }
!p(x)

+|↵| · p(xi � x)| {z }
!0

. ⇤

(LCnvx5) (X, T ) is locally convex.

Proof. Observe that each Ux,p," is convex. Indeed, if y, z 2 Ux,p,", then for all
t 2 [0, 1],

p(x� (ty + (1� t)z)) = p((tx+ (1� t)x)� (ty + (1� t)z))

= p((t(x� y) + (1� t)(x� z))

 t · p(x� y) + (1� t) · p(x� z)

< t"+ (1� t)"

= ".

The result now follows from (LCnvx1) as the intersection of convex sets is
convex. ⇤

(LCnvx6) (X, T ) is Hausdor↵ if and only if P separates points if and only if for all x 2 X \{0},
there is a p 2 P such that p(x) 6= 0.
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Proof. Exercise. ⇤

(LCnvx7) If (X, T ) is Hausdor↵ and P is countable, then there exists a metric d : X ⇥ X !

[0,1) which is translation invariant (d(x + z, y + z) = d(x, y) for all x, y, z 2 X)
which induces the same topology as P .

Proof. Let P = (pn) be an enumeration and set

d(x, y) :=
1X

n=1

2�n
pn(x� y)

1 + pn(x� y)

We leave it to the reader to verify that d is a translation invariant metric which
induces the topology T . ⇤

(LCnvx8) If (X, T ) is locally convex Hausdor↵ TVS, then T is given by a separating family of
seminorms.

Proof. Beyond the scope of this course; take Functional Analysis 7211. ⇤

Proposition 5.4.3. Suppose (X,P) and (Y,Q) are seminormed locally convex topological
vector spaces. The following are equivalent for a linear map T : X ! Y :

(1) T is continuous.
(2) T is continuous at 0X .
(3) For all q 2 Q, there are p1, . . . , pn 2 P and c > 0 such that q(Tx)  c

P
n

j=1
pj(x) for

all x 2 X.

Proof.
(1) ) (2): Trivial.
(2) ) (3): Suppose T is continuous at 0X and q 2 Q. Then there are p1, . . . , pn 2 P and
" > 0 such that for all x 2 V :=

T
n

i=1
U0,pi,", we have q(Tx) < 1. Fix x 2 X. If pi(x) = 0 for

all i = 1, . . . , n, then rx 2 V for all r > 0, so

rq(Tx) = q(Trx|{z}
2V

) < 1 8 r > 0.

This implies q(Tx) = 0  c
P

n

i=1
pi(x) for all c > 0, so we may assume p1(x) > 0. Then

y :=

✓
"

2
P

n

i=1
pi(x)

◆
· x 2 V

as pi(y)  "/2 < " for all i = 1, . . . , n. Thus

q(Tx) =

 
2

"

nX

i=1

pi(x)

!
q(Ty) <

2

"

nX

i=1

pi(x)

as desired.
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(3) ) (1): We must show if xi ! x in X, then q(Txi � Tx) ! 0 for all q 2 Q. Since xi ! x,
p(xi�x) ! 0 for all p 2 P . Fix q 2 Q. By (3), there are p1, . . . , pn 2 P and c > 0 such that

q(T (xi � x))  c

nX

j=1

pj(xi � x) �! 0 8 x 2 X. ⇤

Definition 5.4.4. Let X be a normed space. Recall that X⇤ separates points of X by the
Hahn-Banach Theorem 5.2.8 or 5.2.11. Consider the family of seminorms

P := {x 7! |'(x)| |' 2 X
⇤
}

on X, which separates points. Hence P induces a locally convex Hausdor↵ vector space
topology on X in which xi ! x if and only if '(xi) ! '(x) for all ' 2 X

⇤ by (LCnvx2). We
call this topology the weak topology on X.

Proposition 5.4.5. If U ⇢ X is weakly open then U is k · k-open.

Proof. Observe that every basic open set Ux,'," = {y 2 X| |'(x� y)| < "} is norm open in
X. Indeed, y 7! |'(x � y)| is norm continuous as ' 2 X

⇤ is norm continuous, the vector
space operations are norm-continuous, and | · | : C ! [0,1) is continuous. ⇤
Exercise 5.4.6. Let X be a normed space. Prove that the weak and norm topologies agree
if and only if X is finite dimensional.

Proposition 5.4.7. A linear functional ' : X ! F is weakly continuous (continuous with
respect to the weak topology) if and only if ' 2 X

⇤ (continuous with respect to the norm
topology).

Proof. Suppose ' 2 X
⇤. Then '�1(B"(0C)) = {x 2 X| |'(x)| < "} = U0,"," is weakly open.

Hence ' is continuous at 0X and thus weakly continuous by Proposition 5.4.3.
Now suppose ' : X ! C is weakly continuous. Then for all U ⇢ C open, '�1(U) is

weakly open and thus norm open by Proposition 5.4.5. Thus ' is k · k-continuous and thus
in X

⇤. ⇤
Definition 5.4.8. The weak* topology on X

⇤ is the locally convex Hausdro↵ vector space
topology induced by the separating family of seminorms

P = {' 7! | evx(')| = |'(x)| |x 2 X} .

Observe that 'i ! ' if and only if 'i(x) ! '(x) for all x 2 X.

Theorem 5.4.9 (Banach-Alaoglu). The norm-closed unit ball B⇤ of X⇤ is weak*-compact.

Proof.

Trick. For x 2 X, let Dx = {z 2 C| |z|  kxk }. By Tychono↵’s Theorem, D :=Q
x2X Dx is compact Hausdor↵. The elements (dx) 2 D are precisely functions f :

X ! C (not necessarily linear) such that |f(x)|  kxk for all x 2 X.

Observe B
⇤
⇢ D is the subset of linear functions. The relative product topology on B

⇤ is
the relative weak* topology, as both are pointwise convergence. It remains to prove B⇤

⇢ D

is closed. If ('i) ⇢ B
⇤ is a net with 'i ! ' 2 D, then

'(↵x+ y) = lim'i(↵x+ y) = lim↵'i(x) + 'i(y) = ↵'(x) + '(y). ⇤
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Exercise 5.4.10. Let X be a normed space.

(1) Show that every weakly convergent sequence in X is norm bounded.
(2) Suppose in addition that X is Banach. Show that every weak* convergent sequence

in X
⇤ is norm bounded.

(3) Give a counterexample to (2) when X is not Banach.
Hint: Under k · k1, c⇤

c
⇠= `

1, where cc is the space of sequences which are eventually
zero.

Exercise 5.4.11 (Goldstine’s Theorem). Let X be a normed vector space with closed unit
ball B. Let B

⇤⇤ be the unit ball in X
⇤⇤, and let i : X ! X

⇤⇤ be the canonical inclusion.
Recall that the weak* topology on X

⇤⇤ is the weak topology induced by X
⇤. In this exercise,

we will prove that i(B) is weak* dense in B
⇤⇤.

Note: You may use a Hahn-Banach separation theorem that we did not discuss in class to
prove the result directly if you do not choose to proceed along the following steps.

(1) Show that for every x
⇤⇤

2 B
⇤⇤, '1, . . . ,'n 2 X

⇤, and � > 0, there is an x 2 (1 + �)B
such that 'i(x) = x

⇤⇤('i) for all 1  i  n.
Hint: Here is a walkthrough for this first part. Fix '1, . . . ,'n 2 X

⇤.
(a) Find x 2 X such that 'i(x) = x

⇤⇤('i) for all 1  i  n.
(b) Set Y :=

T
ker('i) and let � > 0. Show by contradiction that (x+Y )\(1+�)B 6=

;. (This part uses the Hahn-Banach Theorem.)
(2) Suppose U is a basic open neighborhood of x⇤⇤

2 B
⇤⇤. Deduce that for every � > 0,

(1 + �)i(B) \ U 6= ;. That is, there is an x� 2 (1 + �)B such that i(x�) 2 U .
(3) By part (2), (1 + �)�1

x� 2 B. Show that for � su�ciently small (which can be
expressed in terms of the basic open neighborhood U), (1 + �)�1

i(x�) 2 i(B) \ U .

Exercise 5.4.12. Suppose X is a Banach space. Prove that X is reflexive if and only if the
unit ball of X is weakly compact.
Hint: Use the Banach-Alaoglu Theorem 5.4.9 and Exercise 5.4.11.

Exercise 5.4.13. Suppose X, Y are Banach spaces and T : X ! Y is a linear transforma-
tion.

(1) Show that if T 2 L(X, Y ), then T is weak-weak continuous. That is, if x� ! x in
the weak topology on X induced by X

⇤, then Tx� ! Tx in the weak topology on Y

induced by Y
⇤.

(2) Show that if T is norm-weak continuous, then T 2 L(X, Y ).
(3) Show that if T is weak-norm continuous, then T has finite rank, i.e., TX is finite

dimensional.

Hint: For part (3), one could proceed as follows.

(1) First, reduce to the case that T is injective by replacing X with Z = X/ ker(T ) and
T with S : Z ! Y given by x + ker(T ) 7! Tx. (You must show S is weak-norm
continuous on Z.)

(2) Take a basic open set U = {z 2 Z| |'i(z)| < " for all i = 1, . . . , n} ⇢ S
�1
B1(0Y ). Use

that S is injective to prove that
T

n

i=1
ker('i) = (0).

(3) Use Exercise 5.2.2 to deduce that Z
⇤ is finite dimensional, and thus that Z and

TX = SZ are finite dimensional.

Exercise 5.4.14. Suppose X is a Banach space. Prove the following are equivalent:
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(1) X is separable.
(2) The relative weak* topology on the closed unit ball of X⇤ is metrizable.

Deduce that if X is separable, the closed unit ball of X⇤ is weak* sequentially compact.
Hint: For (1) ) (2), you could adapt either the proof of (LCnvx7) or the trick in the proof
of the Banach-Alaoglu Theorem 5.4.9 using a countable dense subset. For (2) ) (1), there a
countable neighborhood base (Un) ⇢ B

⇤ at 0X such that
T

Un = {0}. For each n 2 N, there
is a finite set Dn ⇢ X and an "n > 0 such that

Un ◆ {' 2 X
⇤
| |'(x)| < "n for all x 2 Dn} .

Setting D =
S

Dn, show that span(D) is dense in X. Deduce that X is separable.

Exercise 5.4.15. Suppose X is a Banach space. Prove the following are equivalent:

(1) X
⇤ is separable.

(2) The relative weak topology on the closed unit ball of X is metrizable.

Exercise 5.4.16. How do you reconcile Exercises 5.4.12, 5.4.14, and 5.4.15? That is, how
do you reconcile the fact that there exist separable Banach spaces which are not reflexive?

Exercise 5.4.17.

(1) Prove that the norm closed unit ball of `1 is weak* sequentially compact.
(2) Prove that the norm closed unit ball of `1 is not weakly sequentially compact.

Hint: One could proceed as follows.
(a) Prove that the weak* topology on `

1 ⇠= (`1)⇤ is contained in the weak topology,
i.e., if xi ! x weakly, then xi ! x weak*.

(b) Consider the sequence (xn) ⇢ c ⇢ `
1 given by

(xn)(m) =

(
0 if n < m

1 if n � m.

Show that xn ! 0 weak* in `1.
(c) Show that (xn) does not converge weakly in `1 by extending lim : c ! C to `1.
(d) Deduce no subsequence of (xn) converges weakly in `1.

Remark 5.4.18. The Eberlein-Šmulian Theorem (which we will not prove here) states that
if X is a Banach space and S ⇢ X, the following are equivalent.

(1) S is weakly precompact, i.e., the weak closure of S is weakly compact.
(2) Every sequence of S has a weakly convergent subsequence (whose weak limit need

not be in S).
(3) Every sequence of S has a weak cluster point.

Exercise 5.4.19. Let X be a compact Hausdor↵ topological space. For x 2 X, define
evx : C(X) ! F by evx(f) = f(x).

(1) Prove that evx 2 C(X)⇤, and find k evx k.
(2) Show that the map ev : X ! C(X)⇤ given by x 7! evx is a homeomorphism onto its

image, where the image has the relative weak* topology.
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5.5. Hilbert spaces.

Definition 5.5.1. A sesquilinear form on an F-vector spaceH is a function h · , · i : H⇥H !

F which is

• linear in the first variable: h↵x+ y, zi = ↵hx, zi+ hy, zi for all ↵ 2 F and x, y, z 2 H,
and

• conjugate linear in the second variable: hx,↵y + zi = ↵hx, yi + hx, zi for all ↵ 2 F
and x, y, z 2 H.

We call h · , · i:

• self-adjoint if hx, yi = hy, xi for all x, y 2 H,
• non-degenerate if hx, yi = 0 for all y 2 H implies x = 0
• positive if hx, xi � 0 for all x 2 H. A positive sesquilinear form is called definite if
moreover hx, xi = 0 implies x = 0.

A self-adjoint positive definite sesquilinear form is called an inner product.

Exercise 5.5.2. Suppose h · , · i is a self-adjoint sesquilinear form on the R-vector space H.
Show that:

• (R-polarization) 4hx, yi = hx+ y, x+ yi � hx� y, x� yi for all x, y 2 H.

Now suppose h · , · i is a sesquilinear form on the C-vector space H. Prove the following.

(1) (C-polarization) 4hx, yi =
P

3

k=0
i
k
hx+ i

k
y, x+ i

k
yi for all x, y 2 H.

(2) h · , · i is self-adjoint if and only if hx, xi 2 R for all x 2 H.
(3) Positive implies self-adjoint.

Definition 5.5.3. Suppose that h · , · i is positive and self-adjoint (so (H, h · , · i) is a pre-
Hilbert space). Define

kxk := hx, xi
1/2

.

Observe that k · k is homogeneous : k↵xk = |↵| · kxk for all ↵ 2 F and x 2 H.
We say that x and y are orthogonal, denoted x ? y, if hx, yi = 0.

Facts 5.5.4. We have the following facts about pre-Hilbert spaces:

(H1) (Pythagorean Theorem) x ? y implies kx+ yk
2 = kxk

2 + kyk
2.

Proof. kx+ yk
2 = kxk

2 + 2Rehx, yi+ kyk
2 = kxk

2 + kyk
2. ⇤

(H2) x ? y if and only if kxk2  kx+ ↵yk
2 for all ↵ 2 F.

Proof.
): kx+ ↵yk

2 =
(H1)

kxk
2 + |↵|

2
kyk

2
� kxk

2 for all ↵ 2 F.
(: Suppose

kxk
2 + 2Re(↵hx, yi) + |↵|

2
kyk

2 = kx+ ↵yk
2
� kxk

2
8↵ 2 F.

Then for all ↵ 2 F,
0  2Re(↵hx, yi) + |↵|

2
kyk

2
.

Taking ↵ 2 F su�ciently close to 0F, the term 2Re(↵hx, yi) dominates, and
this can only be non-negative for all ↵ 2 F if hx, yi = 0. ⇤
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(H3) The properties of being definite and non-degenerate are equivalent.

Proof.
): Trivial; just take y = x in the definition of non-degeneracy.
(: If kxk

2 = 0, then for all ↵ 2 F and y 2 H, kxk
2 = 0  kx + ↵yk

2

by positivity. Hence x ? y for all y 2 H by (H2). Thus x = 0 by non-
degeneracy. ⇤

(H4) (Cauchy-Schwarz Inequality) For all x, y 2 H, |hx, yi|  kxk · kyk.

Proof. For all r 2 R,
0  kx� ryk

2 = kxk
2
� 2rRehx, yi+ r

2
kyk

2
,

which is a non-negative quadratic in r. Therefore its discriminant

4(Rehx, yi)2 � 4 · kxk2 · kyk2  0,

which implies |Rehx, yi|  kxk · kyk.

Trick. |hx, yi| = ↵hx, yi for some ↵ 2 U(1) = {z 2 C| |z| = 1}.

Then
|hx, yi| = ↵hx, yi = h↵x, yi  k↵xk · kyk = kxk · kyk. ⇤

(H5) (Cauchy-Schwarz Definiteness) If h · , · i is definite, then |hx, yi| = kxk · kyk implies
{x, y} is linearly dependent.

Proof. We may assume y 6= 0. Set

↵ :=
|hx, yi|

kyk2
sgn(hx, yi).

Then we calculate

kx� ↵yk
2 = kxk

2
� 2Re(↵hx, yi) + |↵|

2
· kyk

2

= kxk
2
� 2

|hx, yi|
2

kyk2
+

|hx, yi|
2

kyk4
kyk

2

= kxk
2
�

|hx, yi|
2

kyk2

= kxk
2
�

kxk
2
· kyk

2

kyk2

= 0.

This implies x = ↵y by definiteness.
(The essential idea here was to minimize a quadratic in ↵.) ⇤

(H6) k · k : H ! [0,1) is a seminorm. It is a norm exactly when h · , · i is definite, i.e., an
inner product.
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Proof. It remains to prove subadditivity of k · k, which follows by the Cauchy-
Schwarz Inequality (H4):

kx+ yk
2 = hx+ y, x+ yi

= kxk
2 + 2Rehx, yi+ kyk

2

 kxk
2 + 2|hx, yi|+ kyk

2

 kxk
2 + 2kxk · kyk+ kyk

2 (H4)

= (kxk+ kyk)2.

Now take square roots. The final claim follows immediately. ⇤

Proposition 5.5.5. A norm k · k on a C-vector space comes from an inner product if and
only if it satisfies the parallelogram identity:

kx+ yk
2 + kx� yk

2 = 2(kxk2 + kyk
2)

x+y

x�y

x

y

Proof.
): If k · k comes from an inner product, then add together

kx± yk
2 = kxk

2
± 2Rehx, yi+ kyk

2
.

(: If the parallelogram identity holds, just define

hx, yi :=
1

4

3X

k=0

i
k
kx+ i

k
yk

2

by polarization. One checks this works. ⇤
Definition 5.5.6. A Hilbert space is an inner product space whose induced norm is complete,
i.e., Banach.

Exercise 5.5.7. Verify the follows spaces are Hilbert spaces.

(1) `2 := {(xn) 2 C1
|
P

|xn|
2
< 1} with hx, yi :=

P
xnyn.

(2) Suppose (X,M, µ) is a measure space. Define

L
2(X,µ) :=

�
measurable f : X ! C

��R |f |
2
dµ < 1

 

equality a.e.

with hf, gi :=
R
fg dµ.

Exercise 5.5.8. Suppose H is a Hilbert space and S, T : H ! H are linear operators such
that for all x, y 2 H, hSx, yi = hx, Tyi. Prove that S and T are bounded.

From this point forward, H will denote a Hilbert space.

Theorem 5.5.9. Suppose C ⇢ H is a non-empty convex closed subset and z /2 C. There is
a unique x 2 C such that

kx� zk = inf
y2C

ky � zk.
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Proof. By translation, we may assume z = 0 /2 C. Suppose (xn) ⇢ C such that kxnk ! r :=
infy2C kyk. Then by the parallelogram identity,

����
xm � xn

2

����
2

+

����
xm + xn

2

����
2

= 2

✓���
xm

2

���
2

+
���
xn

2

���
2
◆

Rearranging, we have

kxm � xnk
2 = 2 kxmk

2

| {z }
!r2

+2 kxnk
2

| {z }
!r2

�4

����
xm + xn

2

����
2

| {z }
�r2

where the last inequality follows since (xm + xn)/2 2 C by convexity. This means that

lim sup
m,n

kxm � xnk
2
 2r2 + 2r2 � 4r2 = 0,

and thus (xn) is Cauchy. Since H is complete, there is an x 2 H such that xn ! x, and
kxk = r. Since C is closed, x 2 C.

For uniqueness, observe that if x0
2 C satisfies kx0

k = r, then (x, x0
, x, x

0
, . . . ) is Cauchy

by the above argument, and thus converges. We conclude that x = x
0. ⇤

Definition 5.5.10. For S ⇢ H, define the orthogonal complement

S
? := {x 2 H|hx, si = 0 , 8 s 2 S} .

Observe that S? is a closed subspace.

Facts 5.5.11. We have the following facts about orthogonal complements.

(?1) If S ⇢ T , then T
?
⇢ S

?.

Proof. Observe x 2 T
? if and only if hx, ti = 0 for all t 2 T ◆ S. Hence

x 2 S
?. ⇤

(?2) S ⇢ S
?? and S

? = S
???.

Proof. If s 2 S, then hs, xi = hx, si = 0 for all x 2 S
?. Thus s 2 S

??. Since
S
?? is closed, S ⇢ S

??.
Now replacing S with S

?, we get S?
⇢ S

???. But since S ✓ S
??, by (?1),

we have S
???

✓ S
?. ⇤

(?3) S \ S
? = {0}.

Proof. If x 2 S \ S
?, then hx, xi = 0, so x = 0. ⇤

(?4) If K ⇢ H is a subspace, then H = K �K
?.
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Proof. By (?2) and (?3),

{0} ✓ K \K
?
✓ K

??
\K

? = {0},

so equality holds everywhere.
Let x 2 H. Since K is closed and convex, there is a unique y 2 K minimizing
the distance to x, i.e., kx � yk  infk2K kx � kk. We claim that x � y 2 K

?,
so that x = y + (x� y), and H = K +K

?. Indeed, for all k 2 K and ↵ 2 C,
kx� yk

2
 kx� (y � ↵k)k2 = k(x� y) + ↵kk

2
8↵ 2 C.

By (H2), we have (x� y) ? k for all k 2 K, i.e., x� y 2 K
? as claimed. ⇤

(?5) If K ⇢ H is a subspace, then K = K
??.

Proof. Let x 2 K
??. By (?4), there are unique y 2 K and z 2 K

? such that
x = y + z. Then

0 = hx, zi = hy + z, zi = hy, zi| {z }
=0 by (?2)

+ hz, zi.

Hence z = 0, and x = y 2 K. ⇤

Notation 5.5.12 (Dirac bra-ket). Let (H, h · , · i) be a Hilbert space, where h · , · i is linear
on the left and conjugate linear on the right. Define h · | · i : H ⇥H ! F by

hx|yi := hy, xi.

That is, h · | · i is the ‘same’ inner product, but linear on the right and conjugate linear on
the left.

We may further denote a vector x 2 H by the ket |xi. For x 2 H, we denote the linear
map H ! F by y 7! hx|yi by the bra hx|. Observe that the bra hx| applied to the ket |yi
gives the bracket hx|yi.

Theorem 5.5.13 (Riesz Representation). Let H be a Hilbert space.

(1) For all y 2 H, hy| 2 H
⇤ and khy|k = kyk.

(2) For ' 2 H
⇤, there is a unique y 2 H such that ' = hy|.

(3) The map y 7! hy| is a conjugate-linear isometric isomorphism.

Proof.
(1) Clearly hy| is linear. By Cauchy-Schwarz, |hy|xi|  kxk · kyk, so khy|k  kyk. Taking
x = y, we have |hy|yi| = kyk

2, so khy|k = kyk.
(2) If hy| = hy

0
|, then

ky � y
0
k
2 = hy � y

0
|y � y

0
i = hy|y � y

0
i � hy

0
|y � y

0
i = 0,

and thus y = y
0. Suppose now ' 2 H

⇤. We may assume ' 6= 0. Then ker(') ⇢ H is a closed
proper subspace. Pick z 2 ker(')? with '(z) = 1. Now for all x 2 H, x � '(x)z 2 ker('),
so

hz|xi = hz|x� '(x)z + '(x)zi = h z|{z}
2ker(')?

| x� '(x)z| {z }
2ker(')

i+ hz|'(x)zi = hz|'(x)zi = '(x)kzk2.
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We conclude that ' =
D

z

kzk2

���.
(3) y 7! hy| is isometric by (1) and onto by (2). Conjugate linearity is straightforward. ⇤
Exercise 5.5.14. Suppose H is a Hilbert space. Show that the dual space H

⇤ with

hhx|, hy|iH⇤ := hy, xiH

is a Hilbert space whose induced norm is equal to the operator norm on H
⇤.

Definition 5.5.15. A subset E ⇢ H is called orthonormal if e, f 2 E implies he, fi = �e=f .
Observe that ke� fk =

p
2 for all e 6= f in E. Thus if H is separable, any orthonormal set

is countable.

Exercise 5.5.16. Suppose H is a Hilbert space, E ⇢ H is an orthonormal set, and
{e1, . . . , en} ⇢ E. Prove the following assertions.

(1) If x =
P

n

i=1
ciei, then cj = hx, eji for all j = 1, . . . , n.

(2) The set E is linearly independent.
(3) For every x 2 H,

P
n

i=1
hx, eiiei is the unique element of span{e1, . . . , en} minimizing

the distance to x.
(4) (Bessel’s Inequality) For every x 2 H, kxk2 �

P
n

i=1
|hx, eii|

2.

Theorem 5.5.17. For an orthonormal set E ⇢ H, the following are equivalent:

(1) E is maximal,
(2) span(E), the set of finite linear combinations of elements of E, is dense in H.
(3) hx, ei = 0 for all e 2 E implies x = 0.
(4) For all x 2 H, x =

P
e2Ehx, eie, where the sum on the right:

• has at most countably many non-zero terms, and
• converges in the norm topology regardless of ordering.

(5) For all x 2 H, kxk2 =
P

e2E |hx, ei|
2.

If E satisfies the above properties, we call E an orthonormal basis for H.

Proof.
(1) ) (2): If span(E) is not dense, there is an e 2 span(E)? with kek = 1. Then E ( E[{e},
which is orthonormal.
(2) ) (3): Suppose he, xi = 0 for all e 2 E. Then hx| = 0 on span(E). Since span(E) is
dense in H and hx| is continuous, hx| = 0 on H, and thus x = 0 by the Riesz Representation
Theorem 5.5.13.
(3) ) (1): (3) is equivalent to E

? = 0. This means there is no strictly larger orthonormal set
containing E.
(3) ) (4): For all e1, . . . , en 2 E, by Bessel’s Inequality, kxk

2
�

P
n
|hx, eii|

2. So for all
countable subsets F ⇢ E, kxk2 �

P
f2F |hx, fi|

2. Hence {e 2 E|hx, ei 6= 0} is countable.
Let (ei) be an enumeration of this set. Then

�����

nX

m

hx, eiiei

�����

2

=
nX

m

|hx, eii|
2 m,n!1
����! 0.

So
P

hx, eiiei converges as H is complete. Obsere that for all e 2 E,
D
x�

X
hx, eiiei, e

E
= 0,
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so x =
P

hx, eiiei by (3).
(4) ) (5): Let x 2 H and let {ei} be an enumeration of {e 2 E|hx, ei 6= 0}. Then

kxk
2
�

nX
|hx, eii|

2 =

�����x�

nX
hx, eiiei

�����

2

n!1
���! 0.

(Indeed, expand the term on the right into 4 terms to see you get the term on the left.)
(5) ) (3): Immediate as k · k is definite. ⇤

Exercise 5.5.18. Suppose H is a Hilbert space. Prove the following assertions.

(1) Every orthonormal set E can be extended to an orthonormal basis.
(2) H is separable if and only if it has a countable orthonormal basis.
(3) Two Hilbert spaces are isomorphic (there is an invertible U 2 L(H ! K) such that

hUx, UyiK = hx, yi for all x, y 2 H) if and only if H and K have orthonormal bases
which are the same size.

(4) If E is an orthonormal basis, the map H ! `
2(E) given by x 7! (hx, ·i : E ! C)

is a unitary isomorphism of Hilbert spaces. Here, `2(E) denotes square integrable
functions E ! C with respect to counting measure.

Exercise 5.5.19. Consider the space L
2(T) := L

2(R/Z) of Z-periodic functions R ! C
such that

R
[0,1]

|f |
2
< 1. Define

hf, gi :=

Z

[0,1]

fg.

(1) Prove that L2(T) is a Hilbert space.
(2) Show that the subspace C(T) ⇢ L

2(T) of continuous Z-periodic functions is dense.
(3) Prove that {en(x) := exp(2⇡inx)|n 2 Z} is an orthonormal basis for L2(T).

Hint: Orthonormality is easy. Use (2) and the Stone-Weierstrass Theorem to show
the linear span is dense.

(4) Define F : L2(T) ! `
2(Z) by F(f)n := hf, eniL2(T) =

R
1

0
f(x) exp(�2⇡inx) dx. Show

that if f 2 L
2(T) and F(f) 2 `

1(Z), then f 2 C(T), i.e., f is a.e. equal to a
continuous function.

5.6. The dual of C0(X). Let X be an LCH space. In this section, we prove the Reisz
Representation Theorem which characterizes the dual of C0(X) in terms of Radon measures
on X.

Definition 5.6.1. A Radon measure on X is a Borel measure which is

• finite on compact subsets of X,
• outer regular on all Borel subsets of X, and
• inner regular on all open subsets of X.

Facts 5.6.2. Recall the following facts about Radon measures on an LCH space X.

(R1) If µ is a Radon measure on X and E ⇢ X is �-finite, then µ is �-finite on E by
Exercise 2.5.24(1). Hence every �-finite Radon measure is regular.

(R2) If X is �-compact, every Radon measure is �-finite and thus regular.
(R3) Finite Radon measures on X are exactly finite regular Borel measures on X.
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Exercise 5.6.3. Suppose X is LCH and µ is a Radon measure on X. Prove Cc(X) is dense
in L

1(µ).

Notation 5.6.4. Recall that the support of f : X ! C is supp(f) := {f 6= 0}. We say f has
compact support if supp(f) := {f 6= 0} is compact, and we denote the (possibly non-unital)
algebra of all continuous functions of compact support by Cc(X). For an open set U ⇢ X,
we write f � U to denote 0  f  1 and supp(f) ⇢ U . Observe that if f � U , then f  �U ,
but the converse need not be true.

Definition 5.6.5. A Radon integral on X is a positive linear functional ' : Cc(X) ! C,
i.e., '(f) � 0 for all f 2 Cc(X) such that f � 0.

Lemma 5.6.6. Radon integrals are bounded on compact subsets. That is, if K ⇢ X is
compact, there is a cK > 0 such that for all f 2 Cc(X) with supp(f) ⇢ K, |'(f)|  cK ·kfk1.

Proof. Let K ⇢ X be compact. Choose g 2 Cc(X) such that g = 1 on K by the LCH
Urysohn Lemma (Exercise 1.2.11(2)).
Step 1: If f 2 Cc(X,R) with supp(f) ⇢ K, then |f |  kfk1 · g on X. So kfk1 · g � |f | � 0,
and kfk1 · g ± f � 0. Thus kfk1 · '(g)± '(f) � 0. Hence

|'(f)|  '(g) · kfk1 8 f 2 Cc(X,R) with supp(f) ⇢ K.

Taking cK := '(g) works for all f 2 Cc(X,R).
Step 2: Taking real and imaginary parts, we see cK := 2'(g) works for all f 2 Cc(X). Indeed,

|'(f)|  |'(Re(f))|+ |'(Im(f))|  '(g)kRe(f)k1 + '(g)k Im(f)k1  2'(g)kfk1

for all f 2 Cc(X) with supp(f) ⇢ K. ⇤
Theorem 5.6.7 (Riesz Representation). If ' is a Radon integral on X, there is a unique
Radon measure µ' on X such that

'(f) =

Z
f dµ' 8 f 2 Cc(X).

Moreover, µ' satisfies:

(µ'1) For all open U ⇢ X, µ'(U) = sup {'(f)|f 2 Cc(X) with f � U}, and
(µ'2) For all compact K ⇢ X, µ'(K) = inf {'(f)|f 2 Cc(X) with �K  f}.

Proof.
Uniqueness: Suppose µ is a Radon measure such that '(f) =

R
f dµ for all f 2 Cc(X). If

U ⇢ X is open, then '(f)  µ(U) for all f 2 Cc(X) with f � U . If K ⇢ U is compact, then
by the LCH Urysohn Lemma (Exercise 1.2.11(2)), there is an f 2 Cc(X) such that f � U

and f |K = 1, and

µ(K) 

Z
f dµ = '(f)  µ(U).

But µ is inner regular on U as it is Radon, and thus

µ(U) = sup {µ(K)|U � K is compact}  sup {'(f)|f 2 Cc(X) with f � U}  µ(U).

Hence µ satisfies (µ'1), so µ is determined on open sets. But since µ is outer regular, µ is
determined on all Borel sets.
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Existence: For U ⇢ X open, define µ(U) := sup {'(f)|f 2 Cc(X) with f � U} and

µ
⇤(E) := inf {µ(U)|U is open and E ⇢ U} E ⇢ X.

Step 1: µ is monotone on inclusions of open sets, i.e., U ⇢ V both open implies µ(U)  µ(V ).
Hence µ

⇤(U) = µ(U) for all open U .

Proof. Just observe that if U ✓ V are open, then f 2 Cc(X) with f � U

implies f � V . Hence µ(U)  µ(V ) are we are taking sup over a super set. ⇤

Step 2: µ⇤ is an outer measure on X.

Proof. It su�ces to prove that if (Un) is a sequence of open sets, then
µ (
S

Un) 
P

µ(Un). This shows that

µ
⇤(E) = inf

nX
µ(Un)

���the Un are open and E ⇢

[
Un

o
,

which we know is an outer measure by Proposition 2.3.3. Suppose f 2 Cc(X)
with f �

S
Un. Since supp(f) is compact, supp(f) ⇢

S
N

n=1
Un for some N 2 N.

Trick. By Exercise 1.2.17, there are g1, . . . , gN 2 Cc(X) such that gn �

Un and
P

N

n=1
gn = 1 on supp(f).

Then f = f
P

N

n=1
gn and fgn � Un for each n, so

'(f) =
NX

n=1

'(fgn) 
NX

n=1

'(�Un) =
NX

n=1

µ(Un) 
X

µ(Un).

Since f � U was arbitrary,

µ

⇣[
Un

⌘
= sup

n
'(f)

���f 2 Cc(X) with f �

[
Un

o


X
µ(Un). ⇤

Step 3: Every open set is µ⇤-measurable, and thus BX ⇢ M
⇤, the µ⇤-measurable sets. Hence

µ' := µ
⇤
|BX is a Borel measure which is by definition outer regular and satisfies

(µ'1).

Proof. Suppose U ⇢ X is open. We must prove that for every E ⇢ X such
that µ⇤(E) < 1, µ⇤(E) � µ

⇤(E \ U) + µ
⇤(E \ U).

Case 1: If E is open, then E \ U is open. Given " > 0, there is a f 2 Cc(X)
with f � E \U such that '(f) > µ(E \U)� "/2. Since E \ supp(f) is
open, there is a g � E \ supp(f) such that '(g) > µ(E \ supp(f))�"/2.
Then f + g � E, so

µ(E) � '(f) + '(g)

> µ(E \ U) + µ(E \ supp(f))� "

� µ
⇤(E \ U) + µ

⇤(E \ U)� ".

Since " > 0 was arbitrary, the result follows.
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Case 2: For a general E, given " > 0, there is an open V ◆ E such that
µ(V ) < µ

⇤(E) + ". Thus

µ
⇤(E) + " > µ(V )

� µ
⇤(V \ U) + µ

⇤(V \ U)

� µ
⇤(E \ U) + µ

⇤(E \ U).

Again, as " > 0 was arbitrary, the result follows. ⇤

Step 4: µ' satisfies (µ'2) and is thus finite on compact sets.

Proof. Suppose K ⇢ X is compact and f 2 Cc(X) with �K  f . Let " > 0,
and set U" := {1 � " < f}, which is open. If g 2 Cc(X) with g � U", then
(1� ")�1

f � g � 0, so '(g)  (1� ")�1
'(f). Hence

µ'(K)  µ'(U") = sup {'(g)|g � U"}  (1� ")�1
'(f).

As " > 0 was arbitrary, we conclude that µ'(K)  '(f).
Now, for all open U � K, by the LCH Urysohn Lemma (Exercise 1.2.11(2)),
there is an f � U such that �K  f (f |K = 1), and by definition, '(f) 

µ'(U). Since µ' is outer regular on K by definition,

µ'(K) = inf {µ'(U)|K ⇢ U open} = inf {'(f)|f � �K} . ⇤

Step 5: µ' is inner regular on open sets and thus Radon.

Proof. If U ⇢ X is open and 0  ↵ < µ(U), choose f 2 Cc(X) such that
f � U and '(f) > ↵. For all g 2 Cc(X) with �supp(f)  g, we have g � f � 0,
so ↵ < '(f)  '(g). Since (µ'2) holds, ↵ < µ(supp(f))  µ(U). Hence µ is
inner regular on U . ⇤

Step 6: For all f 2 Cc(X), '(f) =
R
f dµ'.

Proof. We may assume f 2 Cc(X, [0, 1]) as this set spans Cc(X). Fix N 2 N,
and set Kj := {f � j/N} for j = 1, . . . , N + 1 and K0 := supp(f) so that

; = KN+1 ⇢ KN ⇢ · · · ⇢ K1 ⇢ K0 = supp(f).

for j = 1, . . . , N , define

fj :=

✓✓
f �

j � 1

N

◆
_ 0

◆
^

1

N

which is equivalent to

fj(x) =

8
><

>:

0 if x /2 Kj�1

f(x)� j�1

N
if x 2 Kj�1 \Kj

N
�1 if x 2 Kj.

Observe that this implies:
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•
�Kj

N
 fj 

�Kj�1

N
for all j = 1, . . . , N , and

•
P

N

j=1
fj = f ,

which gives us the inequalities

1

N
µ'(Kj) 

Z
fj dµ' 

1

N
µ'(Kj�1). (5.6.8)

Now for all open U � Kj�1, Nfj � U , so N'(fj)  µ'(U). By (µ'2) and
outer regularity of µ', we have the inequalities

1

N
µ'(Kj)  '(fj) 

1

N
µ'(Kj�1). (5.6.9)

Now summing over j = 1, . . . N for both (5.6.8) and (5.6.9), we have the
inequalities

1

N

NX

j=1

µ'(Kj) 

Z
f dµ' 

1

N

N�1X

j=0

µ'(Kj)

1

N

NX

j=1

µ'(Kj)  '(f) 
1

N

N�1X

j=0

µ'(Kj).

This implies that
����'(f)�

Z
f dµ'

���� 
µ'(K0)� µ'(KN)

N


µ'(supp(f))

N

N!1
���! 0

as µ'(supp(f)) < 1 and N 2 N was arbitrary. ⇤

This completes the proof. ⇤
The following corollary is the upgrade of Proposition 2.5.22 promised in Remark 2.5.26.

Corollary 5.6.10. Suppose X is LCH and every open subset of X is �-compact (e.g., if
X is second countable). Then every Borel measure on X which is finite on compact sets is
Radon.

Proof. Suppose µ is such a Borel measure. Since Cc(X) ⇢ L
1(µ), '(f) :=

R
f dµ is a positive

linear functional on Cc(X). By the Riesz Representation Theorem 5.6.7, there is a unique
Radon measure ⌫ on C such that '(f) =

R
f d⌫ for all Cc(X). It remains to prove µ = ⌫.

For an open U ⇢ X, write U =
S
Kj with Kj compact for all j. We may inductively find

fn 2 Cc(X) such that fn � U and fn = 1 on the compact set
S

n
Kj [

S
n�1 supp(fj). Then

fn % �U pointwise, so by the MCT 3.3.9,

µ(U) = lim

Z
fn dµ = lim'(fn) = lim

Z
fn d⌫ = ⌫(U).

Now suppose E 2 BX is arbitrary. By (R2), ⌫ is a regular Borel measure, so by Exercise
2.5.23, given " > 0, there are F ⇢ E ⇢ U with F closed, U open, and ⌫(U \ F ) < ". But
since U \ F is open,

µ(U \ F ) = ⌫(U \ F ) < ",

and thus µ(U)� "  µ(E)  µ(U). Hence µ is outer regular, and thus µ = ⌫. ⇤
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Lemma 5.6.11. Suppose X is LCH and µ is a Radon measure on X. Define '(f) :=
R
f dµ

on Cc(X). The following are equivalent:

(1) ' extends continuously to C0(X).
(2) ' is bounded with respect to k · k1.
(3) µ(X) is finite.

Proof.
(1) , (2): This follows as Cc(X) ⇢ C0(X) is dense with respect to k·k1 by the LCH Urysohn
Lemma (Exercise 1.2.11(2)).
(2) , (3): This follows as µ(X) = sup

�
'(f) =

R
f dµ

��f 2 Cc(X) with 0  f  1
 
. ⇤

Corollary 5.6.12. A positive linear functional in C0(X)⇤ is of the form
R

· dµ for some
finite Radon measure µ.

Proposition 5.6.13. If ' 2 C0(X,R)⇤, there are positive '± 2 C0(X,R)⇤ such that ' =
'+ � '�. Hence there are finite Radon measures µ1, µ2 on X such that

'(f) =

Z
f dµ1 �

Z
f dµ2 =

Z
f d(µ1 � µ2) 8 f 2 C0(X,R).

Proof. For f 2 C0(X, [01)), define '+(f) := sup {'(g)|0  g  f}. For f 2 C0(X,R),
define '+(f) := '+(f+)� '+(f�) as f± 2 C0(X, [0,1)).
Step 1: For all f1, f2 2 C0(X, [0,1)) and c � 0, '+(cf1 + f2) = c'+(f1) + '+(f2).

Proof. It su�ces to show additivity. Whenever 0  g1  f1 and 0  g2  f2,
0  g1 + g2  f1 + f2. This implies '+(f1 + f2) � '+(f1) + '+(f2).
Now if 0  g  f1 + f2, set g1 := g ^ f1 and g2 := g � g1. Then 0  g1  f1 and
0  g2  f2, so

'(g) = '(g1) + '(g2)  '+(f1) + '+(f2).

Taking sup over such g gives '+(f1 + f2)  '+(f1) + '+(f2). ⇤

Step 2: If f 2 C0(X,R) with f = g � h where g, h � 0, then '+(f) = '+(g)� '+(h).

Proof. Observe that g+ f� = h+ f+ � 0, so '+(g)+'(f�) = '+(h)+'+(f+) by Step
1. Rearranging gives the result. ⇤

Step 3: '+ is linear on C0(X,R).

Proof. Suppose c 2 R and f, g 2 C0(X,R). If c � 0, then cf+g = cf++g+�(cf�+g�)
where cf± + g± � 0. Then

'+(cf + g) = '+(cf+ + g+)� '+(cf� + g�) (Step 2)

= c'+(f+) + '+(g+)� c'+(f�)� '�(g�) (Step 1)

= c('+(f+)� '+(f�)) + ('+(g+)� '+(g�))

= c'+(f) + '+(g) (Step 2). ⇤
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Step 4: '+ 2 C0(X,R)⇤ is positive with k'+k  k'k.

Proof. First suppose f 2 C0(X, [0,1)). Since

|'(g)|  k'k · kgk1  k'k · kfk1 8 0  g  f,

we have that

0 = '(0)  '+(f)  k'k · kfk1 8 f 2 C0(X, [0,1)).

Now if f 2 C0(X,R) is arbitrary,
|'+(f)|  max{'+(f+),'+(f�)}  k'k ·max{kf+k1, kf�k1}  k'k · kfk1.

Hence k'+k  k'k. ⇤

Step 5: Finally, the linear functional '� := '+ � ' 2 C0(X,R)⇤ is also positive as '+(f) �
'(f) for all f 2 C0(X, [0,1)) by definition of '+. ⇤
Exercise 5.6.14. For ' 2 C0(X)⇤, there are finite Radon measures µ0, µ1, µ2, µ3 on X such
that

'(f) =
3X

k=0

i
k

Z
f dµk =

Z
f d

 
3X

k=0

i
k
µk

!
8 f 2 C0(X).

Definition 5.6.15. Let X be an LCH space.

• A signed Borel measure ⌫ on X is called a signed Radon measure if ⌫± are Radon,
where ⌫ = ⌫+ � ⌫� is the Jordan decomposition of ⌫. We denote by RM(X,R) ⇢

M(X,R) the subset of finite signed Radon measures.
• A complex Borel measure ⌫ on X is called a complex Radon measure if Re(⌫), Im(⌫)
are Radon. We denote by RM(X,C) ⇢ M(X,C) the subset of complex Radon mea-
sures.

Exercise 5.6.16 (Lusin’s Theorem). Suppose X is LCH and µ is a Radon measure on X.
If f : X ! C is measurable and vanishes outside a set of finite measure, then for all " > 0,
there is an E 2 BX with µ(Ec) < " and a g 2 Cc(X) such that g = f on E. Moreover:

• If kfk1 < 1, we can arrange that kgk1  kfk1.
• If im(f) ⇢ R, we can arrange that im(g) ⇢ R.

Theorem 5.6.17 (Real Riesz Representation). Suppose X is LCH. Define � : RM(X,R) !
C0(X,R)⇤ by ⌫ 7! '⌫ where '⌫(f) :=

R
f d⌫. Then � is an isometric linear isomorphism.

Proof. Clearly � is linear. By Proposition 5.6.13, � is surjective. It remains to prove � is
isometric, which also implies injectivity. Fix ⌫ 2 RM.
k'⌫k  k⌫k: For all f 2 C0(X,R),

|'⌫(f)| =

����
Z

f d⌫

���� =
����
Z

f d⌫+ �

Z
f d⌫�

���� 
����
Z

f d⌫+

����+
����
Z

f d⌫�

����



Z
|f | d⌫+ +

Z
|f | d⌫� =

Z
|f | d|⌫|  kfk1 · k⌫kRM.

Hence k'⌫k  k⌫k.
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k'⌫k � k⌫k: Since ⌫ is finite, by Exercise 4.2.11,
��� d⌫

d|⌫|

��� = 1 on X |⌫|-a.e. Let " > 0. Since |⌫|

is finite, by Lusin’s Theorem (Exercise 5.6.16), there is an f 2 Cc(X,R) such that kfk1 = 1

and f = d⌫

d|⌫| on E 2 BX where |⌫|(Ec) < "/2. Then

k⌫k =

Z
d|⌫| =

Z ����
d⌫

d|⌫|

����
2

d|⌫| =

Z
d⌫

d|⌫|
·
d⌫

d|⌫|
d|⌫| =

(Ex. 4.2.11)

Z
d⌫

d|⌫|
d⌫



����
Z

f d⌫

����+
����
Z

f �
d⌫

d|⌫|
d⌫

����  k'⌫k · kfk1| {z }
=1

+

Z ����f �
d⌫

d|⌫|

���� d|⌫|

 k'⌫k+ 2|⌫|(Ec)  k'⌫k+ ".

Since " > 0 was arbitrary, k⌫k  k'⌫k. ⇤
Exercise 5.6.18 (Complex Riesz Representation). SupposeX is LCH. Define � : RM(X,C) !
C0(X,C)⇤ by ⌫ 7! '⌫ where '⌫(f) :=

R
f d⌫. Show that � is an isometric linear isomor-

phism.
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