
3. Integration

3.1. Measurable functions.

Definition 3.1.1. If (X,M) and (Y,N ) are measurable spaces, we say f : X ! Y is
(M�N ) measurable if f�1(E) 2 M for all E 2 N .

Exercise 3.1.2. Prove the following assertions.

(1) Given f : X ! Y and a �-algebra N on Y , {f�1(E)|E 2 N} is a �-algebra on X.
Moreover it is the smallest �-algebra on X such that f is measurable.

(2) Given f : X ! Y and a �-algebra M on X, {E ⇢ Y |f
�1(E) 2 M} is a �-algebra

on Y . Moreover it is the largest �-algebra on Y such that f is measurable.

Exercise 3.1.3. Prove that the composite of two measurable functions is measurable. More
precisely, if f : (X,M) ! (Y,N ) is M�N measurable and g : (Y,N ) ! (Z,P) is N � P

measurable, then g�f is M�P measurable. Deduce that measurable spaces and measurable
functions form a category.

Proposition 3.1.4. Suppose (X,M) and (Y,N ) are measurable spaces, f : X ! Y , and
N = hEi for some E ⇢ P (Y ). Then f is measurable if and only if f�1(E) 2 M for all
E 2 E.

Proof. The forward direction is trivial. Suppose f
�1(E) 2 M for all E 2 E . Then E is

contained in the �-algebra Nf on Y co-induced by M, f , i.e., the largest �-algebra such that
f is measurable. Since Nf is a �-algebra containing E , we see that Nf contains N . Since f

is M�Nf measurable, f is M�N measurable. ⇤
Exercise 3.1.5. Show that every monotone increasing function f : R ! R is Borel measur-
able.

Definition 3.1.6. SupposeX, Y are topological spaces. We call f : X ! Y Borel measurable
if it is BX � BY measurable.

Corollary 3.1.7. Continuous functions are Borel measurable.

Proof. Observe f : X ! Y is continuous if and only if for all U 2 TY , f�1(U) 2 TX ⇢ BX .
This implies f is Borel measurable by Proposition 3.1.4. ⇤
Corollary 3.1.8. Suppose (X,M) is a measurable space and f : X ! R (where R is
equipped with the Borel �-algebra). The following are equivalent:

(1) f is M� BR measurable.
(2) f

�1(a,1) 2 M for all a 2 R.
(3) f

�1[a,1) 2 M for all a 2 R.
(4) f

�1(�1, a) 2 M for all a 2 R.
(5) f

�1(�1, a] 2 M for all a 2 R.
Observe that we can also use collections of intervals (a, b), [a, b), (a, b], [a, b] for all a, b 2 R.

Corollary 3.1.9. If (X,M) is a measurable space and f : X ! R = [�1,1], then
Corollary 3.1.8 holds replacing R with R and intervals excluding ±1 with intervals including
±1 respectively.

Proof. Use Exercise 2.1.12. ⇤
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Definition 3.1.10. Suppose (X,M) is a measurable space. We say a function f : X !

R,R,C is M-measurable if f is M� BR, M� BR, M� BC measurable respectively.

Warning 3.1.11. If f, g : R ! R are Lebesgue measurable (i.e., L�BR measurable),
then f � g need not be Lebesgue measurable!

Exercise 3.1.12. Find examples of f, g : R ! R are Lebesgue measurable with f � g

not Lebesgue measurable.
Note: First find an E 2 L \ BR and an L-measurable function f : R ! R such that
f
�1(E) /2 L. Then set g := �E.

Exercise 3.1.13. Suppose (X,M) is a measurable space and X, Y are topological spaces,
i : Y ! Z is a continuous injection which maps open sets to open sets, and f : X ! Y .
(For example, Y = R and Z = R.)

Z

X Y
f

i�f
i

Show that f is M�BY measurable if and only if i � f is M�BZ measurable. Deduce that
if f : (X,M) ! R only takes values in R, then f is M� BR measurable if and only if f is
M� BR measurable. Hence we can say f is M-measurable without any confusion.

Exercise 3.1.14. Let (X,M) be a measurable space.

(1) Prove that the Borel �-algebra BC on C is generated by the ‘open rectangles’

{z 2 C|a < Re(z) < b and c < Im(z) < d} .

(2) Prove directly from the definitions that f : X ! C is M�BC measurable if and only
if Re(f) and Im(f) are M� BR measurable.

Definition 3.1.15. Suppose (X,M, µ) is a measure space. We say that a property P of a
measurable function f from X into R, R, or C holds almost everywhere (a.e.) if there is a
µ-null set E 2 M such that P holds on E

c. For example, f � 0 a.e. if there is a µ-null set
E 2 M such that f |Ec � 0.

Exercise 3.1.16. Define a relation on the set of M-measurable functions (into R, R, or C)
by f ⇠ g if and only if f = g a.e. Prove ⇠ is an equivalence relation.

Notation 3.1.17. Given f : X ! R, we write {a < f} := f
�1(a,1]. We define {a 

f}, {f < b}, {f  b}, {a < f < b}, etc. similarly.

Facts 3.1.18. Suppose (X,M) is a measurable space and f, g : X ! R are M-measurable.
The following functions are all M-measurable:

(M-meas1) (f _ g)(x) := max{f(x), g(x)} and (f ^ g)(x) := min{f(x), g(x)}

Proof. If a 2 R, then
{a < f _ g} = {a < f} [ {a < g} 2 M

{a < f ^ g} = {a < f} \ {a < g} 2 M. ⇤
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(M-meas2) any well-defined linear combination of f, g, where by convention, 0 · ±1 = 0 and
±1±1 = ±1, but ±1⌥1 is not defined.

Proof.
Step 1: For a, c 2 R,

{cf > a} =

8
>>>>>><

>>>>>>:

; if c = 0  a

X if c = 0 > a
n
a

c
< f

o
if c > 0

n
a

c
> f

o
if c < 0

9
>>>>>>=

>>>>>>;

which are all in M.

Step 2: If f + g is well-defined, then for a 2 R,

{a < f + g} =
[

r,s2Q
a<r+s

{r < f} \ {s < g} 2 M. ⇤

(M-meas3) fg

Proof.
Step 1: Suppose f, g are non-negative. Then for all a � 0,

{a < fg} =
[

r,s2Q>0
a<rs

{r < f} \ {s < g} 2 M.

Also, for all a < 0, {a < fg} = X 2 M.
Step 2: For f, g arbitrary, we use the following trick:

Trick. f = f+ � f� where f+ := f _ 0 and f� := �(f ^ 0). Observe that
f± · f⌥ = 0.

Similarly, we can write g = g+ � g�. Then

fg = f+g+ � f�g+ � f+g� + f�g�,

all of which have disjoint support. Hence each of the summands of fg is
measurable by Step 1, and the linear combination is measurable by (3) as it is
well-defined. ⇤

Exercise 3.1.19. Suppose f : X ! R. Show that f = f+ � f� is the unique decomposition
of f as g � h such that g, h � 0 and gh = 0.

Exercise 3.1.20. Let (X,M) be a measurable space.

(1) Prove that the M� BC measurable functions form a C-vector space.
(2) Show that if f : X ! C is M � BC measurable, then |f | : X ! [0,1) is M � BR

measurable.
(3) Show that if (fn) is a sequence of M�BC measurable functions X ! C and fn ! f

pointwise, then f is M� BC measurable.
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Facts 3.1.21. Suppose (fn) is a sequence of M-measurable functions X ! R. The following
functions are M-measurable.

(M-meas4) sup fn and inf fn

Proof. For all a 2 R,
{a < sup fn} =

[

n

{a < fn} 2 M

{a < inf fn} =
\

n

{a < fn} 2 M. ⇤

(M-meas5) lim sup fn and lim inf fn

Proof. Observe that

lim sup fn = lim
n!1

sup
k>n

fk = inf
n

sup
k>n

fk

| {z }
measurable by (M-meas4)

lim inf fn = lim
n!1

inf
k>n

fk = sup
n

inf
k>n

fk

| {z }
measurable by (M-meas4)

Applying (M-meas4) again, we see that lim sup fn and lim inf fn are M-
measurable. ⇤

3.2. Measurable simple functions. For this section, fix a measurable space (X,M).

Definition 3.2.1. An M-measurable function  : X ! R is simple if it takes finitely many
values. Observe that if  is simple, we can write

 =
nX

k=1

ck�Ek
c1, . . . , cn 2 R E1, . . . , En 2 M.

Here, we write �E for the characteristic function of E:

�E(x) =

(
1 if x 2 E

0 if x 2 E
c
.

Observe that there is exactly one such expression of a simple function, called its standard
form, such that

• c1, . . . , cn are distinct, and
• E1, . . . , En are disjoint and non-empty such that X =

`
n

k=1
Ek.

Denote by SF the collection of simple (M-measurable) functions. Define SF+ := { 2 SF| � 0}.

Exercise 3.2.2. Verify the uniqueness of standard form of an simple function.

Exercise 3.2.3.

(1) Prove that SF is an R-algebra and SF
+ is closed under addition, multiplication, and

non-negative scalar multiplication.
(2) Prove SF is a lattice (closed under max and min) and SF

+
⇢ SF is a sublattice.
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Proposition 3.2.4. Suppose f : X ! [0,1] is M-measurable. There is a sequence ( n) ⇢
SF

+ such that

•  n(x) % f(x) for all x 2 X, and
• for all N 2 N,  n ! f uniformly on {f  N}.

Proof. For n � 0 and 1  k  22n, set

E
k

n
:= f

�1

✓
k � 1

2n
,
k

2n

�
and Fn := f

�1(2n,1].

Observe that X = f
�1(0)q Fn q

`
2
2n

k=1
E

k

n
. Define

 n := 2n�Fn +
2
2nX

k=1

k � 1

2n
�Ek

n
.

Here is a cartoon of  0, 1, 2:

1

2

3

 0

Cuto↵ at 1
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1

3/2

2
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 1
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3/4
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7/4
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9/4

5/2

11/4
3

 2

Cuto↵ at 4

Observe that  n   n+1 for all n � 0, and 0  f �  n  2�n on {f  2n}. The result
follows. ⇤
Exercise 3.2.5. Let (X,M, µ) be the completion of the measure space (X,M, µ).

(1) Show that if f is M-measurable and g = f a.e., then g is M-measurable.
Optional: Does this hold with M replaced by M?

(2) Show that if f is M-measurable, there exists an M-measurable g such that f = g

a.e.
Hint: First do the case f is R-valued.

(3) Show that if (fn) is a sequence of M-measurable functions and fn ! f a.e., then f

is M-measurable.
Optional: Does this hold with M replaced by M?

(4) Show that if (fn) is a sequence of M-measurable functions and fn ! f a.e., then f

is M-measurable. Deduce that there is an M-measurable function g such that f = g

a.e., so fn ! g a.e.

For all parts, consider the cases of R, R, and C-valued functions.

3.3. Integration of non-negative functions. For this section, fix a measure space (X,M, µ).
Define

L
+ := L

+(X,M, µ) = {M-measurable f : X ! [0,1]}.

Definition 3.3.1. For  =
P

n

k=1
ck�Ek

2 SF
+
⇢ L

+ in standard form, define
Z
 :=

Z

X

 dµ :=

Z

X

 (x) dµ(x) :=
nX

k=1

ckµ(Ek).
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For E 2 M, we define
R
E
 :=

R
 · �E. Observe that to calculate

R
E
 , we must write the

simple function  · �E in standard form.
We say that  2 SF

+ is integrable if
R
 < 1. We write ISF+ :=

�
 2 SF

+
�� integrable

 
.

Exercise 3.3.2. Suppose f : (X,M, µ) ! [0,1] is M-measurable and {f > 0} is �-finite.
Show that there exists a sequence of ( n) ⇢ ISF

+ such that  n % f pointwise.
Optional: In what sense can you say  n % f uniformly?

Theorem 3.3.3. The map
R
: SF+

! [0,1] satisfies

(1) (homogeneous) for all r � 0,
R
r = r

R
 .

(2) (monotone) if �   everywhere, then
R
� 

R
 .

(3) (additive)
R
�+  =

R
�+

R
 .

Hence
R
: SF+

! [0,1] is an order-preserving R+-linear functional.

Proof.
(1) Observe if r = 0, then

R
r = 0 = 0 ·

R
 . If r > 0 and  =

P
n
ck�Ek

, then r =P
n
rck�Ek

is in standard form, and

Z
r =

nX
rckµ(Ek) = r

nX
ckµ(Ek) = r

Z
 .

(2) Suppose that � =
P

m
aj�Ej and  =

P
n
bk�Fk

are in standard form. Here is the trick:

Trick. SinceX =
`

m
Ej =

`
n
Fk, we have Ej =

`
n

k=1
Ej\Fk and Fk =

`
m

j=1
Ej\Fk.

Since �   everywhere,

� =
X

j,k

aj�Ej\Fk


X

j,k

bk�Ej\Fk
=  ,

and so aj  bk whenever Ej \ Fk 6= ;. Thus

Z
� =

mX

j=1

ajµ(Ej) =
mX

j=1

nX

k=1

ajµ(Ej \ Fk) 
nX

k=1

mX

j=1

bkµ(Ej \ Fk) =
nX

k=1

bkµ(Fk) =

Z
 .
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(3) Suppose that � =
P

m
aj�Ej ,  =

P
n
bk�Fk

, and � +  =
P

p

`=1
c`�G`

are in standard
form. Similar to the argument in (2) above, aj + bk = c` whenever Ej \ Fk \G` 6= ;. Then

Z
�+

Z
 =

X

j

ajµ(Ej) +
X

k

bkµ(Fk)

=
X

j,k

(aj + bk)µ(Ej \ Fk)

=
X

j,k,`

(aj + bk)µ(Ej \ Fk \G`)

=
X

j,k,`

c`µ(Ej \ Fk \G`)

=
X

`

c`µ(G`)

=

Z
�+  . ⇤

Remark 3.3.4. Observe that the map M ! [0,1] by E 7!
R
E
dµ equals µ.

Lemma 3.3.5. For  2 SF
+, µ : M ! [0,1] by E 7!

R
E
 is a measure.

Proof.
(0) Observe that  �; = 0, so

µ (;) =

Z

;
 =

Z
 �; =

Z
0 = 0.

(1) Write  =
P

m

j=1
aj�Ej in standard form. If (Fn) ⇢ M is a disjoint sequence, then observe

 �
`

Fn =
P

m

j=1
aj�Ej\

`
Fn is also in standard form (up to a subset of { �`

Fn = 0}).

µ 

⇣a
Fn

⌘
=

Z

`
Fn

 

=

Z
 �

`
Fn

=
X

j

ajµ(Ej \

a
Fn)

=
X

j,n

ajµ(Ej \ Fn)

=
X

n

Z

Fn

 . ⇤

Definition 3.3.6. For f 2 L
+, define

Z
f :=

Z

X

f dµ :=

Z

X

f(x) dµ(x) := sup

⇢Z
 

���� 2 SF
+ such that 0    f

�
.

Remarks 3.3.7.
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(1) Observe that for  2 SF
+, we have

Z
 = sup

⇢Z
�

����� 2 SF
+ such that 0  �   

�
.

Hence the above definition extends
R
 for  2 SF

+ to f 2 L
+.

(2) If f, g 2 L
+ with f  g, then

R
f 

R
g as we are taking sup over a larger set.

(3) If f 2 L
+ and r 2 (0,1), then

R
rf = r

R
f , since if S ⇢ [0,1], sup rS = r · supS.

(Remember that 0 ·1 = 0.)

Proposition 3.3.8. Suppose f 2 L
+. The following are equivalent.

(1)
R
f = 0, and

(2) f = 0 a.e., i.e., there is a µ-null set E 2 M such that f |Ec = 0.

Proof.
(1) ) (2): We’ll prove the contrapositive. If f is not zero a.e., there is an n > 0 such that

µ({ 1

n
< f}) > 0. Then f >

1

n
�{ 1

n<f}, so

0 <
1

n
· µ

✓⇢
1

n
< f

�◆
=

Z
1

n
�{ 1

n<f} 

Z
f.

(2) ) (1): First, if f =
P

n

k=1
ck�Ek

2 SF
+ is in standard form, then

R
f = 0 if and only if

µ(Ek) = 0 for all k such that ck 6= 0 if and only if f = 0 a.e. Second, if f 2 L
+ with f = 0

a.e., then for all  2 SF
+ with 0    f ,  = 0 a.e., so

R
f = sup

0 f

R
 = 0. ⇤

Theorem 3.3.9 (Monotone Convergence, a.k.a MCT). Suppose (fn) ⇢ L
+ is an increasing

sequence and f = lim fn = sup fn. ThenZ
f = lim

n!1

Z
fn.

Proof.
: Observe (

R
fn) is increasing in [0,1], and thus it converges. Moreover,

R
fn 

R
f for all

n, so limn!1
R
fn 

R
f .

�: Pick a  2 SF
+ with 0    f and 0 < " < 1. Set En := {" < fn}. Then observe

(En) ⇢ M is an increasing sequence such that
S
En = X, so by continuity from below (µ3),R

En
 %

R
 . Thus Z

fn �

Z

En

fn � "

Z

En

 
n!1
���! "

Z
 .

Hence lim
R
fn � "

R
 for all 0 < " < 1. Since " was arbitrary, letting " ! 1, we have

lim
R
fn �

R
 . Taking sup over all 0    f gives lim

R
fn �

R
f . ⇤

Facts 3.3.10 (Corollaries of the MCT).

(MCT1) If f 2 L
+, then

R
f = lim

R
 n for all sequences ( n) ⇢ SF

+ such that  n % f .
(MCT2) For all f, g 2 L

+,
R
f + g =

R
f +

R
g.

Proof. If �n % f and  n % g, then �n +  n % f + g, so
Z

f + g =
(MCT)

lim

Z
�n +  n = lim

Z
�n + lim

Z
 n =

Z
f +

Z
g. ⇤
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(MCT3) For f, g 2 L
+, if f = g a.e., then

R
f =

R
g.

Proof. Let E 2 M such that f�E = g�E and E
c is µ-null. Then

Z
f =

(MCT2)

Z
f�E+

Z
f�Ec =

Z
f�E =

Z
g�E =

Z
g�E+

Z
g�Ec =

(MCT2)

Z
g.

⇤

(MCT4) For all (fn) ⇢ L
+,
PR

fn =
R P

fn, where
P

fn is the sup of the sequence of partial
sums (which is a measurable function).

Proof. Observe
Z X

fn =

Z
lim

N!1

NX
fn =

(MCT)

lim
N!1

Z NX
fn =

(MCT2)

lim
N!1

NXZ
fn =

XZ
fn.

⇤

(MCT5) If (fn) ⇢ L
+, fn % f a.e., and f 2 L

+ (which is automatic if µ is complete), thenR
f = lim

R
fn.

Proof. Suppose fn % f on E 2 M and E
c is µ-null. Then

Z
f =

(MCT3)

Z
f�E =

(MCT)

lim

Z
fn�E =

(MCT3)

lim

Z
fn. ⇤

(MCT6) (Fatou’s Lemma) If (fn) ⇢ L
+, then

R
lim inf fn  lim inf

R
fn.

Proof. For all j � k 2 N, infn�k fn  fj, soZ
inf
n�k

fn 

Z
fj for all j � k.

Thus
R
infn�k fn  infj�k

R
fj. Letting k ! 1, we have

Z
lim inf fn =

(MCT)

lim
k!1

Z
inf
n�k

fn  lim
k!1

inf
j�k

Z
fj = lim inf

Z
fn. ⇤

(MCT7) If (fn) ⇢ L
+, fn ! f a.e., and f 2 L

+ (which is automatic if µ is complete), thenR
f  lim inf

R
fn.

Proof. Let E 2 M such that fn ! f on E and E
c is µ-null. Then

Z
f =

(3)

Z
f�E 

(MCT6)

lim inf

Z
fn�E =

(MCT3)

lim inf

Z
fn. ⇤

Exercise 3.3.11. Assume Fatou’s Lemma (MCT6) and prove the Monotone Convergence
Theorem from it.

Exercise 3.3.12. If f 2 L
+ and

R
f < 1, then {f = 1} is µ-null and {0 < f} is �-finite.

Exercise 3.3.13. Suppose (X,M, µ) is a finite measure space and f : X ! C is measurable.
Prove that µ({n  |f |}) ! 0 as n ! 1.
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Exercise 3.3.14. Suppose (X,M, µ) is a measure space and f 2 L
+. For E 2 M, define

⌫(E) :=

Z

E

f dµ.

(1) Prove that ⌫ is a measure on M.
(2) Prove that

R
g d⌫ =

R
fg dµ for all g 2 L

+

Hint: First suppose g is simple.

3.4. Integration of R-valued functions. For this section, (X,M, µ) is a fixed measure
space.

Definition 3.4.1. An M-measurable function f : X ! R is called integrable if
R
f± < 1

where f = f+ � f� with f+ = 0_ f and f� = �(0^ f). Since |f | = f+ + f�, observe that f
is integrable if and only if

R
|f | < 1.

Define L
1(µ,R) := {integrable f : X ! R} and L

1(µ,R) := {integrable f : X ! R}

Exercise 3.4.2. Show that a simple function  =
P

n

k=1
ck�Ek

2 SF with c1, . . . , cn distinct
and E1, . . . , En disjoint is integrable if and only if µ(Ek) < 1 for all k such that ck 6= 0.

Proposition 3.4.3. The set L
1(µ,R) is an R-vector space, and L

1(µ,R) is a subspace.
Moreover,

R
: L1(µ,R) ! R given by

R
f :=

R
f+ �

R
f� is a linear functional.

Proof. If r 2 R and f, g 2 L
1(µ,R), then |rf + g|  |r| · |f |+ |g| which is integrable. Hence

L
1(µ,R) is an R-vector space. Clearly L

1(µ,R) is a subspace.
If r 2 R and f 2 L

1(µ,R), then there are three cases:

(rf)± =

8
><

>:

rf± if r > 0

0 if r = 0

�rf⌥ if r < 0.

In all three cases, by Remarks 3.3.7(3), we have

Z
rf =

Z
(rf)+ �

Z
(rf)� =

8
>>>><

>>>>:

Z
rf+ �

Z
rf� if r > 0

0 if r = 0
Z
(�r)f� �

Z
(�r)f+ if r < 0

9
>>>>=

>>>>;

= r

Z
f+ � r

Z
f�.

If f, g 2 L
1(µ,R), observe

(f + g)+ � (f + g)� = f + g = f+ + g+ � f� � g�

which implies

(f + g)+ + f� + g� = (f + g)� + f+ + g+.

By (MCT2),
Z

(f + g)+ +

Z
f� +

Z
g� =

Z
(f + g)� +

Z
f+ +

Z
g+,

and rearranging yields the result. ⇤
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3.5. Integration of C-valued functions. For this section, fix a measure space (X,M, µ).
Recall from Exercise 3.1.14(2) that f : X ! C is measurable if and only if Re(f) and Im(f)
are measurable. By Exercise 3.1.20(2), |f | is measurable.

Definition 3.5.1. A measurable function f : X ! C is integrable if
R
|f | < 1, i.e.,

|f | 2 L
1(µ,R). Since

|f |  |Re(f)|+ | Im(f)|  2|f |
x

y

z

Re(z)

Im(z)

,

f is integrable if and only if Re(f) and Im(f) are integrable. In this case, we define
Z

f :=

Z
Re(f) + i

Z
Im(f).

It follows from Proposition 3.4.3 that

L
1(µ,C) := {integrable f : X ! C}

is a C-vector space, and
R
: L1(µ,C) ! C is linear.

Proposition 3.5.2. For all f 2 L
1(µ,C),

��R f
�� 

R
|f |.

Proof.
Step 1: If f is R-valued, then

��R f
�� =

��R f+ �
R
f�
�� 

R
f+ +

R
f� =

R
|f |.

Step 2: Suppose f is C-valued. We may assume
R
f 6= 0. We use the following trick:

Trick. Define sgn
�R

f
�
:=

R
f

|
R
f|

2 T := {z 2 C| |z| = 1}. Then since z
�1 = z for all

z 2 T, ����
Z

f

���� = sgn

✓Z
f

◆Z
f =

Z
sgn

✓Z
f

◆
f

| {z }
2R

.

We then calculate
����
Z

f

���� =
Z

sgn

✓Z
f

◆
f = Re

Z
sgn

✓Z
f

◆
f =

Z
Re

 
sgn

✓Z
f

◆
f

!


(Step 1)

Z �����Re
 
sgn

✓Z
f

◆
f

!����� 
Z
��������
sgn

✓Z
f

◆

| {z }
2T

f

��������
=

Z
|f |. ⇤

Corollary 3.5.3. For all f, g 2 L
1(µ,C), the following are equivalent:

(1) f = g a.e.
(2)

R
|f � g| = 0

(3) for all E 2 M,
R
E
f =

R
E
g.
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Proof.
(1) , (2) Observe f = g a.e. if and only if |f � g| = 0 a.e. if and only if

R
|f � g| = 0 by

Proposition 3.3.8.
(2) ) (3) By Proposition 3.5.2, for all E 2 M,

����
Z

E

f �

Z

E

g

���� =
����
Z

(f � g)�E

���� 
Z

|f � g|�E 

Z
|f � g| = 0.

(3) ) (1) Recall that
R
E
f � g =

R
E
Re(f � g) + i

R
E
Im(f � g). So by assumption,

Z

E

Re(f � g) = 0 and

Z

E

Im(f � g) = 0 8E 2 M.

We now look at the following particular E 2 M:

E = {0  Re(f � g)} ) Re(f � g)+ = 0 a.e.

E = {0 � Re(f � g)} ) Re(f � g)� = 0 a.e.

E = {0  Im(f � g)} ) Im(f � g)+ = 0 a.e.

E = {0 � Im(f � g)} ) Im(f � g)� = 0 a.e.

Hence Re(f � g) = 0 and Im(f � g) = 0 a.e., which is equivalent to f = g a.e. ⇤
Exercise 3.5.4. Suppose (X,M, µ) be a measure space and f 2 L

1(µ,C). Prove that
{f 6= 0} is �-finite.

Exercise 3.5.5. Suppose (X,M, µ) is a measure space and f 2 L
1(µ,C). Prove that for

every " > 0, there exists a � > 0 such that for every E 2 M with µ(E) < �,
R
E
|f | < ".

Definition 3.5.6. Define L1(µ,C) := L
1(µ,C)/ ⇠ where f ⇠ g if and only if f = g a.e. We

write f 2 L
1(µ,C) to mean f 2 L

1(µ,C) representing its equivalence class in L
1(µ,C).

Exercise 3.5.7. Let (X,M, µ) be a measure space.

(1) Prove that k · k1 : L1(µ,C) ! [0,1) given by kfk1 :=
R
|f | is a norm.

(2) Let (X,M, µ) be the completion of (X,M, µ). Find a canonical C-vector space
isomorphism L

1(µ,C) ⇠= L
1(µ,C) which preserves k · k1.

Hint: Use Exercise 3.2.5.

Theorem 3.5.8 (Dominated Convergence, a.k.a. DCT). Suppose (fn) ⇢ L
1(µ,C) such that

fn ! f a.e. If there is a g 2 L
1(µ,C) \ L

+ such that eventually |fn|  g a.e., then
f 2 L

1(µ,C) and
R
f = lim

R
fn.

Proof. By redefining f on a µ-null set if necessary by Exercise 3.2.5, we may assume f is M-
measurable. Taking limits pointwise, |f |  g, so f 2 L

1(µ,C). Taking real and imaginary
parts of f , we may assume (fn), f are all R-valued. Then �g  fn  g a.e., so

g + fn � 0 and g � fn � 0 a.e.

By Fatou’s Lemma (MCT6),
Z

g +

Z
f =

Z
g + f  lim inf

Z
g + fn =

Z
g + lim inf

Z
fn

Z
g �

Z
f =

Z
g � f  lim inf

Z
g � fn =

Z
g � lim sup

Z
fn.
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Combining these inequalities,

lim sup

Z
fn 

Z
f  lim inf

Z
fn. ⇤

Corollary 3.5.9. Suppose (fn) ⇢ L
1(µ,C) such that

PR
|fn| < 1. Then

P
fn converges

a.e. to a function in L
1(µ,C), and

R P
fn =

PR
fn.

Exercise 3.5.10. Prove that the metric d1 on L
1(µ,C) induced by k · k1 is complete. That

is, prove every Cauchy sequence converges in L
1.

Note: This follows immediately from Corollary 3.5.9 if one shows that completeness of a
normed vector space V is equivalent to the property that every absolutely convergent series
converges in V .

Exercise 3.5.11. Let µ be a Lebesgue-Stieltjes Borel measure on R. Show that Cc(R), the
continuous functions of compact support ({f 6= 0} compact) is dense in L

1(µ,R). Does the
same hold for R and C-valued functions?
Hint: You could proceed in this way:

(1) Reduce to the case f 2 L
1
\ L

+.
(2) Reduce to the case f 2 L

1
\ SF

+.
(3) Reduce to the case f = �E with E 2 BR and µ(E) < 1.
(4) Reduce to the case f = �U with U ⇢ R open and µ(U) < 1.
(5) Reduce to the case f = �(a,b) with a < b in R.

3.6. Modes of convergence. Let (X,M, µ) be a measure space. For (fn), f all M � BC
measurable functions, fn ! f could mean many things:

• (pointwise) fn(x) ! f(x) for all x 2 X.
• (a.e.) fn(x) ! f(x) for a.e. x 2 X.
• (uniformly) for all " > 0, there is an N 2 N such that n > N implies |fn(x)�f(x)| < "

for all x 2 X.
• (almost uniformly, a.k.a. a.u.) for all " > 0, there is an E 2 M with µ(E) < " such
that fn�Ec ! f�Ec uniformly.

• (in L
1)
R
|fn � f | ! 0 as n ! 1.

• (in measure) for all " > 0, µ ({"  |f � fn|}) ! 0.

Observe that obviously uniform implies a.u., uniform implies pointwise, and pointwise
implies a.e.

Proposition 3.6.1. Almost uniform convergence implies almost everywhere convergence.

Proof. Suppose fn ! f a.u. For k 2 N, let Ek 2 M such that µ(Ek) < 1/k and fn�E
c
k
!

f�E
c
k
uniformly. Let E :=

T
Ek. Then µ(E) = 0 by continuity from above (µ4), and since

E
c =

S
E

c

k
, we have fn�Ec ! f�Ec pointwise. ⇤

Proposition 3.6.2. Almost uniform convergence implies convergence in measure.

Proof. Suppose fn ! f a.u. Let " > 0. Show for all � > 0, there is an N 2 N such that
n > N implies µ ({"  |f � fn|}) < �. Pick E 2 M such that µ(E) < � and fn�Ec ! f�Ec

uniformly. Then

µ ({"  |f � fn|}) = µ ({"  |f � fn|} \ E)| {z }
always < �

+µ ({"  |f � fn|} \ E
c)| {z }

= ; for n large

< �
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for n su�ciently large. ⇤

Proposition 3.6.3. Convergence in L
1 implies convergence in measure.

Proof. Suppose fn ! f in L
1. Let " > 0, and set E := {"  |f � fn|}. Then

µ(E) =

Z

E

1 =
1

"

Z

E

" 
1

"

Z

E

|f � fn|
n!1
���! 0. ⇤

Facts 3.6.4 (Counterexamples). We consider the following important counterexamples:

(1) fn = 1

n
�(0,n) converges uniformly to zero, but not in L

1.
(2) fn = �(n,n+1) converges pointwise to zero, but not in measure.
(3) fn = n�[0,1/n] converges a.e. to zero with µ(X) < 1, but not in L

1.
(4) fn(x) := x

n on [0, 1] almost uniformly to zero, but not pointwise.
(5) (shifting intervals) f1 = �[0,1], f2 = �[0,1/2], f3 = �[1/2,1], f4 = �[1,1/4], f5 = �[1/4,1/2],

etc. converges in L
1, but not a.e.

uniform

almost uniform

measure

pointwise

almost everywhere

L
1

µ(X)<1

µ(X)<1

Egoro↵

subsequence

�(0,n)
n

x
n
on [0,1]

�(n,n+1)

n·�[0, 1n ]
µ(X)<1

shifting

intervals

implies

conditional

counterexample

subsequence

Lemma 3.6.5. If fn ! f uniformly and µ(X) < 1, then fn ! f in L
1.

Proof. Observe that
Z

|fn � f |  (sup |fn � f |) ·

Z
1 = (sup |fn � f |)| {z }

!0 as n!1

·µ(X). ⇤

Theorem 3.6.6 (Egoro↵). If fn ! f a.e. and µ(X) < 1, then fn ! f a.u.

Proof. By replacing X with X \ N for some µ-null set N 2 M, we may assume fn ! f

pointwise. Now observe that for all k 2 N,

En,k :=
1[

j=n

⇢
1

k
 |f � fj|

�
& ; as n ! 1.
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Since µ(X) < 1, by continuity from above (µ4), µ(En,k) ! 0 as n ! 1. Let " > 0. For all
k 2 N, choose nk 2 N such that µ(Enk,k

) < "/2k. Setting E :=
S1

k=1
Enk,k

, we have

µ(E) 
X

k

µ(Enk,k
) < "

X
2�k = ".

Finally, observe that for all n > nk, if x 2 E
c =

T1
k=1

E
c

nk,k
, then |f(x)� fn(x)| < 1/k. Thus

fn ! f uniformly on E
c. ⇤

Definition 3.6.7. A sequence (fn) of M-measurable functions is Cauchy in measure if for
all " > 0,

µ ({"  |fm � fn|})
n,m!1
����! 0.

Exercise 3.6.8. Prove that if fn ! f in measure, then (fn) is Cauchy in measure.

Theorem 3.6.9. If (fn) is Cauchy in measure, then there exists a unique (up to µ-null set)
M-measurable function f such that fn ! f in measure. Moreover, there is a subsequence
(fnk

) such that fnk
! f a.e.

Proof.
Step 1: There is a subsequence (fnk

) such that µ
�
{2�k

 |fnk
� fnk+1

|}
�
< 2�k.

Proof. For all k 2 N, µ
�
{2�k

 |fn � fm|}
�
! 0 as m,n ! 1. Pick nk inductively so

nk+1 > nk and m,n � nk implies µ
�
{2�k

 |fn � fm|}
�
< 2�k. ⇤

Step 2: (fnk
) is pointwise Cauchy o↵ a µ-null set N .

Proof. For k 2 N, set Ek := {2�k
 |fnk

� fnk+1
|}, and for ` 2 N, set N` :=

S
k=`

Ek.
Then µ(N`) 

P
k=`

2�k = 21�`. Setting N =
T

N` = lim supEk, we have µ(N) = 0
by continuity from above (µ4). If x 2 N

c, then x /2 N` for some `, and thus for all
`  i  j,

|fni(x)� fnj(x)| 
j�1X

k=i

|fnk
(x)� fnk+1

(x)| 
j�1X

k=i

2�k
 21�i

. (3.6.10)

We conclude that (fnk
) is pointwise Cauchy on N

c. ⇤

Step 3: Define

f(x) :=

(
0 if x 2 N (which is µ-null)

limk fnk
(x) if x 2 N

c.

Then f is M-measurable and fnk
! f a.e.

Proof. It remains to show f is measurable. Observe fnk
· �Nc is M-measurable for all

k, and thus so is f = lim fnk
· �Nc by Exercise 3.2.5. ⇤

Step 4: fnk
! f in measure.
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Proof. For all x 2 N
c

`
and k � `, we have

|fnk
(x)� f(x)| = lim

j!1
|fnk

(x)� fnj(x)| 
(3.6.10)

21�k
.

Let " > 0 and pick ` 2 N such that 0 < 2�` < ". Then for all k � `,

µ ({"  |fnk
� f |})  µ

✓⇢
1

2k
 |fnk

� f |

�◆
< 21�k k!1

���! 0. ⇤

Step 5: fn ! f in measure.

Proof. We use the following trick:

Trick. For non-negativeM-measurable f, g, {a+b  f+g} ⇢ {a  f}[{b  g}.

Now observe that

{"  |fn � f |} ✓

n
"

2
 |fn � fnk

|

o

| {z }
µ ! 0 as (fn)

Cauchy in measure

[

n
"

2
 |fnk

� f |

o

| {z }
µ ! 0 by Step 4

.

Hence µ({"  |fn � f |}) ! 0 as n ! 1. ⇤

Step 6: f is unique (up to a µ-null set) such that fn ! f in measure.

Proof. Suppose g is another such candidate. Then using the same trick as in Step 5,

{"  |f � g|} ✓

n
"

2
 |f � fn|

o

| {z }
µ ! 0 as n ! 1

[

n
"

2
 |g � fn|

o

| {z }
µ ! 0 as n ! 1

.

Hence µ({"  |f � g|}) = 0 for all " > 0, and thus f = g a.e. ⇤

This concludes the proof. ⇤

Exercise 3.6.11 (Lusin’s Theorem). Suppose f : [a, b] ! C is Lebesgue measurable and
" > 0. There is a compact set E ⇢ [a, b] such that �(Ec) < " and f |E is continuous.
Hint: Use Exercise 3.3.13 and Egoro↵ ’s Theorem 3.6.6.

Exercise 3.6.12. Suppose f 2 L
1([0, 1],�) is an integrable non-negative function.

(1) Show that for every n 2 N, n
p
f 2 L

1([0, 1],�).
(2) Show that ( n

p
f) converges in L

1 and compute its limit.

Hint for both parts: Consider {f � 1} and {f < 1} separately.

Exercise 3.6.13. Suppose (X,M, µ) is a measure space and fn ! f in measure and gn ! g

in measure (these functions are assumed to be measurable). Show that

(1) |fn| ! |f | in measure.
(2) fn + gn ! f + g in measure.
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(3) fngn ! fg if µ(X) < 1, but not necessarily if µ(X) = 1.
Hint: First show fng ! fg in measure. To do so, one could follow the following
steps.
(a) Show that for any " > 0, by Exercise 3.3.13, X = E q E

c where |g|E| < M and
µ(Ec) < "/2.

(b) For � > 0 and carefully chosen M > 0 and E,

{|fng � fg| > �} = ({|fng � fg| > �} \ E)q ({|fng � fg| > �} \ E
c)

✓

⇢
|fn � f | >

�

M

�
[ E

c
.

Exercise 3.6.14 (Folland §2.4, #33 and 34). Suppose (X,M, µ) is a measure space and
fn ! f in measure (these functions are assumed to be measurable).

(1) Show that if fn � 0 everywhere, then
R
f  lim inf

R
fn.

(2) Suppose |fn|  g 2 L
1. Prove that

R
f = lim

R
fn and fn ! f in L

1.

Exercise 3.6.15. Let (X,M, µ) be a measure space. Suppose (En) ⇢ M is a sequence of
measurable sets with µ(En) < 1 for all n. Show that if �En ! f in L

1 (this assumes f is
M-measurable), then there is an E 2 M such that f = �E a.e.

3.7. Comparison of the Lebesgue and Riemann integrals. We now review the Rie-
mann integral for a Reimann integrable function f : [a, b] ! R.

Definition 3.7.1. A partition of [a, b] is a set of points P = {a = s0 < s1 < · · · < sm = b}.
We say an interval J 2 P if J = [si�1, si] for some i = 1, . . . ,m. We write

mJ := inf {f(x)|x 2 J} MJ := sup {f(x)|x 2 J} .

We define the:

• Lower sum: L(f, P ) :=
P

J2P mJ�(J)
• Upper sum: U(f, P ) :=

P
J2P MJ�(J)

Here, �(J) is the length (Lebesgue measure) of the interval. Observe L(f, P )  U(f, P ).
A refinement of P is a partition Q = {a = t0 < t1 < · · · < tn = b} � P . Observe that if

Q refines P , then
L(f, P )  L(f,Q)  U(f,Q)  U(f, P ).

Thus if P1, P2 are two partitions of [a, b] and Q is a common refinement, then

sup
i=1,2

L(f, Pi)  L(f,Q)  U(f,Q)  inf
i=1,2

U(f, Pi).

We define the:

• Upper integral:
R

[a,b]
f := infP U(f, P )

• Lower integral:
R

[a,b]
f := sup

P
L(f, P )

We say f is Riemann integrable on [a, b] if
R

[a,b]
f =

R
[a,b]

f , and we denote this common value

by
R
b

a
f(x) dx.

Exercise 3.7.2. Suppose f : [a, b] ! R. Prove the following are equivalent:

(1) f is Riemann integrable
(2) for all " > 0, there is a partition P of [a, b] such that U(f, P )� L(f, P ) < ".
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Theorem 3.7.3. If f is Riemann integrable on [a, b], then f is Lebesgue integrable andR
[a,b]

f d� =
R

b

a
f(x) dx.

Proof. Let (Pn) be a sequence of partitions of [a, b] such that Pn+1 refines Pn and U(f, Pn)�
L(f, Pn) < 1/n for all n 2 N. Here’s the trick:

Trick. Define the simple functions  n :=
P

J2Pn
mJ�J and  n :=

P
J2Pn

MJ�J .

Observe that L(f, Pn) =
R
 n d� and U(f, Pn) =

R
 n d� and

 n   n+1  f   n+1   n 8n 2 N.

Define  := lim n and  := lim n, which exists as ( n) and ( n) are pointwise bounded
and monotone. Then by (a slight modification of) the MCT 3.3.9,  , are integrable, and

Z
 = lim

Z
 n =

Z
b

a

f(x) dx = lim

Z
 n =

Z
 .

But since  �  � 0 everywhere,
R
 �  = 0 implies  = f =  a.e. So f 2 L

1 andR
f =

R
b

a
f(x) dx. ⇤

Lemma 3.7.4. Suppose f : [a, b] ! R is Riemann integrable and bounded. Then for all " >
0, there are continuous functions g, h : [a, b] ! R such that h  f  g and

R
[a,b]

(g�h) d�  ".

Proof.
Step 1: If f = �J for some interval J , then we can find piecewise linear functions g, h such
that h  f  g such as in the following cartoon:

J

1

h

g

"
2

"
2

Then
R
[a,b]

g = �(J) + "/2 and
R
[a,b]

h = �(J)� "/2, so
R
g � h = ".

Step 2: Without loss of generality, we may assume f � 0. (Otherwise, treat f± separately.)
Take a partition P of [a, b] such that U(f, P )�L(f, P ) < "/2. As in the trick in the previous
theorem, define the simple functions

 n :=
X

J2P

mJ�J  f   n :=
X

J2P

MJ�J

so that
R
 = L(f, P ) and

R
 = U(f, P ). Apply Step 1 to each �J to get continuous gJ , hJ

with hJ  �J  gJ such that
R
gJ � hJ <

"

2|P |M where |P | is the number of intervals of P

and M := sup {f(x)|a  x  b}. Setting g :=
P

J2P MJgJ and h :=
P

J2P mJhJ , we have

h =
X

J2P

mJhJ 

X

J2P

mJ�J =   f   =
X

J2P

MJ�J 

X

J2P

MJgJ = g,
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and thusZ
g � h =

X

J2P

MJ

Z
gJ �mJ

Z
hJ

= U(f, P )� L(f, P ) +
X

J2P

MJ|{z}
<M

✓Z
gJ � �(J)

◆
+ mJ|{z}

<M

✓
�(J)�

Z
hJ

◆

< U(f, P )� L(f, P )| {z }
<

"
2

+M

X

J2P

Z
gJ � hJ

| {z }
<

"
2|P |M

< ". ⇤
Exercise 3.7.5. Let X be a topological space and let g : X ! R. We say that g is upper
semicontinuous at x0 2 X if for every " > 0, there is an open neighborhood U of x0 such
that x 2 U implies f(x) < f(x0) + ". We say g is upper semicontinuous if g is upper
semicontinuous at every x 2 X.

(1) Show that g is upper semicontinuous if and only if {g < r} is open in for all r 2 R.
(2) Define lower semicontinuity (both at x0 2 X and everywhere) and prove the analo-

gous statement to (1).

Theorem 3.7.6 (Lebesgue). A bounded function f : [a, b] ! R is Riemann integrable if and
only if it is continuous a.e.

Proof.
): Suppose f is Riemann integrable. By Lemma 3.7.4, there are sequence of continuous
functions (hn) and (gn) on [a, b] with hn  f  gn such that

R
gn � hn < 1/n for all n 2 N.

Since
gn+1 ^ gn � hn+1 _ hn  gn+1 � hn+1 8n 2 N,

we may assume that

hn  hn+1  f  gn+1  gn 8n 2 N.
Setting h := limhn and g := lim gn, we have h  f  g and

R
h =

R
f =

R
g by MCT 3.3.9.

Since g � h � 0, we know g = f = h a.e. on [a, b].

Claim. Since gn & g, g is upper semicontinuous. Similarly, h is lower semicontinuous

Proof. Let x0 2 [a, b] and " > 0. Pick N 2 N such that n � N implies gn(x0)�g(x0) <
"/2. Pick � > 0 such that x 2 (x0 � �, x0 + �) \ [a, b] implies |gN(x)� gN(x0)| < "/2.
Then for all x 2 (x0 � �, x0 + �) \ [a, b],

g(x0) > gN(x0)�
"

2
> gN(x)� " � g(x)� ". ⇤

Whenever h(x0) = f(x0) = g(x0), f is both upper semicontinuous and lower semicontinu-
ous at x0, i.e., f is continuous at x0. This happens on [a, b] a.e.
(: Suppose f is continuous on [a, b] a.e. Let E be the �-null set of discontinuities, and
let " > 0. We’ll construct a partition P such that U(f, P ) � L(f, P ) < ". By outer
regularity of �, there is an open U � E such that �(U) < "

0 to be determined later. Let
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K := [a, b] \ U , which is compact, and observe that f is continuous at all points of K (not
f |K !). For each x 2 K, pick �x > 0 such that y 2 [a, b] (not K!) and |x � y| < �x implies
|f(x) � f(y)| < "

0. Then {B�x/2(x)}x2K is an open cover of K, so there are x1, . . . , xn 2 K

such that K ⇢
S

n

i=1
B�xi/2

(xi). Set � := min {�xi/2|i = 1, . . . , n}.

Claim. If x 2 K and y 2 [a, b] and |x� y| < �/2, then |f(x)� f(y)| < 2"0.

Proof. Without loss of generality, x 2 B�1/2(x1). Then y 2 B�1(x1), and thus

|f(x)� f(y)|  |f(x)� f(x1)|+ |f(x1)� f(y)| < 2"0. ⇤

Let P be any partition of [a, b] whose intervals have length at most �. Let P 0 consist of
the intervals that intersect K and let P 00 be the intervals that do not intersect K. By the
claim, if J 2 P

0, then MJ �mj  2"0. Thus

U(f, P )� L(f, P ) =
X

J2P

(MJ �mJ)�(J)

=
X

J2P 0

(MJ �mJ)�(J) +
X

J2P 00

(MJ �mJ)�(J)



X

J2P 0

2"0�(J) +
X

J2P 00

(M �m)�(J)

 2"0(b� a) + (M �m)�(U)

 
[

J2P 00

J ✓ U

!

< "
0(2(b� a) + (M �m))

where M = sup
x2[a,b] f(x) and m := infx2[a,b] f(x). Taking "0 = "/(2(b � a) + (M � m))

works. ⇤
3.8. Product measures.

Definition 3.8.1. Given measurable spaces (X,M) and (Y,N ), a measurable rectangle is
a set of the form E ⇥ F ⇢ X ⇥ Y where E 2 M and F 2 N . The product �-algebra
M⇥N ⇢ P (X ⇥ Y ) is the �-algebra generated by the measurable rectangles.

Exercise 3.8.2. Prove that M ⇥N is the smallest �-algebra such that the canonical pro-
jection maps ⇡X : X ⇥ Y ! Y and ⇡Y : X ⇥ Y ! X are measurable. Deduce that M⇥N

is generated by ⇡�1

X
(EX) [ ⇡

�1

Y
(EY ) for any generating sets EX of M and EY of N .

Warning 3.8.3. Recall that given topological spaces X, Y , the canonical projections ⇡X :
X ⇥ Y ! X and ⇡Y : X ⇥ Y ! Y are open maps. When (X,M), (Y,N ) are measurable,
however, ⇡X , ⇡Y need not map measurable sets to measurable sets. (Unfortunately, actually
constructing a set in M⇥N whose projection to X is not measurable is quite di�cult.)

Exercise 3.8.4. Show that the subset of P (X ⇥ Y ) consisting of finite disjoint unions of
measurable rectangles is an algebra which generates M⇥N .
Hint: For E,E1, E2 2 M and F, F1, F2 2 N ,

• (E1 ⇥ F1) \ (E2 ⇥ F2) = (E1 \ E2)⇥ (F1 \ F2), and
• (E ⇥ F )c = (E ⇥ F

c)q (Ec
⇥ F )q (Ec

⇥ F
c).
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