3. INTEGRATION

3.1. Measurable functions.

Definition 3.1.1. If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, we say $f : X \to Y$ is $(\mathcal{M} - \mathcal{N})$ measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

Exercise 3.1.2. Prove the following assertions.

- (1) Given $f: X \to Y$ and a σ -algebra \mathcal{N} on Y, $\{f^{-1}(E) | E \in \mathcal{N}\}$ is a σ -algebra on X. Moreover it is the smallest σ -algebra on X such that f is measurable.
- (2) Given $f: X \to Y$ and a σ -algebra \mathcal{M} on X, $\{E \subset Y | f^{-1}(E) \in \mathcal{M}\}$ is a σ -algebra on Y. Moreover it is the largest σ -algebra on Y such that f is measurable.

Exercise 3.1.3. Prove that the composite of two measurable functions is measurable. More precisely, if $f: (X, \mathcal{M}) \to (Y, \mathcal{N})$ is $\mathcal{M} - \mathcal{N}$ measurable and $g: (Y, \mathcal{N}) \to (Z, \mathcal{P})$ is $\mathcal{N} - \mathcal{P}$ measurable, then $g \circ f$ is $\mathcal{M} - \mathcal{P}$ measurable. Deduce that measurable spaces and measurable functions form a category.

Proposition 3.1.4. Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, $f : X \to Y$, and $\mathcal{N} = \langle \mathcal{E} \rangle$ for some $\mathcal{E} \subset P(Y)$. Then f is measurable if and only if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$.

Proof. The forward direction is trivial. Suppose $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$. Then \mathcal{E} is contained in the σ -algebra \mathcal{N}_f on Y co-induced by \mathcal{M}, f , i.e., the largest σ -algebra such that f is measurable. Since \mathcal{N}_f is a σ -algebra containing \mathcal{E} , we see that \mathcal{N}_f contains \mathcal{N} . Since f is $\mathcal{M} - \mathcal{N}_f$ measurable, f is $\mathcal{M} - \mathcal{N}$ measurable. \Box

Exercise 3.1.5. Show that every monotone increasing function $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable.

Definition 3.1.6. Suppose X, Y are topological spaces. We call $f : X \to Y$ Borel measurable if it is $\mathcal{B}_X - \mathcal{B}_Y$ measurable.

Corollary 3.1.7. Continuous functions are Borel measurable.

Proof. Observe $f: X \to Y$ is continuous if and only if for all $U \in \mathcal{T}_Y$, $f^{-1}(U) \in \mathcal{T}_X \subset \mathcal{B}_X$. This implies f is Borel measurable by Proposition 3.1.4.

Corollary 3.1.8. Suppose (X, \mathcal{M}) is a measurable space and $f : X \to \mathbb{R}$ (where \mathbb{R} is equipped with the Borel σ -algebra). The following are equivalent:

(1) f is $\mathcal{M} - \mathcal{B}_{\mathbb{R}}$ measurable. (2) $f^{-1}(a, \infty) \in \mathcal{M}$ for all $a \in \mathbb{R}$. (3) $f^{-1}[a, \infty) \in \mathcal{M}$ for all $a \in \mathbb{R}$. (4) $f^{-1}(-\infty, a) \in \mathcal{M}$ for all $a \in \mathbb{R}$. (5) $f^{-1}(-\infty, a] \in \mathcal{M}$ for all $a \in \mathbb{R}$.

Observe that we can also use collections of intervals (a, b), [a, b), (a, b], [a, b] for all $a, b \in \mathbb{R}$.

Corollary 3.1.9. If (X, \mathcal{M}) is a measurable space and $f : X \to \overline{\mathbb{R}} = [-\infty, \infty]$, then Corollary 3.1.8 holds replacing \mathbb{R} with $\overline{\mathbb{R}}$ and intervals excluding $\pm \infty$ with intervals including $\pm \infty$ respectively.

Proof. Use Exercise 2.1.12.

Definition 3.1.10. Suppose (X, \mathcal{M}) is a measurable space. We say a function $f : X \to \mathbb{R}, \overline{\mathbb{R}}, \mathbb{C}$ is \mathcal{M} -measurable if f is $\mathcal{M} - \mathcal{B}_{\mathbb{R}}, \mathcal{M} - \mathcal{B}_{\mathbb{C}}$ measurable respectively.

Warning 3.1.11. If $f, g : \mathbb{R} \to \mathbb{R}$ are Lebesgue measurable (i.e., $\mathcal{L} - \mathcal{B}_{\mathbb{R}}$ measurable), then $f \circ g$ need not be Lebesgue measurable!

Exercise 3.1.12. Find examples of $f, g : \mathbb{R} \to \mathbb{R}$ are Lebesgue measurable with $f \circ g$ not Lebesgue measurable. Note: First find an $E \in \mathcal{L} \setminus \mathcal{B}_{\mathbb{R}}$ and an \mathcal{L} -measurable function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1}(E) \notin \mathcal{L}$. Then set $g := \chi_E$.

Exercise 3.1.13. Suppose (X, \mathcal{M}) is a measurable space and X, Y are topological spaces, $i: Y \to Z$ is a continuous injection which maps open sets to open sets, and $f: X \to Y$. (For example, $Y = \mathbb{R}$ and $Z = \overline{\mathbb{R}}$.)

Show that f is $\mathcal{M} - \mathcal{B}_Y$ measurable if and only if $i \circ f$ is $\mathcal{M} - \mathcal{B}_Z$ measurable. Deduce that if $f: (X, \mathcal{M}) \to \overline{\mathbb{R}}$ only takes values in \mathbb{R} , then f is $\mathcal{M} - \mathcal{B}_{\overline{\mathbb{R}}}$ measurable if and only if f is $\mathcal{M} - \mathcal{B}_{\mathbb{R}}$ measurable. Hence we can say f is \mathcal{M} -measurable without any confusion.

Exercise 3.1.14. Let (X, \mathcal{M}) be a measurable space.

(1) Prove that the Borel σ -algebra $\mathcal{B}_{\mathbb{C}}$ on \mathbb{C} is generated by the 'open rectangles'

 $\{z \in \mathbb{C} | a < \operatorname{Re}(z) < b \text{ and } c < \operatorname{Im}(z) < d\}.$

(2) Prove directly from the definitions that $f : X \to \mathbb{C}$ is $\mathcal{M} - \mathcal{B}_{\mathbb{C}}$ measurable if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are $\mathcal{M} - \mathcal{B}_{\mathbb{R}}$ measurable.

Definition 3.1.15. Suppose (X, \mathcal{M}, μ) is a measure space. We say that a property P of a measurable function f from X into $\mathbb{R}, \overline{\mathbb{R}}$, or \mathbb{C} holds almost everywhere (a.e.) if there is a μ -null set $E \in \mathcal{M}$ such that P holds on E^c . For example, $f \geq 0$ a.e. if there is a μ -null set $E \in \mathcal{M}$ such that $f|_{E^c} \geq 0$.

Exercise 3.1.16. Define a relation on the set of \mathcal{M} -measurable functions (into $\mathbb{R}, \overline{\mathbb{R}}, \text{ or } \mathbb{C}$) by $f \sim g$ if and only if f = g a.e. Prove \sim is an equivalence relation.

Notation 3.1.17. Given $f : X \to \overline{\mathbb{R}}$, we write $\{a < f\} := f^{-1}(a, \infty]$. We define $\{a \le f\}, \{f < b\}, \{f \le b\}, \{a < f < b\}, \text{etc. similarly.}$

Facts 3.1.18. Suppose (X, \mathcal{M}) is a measurable space and $f, g : X \to \mathbb{R}$ are \mathcal{M} -measurable. The following functions are all \mathcal{M} -measurable:

 $(\mathcal{M}-\text{meas1}) \ (f \lor g)(x) := \max\{f(x), g(x)\} \text{ and } (f \land g)(x) := \min\{f(x), g(x)\}$

Proof. If $a \in \mathbb{R}$, then

$$\{a < f \lor g\} = \{a < f\} \cup \{a < g\} \in \mathcal{M}$$
$$\{a < f \land g\} = \{a < f\} \cap \{a < g\} \in \mathcal{M}.$$

(\mathcal{M} -meas2) any well-defined linear combination of f, g, where by convention, $0 \cdot \pm \infty = 0$ and $\pm \infty \pm \infty = \pm \infty$, but $\pm \infty \mp \infty$ is not defined.

$$\begin{array}{l} \begin{array}{l} Proof.\\ \underline{\text{Step 1:}} \ \text{For } a,c \in \mathbb{R}, \end{array} \\ \left\{ cf > a \right\} = \begin{cases} \emptyset & \text{if } c = 0 \leq a \\ X & \text{if } c = 0 > a \\ \left\{ \frac{a}{c} < f \right\} & \text{if } c > 0 \\ \left\{ \frac{a}{c} > f \right\} & \text{if } c > 0 \\ \left\{ \frac{a}{c} > f \right\} & \text{if } c < 0 \end{cases} \end{array} \text{ which are all in } \mathcal{M}. \\ \begin{array}{l} \underline{\text{Step 2:}} \ \text{If } f + g \text{ is well-defined, then for } a \in \mathbb{R}, \\ \left\{ a < f + g \right\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ a < r + s}} \left\{ r < f \right\} \cap \left\{ s < g \right\} \in \mathcal{M}. \end{array} \end{array}$$

 $(\mathcal{M}\text{-meas}3) fg$

Proof. Step 1: Suppose f, g are non-negative. Then for all $a \ge 0$, $\{a < fg\} = \bigcup_{\substack{r,s \in \mathbb{Q} > 0 \\ a < rs}} \{r < f\} \cap \{s < g\} \in \mathcal{M}.$ Also, for all a < 0, $\{a < fg\} = X \in \mathcal{M}.$ Step 2: For f, g arbitrary, we use the following trick: **Trick.** $f = f_+ - f_-$ where $f_+ := f \lor 0$ and $f_- := -(f \land 0)$. Observe that $f_{\pm} \cdot f_{\mp} = 0$. Similarly, we can write $g = g_+ - g_-$. Then $fg = f_+g_+ - f_-g_+ - f_+g_- + f_-g_-$, all of which have disjoint support. Hence each of the summands of fg is measurable by Step 1, and the linear combination is measurable by (3) as it is

well-defined.

Exercise 3.1.19. Suppose $f: X \to \overline{\mathbb{R}}$. Show that $f = f_+ - f_-$ is the unique decomposition of f as g - h such that $g, h \ge 0$ and gh = 0.

Exercise 3.1.20. Let (X, \mathcal{M}) be a measurable space.

- (1) Prove that the $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable functions form a \mathbb{C} -vector space.
- (2) Show that if $f: X \to \mathbb{C}$ is $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable, then $|f|: X \to [0, \infty)$ is $\mathcal{M} \mathcal{B}_{\mathbb{R}}$ measurable.
- (3) Show that if (f_n) is a sequence of $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable functions $X \to \mathbb{C}$ and $f_n \to f$ pointwise, then f is $\mathcal{M} \mathcal{B}_{\mathbb{C}}$ measurable.

Facts 3.1.21. Suppose (f_n) is a sequence of \mathcal{M} -measurable functions $X \to \overline{\mathbb{R}}$. The following functions are \mathcal{M} -measurable.

 $(\mathcal{M}\text{-meas4}) \sup f_n \text{ and } \inf f_n$

Proof. For all
$$a \in \mathbb{R}$$
,
 $\{a < \sup f_n\} = \bigcup_n \{a < f_n\} \in \mathcal{M}$
 $\{a < \inf f_n\} = \bigcap_n \{a < f_n\} \in \mathcal{M}.$

 $(\mathcal{M}\text{-meas5}) \limsup f_n \text{ and } \liminf f_n$

Proof. Observe that $\lim \sup f_n = \lim_{n \to \infty} \sup_{k > n} f_k = \inf_n \underbrace{\sup_{k > n} f_k}_{\text{measurable by (M-meas4)}}$ $\lim \inf f_n = \lim_{n \to \infty} \inf_{k > n} f_k = \sup_n \underbrace{\inf_{k > n} f_k}_{\text{measurable by (M-meas4)}}$ Applying (*M*-meas4) again, we see that $\limsup f_n$ and $\liminf f_n$ are *M*-measurable.

3.2. Measurable simple functions. For this section, fix a measurable space (X, \mathcal{M}) .

Definition 3.2.1. An \mathcal{M} -measurable function $\psi : X \to \mathbb{R}$ is *simple* if it takes finitely many values. Observe that if ψ is simple, we can write

$$\psi = \sum_{k=1}^{n} c_k \chi_{E_k} \qquad c_1, \dots, c_n \in \mathbb{R} \qquad E_1, \dots, E_n \in \mathcal{M}.$$

Here, we write χ_E for the *characteristic function* of E:

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \in E^c. \end{cases}$$

Observe that there is exactly one such expression of a simple function, called its *standard* form, such that

- c_1, \ldots, c_n are distinct, and
- E_1, \ldots, E_n are disjoint and non-empty such that $X = \coprod_{k=1}^n E_k$.

Denote by SF the collection of simple (\mathcal{M} -measurable) functions. Define SF⁺ := { $\psi \in SF | \psi \ge 0$ }.

Exercise 3.2.2. Verify the uniqueness of standard form of an simple function.

Exercise 3.2.3.

- (1) Prove that SF is an \mathbb{R} -algebra and SF^+ is closed under addition, multiplication, and non-negative scalar multiplication.
- (2) Prove SF is a lattice (closed under max and min) and $SF^+ \subset SF$ is a sublattice.

Proposition 3.2.4. Suppose $f: X \to [0, \infty]$ is \mathcal{M} -measurable. There is a sequence $(\psi_n) \subset$ SF^+ such that

- $\psi_n(x) \nearrow f(x)$ for all $x \in X$, and
- for all $N \in \mathbb{N}$, $\psi_n \to f$ uniformly on $\{f \leq N\}$.

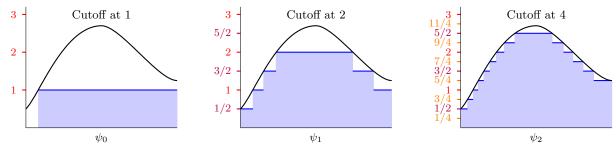
Proof. For $n \ge 0$ and $1 \le k \le 2^{2n}$, set

$$E_n^k := f^{-1}\left(\frac{k-1}{2^n}, \frac{k}{2^n}\right]$$
 and $F_n := f^{-1}(2^n, \infty].$

Observe that $X = f^{-1}(0) \amalg F_n \amalg \coprod_{k=1}^{2^{2n}} E_n^k$. Define

$$\psi_n := 2^n \chi_{F_n} + \sum_{k=1}^{2^{2n}} \frac{k-1}{2^n} \chi_{E_n^k}.$$

Here is a cartoon of ψ_0, ψ_1, ψ_2 :



Observe that $\psi_n \leq \psi_{n+1}$ for all $n \geq 0$, and $0 \leq f - \psi_n \leq 2^{-n}$ on $\{f \leq 2^n\}$. The result follows.

Exercise 3.2.5. Let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be the completion of the measure space (X, \mathcal{M}, μ) .

- (1) Show that if f is $\overline{\mathcal{M}}$ -measurable and q = f a.e., then g is $\overline{\mathcal{M}}$ -measurable. Optional: Does this hold with \mathcal{M} replaced by \mathcal{M} ?
- (2) Show that if f is $\overline{\mathcal{M}}$ -measurable, there exists an \mathcal{M} -measurable g such that f = ga.e.

Hint: First do the case f *is* \mathbb{R} *-valued.*

- (3) Show that if (f_n) is a sequence of \mathcal{M} -measurable functions and $f_n \to f$ a.e., then f is \mathcal{M} -measurable.
 - Optional: Does this hold with $\overline{\mathcal{M}}$ replaced by \mathcal{M} ?
- (4) Show that if (f_n) is a sequence of \mathcal{M} -measurable functions and $f_n \to f$ a.e., then f is $\overline{\mathcal{M}}$ -measurable. Deduce that there is an \mathcal{M} -measurable function g such that f = ga.e., so $f_n \to g$ a.e.

For all parts, consider the cases of \mathbb{R} , $\overline{\mathbb{R}}$, and \mathbb{C} -valued functions.

3.3. Integration of non-negative functions. For this section, fix a measure space (X, \mathcal{M}, μ) . Define

$$L^+ := L^+(X, \mathcal{M}, \mu) = \{\mathcal{M}\text{-measurable } f : X \to [0, \infty]\}$$

Definition 3.3.1. For $\psi = \sum_{k=1}^{n} c_k \chi_{E_k} \in \mathsf{SF}^+ \subset L^+$ in standard form, define

$$\int \psi := \int_X \psi \, d\mu := \int_X \psi(x) \, d\mu(x) := \sum_{k=1}^n c_k \mu(E_k).$$

For $E \in \mathcal{M}$, we define $\int_E \psi := \int \psi \cdot \chi_E$. Observe that to calculate $\int_E \psi$, we must write the simple function $\psi \cdot \chi_E$ in standard form. We say that $\psi \in \mathsf{SF}^+$ is *integrable* if $\int \psi < \infty$. We write $\mathsf{ISF}^+ := \{\psi \in \mathsf{SF}^+ | \psi \text{ integrable} \}$.

Exercise 3.3.2. Suppose $f: (X, \mathcal{M}, \mu) \to [0, \infty]$ is \mathcal{M} -measurable and $\{f > 0\}$ is σ -finite. Show that there exists a sequence of $(\psi_n) \subset \mathsf{ISF}^+$ such that $\psi_n \nearrow f$ pointwise. Optional: In what sense can you say $\psi_n \nearrow f$ uniformly?

Theorem 3.3.3. The map $\int : SF^+ \to [0,\infty]$ satisfies

- (1) (homogeneous) for all $r \ge 0$, $\int r\psi = r \int \psi$.
- (2) (monotone) if $\phi \leq \psi$ everywhere, then $\int \phi \leq \int \psi$.
- (3) (additive) $\int \phi + \psi = \int \phi + \int \psi$.

Hence $\int : \mathsf{SF}^+ \to [0,\infty]$ is an order-preserving \mathbb{R}^+ -linear functional.

Proof. (1) Observe if r = 0, then $\int r\psi = 0 = 0 \cdot \int \psi$. If r > 0 and $\psi = \sum^{n} c_k \chi_{E_k}$, then $r\psi =$ $\sum^{n} rc_k \chi_{E_k}$ is in standard form, and

$$\int r\psi = \sum^{n} rc_{k}\mu(E_{k}) = r\sum^{n} c_{k}\mu(E_{k}) = r\int \psi.$$

(2) Suppose that $\phi = \sum^{m} a_j \chi_{E_j}$ and $\psi = \sum^{n} b_k \chi_{F_k}$ are in standard form. Here is the trick:

Trick. Since $X = \coprod^m E_j = \coprod^n F_k$, we have $E_j = \coprod_{k=1}^n E_j \cap F_k$ and $F_k = \coprod_{j=1}^m E_j \cap F_k$.

Since $\phi \leq \psi$ everywhere,

$$\phi = \sum_{j,k} a_j \chi_{E_j \cap F_k} \le \sum_{j,k} b_k \chi_{E_j \cap F_k} = \psi,$$

and so $a_j \leq b_k$ whenever $E_j \cap F_k \neq \emptyset$. Thus

$$\int \phi = \sum_{j=1}^{m} a_j \mu(E_j) = \sum_{j=1}^{m} \sum_{k=1}^{n} a_j \mu(E_j \cap F_k) \le \sum_{k=1}^{n} \sum_{j=1}^{m} b_k \mu(E_j \cap F_k) = \sum_{k=1}^{n} b_k \mu(F_k) = \int \psi.$$

(3) Suppose that $\phi = \sum_{k=1}^{m} a_j \chi_{E_j}$, $\psi = \sum_{k=1}^{n} b_k \chi_{F_k}$, and $\phi + \psi = \sum_{\ell=1}^{p} c_\ell \chi_{G_\ell}$ are in standard form. Similar to the argument in (2) above, $a_j + b_k = c_\ell$ whenever $E_j \cap F_k \cap G_\ell \neq \emptyset$. Then

$$\int \phi + \int \psi = \sum_{j} a_{j}\mu(E_{j}) + \sum_{k} b_{k}\mu(F_{k})$$

$$= \sum_{j,k} (a_{j} + b_{k})\mu(E_{j} \cap F_{k})$$

$$= \sum_{j,k,\ell} (a_{j} + b_{k})\mu(E_{j} \cap F_{k} \cap G_{\ell})$$

$$= \sum_{j,k,\ell} c_{\ell}\mu(E_{j} \cap F_{k} \cap G_{\ell})$$

$$= \sum_{\ell} c_{\ell}\mu(G_{\ell})$$

$$= \int \phi + \psi.$$

Remark 3.3.4. Observe that the map $\mathcal{M} \to [0, \infty]$ by $E \mapsto \int_E d\mu$ equals μ .

Lemma 3.3.5. For $\psi \in SF^+$, $\mu_{\psi} : \mathcal{M} \to [0, \infty]$ by $E \mapsto \int_E \psi$ is a measure.

Proof. (0) Observe that $\psi \chi_{\emptyset} = 0$, so

$$\mu_{\psi}(\emptyset) = \int_{\emptyset} \psi = \int \psi \chi_{\emptyset} = \int 0 = 0.$$

(1) Write $\psi = \sum_{j=1}^{m} a_j \chi_{E_j}$ in standard form. If $(F_n) \subset \mathcal{M}$ is a disjoint sequence, then observe $\psi \chi_{\coprod F_n} = \sum_{j=1}^{m} a_j \chi_{E_j \cap \coprod F_n}$ is also in standard form (up to a subset of $\{\psi \chi_{\coprod F_n} = 0\}$).

$$\mu_{\psi} \left(\coprod F_n \right) = \int_{\coprod F_n} \psi$$

= $\int \psi \chi_{\coprod F_n}$
= $\sum_j a_j \mu(E_j \cap \coprod F_n)$
= $\sum_{j,n} a_j \mu(E_j \cap F_n)$
= $\sum_n \int_{F_n} \psi.$

Definition 3.3.6. For $f \in L^+$, define

$$\int f := \int_X f \, d\mu := \int_X f(x) \, d\mu(x) := \sup \left\{ \int \psi \left| \psi \in \mathsf{SF}^+ \text{ such that } 0 \le \psi \le f \right\}.$$

Remarks 3.3.7.

(1) Observe that for $\psi \in \mathsf{SF}^+$, we have

$$\int \psi = \sup \left\{ \int \phi \middle| \phi \in \mathsf{SF}^+ \text{ such that } 0 \le \phi \le \psi \right\}.$$

Hence the above definition extends $\int \psi$ for $\psi \in SF^+$ to $f \in L^+$.

- (2) If $f, g \in L^+$ with $f \leq g$, then $\int f \leq \int g$ as we are taking sup over a larger set.
- (3) If $f \in L^+$ and $r \in (0, \infty)$, then $\int rf = r \int f$, since if $S \subset [0, \infty]$, $\sup rS = r \cdot \sup S$. (Remember that $0 \cdot \infty = 0$.)

Proposition 3.3.8. Suppose $f \in L^+$. The following are equivalent.

(1) $\int f = 0$, and

(2) f = 0 a.e., i.e., there is a μ -null set $E \in \mathcal{M}$ such that $f|_{E^c} = 0$.

Proof.

 $(\underline{1}) \Rightarrow (\underline{2})$: We'll prove the contrapositive. If f is not zero a.e., there is an n > 0 such that $\mu(\{\frac{1}{n} < f\}) > 0$. Then $f > \frac{1}{n}\chi_{\{\frac{1}{n} < f\}}$, so

$$0 < \frac{1}{n} \cdot \mu\left(\left\{\frac{1}{n} < f\right\}\right) = \int \frac{1}{n} \chi_{\left\{\frac{1}{n} < f\right\}} \le \int f.$$

 $\underbrace{(2) \Rightarrow (1):}_{\mu(E_k) = 0} \text{ first, if } f = \sum_{k=1}^n c_k \chi_{E_k} \in \mathsf{SF}^+ \text{ is in standard form, then } \int f = 0 \text{ if and only if } \\ \hline \mu(E_k) = 0 \text{ for all } k \text{ such that } c_k \neq 0 \text{ if and only if } f = 0 \text{ a.e. Second, if } f \in L^+ \text{ with } f = 0 \\ \text{a.e., then for all } \psi \in \mathsf{SF}^+ \text{ with } 0 \leq \psi \leq f, \ \psi = 0 \text{ a.e., so } \int f = \sup_{0 \leq \psi \leq f} \int \psi = 0. \qquad \Box$

Theorem 3.3.9 (Monotone Convergence, a.k.a MCT). Suppose $(f_n) \subset L^+$ is an increasing sequence and $f = \lim f_n = \sup f_n$. Then

$$\int f = \lim_{n \to \infty} \int f_n.$$

Proof.

 $\leq :$ Observe $(\int f_n)$ is increasing in $[0, \infty]$, and thus it converges. Moreover, $\int f_n \leq \int f$ for all n, so $\lim_{n\to\infty} \int f_n \leq \int f$.

<u>≥</u>: Pick a $\psi \in \mathsf{SF}^+$ with $0 \le \psi \le f$ and $0 < \varepsilon < 1$. Set $E_n := \{\varepsilon \psi < f_n\}$. Then observe $(E_n) \subset \mathcal{M}$ is an increasing sequence such that $\bigcup E_n = X$, so by continuity from below (µ3), $\int_{E_n} \psi \nearrow \int \psi$. Thus

$$\int f_n \ge \int_{E_n} f_n \ge \varepsilon \int_{E_n} \psi \xrightarrow{n \to \infty} \varepsilon \int \psi.$$

Hence $\lim \int f_n \ge \varepsilon \int \psi$ for all $0 < \varepsilon < 1$. Since ε was arbitrary, letting $\varepsilon \to 1$, we have $\lim \int f_n \ge \int \psi$. Taking sup over all $0 \le \psi \le f$ gives $\lim \int f_n \ge \int f$.

Facts 3.3.10 (Corollaries of the MCT).

(MCT1) If $f \in L^+$, then $\int f = \lim \int \psi_n$ for all sequences $(\psi_n) \subset \mathsf{SF}^+$ such that $\psi_n \nearrow f$. (MCT2) For all $f, g \in L^+$, $\int f + g = \int f + \int g$.

Proof. If
$$\phi_n \nearrow f$$
 and $\psi_n \nearrow g$, then $\phi_n + \psi_n \nearrow f + g$, so
$$\int f + g \underset{(\text{MCT})}{=} \lim \int \phi_n + \psi_n = \lim \int \phi_n + \lim \int \psi_n = \int f + \int g. \quad \Box$$

(MCT3) For $f, g \in L^+$, if f = g a.e., then $\int f = \int g$.

Proof. Let
$$E \in \mathcal{M}$$
 such that $f\chi_E = g\chi_E$ and E^c is μ -null. Then

$$\int f = \int f\chi_E + \int f\chi_{E^c} = \int f\chi_E = \int g\chi_E = \int g\chi_E + \int g\chi_{E^c} = \int g_{\mathcal{M}CT2} \int g_{\mathcal{M}CT$$

(MCT4) For all $(f_n) \subset L^+$, $\sum \int f_n = \int \sum f_n$, where $\sum f_n$ is the sup of the sequence of partial sums (which is a measurable function).

Proof. Observe

$$\int \sum f_n = \int \lim_{N \to \infty} \sum^N f_n = \lim_{(\text{MCT})} \int \sum^N f_n = \lim_{(\text{MCT2})} \sum^N \int f_n = \sum \int f_n.$$

(MCT5) If $(f_n) \subset L^+$, $f_n \nearrow f$ a.e., and $f \in L^+$ (which is automatic if μ is complete), then $\int f = \lim \int f_n$.

Proof. Suppose
$$f_n \nearrow f$$
 on $E \in \mathcal{M}$ and E^c is μ -null. Then

$$\int f = \int f\chi_E = \lim_{(\text{MCT3})} \int f\chi_E = \lim_{(\text{MCT3})} \int f_n\chi_E = \lim_{(\text{MCT3})} \int f_n. \qquad \Box$$

(MCT6) (Fatou's Lemma) If $(f_n) \subset L^+$, then $\int \liminf f_n \leq \liminf \int f_n$.

Proof. For all
$$j \ge k \in \mathbb{N}$$
, $\inf_{n \ge k} f_n \le f_j$, so

$$\int \inf_{n \ge k} f_n \le \int f_j \quad \text{for all} \quad j \ge k.$$
Thus $\int \inf_{n \ge k} f_n \le \inf_{j \ge k} \int f_j$. Letting $k \to \infty$, we have
 $\int \liminf_{(MCT)} f_{k \to \infty} \int \inf_{n \ge k} f_n \le \liminf_{k \to \infty} \int f_j = \liminf_{k \to \infty} \int f_n.$

(MCT7) If $(f_n) \subset L^+$, $f_n \to f$ a.e., and $f \in L^+$ (which is automatic if μ is complete), then $\int f \leq \liminf \int f_n$.

Proof. Let
$$E \in \mathcal{M}$$
 such that $f_n \to f$ on E and E^c is μ -null. Then

$$\int f \stackrel{=}{=}_{(3)} \int f \chi_E \stackrel{\leq}{\leq}_{(\text{MCT6})} \liminf \int f_n \chi_E \stackrel{=}{=}_{(\text{MCT3})} \liminf \int f_n. \qquad \Box$$

Exercise 3.3.11. Assume Fatou's Lemma (MCT6) and prove the Monotone Convergence Theorem from it.

Exercise 3.3.12. If $f \in L^+$ and $\int f < \infty$, then $\{f = \infty\}$ is μ -null and $\{0 < f\}$ is σ -finite. **Exercise 3.3.13.** Suppose (X, \mathcal{M}, μ) is a finite measure space and $f : X \to \mathbb{C}$ is measurable. Prove that $\mu(\{n \le |f|\}) \to 0$ as $n \to \infty$. **Exercise 3.3.14.** Suppose (X, \mathcal{M}, μ) is a measure space and $f \in L^+$. For $E \in \mathcal{M}$, define

$$\nu(E) := \int_E f \, d\mu.$$

- (1) Prove that ν is a measure on \mathcal{M} .
- (2) Prove that $\int g \, d\nu = \int f g \, d\mu$ for all $g \in L^+$
 - *Hint: First suppose g is simple.*

3.4. Integration of $\overline{\mathbb{R}}$ -valued functions. For this section, (X, \mathcal{M}, μ) is a fixed measure space.

Definition 3.4.1. An \mathcal{M} -measurable function $f: X \to \mathbb{R}$ is called *integrable* if $\int f_{\pm} < \infty$ where $f = f_+ - f_-$ with $f_+ = 0 \lor f$ and $f_- = -(0 \land f)$. Since $|f| = f_+ + f_-$, observe that f is integrable if and only if $\int |f| < \infty$.

Define $L^1(\mu, \overline{\mathbb{R}}) := \{ \text{integrable } f : X \to \overline{\mathbb{R}} \}$ and $L^1(\mu, \mathbb{R}) := \{ \text{integrable } f : X \to \mathbb{R} \}$

Exercise 3.4.2. Show that a simple function $\psi = \sum_{k=1}^{n} c_k \chi_{E_k} \in \mathsf{SF}$ with c_1, \ldots, c_n distinct and E_1, \ldots, E_n disjoint is integrable if and only if $\mu(E_k) < \infty$ for all k such that $c_k \neq 0$.

Proposition 3.4.3. The set $L^1(\mu, \overline{\mathbb{R}})$ is an \mathbb{R} -vector space, and $L^1(\mu, \mathbb{R})$ is a subspace. Moreover, $\int : L^1(\mu, \overline{\mathbb{R}}) \to \mathbb{R}$ given by $\int f := \int f_+ - \int f_-$ is a linear functional.

Proof. If $r \in \mathbb{R}$ and $f, g \in L^1(\mu, \overline{\mathbb{R}})$, then $|rf + g| \leq |r| \cdot |f| + |g|$ which is integrable. Hence $L^1(\mu, \overline{\mathbb{R}})$ is an \mathbb{R} -vector space. Clearly $L^1(\mu, \mathbb{R})$ is a subspace.

If $r \in \mathbb{R}$ and $f \in L^1(\mu, \overline{\mathbb{R}})$, then there are three cases:

$$(rf)_{\pm} = \begin{cases} rf_{\pm} & \text{if } r > 0\\ 0 & \text{if } r = 0\\ -rf_{\mp} & \text{if } r < 0. \end{cases}$$

In all three cases, by Remarks 3.3.7(3), we have

$$\int rf = \int (rf)_{+} - \int (rf)_{-} = \begin{cases} \int rf_{+} - \int rf_{-} & \text{if } r > 0\\ 0 & \text{if } r = 0\\ \int (-r)f_{-} - \int (-r)f_{+} & \text{if } r < 0 \end{cases} = r \int f_{+} - r \int f_{-}.$$

If $f, g \in L^1(\mu, \overline{\mathbb{R}})$, observe

$$(f+g)_+ - (f+g)_- = f + g = f_+ + g_+ - f_- - g_-$$

which implies

$$(f+g)_+ + f_- + g_- = (f+g)_- + f_+ + g_+.$$

By (MCT2),

$$\int (f+g)_{+} + \int f_{-} + \int g_{-} = \int (f+g)_{-} + \int f_{+} + \int g_{+},$$

and rearranging yields the result.

3.5. Integration of \mathbb{C} -valued functions. For this section, fix a measure space (X, \mathcal{M}, μ) . Recall from Exercise 3.1.14(2) that $f: X \to \mathbb{C}$ is measurable if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are measurable. By Exercise 3.1.20(2), |f| is measurable.

Definition 3.5.1. A measurable function $f : X \to \mathbb{C}$ is *integrable* if $\int |f| < \infty$, i.e., $|f| \in L^1(\mu, \mathbb{R})$. Since

$$|f| \le |\operatorname{Re}(f)| + |\operatorname{Im}(f)| \le 2|f| \qquad x - \frac{z}{|\operatorname{Im}(z)|}$$

f is integrable if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are integrable. In this case, we define

$$\int f := \int \operatorname{Re}(f) + i \int \operatorname{Im}(f)$$

It follows from Proposition 3.4.3 that

$$L^1(\mu, \mathbb{C}) := \{ \text{integrable } f : X \to \mathbb{C} \}$$

is a \mathbb{C} -vector space, and $\int : L^1(\mu, \mathbb{C}) \to \mathbb{C}$ is linear.

Proposition 3.5.2. For all $f \in L^1(\mu, \mathbb{C})$, $|\int f| \leq \int |f|$.

Proof.

Step 1: If f is \mathbb{R} -valued, then $\left|\int f\right| = \left|\int f_+ - \int f_-\right| \le \int f_+ + \int f_- = \int |f|.$ Step 2: Suppose f is \mathbb{C} -valued. We may assume $\int f \ne 0$. We use the following trick:

Trick. Define $\operatorname{sgn}\left(\int f\right) := \frac{\int f}{|\int f|} \in \mathbb{T} := \{z \in \mathbb{C} | |z| = 1\}$. Then since $z^{-1} = \overline{z}$ for all $z \in \mathbb{T}$, $\left|\int f\right| = \overline{\operatorname{sgn}\left(\int f\right)} \int f = \underbrace{\int \overline{\operatorname{sgn}}\left(\int f\right)}_{\in \mathbb{R}} f.$

We then calculate

$$\left| \int f \right| = \int \overline{\operatorname{sgn}\left(\int f\right)} f = \operatorname{Re} \int \overline{\operatorname{sgn}\left(\int f\right)} f = \int \operatorname{Re} \left(\overline{\operatorname{sgn}\left(\int f\right)} f \right)$$
$$\leq \int \left| \operatorname{Re} \left(\overline{\operatorname{sgn}\left(\int f\right)} f \right) \right| \leq \int \left| \underbrace{\operatorname{sgn}\left(\int f\right)}_{\in \mathbb{T}} f \right| = \int |f|.$$

Corollary 3.5.3. For all $f, g \in L^1(\mu, \mathbb{C})$, the following are equivalent:

(1) $f = g \ a.e.$ (2) $\int |f - g| = 0$ (3) for all $E \in \mathcal{M}$, $\int_E f = \int_E g.$ Proof.

(1) \Leftrightarrow (2) Observe f = g a.e. if and only if |f - g| = 0 a.e. if and only if $\int |f - g| = 0$ by Proposition 3.3.8.

(2) \Rightarrow (3) By Proposition 3.5.2, for all $E \in \mathcal{M}$,

$$\int_{E} f - \int_{E} g \bigg| = \bigg| \int (f - g) \chi_{E} \bigg| \le \int |f - g| \chi_{E} \le \int |f - g| = 0.$$

(3) \Rightarrow (1) Recall that $\int_E f - g = \int_E \operatorname{Re}(f - g) + i \int_E \operatorname{Im}(f - g)$. So by assumption,

$$\int_{E} \operatorname{Re}(f-g) = 0 \quad \text{and} \quad \int_{E} \operatorname{Im}(f-g) = 0 \quad \forall E \in \mathcal{M}.$$

We now look at the following particular $E \in \mathcal{M}$:

$$E = \{0 \le \operatorname{Re}(f - g)\} \implies \operatorname{Re}(f - g)_{+} = 0 \text{ a.e.}$$
$$E = \{0 \ge \operatorname{Re}(f - g)\} \implies \operatorname{Re}(f - g)_{-} = 0 \text{ a.e.}$$
$$E = \{0 \le \operatorname{Im}(f - g)\} \implies \operatorname{Im}(f - g)_{+} = 0 \text{ a.e.}$$
$$E = \{0 \ge \operatorname{Im}(f - g)\} \implies \operatorname{Im}(f - g)_{-} = 0 \text{ a.e.}$$

Hence $\operatorname{Re}(f-g) = 0$ and $\operatorname{Im}(f-g) = 0$ a.e., which is equivalent to f = g a.e.

Exercise 3.5.4. Suppose (X, \mathcal{M}, μ) be a measure space and $f \in L^1(\mu, \mathbb{C})$. Prove that $\{f \neq 0\}$ is σ -finite.

Exercise 3.5.5. Suppose (X, \mathcal{M}, μ) is a measure space and $f \in L^1(\mu, \mathbb{C})$. Prove that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $E \in \mathcal{M}$ with $\mu(E) < \delta$, $\int_E |f| < \varepsilon$.

Definition 3.5.6. Define $\mathcal{L}^1(\mu, \mathbb{C}) := L^1(\mu, \mathbb{C}) / \sim$ where $f \sim g$ if and only if f = g a.e. We write $f \in \mathcal{L}^1(\mu, \mathbb{C})$ to mean $f \in L^1(\mu, \mathbb{C})$ representing its equivalence class in $\mathcal{L}^1(\mu, \mathbb{C})$.

Exercise 3.5.7. Let (X, \mathcal{M}, μ) be a measure space.

- (1) Prove that $\|\cdot\|_1 : \mathcal{L}^1(\mu, \mathbb{C}) \to [0, \infty)$ given by $\|f\|_1 := \int |f|$ is a norm.
- (2) Let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be the completion of (X, \mathcal{M}, μ) . Find a canonical \mathbb{C} -vector space isomorphism $\mathcal{L}^1(\mu, \mathbb{C}) \cong \mathcal{L}^1(\overline{\mu}, \mathbb{C})$ which preserves $\|\cdot\|_1$. *Hint: Use Exercise* 3.2.5.

Theorem 3.5.8 (Dominated Convergence, a.k.a. DCT). Suppose $(f_n) \subset \mathcal{L}^1(\mu, \mathbb{C})$ such that $f_n \to f$ a.e. If there is a $g \in L^1(\mu, \mathbb{C}) \cap L^+$ such that eventually $|f_n| \leq g$ a.e., then $f \in \mathcal{L}^1(\mu, \mathbb{C})$ and $\int f = \lim \int f_n$.

Proof. By redefining f on a μ -null set if necessary by Exercise 3.2.5, we may assume f is \mathcal{M} -measurable. Taking limits pointwise, $|f| \leq g$, so $f \in L^1(\mu, \mathbb{C})$. Taking real and imaginary parts of f, we may assume (f_n) , f are all \mathbb{R} -valued. Then $-g \leq f_n \leq g$ a.e., so

$$g + f_n \ge 0$$
 and $g - f_n \ge 0$ a.e.

By Fatou's Lemma (MCT6),

$$\int g + \int f = \int g + f \le \liminf \int g + f_n = \int g + \liminf \int f_n$$
$$\int g - \int f = \int g - f \le \liminf \int g - f_n = \int g - \limsup \int f_n.$$

Combining these inequalities,

$$\limsup \int f_n \le \int f \le \liminf \int f_n.$$

Corollary 3.5.9. Suppose $(f_n) \subset \mathcal{L}^1(\mu, \mathbb{C})$ such that $\sum \int |f_n| < \infty$. Then $\sum f_n$ converges *a.e.* to a function in $\mathcal{L}^1(\mu, \mathbb{C})$, and $\int \sum f_n = \sum \int f_n$.

Exercise 3.5.10. Prove that the metric d_1 on $\mathcal{L}^1(\mu, \mathbb{C})$ induced by $\|\cdot\|_1$ is complete. That is, prove every Cauchy sequence converges in \mathcal{L}^1 .

Note: This follows immediately from Corollary 3.5.9 if one shows that completeness of a normed vector space V is equivalent to the property that every absolutely convergent series converges in V.

Exercise 3.5.11. Let μ be a Lebesgue-Stieltjes Borel measure on \mathbb{R} . Show that $C_c(\mathbb{R})$, the continuous functions of compact support $(\overline{\{f \neq 0\}} \text{ compact})$ is dense in $\mathcal{L}^1(\mu, \mathbb{R})$. Does the same hold for $\overline{\mathbb{R}}$ and \mathbb{C} -valued functions?

Hint: You could proceed in this way:

- (1) Reduce to the case $f \in L^1 \cap L^+$.
- (2) Reduce to the case $f \in L^1 \cap SF^+$.
- (3) Reduce to the case $f = \chi_E$ with $E \in \mathcal{B}_{\mathbb{R}}$ and $\mu(E) < \infty$.
- (4) Reduce to the case $f = \chi_U$ with $U \subset \mathbb{R}$ open and $\mu(U) < \infty$.
- (5) Reduce to the case $f = \chi_{(a,b)}$ with a < b in \mathbb{R} .

3.6. Modes of convergence. Let (X, \mathcal{M}, μ) be a measure space. For $(f_n), f$ all $\mathcal{M} - \mathcal{B}_{\mathbb{C}}$ measurable functions, $f_n \to f$ could mean many things:

- (pointwise) $f_n(x) \to f(x)$ for all $x \in X$.
- (a.e.) $f_n(x) \to f(x)$ for a.e. $x \in X$.
- (uniformly) for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that n > N implies $|f_n(x) f(x)| < \varepsilon$ for all $x \in X$.
- (almost uniformly, a.k.a. a.u.) for all $\varepsilon > 0$, there is an $E \in \mathcal{M}$ with $\mu(E) < \varepsilon$ such that $f_n \chi_{E^c} \to f \chi_{E^c}$ uniformly.
- (in \mathcal{L}^1) $\int |f_n f| \to 0$ as $n \to \infty$.
- (in measure) for all $\varepsilon > 0$, $\mu (\{\varepsilon \le |f f_n|\}) \to 0$.

Observe that obviously uniform implies a.u., uniform implies pointwise, and pointwise implies a.e.

Proposition 3.6.1. Almost uniform convergence implies almost everywhere convergence.

Proof. Suppose $f_n \to f$ a.u. For $k \in \mathbb{N}$, let $E_k \in \mathcal{M}$ such that $\mu(E_k) < 1/k$ and $f_n \chi_{E_k^c} \to f \chi_{E_k^c}$ uniformly. Let $E := \bigcap E_k$. Then $\mu(E) = 0$ by continuity from above ($\mu 4$), and since $E^c = \bigcup E_k^c$, we have $f_n \chi_{E^c} \to f \chi_{E^c}$ pointwise.

Proposition 3.6.2. Almost uniform convergence implies convergence in measure.

Proof. Suppose $f_n \to f$ a.u. Let $\varepsilon > 0$. Show for all $\delta > 0$, there is an $N \in \mathbb{N}$ such that n > N implies $\mu (\{\varepsilon \le |f - f_n|\}) < \delta$. Pick $E \in \mathcal{M}$ such that $\mu(E) < \delta$ and $f_n \chi_{E^c} \to f \chi_{E^c}$ uniformly. Then

$$\mu\left(\left\{\varepsilon \le |f - f_n|\right\}\right) = \underbrace{\mu\left(\left\{\varepsilon \le |f - f_n|\right\} \cap E\right)}_{\text{always} < \delta} + \underbrace{\mu\left(\left\{\varepsilon \le |f - f_n|\right\} \cap E^c\right)}_{= \emptyset \text{ for } n \text{ large}} < \delta$$

for n sufficiently large.

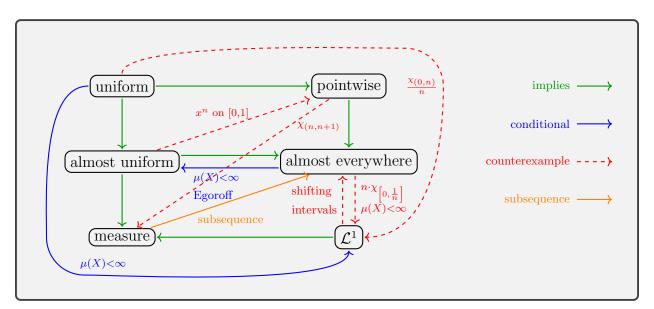
Proposition 3.6.3. Convergence in \mathcal{L}^1 implies convergence in measure.

Proof. Suppose $f_n \to f$ in \mathcal{L}^1 . Let $\varepsilon > 0$, and set $E := \{\varepsilon \le |f - f_n|\}$. Then

$$\mu(E) = \int_E 1 = \frac{1}{\varepsilon} \int_E \varepsilon \leq \frac{1}{\varepsilon} \int_E |f - f_n| \xrightarrow{n \to \infty} 0.$$

Facts 3.6.4 (Counterexamples). We consider the following important counterexamples:

- (1) $f_n = \frac{1}{n}\chi_{(0,n)}$ converges uniformly to zero, but not in \mathcal{L}^1 .
- (2) $f_n = \chi_{(n,n+1)}$ converges pointwise to zero, but not in measure.
- (3) $f_n = n\chi_{[0,1/n]}$ converges a.e. to zero with $\mu(X) < \infty$, but not in \mathcal{L}^1 .
- (4) $f_n(x) := x^n$ on [0, 1] almost uniformly to zero, but not pointwise.
- (5) (shifting intervals) $f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,1/2]}, f_3 = \chi_{[1/2,1]}, f_4 = \chi_{[1,1/4]}, f_5 = \chi_{[1/4,1/2]},$ etc. converges in \mathcal{L}^1 , but not a.e.



Lemma 3.6.5. If $f_n \to f$ uniformly and $\mu(X) < \infty$, then $f_n \to f$ in \mathcal{L}^1 .

Proof. Observe that

$$\int |f_n - f| \le (\sup |f_n - f|) \cdot \int 1 = \underbrace{(\sup |f_n - f|)}_{\to 0 \text{ as } n \to \infty} \cdot \mu(X).$$

Theorem 3.6.6 (Egoroff). If $f_n \to f$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ a.u.

Proof. By replacing X with $X \setminus N$ for some μ -null set $N \in \mathcal{M}$, we may assume $f_n \to f$ pointwise. Now observe that for all $k \in \mathbb{N}$,

$$E_{n,k} := \bigcup_{j=n}^{\infty} \left\{ \frac{1}{k} \le |f - f_j| \right\} \searrow \emptyset \quad \text{as} \quad n \to \infty.$$

Since $\mu(X) < \infty$, by continuity from above $(\mu 4)$, $\mu(E_{n,k}) \to 0$ as $n \to \infty$. Let $\varepsilon > 0$. For all $k \in \mathbb{N}$, choose $n_k \in \mathbb{N}$ such that $\mu(E_{n_k,k}) < \varepsilon/2^k$. Setting $E := \bigcup_{k=1}^{\infty} E_{n_k,k}$, we have

$$\mu(E) \le \sum_k \mu(E_{n_k,k}) < \varepsilon \sum 2^{-k} = \varepsilon.$$

Finally, observe that for all $n > n_k$, if $x \in E^c = \bigcap_{k=1}^{\infty} E_{n_k,k}^c$, then $|f(x) - f_n(x)| < 1/k$. Thus $f_n \to f$ uniformly on E^c .

Definition 3.6.7. A sequence (f_n) of \mathcal{M} -measurable functions is *Cauchy in measure* if for all $\varepsilon > 0$,

$$\mu\left(\left\{\varepsilon \le |f_m - f_n|\right\}\right) \xrightarrow{n, m \to \infty} 0.$$

Exercise 3.6.8. Prove that if $f_n \to f$ in measure, then (f_n) is Cauchy in measure.

Theorem 3.6.9. If (f_n) is Cauchy in measure, then there exists a unique (up to μ -null set) \mathcal{M} -measurable function f such that $f_n \to f$ in measure. Moreover, there is a subsequence (f_{n_k}) such that $f_{n_k} \to f$ a.e.

Proof.

Step 1: There is a subsequence (f_{n_k}) such that $\mu\left(\left\{2^{-k} \leq |f_{n_k} - f_{n_{k+1}}|\right\}\right) < 2^{-k}$.

Proof. For all $k \in \mathbb{N}$, $\mu\left(\{2^{-k} \le |f_n - f_m|\}\right) \to 0$ as $m, n \to \infty$. Pick n_k inductively so $n_{k+1} > n_k$ and $m, n \ge n_k$ implies $\mu\left(\{2^{-k} \le |f_n - f_m|\}\right) < 2^{-k}$.

Step 2: (f_{n_k}) is pointwise Cauchy off a μ -null set N.

Proof. For $k \in \mathbb{N}$, set $E_k := \{2^{-k} \leq |f_{n_k} - f_{n_{k+1}}|\}$, and for $\ell \in \mathbb{N}$, set $N_\ell := \bigcup_{k=\ell} E_k$. Then $\mu(N_\ell) \leq \sum_{k=\ell} 2^{-k} = 2^{1-\ell}$. Setting $N = \bigcap N_\ell = \limsup E_k$, we have $\mu(N) = 0$ by continuity from above (μ 4). If $x \in N^c$, then $x \notin N_\ell$ for some ℓ , and thus for all $\ell \leq i \leq j$,

$$|f_{n_i}(x) - f_{n_j}(x)| \le \sum_{k=i}^{j-1} |f_{n_k}(x) - f_{n_{k+1}}(x)| \le \sum_{k=i}^{j-1} 2^{-k} \le 2^{1-i}.$$
 (3.6.10)

We conclude that (f_{n_k}) is pointwise Cauchy on N^c .

Step 3: Define

$$f(x) := \begin{cases} 0 & \text{if } x \in N \text{ (which is } \mu\text{-null)} \\ \lim_k f_{n_k}(x) & \text{if } x \in N^c. \end{cases}$$

Then f is \mathcal{M} -measurable and $f_{n_k} \to f$ a.e.

Proof. It remains to show f is measurable. Observe $f_{n_k} \cdot \chi_{N^c}$ is \mathcal{M} -measurable for all k, and thus so is $f = \lim f_{n_k} \cdot \chi_{N^c}$ by Exercise 3.2.5.

Step 4: $f_{n_k} \to f$ in measure.

Proof. For all $x \in N_{\ell}^{c}$ and $k \ge \ell$, we have $|f_{n_{k}}(x) - f(x)| = \lim_{j \to \infty} |f_{n_{k}}(x) - f_{n_{j}}(x)| \le 2^{1-k}.$ Let $\varepsilon > 0$ and pick $\ell \in \mathbb{N}$ such that $0 < 2^{-\ell} < \varepsilon$. Then for all $k \ge \ell$, $\mu\left(\{\varepsilon \le |f_{n_{k}} - f|\}\right) \le \mu\left(\left\{\frac{1}{2^{k}} \le |f_{n_{k}} - f|\right\}\right) < 2^{1-k} \xrightarrow{k \to \infty} 0.$

<u>Step 5:</u> $f_n \to f$ in measure.

 $\begin{array}{l} Proof. \text{ We use the following trick:} \\ \hline \mathbf{Trick. For non-negative } \mathcal{M}\text{-measurable } f,g, \{a+b \leq f+g\} \subset \{a \leq f\} \cup \{b \leq g\}. \\ \text{Now observe that} \\ \{\varepsilon \leq |f_n - f|\} \subseteq \underbrace{\left\{\frac{\varepsilon}{2} \leq |f_n - f_{n_k}|\right\}}_{\substack{\mu \to 0 \text{ as } (f_n)\\ \text{Cauchy in measure}}} \cup \underbrace{\left\{\frac{\varepsilon}{2} \leq |f_{n_k} - f|\right\}}_{\substack{\mu \to 0 \text{ by Step 4}}}. \\ \text{Hence } \mu(\{\varepsilon \leq |f_n - f|\}) \to 0 \text{ as } n \to \infty. \end{array}$

Step 6: f is unique (up to a μ -null set) such that $f_n \to f$ in measure.

Proof. Suppose g is another such candidate. Then using the same trick as in Step 5, $\{\varepsilon \leq |f - g|\} \subseteq \underbrace{\left\{\frac{\varepsilon}{2} \leq |f - f_n|\right\}}_{\mu \to 0 \text{ as } n \to \infty} \cup \underbrace{\left\{\frac{\varepsilon}{2} \leq |g - f_n|\right\}}_{\mu \to 0 \text{ as } n \to \infty}.$ Hence $\mu(\{\varepsilon \leq |f - g|\}) = 0$ for all $\varepsilon > 0$, and thus f = g a.e.

This concludes the proof.

Exercise 3.6.11 (Lusin's Theorem). Suppose $f : [a, b] \to \mathbb{C}$ is Lebesgue measurable and $\varepsilon > 0$. There is a compact set $E \subset [a, b]$ such that $\lambda(E^c) < \varepsilon$ and $f|_E$ is continuous. *Hint: Use Exercise 3.3.13 and Egoroff's Theorem 3.6.6.*

Exercise 3.6.12. Suppose $f \in \mathcal{L}^1([0,1],\lambda)$ is an integrable non-negative function.

- (1) Show that for every $n \in \mathbb{N}, \sqrt[n]{f} \in \mathcal{L}^1([0,1], \lambda)$.
- (2) Show that $(\sqrt[n]{f})$ converges in \mathcal{L}^1 and compute its limit.

Hint for both parts: Consider $\{f \ge 1\}$ *and* $\{f < 1\}$ *separately.*

Exercise 3.6.13. Suppose (X, \mathcal{M}, μ) is a measure space and $f_n \to f$ in measure and $g_n \to g$ in measure (these functions are assumed to be measurable). Show that

- (1) $|f_n| \to |f|$ in measure.
- (2) $f_n + g_n \to f + g$ in measure.

- (3) $f_n g_n \to fg$ if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$.
 - Hint: First show $f_ng \to fg$ in measure. To do so, one could follow the following steps.
 - (a) Show that for any $\varepsilon > 0$, by Exercise 3.3.13, $X = E \amalg E^c$ where $|g|_E| < M$ and $\mu(E^c) < \varepsilon/2.$
 - (b) For $\delta > 0$ and carefully chosen M > 0 and E, $\{|f_ng - fg| > \delta\} = (\{|f_ng - fg| > \delta\} \cap E) \amalg (\{|f_ng - fg| > \delta\} \cap E^c)$ $\subseteq \left\{ |f_n - f| > \frac{\delta}{M} \right\} \cup E^c.$

Exercise 3.6.14 (Folland §2.4, #33 and 34). Suppose (X, \mathcal{M}, μ) is a measure space and $f_n \to f$ in measure (these functions are assumed to be measurable).

- (1) Show that if $f_n \ge 0$ everywhere, then $\int f \le \liminf \int f_n$.
- (2) Suppose $|f_n| \leq g \in \mathcal{L}^1$. Prove that $\int f = \lim \int f_n$ and $f_n \to f$ in \mathcal{L}^1 .

Exercise 3.6.15. Let (X, \mathcal{M}, μ) be a measure space. Suppose $(E_n) \subset \mathcal{M}$ is a sequence of measurable sets with $\mu(E_n) < \infty$ for all n. Show that if $\chi_{E_n} \to f$ in \mathcal{L}^1 (this assumes f is \mathcal{M} -measurable), then there is an $E \in \mathcal{M}$ such that $f = \chi_E$ a.e.

3.7. Comparison of the Lebesgue and Riemann integrals. We now review the Riemann integral for a Reimann integrable function $f: [a, b] \to \mathbb{R}$.

Definition 3.7.1. A partition of [a, b] is a set of points $P = \{a = s_0 < s_1 < \dots < s_m = b\}$. We say an interval $J \in P$ if $J = [s_{i-1}, s_i]$ for some $i = 1, \ldots, m$. We write

$$m_J := \inf \{ f(x) | x \in J \}$$
 $M_J := \sup \{ f(x) | x \in J \}.$

We define the:

• Lower sum:
$$L(f, P) := \sum_{J \in P} m_J \lambda(J)$$

• Upper sum: $U(f, P) := \sum_{J \in P} M_J \lambda(J)$

Here, $\lambda(J)$ is the length (Lebesgue measure) of the interval. Observe $L(f, P) \leq U(f, P)$.

A refinement of P is a partition $Q = \{a = t_0 < t_1 < \cdots < t_n = b\} \supset P$. Observe that if Q refines P, then

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

Thus if P_1, P_2 are two partitions of [a, b] and Q is a common refinement, then

$$\sup_{i=1,2} L(f, P_i) \le L(f, Q) \le U(f, Q) \le \inf_{i=1,2} U(f, P_i).$$

We define the:

- Upper integral: $\overline{\int}_{[a,b]} f := \inf_P U(f,P)$ Lower integral: $\underline{\int}_{[a,b]} f := \sup_P L(f,P)$

We say f is Riemann integrable on [a, b] if $\overline{\int}_{[a,b]} f = \underline{\int}_{[a,b]} f$, and we denote this common value by $\int_{a}^{b} f(x) dx$.

Exercise 3.7.2. Suppose $f : [a, b] \to \mathbb{R}$. Prove the following are equivalent:

- (1) f is Riemann integrable
- (2) for all $\varepsilon > 0$, there is a partition P of [a, b] such that $U(f, P) L(f, P) < \varepsilon$.

Theorem 3.7.3. If f is Riemann integrable on [a, b], then f is Lebesgue integrable and $\int_{[a,b]} f \, d\lambda = \int_a^b f(x) \, dx.$

Proof. Let (P_n) be a sequence of partitions of [a, b] such that P_{n+1} refines P_n and $U(f, P_n) - P_n$ $L(f, P_n) < 1/n$ for all $n \in \mathbb{N}$. Here's the trick:

Trick. Define the simple functions $\psi_n := \sum_{J \in P_n} m_J \chi_J$ and $\Psi_n := \sum_{J \in P_n} M_J \chi_J$.

Observe that $L(f, P_n) = \int \psi_n d\lambda$ and $U(f, P_n) = \int \Psi_n d\lambda$ and

$$\psi_n \le \psi_{n+1} \le f \le \Psi_{n+1} \le \Psi_n \qquad \forall n \in \mathbb{N}$$

Define $\psi := \lim \psi_n$ and $\Psi := \lim \Psi_n$, which exists as (ψ_n) and (Ψ_n) are pointwise bounded and monotone. Then by (a slight modification of) the MCT 3.3.9, ψ, Ψ are integrable, and

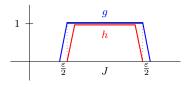
$$\int \psi = \lim \int \psi_n = \int_a^b f(x) \, dx = \lim \int \Psi_n = \int \Psi$$

But since $\Psi - \psi \ge 0$ everywhere, $\int \Psi - \psi = 0$ implies $\Psi = f = \psi$ a.e. So $f \in \mathcal{L}^1$ and $\int f = \int_{a}^{b} f(x) \, dx.$

Lemma 3.7.4. Suppose $f:[a,b] \to \mathbb{R}$ is Riemann integrable and bounded. Then for all $\varepsilon >$ 0, there are continuous functions $g, h : [a, b] \to \mathbb{R}$ such that $h \leq f \leq g$ and $\int_{[a,b]} (g-h) d\lambda \leq \varepsilon$.

Proof.

Step 1: If $f = \chi_J$ for some interval J, then we can find piecewise linear functions g, h such that $h \leq f \leq g$ such as in the following cartoon:



Then $\int_{[a,b]} g = \lambda(J) + \varepsilon/2$ and $\int_{[a,b]} h = \lambda(J) - \varepsilon/2$, so $\int g - h = \varepsilon$.

Step 2: Without loss of generality, we may assume $f \ge 0$. (Otherwise, treat f_{\pm} separately.) Take a partition P of [a, b] such that $U(f, P) - L(f, P) < \varepsilon/2$. As in the trick in the previous theorem, define the simple functions

$$\psi_n := \sum_{J \in P} m_J \chi_J \le f \le \Psi_n := \sum_{J \in P} M_J \chi_J$$

so that $\int \psi = L(f, P)$ and $\int \Psi = U(f, P)$. Apply Step 1 to each χ_J to get continuous g_J, h_J with $h_J \leq \chi_J \leq g_J$ such that $\int g_J - h_J < \frac{\varepsilon}{2|P|M}$ where |P| is the number of intervals of P and $M := \sup \{f(x) | a \le x \le b\}$. Setting $g := \sum_{J \in P} M_J g_J$ and $h := \sum_{J \in P} m_J h_J$, we have

$$h = \sum_{J \in P} m_J h_J \le \sum_{J \in P} m_J \chi_J = \psi \le f \le \psi = \sum_{J \in P} M_J \chi_J \le \sum_{J \in P} M_J g_J = g,$$

and thus

$$\begin{split} \int g - h &= \sum_{J \in P} M_J \int g_J - m_J \int h_J \\ &= U(f, P) - L(f, P) + \sum_{J \in P} \underbrace{M_J}_{$$

Exercise 3.7.5. Let X be a topological space and let $g: X \to \mathbb{R}$. We say that g is upper semicontinuous at $x_0 \in X$ if for every $\varepsilon > 0$, there is an open neighborhood U of x_0 such that $x \in U$ implies $f(x) < f(x_0) + \varepsilon$. We say g is upper semicontinuous if g is upper semicontinuous at every $x \in X$.

- (1) Show that g is upper semicontinuous if and only if $\{g < r\}$ is open in for all $r \in \mathbb{R}$.
- (2) Define lower semicontinuity (both at $x_0 \in X$ and everywhere) and prove the analogous statement to (1).

Theorem 3.7.6 (Lebesgue). A bounded function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if it is continuous a.e.

Proof.

⇒: Suppose f is Riemann integrable. By Lemma 3.7.4, there are sequence of continuous functions (h_n) and (g_n) on [a, b] with $h_n \leq f \leq g_n$ such that $\int g_n - h_n < 1/n$ for all $n \in \mathbb{N}$. Since

$$g_{n+1} \wedge g_n - h_{n+1} \vee h_n \le g_{n+1} - h_{n+1} \qquad \forall n \in \mathbb{N},$$

we may assume that

$$h_n \le h_{n+1} \le f \le g_{n+1} \le g_n \qquad \forall n \in \mathbb{N}.$$

Setting $h := \lim h_n$ and $g := \lim g_n$, we have $h \le f \le g$ and $\int h = \int f = \int g$ by MCT 3.3.9. Since $g - h \ge 0$, we know g = f = h a.e. on [a, b].

Claim. Since $g_n \searrow g$, g is upper semicontinuous. Similarly, h is lower semicontinuous Proof. Let $x_0 \in [a, b]$ and $\varepsilon > 0$. Pick $N \in \mathbb{N}$ such that $n \ge N$ implies $g_n(x_0) - g(x_0) < \varepsilon/2$. $\varepsilon/2$. Pick $\delta > 0$ such that $x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$ implies $|g_N(x) - g_N(x_0)| < \varepsilon/2$. Then for all $x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$, $g(x_0) > g_N(x_0) - \frac{\varepsilon}{2} > g_N(x) - \varepsilon \ge g(x) - \varepsilon$.

Whenever $h(x_0) = f(x_0) = g(x_0)$, f is both upper semicontinuous and lower semicontinuous at x_0 , i.e., f is continuous at x_0 . This happens on [a, b] a.e.

 $[\]underline{\leftarrow}$: Suppose f is continuous on [a, b] a.e. Let E be the λ-null set of discontinuities, and let $\varepsilon > 0$. We'll construct a partition P such that $U(f, P) - L(f, P) < \varepsilon$. By outer regularity of λ , there is an open U ⊃ E such that $\lambda(U) < \varepsilon'$ to be determined later. Let

 $K := [a, b] \setminus U$, which is compact, and observe that f is continuous at all points of K (not $f|_{K}!$). For each $x \in K$, pick $\delta_x > 0$ such that $y \in [a, b]$ (not K!) and $|x - y| < \delta_x$ implies $|f(x) - f(y)| < \varepsilon'$. Then $\{B_{\delta_x/2}(x)\}_{x \in K}$ is an open cover of K, so there are $x_1, \ldots, x_n \in K$ such that $K \subset \bigcup_{i=1}^n B_{\delta_{x_i}/2}(x_i)$. Set $\delta := \min\{\delta_{x_i}/2|i=1,\ldots,n\}$.

Claim. If
$$x \in K$$
 and $y \in [a, b]$ and $|x - y| < \delta/2$, then $|f(x) - f(y)| < 2\varepsilon'$.
Proof. Without loss of generality, $x \in B_{\delta_1/2}(x_1)$. Then $y \in B_{\delta_1}(x_1)$, and thus
 $|f(x) - f(y)| \le |f(x) - f(x_1)| + |f(x_1) - f(y)| < 2\varepsilon'$.

Let P be any partition of [a, b] whose intervals have length at most δ . Let P' consist of the intervals that intersect K and let P'' be the intervals that do not intersect K. By the claim, if $J \in P'$, then $M_J - m_j \leq 2\varepsilon'$. Thus

$$U(f, P) - L(f, P) = \sum_{J \in P} (M_J - m_J)\lambda(J)$$

= $\sum_{J \in P'} (M_J - m_J)\lambda(J) + \sum_{J \in P''} (M_J - m_J)\lambda(J)$
 $\leq \sum_{J \in P'} 2\varepsilon'\lambda(J) + \sum_{J \in P''} (M - m)\lambda(J)$
 $\leq 2\varepsilon'(b - a) + (M - m)\lambda(U)$ $\left(\bigcup_{J \in P''} J \subseteq U\right)$
 $< \varepsilon'(2(b - a) + (M - m))$

where $M = \sup_{x \in [a,b]} f(x)$ and $m := \inf_{x \in [a,b]} f(x)$. Taking $\varepsilon' = \varepsilon/(2(b-a) + (M-m))$ works.

3.8. Product measures.

Definition 3.8.1. Given measurable spaces (X, \mathcal{M}) and (Y, \mathcal{N}) , a measurable rectangle is a set of the form $E \times F \subset X \times Y$ where $E \in \mathcal{M}$ and $F \in \mathcal{N}$. The product σ -algebra $\mathcal{M} \times \mathcal{N} \subset P(X \times Y)$ is the σ -algebra generated by the measurable rectangles.

Exercise 3.8.2. Prove that $\mathcal{M} \times \mathcal{N}$ is the smallest σ -algebra such that the canonical projection maps $\pi_X : X \times Y \to Y$ and $\pi_Y : X \times Y \to X$ are measurable. Deduce that $\mathcal{M} \times \mathcal{N}$ is generated by $\pi_X^{-1}(\mathcal{E}_X) \cup \pi_Y^{-1}(\mathcal{E}_Y)$ for any generating sets \mathcal{E}_X of \mathcal{M} and \mathcal{E}_Y of \mathcal{N} .

Warning 3.8.3. Recall that given topological spaces X, Y, the canonical projections $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are open maps. When $(X, \mathcal{M}), (Y, \mathcal{N})$ are measurable, however, π_X, π_Y need not map measurable sets to measurable sets. (Unfortunately, actually constructing a set in $\mathcal{M} \times \mathcal{N}$ whose projection to X is not measurable is quite difficult.)

Exercise 3.8.4. Show that the subset of $P(X \times Y)$ consisting of finite disjoint unions of measurable rectangles is an algebra which generates $\mathcal{M} \times \mathcal{N}$. *Hint: For* $E, E_1, E_2 \in \mathcal{M}$ and $F, F_1, F_2 \in \mathcal{N}$,

- $(E_1 \times F_1) \cap (E_2 \times F_2) = (E_1 \cap E_2) \times (F_1 \cap F_2)$, and
- $(E \times F)^c = (E \times F^c) \amalg (E^c \times F) \amalg (E^c \times F^c).$