
2. Measures

We begin with an informal discussion.

Definition 2.0.1. Let X be a set. A measure on X is a function µ : M ! [0,1] where
M ⇢ P (X) is some collection of subsets (whose properties are to be determined) satisfying:

(1) µ(;) = 0
(2) µ(

`
En) =

P
µ(En) when (En) is a collection of mutually disjoint subsets in M,

where
`

means disjoint union.

We now would like to discuss what kind of properties the subsetM ⇢ P (X) should satisfy.

• ;, X 2 M (M is nonempty)
• closed under disjoint unions (finite? countable?)

Example 2.0.2 (Counting measure). Let M = P (X) and µ(E) := |E|.

Example 2.0.3 (Lebesgue measure). There is a measure � on some M ⇢ P (R) such that

• (normalized) �([0, 1)) = 1, and
• (translation invariant) �(E + r) = �(E) for all E 2 M and r 2 R.

For this �, we cannot have M = P (R)! Indeed, define an equivalence relation on [0, 1) by

x ⇠ y () x� y 2 Q.

Using the Axiom of Choice, pick one representative from each equivalence class, and call this
set E. For q 2 E \ [0, 1), define

Eq := {x+ q|x 2 E \ [0, 1� q)} [ {x+ q � 1|x 2 [1� q, 1)} .

Here is a cartoon of the basic idea:
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Observe that there is some countable subset Q ⇢ Q such that [0, 1) =
`

q2Q Eq.
Now if M = P (X), then we’d have

1 = �([0, 1)) = �
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q2Q

Eq

!
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q2Q

�(Eq) =
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q2Q

�(E) = �(E)
X

1 2 {0,1},

a contradiction.

Exercise 2.0.4. Let X be a nonempty set and E ⇢ P (X) any collection of subsets which
is closed under finite unions and intersections. Suppose ⌫ : P (X) ! [0,1] be a function
which satisfies

• (finite additivity) for any disjoint sets E1, . . . , En 2 P (X), ⌫

 
na

i=1

Ei

!
=

nX

i=1

⌫(Ei).

Prove that ⌫ also has the following properties.

(1) (monotonicity) Show that if A,B 2 E with A ⇢ B, then ⌫(A)  ⌫(B).
(2) (finite subadditivity) Show that for any (not necessarily disjoint) sets E1, . . . , En 2 E ,

⌫ (
S

n

i=1
Ei) 

P
n

i=1
⌫(Ei).

(3) Show that for all A,B 2 E , ⌫(A) + ⌫(B) = ⌫(A [B) + ⌫(A \ B).
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Exercise 2.0.5. Suppose E ⇢ P (R) is any collection of subsets which contains the bounded
open intervals and is closed under countable unions. Let ⌫ : E ! [0,1] be a function which
satisfies

• (monotonicity) If E,F 2 E with E ⇢ F , then ⌫(E)  ⌫(F ).
• (subadditivty) for any sequence of sets (En)1n=1

⇢ E , ⌫(
S1

n=1
En) 

P1
n=1

⌫(En).
• (extends length of open intervals) for all a < b in R, we have ⌫((a, b)) = b� a.

Show that if E 2 E is countable, then ⌫(E) = 0.

2.1. �-algebras.

Definition 2.1.1. A non-empty subset M ⇢ P (X) is called an algebra if

(1) M is closed under finite unions, and
(2) M is closed under complements.

Observe that every algebra

• contains X = E q E
c for some E 2 M, and thus ; = X

c.
• is closed under finite intersections

k\

1
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En

!cc

=
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E
c

n

!c

If in addition an algebra M is closed under countable unions, then we call M a �-algebra.
Here, the ‘�’ signifies ‘countable’. We call the elements of a �-algebra measurable sets.

Examples 2.1.2. Lex X be a set.

(1) {;, X} is the trivial �-algebra.
(2) P (X) is the discrete �-algebra.

Exercise 2.1.3. Define M := {E ⇢ X|E or Ec is countable}. Show that M is a �-algebra.

Exercise 2.1.4. Let X be a set. A ring R ⇢ P (X) is a collection of subsets of X which is
closed under unions and set di↵erences. That is, E,F 2 R implies E[F 2 R and E\F 2 R.

(1) Let R ⇢ P (X) be a ring.
(a) Prove that ; 2 R.
(b) Show that E,F 2 R implies the symmetric di↵erence E4F 2 R.
(c) Show that E,F 2 R implies E \ F 2 R.

(2) Show that any ring R ⇢ P (X) is an algebraic ring where the addition is symmetric
di↵erence and multiplication is intersection.
(a) What is 0R?
(b) Show that this algebraic ring has characteristic 2, i.e., E+E = 0R for all E 2 R.
(c) When is the algebraic ring R unital? In this case, what is 1R?
(d) Determine the relationship (if any) between an algebra of sets in the sense of

measure theory and an algebra in the algebraic sense.
(e) Sometimes an algebra in measure theory is called a field. Why?
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Trick. Suppose (En) is a sequence of subsets of X. Inductively define

F1 := E1 Fk := Ek \

k�1[

1

En = Ek \

 
k�1[

1

En

!c

. (q)

Then (Fn) is a sequence of pairwise disjoint subsets of X such that
S

En =
`

Fn.
Moreover, observe that if (En) ⇢ M for some algebra M, then (Fn) ⇢ M.

Definition 2.1.5. Observe that if M,N are �-algebras, then so is M \ N . This means
if E ⇢ P (X), there is a smallest �-algebra M(E) which contains E called the �-algebra
generated by E .

Exercise 2.1.6. Let A ⇢ P (X) be an algebra. Show that the following are equivalent:

(1) A is a �-algebra,
(2) A is closed under countable disjoint unions, and
(3) A is closed under countable increasing unions.

Fact 2.1.7. Suppose E ,F ⇢ P (X) with E ⇢ M(F). Then M(E) ⇢ M(F).

Example 2.1.8. Suppose (X, T ) is a topological space. We call BT := M(T ) the Borel
�-algebra.

Remark 2.1.9.

• A countable intersection of open sets is called a G� set.
• A countable union of closed sets is called an F� set.
• A countable union of G� sets is called a G�� set.
• A countable intersection of F� sets is called an F�� set.

And so on and so forth. Observe that BT contains all these types of sets, so BT is much
larger than T .

Proposition 2.1.10. The Borel �-algebra BR on R generated by the usual topology (which
is induced by the metric ⇢(x, y) = |x � y|) is also generated by the following collections of
sets:

(BR1) open intervals (a, b)
(BR2) closed intervals [a, b]
(BR3) half-open intervals (a, b]
(BR4) half-open intervals [a, b)
(BR5) open rays (a,1) and (�1, a)
(BR6) closed rays [a,1) and (�1, a]

Proof. First, observe that each of (BR1), (BR2), (BR5), (BR6) are all open or closed, so they
lie in BR. Also, (a, b] = (a,1) \ (b,1)c, so each of the sets (BR3) are contained in BR.
Similarly for (BR4). Hence each of (BR1)–(BR6) lie in BR, so their generated �-algebras are
contained in BR by Fact 2.1.7.

For the other directions, observe all open sets in R are countable unions of open intervals.
(You proved this on HW1.) Hence BR ⇢ M((BR1)) by Fact 2.1.7. For (j) = (BR2)–(BR6),
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one shows that (BR1) is contained in M((j)):

(a, b) =
[

a+
1

n
, b�

1

n

�
(BR2)

=
[✓

a, b�
1

n

�
(BR3)

=
[

a+
1

n
, b

◆
(BR4)

= (a,1) \ (�1, b) (BR5)

= ((�1, a] [ [b,1))c . (BR6)

Again by Fact 2.1.7, we have BR ⇢ M((BR1)) ⇢ M((j)) ⇢ BR. ⇤

Exercise 2.1.11. Define the h-intervals

H := {;} [ {(�a, b]|�1  a < b < 1} [ {(a,1)|a 2 R} .

Let A be the collection of finite disjoint unions of elements of H. Show directly from the
definitions that A is an algebra. Deduce that the �-algebra M(A) generated by A is equal
to the Borel �-algebra BR.

Exercise 2.1.12. Denote by R the extended real numbers [�1,1] with its usual topology.
Prove the following assertions.

(1) The Borel �-algebra on R is generated by the open rays (a,1] for a 2 R.
(2) If E ⇢ P (R) generates the Borel �-algebra on R, then E [{{1}} generates the Borel

�-algebra on R.

Exercise 2.1.13. LetX be a set. A ⇡-system onX is a collection of subsets ⇧ ⇢ P (X) which
is closed under finite intersections. A �-system on X is a collection of subsets ⇤ ⇢ P (X)
such that

• X 2 ⇤
• ⇤ is closed under taking complements, and
• for every sequence of disjoint subsets (Ei) in ⇤,

S
Ei 2 ⇤.

(1) Show that M is a �-algebra if and only if M is both a ⇡-system and a �-system.
(2) Suppose ⇤ is a �-system. Show that for every E 2 ⇤, the set

⇤(E) := {F ⇢ X|F \ E 2 ⇤}

is also a ⇤-system.

Exercise 2.1.14 (⇡ � � Theorem). Let ⇧ be a ⇡-system, let ⇤ be the smallest �-system
containing ⇧, and let M be the smallest �-algebra containing ⇧.

(1) Show that ⇤ ✓ M.
(2) Show that for every E 2 ⇧, ⇧ ⇢ ⇤(E) where ⇤(E) was defined in Exercise 2.1.13

above. Deduce that ⇤ ⇢ ⇤(E) for every E 2 ⇧.
(3) Show that ⇧ ⇢ ⇤(F ) for every F 2 ⇤. Deduce that ⇤ ⇢ ⇤(F ) for every F 2 ⇤.
(4) Deduce that ⇤ is a �-algebra, and thus M = ⇤.
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2.2. Measures.

Definition 2.2.1. A set X together with a �-algebra M is called a measurable space. A
measure on (X,M) is a function µ : M ! [0,1] such that

• (vacuum) µ(;) = 0, and
• (countable additivity) for every sequence of disjoint sets (En) ⇢ M, µ(

`
En) =P

µ(En).

Observe that countable additivity implies finite additivity by taking all but finitely many of
the En to be ;.

We call the triple (X,M, µ) a measure space. A measure space is called:

• finite if µ(X) < 1.
• �-finite if X =

S
En with (En) ⇢ M a sequence of measurable sets with µ(En) < 1.

By disjointification (q), we may take such (En) to be disjoint.
• semifinite if for every E 2 M, µ(E) = 1, there is an F ⇢ E with F 2 M such that
0 < µ(F ) < 1.

• complete if E 2 M with µ(E) = 0 (E is µ-null) and F ⇢ E implies F 2 M.
Note:We will see that µ(F ) = 0 by monotonicity below in (µ1) of Facts 2.2.4.

Remark 2.2.2. In probability theory, a measure space is typically denoted (⌦,F , P ), and
P (⌦) = 1.

Examples 2.2.3.

(1) Counting measure on P (X)
(2) Pick x0 2 X, and define µx0 on P (X) by

µx0(E) = �x02E :=

(
0 if x0 /2 E

1 if x0 2 E.

We call µx0 the point mass or Dirac measure at x0.
(3) Pick any f : X ! [0,1]. On P (X), define

µf (E) :=
X

x2E

f(x) := sup
X

x2F
F finite

f(x) = lim
finite F

ordered by inclusion

X

x2F

f(x)

When f = 1, µf is counting measure. When f = �x=x0 , we get the Dirac measure.
(4) On the �-algebra of countable or co-countable sets, define

µ(E) =

(
0 if E is countable

1 if E is co-countable.

Facts 2.2.4 (Basic properties of measures). Let (X,M, µ) be a measure space.

(µ1) (Monotonicity) If E,F 2 M, then F ⇢ E implies µ(F )  µ(E). In particular, if
µ(E) = 0, then µ(F ) = 0.

Proof. µ(E) = µ(F q (E \ F )) = µ(F ) + µ(E \ F ), and µ(E \ F ) � 0. ⇤
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(µ2) (Subadditivity) If (En) ⇢ M, then µ (
S

En) 
P

µ(En).

Proof. Use disjointification (q). That is, setting F1 := E1 and Fk := Ek \S
k�1

1
En, we have Fk ⇢ Ek for all k, and

µ

⇣[
En

⌘
= µ

⇣a
Fn

⌘
=
X

µ(Fn) 
X

µ(En). ⇤

(µ3) (Continuity from below) If E1 ⇢ E2 ⇢ E3 ⇢ · · · is an increasing sequence of elements
of M, then

µ

⇣[
En

⌘
= lim

n!1
µ(En).

Proof. Set E0 = ;. In this setting, disjointification (q) is easy; just set Fn :=
En \ En�1 for all n � 1. Then

µ

⇣[
En

⌘
= µ

⇣a
Fn

⌘
=
X

µ(Fn) =
X

µ(En \ En�1)

= lim
k!1

kX
µ(En \ En�1) = lim

k!1
µ(Ek). ⇤

(µ4) (Continuity from above) If E1 � E2 � E3 � · · · is a decreasing sequence of elements
of M with µ(Ek) < 1 for some k 2 N, then

µ

⇣\
En

⌘
= lim

n!1
µ(En).

Proof. We may assume µ(E1) < 1. Set F1 := E1 and Fn := E1 \ En, so that
µ(E1) = µ(En) + µ(Fn) for all n � 1. Observe that
[

Fn =
[

E1 \ E
c

n
= E1 \

⇣[
E

c

n

⌘
= E1 \

⇣\
En

⌘c
= E1 \

⇣\
En

⌘
.

Hence

µ

⇣\
En

⌘
= µ(E1)� µ

⇣[
Fn

⌘
=
(3)

µ(E1)� lim
n!1

µ(Fn)

= µ(E1)� lim
n!1

(µ(E1)� µ(En)) = lim
n!1

µ(En). ⇤

Exercise 2.2.5. Suppose (X,M, µ) is a measure space and (En) ⇢ M. Recall that

lim inf En =
[

k

\

n�k

En and lim supEn =
\

k

[

n�k

En

(1) Prove that µ(lim inf En)  lim inf µ(En).
(2) Suppose µ is finite. Prove that µ(lim supEn) � lim supµ(En).
(3) Does (2) above hold if µ is not finite? Give a proof or counterexample.

Theorem 2.2.6. Suppose (X,M, µ) is a measure space. Define

M := {E [ F |E 2 M and F ⇢ N for some N 2 M with µ(N) = 0} .

(1) M is a �-algebra containing M.
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(2) There is a unique complete measure µ on M such that µ|M = µ. We call µ the
completion of µ.

Proof.
M a �-algebra:

(0) Observe that ; 2 M ⇢ M, so M 6= ;.
(1) If (En [ Fn) ⇢ M, then

[
En [ Fn =

⇣[
En

⌘

| {z }
2M

[

⇣[
Fn

⌘

| {z }
⇢
S

Nn

.

Observe that each Fn ⇢ Nn 2 M with µ(Nn) = 0, so by countable subadditivity, we
have µ (

S
Nn) 

P
µ(Nn) = 0. Hence M is closed under countable unions.

(2) Suppose E,N 2 M with F ⇢ N µ-null. Observe that

(E [ F )c = (Ec
\ F

c) = (Ec
\ F

c) \X = (Ec
\ F

c) \ (N c
qN)

= (Ec
\ F

c
\N

c

| {z }
=Nc2M

)q (Ec
\ F

c
\N) = (Ec

\N
c)| {z }

2M

q (Ec
\ F

c
\N)| {z }

⇢N

.

Hence M is closed under taking complements.

µ unique: If µ|M = µ, then for all E [ F 2 M with F ⇢ N µ-null, we have

µ(E) = µ(E)  µ(E [ F )  µ(E) + µ(F )  µ(E) + µ(N) = µ(E) + µ(N) = µ(E).

Hence µ(E [ F ) = µ(E).
µ exists: First, we show that µ(E [ F ) := µ(E) is a well-defined function on M. Suppose
E1 [ F1 = E2 [ F2 with Fi ⇢ Ni µ-null for i = 1, 2. Observe that

E1 ⇢ E1[F1 = E2[F2 ⇢ E2[N2 =) µ(E1)  µ(E2[N2)  µ(E2)+µ(N2) = µ(E2).

Swapping the roles of E1, E2, F1, F2, and N1, N2, we have µ(E2)  µ(E1).
Next, we will show µ is a measure on M:

(0) (Vacuum) Observe that µ(;) = µ(;) = 0.
(1) (�-additivity) Suppose (En [ Fn) ⇢ M is a sequence of disjoint sets with Fn ⇢ Nn

µ-null for each n 2 N. Then (En) and (Fn) are disjoint, and
`

Fn ⇢
`

Nn is µ-null.
Hence

µ

⇣a
En [ Fn

⌘
= µ

⇣a
En [

a
Fn

⌘
= µ

⇣a
En

⌘
=
X

µ(En) =
X

µ(En [ Fn).

µ complete: First, note that if F ⇢ N with N µ-null, then F = ; [ F 2 M. Suppose
G ⇢ E [ F where F ⇢ N is µ-null, and µ(E) = 0. Then observe G ⇢ E [ N 2 M, and
µ(E [N)  µ(E) + µ(N) = 0. Hence G 2 M. ⇤
Exercise 2.2.7. Let ⇧ be a ⇡-system, and let M be the smallest �-algebra containing ⇧.
Suppose µ, ⌫ are two measures on M whose restrictions to ⇧ agree.

(1) Suppose that µ, ⌫ are finite and µ(X) = ⌫(X). Show µ = ⌫.
Hint: Consider ⇤ := {E 2 M|⌫(E) = µ(E)}.

(2) Suppose that X =
`1

j=1
Xj with (Xj) ⇢ ⇧ and µ(Xj) = ⌫(Xj) < 1 for all j 2 N.

(Observe that µ and ⌫ are �-finite.) Show µ = ⌫.
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Exercise 2.2.8 (Folland §1.3, #14 and #15). Given a measure µ on (X,M), define ⌫ on
M by

⌫(E) := sup {µ(F )|F ⇢ E and µ(F ) < 1} .

(1) Show that ⌫ is a semifinite measure. We call it the semifinite part of µ.
(2) Suppose E 2 M with ⌫(E) = 1. Show that for any n > 0, there is an F ⇢ E such

that n < ⌫(F ) < 1.
This is exactly Folland §1.3, #14 applied to ⌫.

(3) Show that if µ is semifinite, then µ = ⌫.
(4) Show there is a measure ⇢ on M (which is generally not unique) which assumes only

the values 0 and 1 such that µ = ⌫ + ⇢.

Exercise 2.2.9. Suppose µ, ⌫ are two measures on a measurable space (X,M). We say µ

is absolutely continuous with respect to ⌫ if ⌫(E) = 0 implies µ(E) = 0. Prove that when µ

is finite, the following are equivalent:

(1) µ is absolutely continuous with respect to ⌫.
(2) For every " > 0, there is a � > 0 such that E 2 M with ⌫(E) < � implies µ(E) < ".

Which direction(s) still hold if µ is infinite?

2.3. Outer measures.

Definition 2.3.1. Let X be a set. A function µ
⇤ : P (X) ! [0,1] is called an outer measure

if

(0) (vacuum) µ⇤(;) = 0.
(1) (monotonicity) E ⇢ F implies µ⇤(E)  µ

⇤(F ).
(2) (countable subadditivity) µ⇤ (

S
En) 

P
µ
⇤(En) for every sequence (En).

Exercise 2.3.2. Suppose (µ⇤
i
)i2I is a family of outer measures on X. Show that

µ
⇤(E) := sup

i2I
µ
⇤
i
(E)

is an outer measure on X.

Proposition 2.3.3. Let E ⇢ P (X) be any collection of subsets of X satisfying

• ; 2 E, and
• for all E ⇢ X, there is a sequence (En) ⇢ E such that E ⇢

S
En. (Observe that if

X 2 E, this condition is automatic.)

Suppose ⇢ : E ! [0,1] is any function such that ⇢(;) = 0. Then

µ
⇤(E) := inf

nX
⇢(En)

���(En) ⇢ E with E ⇢

[
En

o
(2.3.4)

is an outer measure, called the outer measure induced by (E , ⇢).

Proof.

(0) Setting En = ; for all n gives µ⇤(;) = 0.
(1) Observe that whenever F ⇢

S
Fn with Fn 2 E for all n, then E ⇢ F ⇢

S
Fn. Hence

the inf for E is less than or equal to the inf for F .
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(2) We’ll use the following two tricks:

Trick.
P1

1

"

2n
= "

Trick. r  s if and only if for all " > 0, r  s+ ".

Suppose (En) is a sequence of sets and let " > 0. For each n, there is a cover (F n

k
)k

such that En ⇢
S

k
F

n

k
such that
X

k

⇢(F n

k
)  µ

⇤(En) +
"

2n
.

Then
S

En ⇢
S

n

S
k
F

n

k
, so

µ
⇤
⇣[

En

⌘


X

n

X

k

⇢(F n

k
) 

X

n

µ
⇤(En) +

"

2n
=
X

µ
⇤(En) +

X "

2n
=
X

µ
⇤(En) + ".

Since " > 0 was arbitrary, µ⇤ (
S
En) 

P
µ
⇤(En). ⇤

Exercise 2.3.5. Show that the second bullet point in Proposition 2.3.3 can be removed if
we add the convention that inf ; = 1.

Example 2.3.6. One can get an outer measure on P (X) by taking any measure µ on a
�-algebra M and defining its induced outer measure µ

⇤ as in (2.3.4).

We get a measure µ from an outer measure µ
⇤ by restricting to the �-algebra M

⇤ of
µ
⇤-measurable sets.

Definition 2.3.7. Given an outer measure µ
⇤ on P (X), we define the collection of µ

⇤-
measurable sets

M
⇤ := {E ⇢ X|µ

⇤(E \ F ) + µ
⇤(Ec

\ F ) = µ
⇤(F ) for all F ⇢ X} .

That is, E is µ⇤-measurable if it ‘splits’ every other set nicely with respect to µ
⇤.

Remarks 2.3.8.

(1) Clearly µ
⇤(F )  µ

⇤(E \ F ) + µ
⇤(Ec

\ F ). So

E 2 M
⇤
() µ

⇤(F ) � µ
⇤(E \ F ) + µ

⇤(Ec
\ F ) 8F ⇢ X. (2.3.9)

(2) All µ⇤-null sets are in M
⇤. That is, if N ⇢ X with µ

⇤(N) = 0, then for all F ⇢ X

µ
⇤(F \N| {z }

⇢N

) + µ
⇤(F \N) = µ

⇤(F \N)  µ
⇤(F ).

Lemma 2.3.10. For G ⇢ X and E,F 2 M
⇤, define

G00 := G \ (E [ F )

G10 := G \ (E \ F )

G01 := G \ (F \ E)

G11 := G \ E \ F

E

F

G11

G10

G01

G00

.
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Then we have

µ
⇤(G) = µ

⇤(G00) + µ
⇤(G01) + µ

⇤(G10) + µ
⇤(G11). (2.3.11)

Proof. Since E 2 M
⇤,

µ
⇤(G) = µ

⇤(G \ E) + µ
⇤(G \ E) = µ

⇤(G11 [G10) + µ
⇤(G01 [G00).

Since F 2 M
⇤,

µ
⇤(G11 [G10) = µ

⇤(G11 [G10 \ F ) + µ
⇤(G11 [G10 \ F ) = µ

⇤(G11) + µ
⇤(G10).

Similarly, µ⇤(G01 [G00) = µ
⇤(G01) + µ

⇤(G00). The result follows. ⇤

Theorem 2.3.12 (Carathéodory). Let µ
⇤ be an outer measure on X. The collection of

µ
⇤-measurable sets M

⇤ is a �-algebra, and µ := µ
⇤
|M⇤ is a (complete) measure.

Proof.
Step 1: M⇤ is an algebra.

(0) Clearly ; 2 M
⇤ since it is µ⇤-null by Remarks 2.3.8(2).

(1) If E,F 2 M
⇤, then for all G ⇢ X, (2.3.11) holds above. By applying (2.3.11) to

G10 [G11 [G01, we have

µ
⇤((E [ F ) \G) = µ

⇤(G10 [G11 [G01) =
(2.3.11)

µ
⇤(G10) + µ

⇤(G11) + µ
⇤(G01).

Moreover, µ⇤((E [ F )c \G) = µ
⇤(G00). Again by (2.3.11), we have

µ
⇤((E[F )\G)+µ

⇤((E[F )c\G) = (µ⇤(G10) + µ
⇤(G11) + µ

⇤(G01))+µ
⇤(G00) =

(2.3.11)

µ
⇤(G).

(2) Observe that the Carathéodory Criterion (2.3.9) is preserved under taking comple-
ments.

Step 2: M⇤ is a �-algebra.
Suppose (En) ⇢ M

⇤ is a sequence of disjoint sets, and set E :=
`

En. By Step 1, for all
N 2 N,

`
N
En 2 M

⇤. Let F ⇢ X, and define G := F \
`

N
En. Then since EN 2 M

⇤, we
have

µ
⇤

 
F \

Na
En

!
= µ

⇤(G) = µ
⇤(Ec

N
\G) + µ

⇤(EN \G) = µ
⇤

 
F \

N�1a
En

!
+ µ

⇤(F \ EN).

By iterating as En 2 M
⇤ for all n 2 N, we have

µ
⇤

 
F \

Na
En

!
=

NX
µ
⇤(F \ En) 8N 2 N.

It follows that for all N 2 N,

µ
⇤(F ) = µ

⇤

 
F \

Na
En

!
+ µ

⇤

0

BB@F \

Na
En

| {z }
�F\E

1

CCA �

NX
µ
⇤(F \ En) + µ

⇤(F \ E).
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Taking limits in [0,1] as N ! 1, we have

µ
⇤(F ) �

1X
µ
⇤(F \ En) + µ

⇤(F \ E)

� µ
⇤
⇣a

F \ En

⌘
+ µ

⇤(F \ E)

= µ
⇤(F \ E) + µ

⇤(F \ E).

(2.3.13)

Thus E =
`

En 2 M
⇤.

Step 3: µ = µ
⇤
|M⇤ is a measure.

It remains to show µ is �-additive on M
⇤. Suppose (En) ⇢ M

⇤ is a sequence of disjoint
sets as in Step 2. Taking F = E in (2.3.13) above shows us

µ
⇤(E) �

X
µ
⇤(En) � µ

⇤(E),

so equality holds. ⇤

2.4. Pre-measures. In the last section, we gave a prescription for constructing a complete
measure on X. Start with any collection of subsets E ⇢ P (X) with ; 2 E such that
for every E ⇢ X, there is some sequence (En) ⇢ E with E ⇢

S
En. Take any function

⇢ : E ! [0,1] such that ⇢(;) = 0. We get an induced outer measure µ
⇤ by (2.3.4). Taking

the µ
⇤-measurable sets M⇤, we get a �-algebra, and µ := µ

⇤
|M⇤ is a complete measure.

However, we get little control overM⇤ and µ. Consider the following two crucial questions:

(1) When is E ⇢ M
⇤?

(2) In this case, when does µ|E = ⇢?
Note: we always have µ

⇤
 ⇢, since every E 2 E is covered by itself. But there might

be some cover E ⇢
S

En from E such that
P

⇢(En) < ⇢(E).

A su�cient condition to ensure a positive answer to both of these questions is that E is an
algebra, and ⇢ is a premeasure.

Definition 2.4.1. Let A ⇢ P (X) be an algebra. A function µ0 : A ! [0,1] is called a
premeasure if

(0) (vacuum) µ0(;) = 0, and
(1) (countable additivity) for every sequence (En) ⇢ A of disjoint sets such that

`
En 2

A, we have µ0 (
`

En) =
P

µ0(En).

The adjectives finite, �-finite, and semi-finite for premeasures are defined analogously to
those for measures.

Facts 2.4.2. The following are basic properties of a premeasure µ0 on an algebra A ⇢ P (X).

(pre-µ1) (finite additivity) If E1, . . . , En 2 A are disjoint, then µ0 (
`

En) =
P

µ0(En).

Proof. If E1, . . . , En 2 A are disjoint sets, then observe that
`

n

i=1
Ei 2 A. So

by setting Ei = ; for all i > n, we have

µ0

 
na

i=1

Ei

!
= µ0

⇣a
Ei

⌘
=
X

µ0(Ei) =
nX

i=1

µ0(Ei). ⇤
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(pre-µ2) (monotonicity) If E,F 2 A with F ⇢ E, then µ0(F )  µ0(E).

Proof. Immediate by (pre-µ1) since E = F q (E \ F ). ⇤

(pre-µ3) (countable subadditivity) If (En) ⇢ A such that
S

En 2 A, then µ0 (
S

En) P
µ0(En).

Proof. We use disjointification (q). Set F1 := E1 and inductively define Fn :=
En \

S
n�1

i=1
Ei. Then Fn 2 A for all n, and

`
Fn =

S
En. Thus

µ0

⇣[
En

⌘
= µ0

⇣a
Fn

⌘
=
X

µ0(Fn) 
(pre-µ2)

X
µ0(En). ⇤

(pre-µ4) (monotone countable subadditivity) Suppose E 2 A and (En) ⇢ A such that
E ⇢

S
En. Then µ0(E) 

P
µ0(En).

Warning: This does not follow immediately by monotonicity and countable subaddi-
tivity, since we are not assured that

S
En 2 A!

Proof. Let F1 := E \ E1 and inductively set Fn := E \
�
En \

S
n�1

i=1
Ei

�
. Then

Fn 2 A for all n, and
`

Fn = E 2 A. Hence

µ0(E) = µ0

⇣a
Fn

⌘
=
X

µ0(Fn) 
(pre-µ2)

X
µ0(En). ⇤

Remark 2.4.3. Recall that if µ0 is only known to be finitely additive and not necessarily
countably additive, then µ0 still satisfies monotonicity and finite subadditivity (cf. Exercise
2.0.4).

Lemma 2.4.4. Suppose µ0 is a premeasure on A. Let µ⇤ be the induced outer measure given
by (2.3.4).

(1) µ
⇤
|A = µ0, and

(2) A ⇢ M
⇤.

Proof.
(1) Suppose E 2 A.

µ
⇤
 µ0: Setting E1 := E and En := ; for all n > 1, µ⇤(E) 

P
µ0(En) = µ0(E).

µ
⇤
� µ0: Let " > 0. By definition of µ⇤ as an infimum, there is a sequence (En) ⇢ A such that

E ⇢
S

En and
P

µ0(En)  µ
⇤(E) + ". But by monotone countable subadditivity,

µ0(E) 
P

µ0(En), and thus µ0(E)  µ
⇤(E) + ". Since " > 0 was arbitrary, µ0  µ

⇤

on A.

(2) Suppose E 2 A and F ⇢ X and " > 0. Pick (Fn) ⇢ A such that F ⇢
S

Fn andP
µ0(Fn)  µ

⇤(F ) + ". Since µ0 is �-additive on A,

µ
⇤(F ) + " �

X
µ0(Fn) =

X
µ0(Fn \ E) + µ0(Fn \ E

c)

=
X

µ0(Fn \ E) +
X

µ0(Fn \ E
c)

� µ
⇤(F \ E) + µ

⇤(F \ E
c).
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Since " > 0 was arbitrary, we conclude that µ
⇤(F ) � µ

⇤(F \ E) + µ
⇤(F \ E

c), and thus
E 2 M

⇤. ⇤

Construction 2.4.5. Starting with a premeasure µ0 on an algebra A, we get a �-algebra
M

⇤ which contains A, and a complete measure µ := µ
⇤
|M⇤ such that µ|A = µ0.

Remark 2.4.6. Observe that by Fact 2.1.7, M
⇤ contains M := M(A), the �-algebra

generated by A, and µ|M is a (possibly non-complete) measure.

Theorem 2.4.7. Suppose µ0 is a premeasure on an algebra A, and µ is the measure on
M

⇤ from Construction 2.4.5. If ⌫ is a measure on M = M(A) such that ⌫|A = µ0, then
⌫(E)  µ(E) for all E 2 M, with equality when µ(E) < 1.

Proof. Suppose E 2 M.
Step 1: ⌫(E)  µ(E).

Since E 2 M, for all sequences (En) ⇢ A such that E ⇢
S

En,

⌫(E) 
X

⌫(En) =
X

µ0(En).

Hence ⌫(E)  inf {
P

µ0(En)|E ⇢
S
En} = µ

⇤(E) = µ(E).

Step 2: When µ(E) < 1, we show µ(E)  ⌫(E), and thus µ(E) = ⌫(E).

Let " > 0. Then there exists a sequence (En) ⇢ A such that E ⇢
S

En and

µ

⇣[
En

⌘


X
µ0(En)  µ(E) + " < 1.

Since E ⇢
S

En and µ(E) < 1, we have

µ

⇣⇣[
En

⌘
\ E

⌘
= µ

⇣[
En

⌘
� µ(E)  ". (2.4.8)

Now by continuity from below (µ3) for both µ and ⌫, we have

µ

⇣[
En

⌘
= lim

N!1
µ

 
N[

En

!
= lim

N!1
µ0

 
N[

En

!

= lim
N!1

⌫

 
N[

En

!
= ⌫

⇣[
En

⌘
.

(2.4.9)

Putting these two equations together, we have

µ(E)  µ

⇣[
En

⌘
=

(2.4.9)

⌫

⇣[
En

⌘
= ⌫(E) + ⌫

⇣⇣[
En

⌘
\ E

⌘

 ⌫(E) + µ

⇣⇣[
En

⌘
\ E

⌘


(2.4.8)

⌫(E) + "

Since " > 0 was arbitrary, µ(E)  ⌫(E).

This concludes the proof. ⇤
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Corollary 2.4.10. Suppose µ0 is a premeasure on an algebra A, and µ is the measure
on M

⇤ from Construction 2.4.5. If µ0 is �-finite, then µ is the unique extension of µ0 to
M = M(A).

Proof. Recall that µ0 is �-finite if there exists a sequence (En) ⇢ A such that
S
En = X

and µ0(En) < 1 for all n. Observe that by disjointification (q), we may assume that the
En are disjoint.

Now for any other ⌫ extending µ0 and E 2 M, we have

µ(E) = µ

⇣a
E \ En

⌘
=
X

µ(E \ En)| {z }
<1

=
X

⌫(E \ En) = ⌫

⇣a
E \ En

⌘
= ⌫(E). ⇤

Exercise 2.4.11. Suppose A is an algebra on X, µ0 a premeasure on A, and µ
⇤ the induced

outer measure on P (X) given by (2.3.4). Show that for every E ⇢ X, there is a µ
⇤-

measurable set F � E such that µ⇤(F ) = µ
⇤(E).

Exercise 2.4.12 (Adapted from Folland §1.4, #18 and #22). Suppose A is an algebra,
and let M be the �-algebra generated by A. Let µ0 be a �-finite premeasure on A, µ⇤ the
induced outer measure given by (2.3.4), and M

⇤ the �-algebra of µ⇤-measurable sets. Show
that the following are equivalent.

(1) E 2 M
⇤

(2) E = F \N where F 2 M and µ
⇤(N) = 0.

(3) E = F [N where F 2 M and µ
⇤(N) = 0.

Deduce that if µ is a �-finite measure on M, then µ
⇤
|M⇤ on M

⇤ is the completion of µ on
M.

Exercise 2.4.13 (Folland §1.4, #20). Let µ
⇤ be an outer measure on P (X), M⇤ the �-

algebra of µ⇤-measurable sets, and µ := µ
⇤
|M⇤ . Let µ

+ be the outer measure on P (X)
induced by the (pre)measure µ on the (�-)algebra M

⇤.

(1) Show that µ
⇤(E)  µ

+(E) for all E ⇢ X with equality if and only if there is an
F 2 M

⇤ with E ⇢ F and µ
⇤(E) = µ

⇤(F ).
(2) Show that if µ⇤ was induced from a premeasure µ0 on an algebra A, then µ

⇤ = µ
+.

(3) Construct an outer measure µ
⇤ on the two point set X = {0, 1} such that µ⇤

6= µ
+.

Exercise 2.4.14. Let X be a set, A an algebra on X, µ0 a premeasure on A, and µ
⇤

the induced outer measure on P (X) given by (2.3.4). Suppose that (En) is an increasing
sequence of subsets of X, i.e., E1 ⇢ E2 ⇢ E3 ⇢ · · · . Prove that

µ
⇤

 1[

n=1

En

!
= lim

n!1
µ
⇤(En).

Exercise 2.4.15 (Sarason). Suppose µ0 is a finite premeasure on the algebra A ⇢ P (X),
and let µ⇤ : P (X) ! [0,1] be the outer measure induced by µ0. Prove that the following
are equivalent for E ⇢ X.

(1) E 2 M
⇤, the µ

⇤-measurable sets.
(2) µ

⇤(E) + µ
⇤(X \ E) = µ(X).

Hint: Use Exercise 2.4.12.

2.5. Lebesgue-Stieltjes measures on R.
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2.5.1. Construction of Lebesgue-Stieltjes measures. Recall from Exercise 2.1.11 that we de-
fine the collection of h-intervals by

H := {;} [ {(a, b]|�1  a < b < 1} [ {(a,1)|a 2 R} .
Let A = A(H) be the collection of finite disjoint unions of elements of H. By Exercise 2.1.11,
A is an algebra, and the �-algebra generated by A is M(A) = BR, the Borel �-algebra. Our
goal is to construct a nice class of premeasures on A.

Construction 2.5.1. Let F : R ! R be any function which is

• (non-decreasing) r  s implies F (r)  F (s), and
• (right continuous) if rn & a, then F (rn) & F (a)

Extend F to a function R = [�1,1] ! R by

F (�1) := lim
a!�1

F (a) and F (1) := lim
b!1

F (b).

Define µ0 : H ! [0,1] by

• µ0(;) := 0,
• µ0((a, b]) := F (b)� F (a) for all a � �1, and
• µ0((a,1)) := F (1)� F (a) for all a � �1.

In (LS4) below, we extend µ0 : H ! [0,1] to a well-defined function A = A(H) ! [0,1].
In Theorem 2.5.7 below, we prove this extension to A is a premeasure. By Carathéodory’s
outer measure construction, we get an outer measure µ⇤

F
on (R, P (R)) by (2.3.4). By taking

the �-algebra of µ⇤
F
-measurable sets MF := M

⇤, we get a complete measure µF := µ
⇤
F
|MF .

Definition 2.5.2. We call µF the Lebesgue-Stieltjes measure associated to F .

Remark 2.5.3. Since µF is �-finite by construction, it follows from Exercise 2.4.12 that
MF is the completion BR of the Borel �-algebra for µF |BR . Thus, sets in MF are unions of
Borel sets and subsets of Borel sets which are µF -null.

In the remainder of this section, we prove that µ0 extends to a premeasure on A = A(H).

Facts 2.5.4. We have the following facts about the function µ0.

(LS1) Splitting (a,1) = (a, b]q (b,1), we have µ0 ((a,1)) = µ0((a, b]) + µ0((b,1)).
(LS2) If (a, b] =

`
n

i=1
(ai, bi], then µ0 ((a, b]) =

P
n

i=1
µ0((ai, bi]).

Proof. Re-indexing, we may assume a = a1 < b1 = a2 < b2 = a3 < · · · < bn.
Then

µ0 ((a, b]) = F (b)� F (a) =
nX

i=1

F (bi)� F (ai) =
nX

i=1

µ0((ai, bi]). ⇤

(LS3) If E1, . . . , En 2 H are disjoint and F 2 H such that F ⇢
`

n

i=1
Ei, then µ0(F ) =P

n

i=1
µ0(F \ Ei).

Proof. Removing elements of (Ei)ni=1
if necessary, we may assume that F \Ei 6=

; for all i = 1, . . . , n. This means that F\Ei 2 H for all i, and F =
`

n

i=1
F\Ei.

The result now follows by (LS1) and (LS2). ⇤
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(LS4) If (E1, . . . , Em) ⇢ H and (F1, . . . , Fn) ⇢ H are two collections of disjoint h-intervals
with

`
m

i=1
Ei =

`
n

j=1
Fj, then

P
m

i=1
µ0(Ei) =

P
n

j=1
µ0(Fj).

Proof. By applying (LS3) twice, we have
mX

i=1

µ0(Ei) =
(3)

mX

i=1

nX

j=1

µ0(Ei \ Fj) =
nX

j=1

mX

i=1

µ0(Ei \ Fj) =
(3)

nX

j=1

µ0(Fj). ⇤

Hence µ0 extends to a well-defined function still denoted µ0 : A = A(H) ! [0,1] by

µ0

 
na

i=1

Ei

!
:=

nX

i=1

µ0(Ei) 8 disjoint E1, . . . , En 2 H.

Corollary 2.5.5. The extension µ0 : A ! [0,1] a↵orded by (LS4) is finitely additive and
thus monotone and finitely subadditive by Exercise 2.0.4.

Proof. Suppose E =
`

n

i=1
Ei with E,E1, . . . , En 2 A. Then we may write each Ei =

`
mi

j=1
E

i

j

where E
i

j
2 H for all j = 1, . . . ,mi, and thus E =

`
n

i=1

`
mi

j=1
E

i

j
. Then by countable

additivity of µ0 on H from (LS4), we have

µ0(E) =
nX

i=1

miX

j=1

µ0(E
i

j
) =

nX

i=1

µ0(Ei). ⇤

Exercise 2.5.6. Describe to the best of your ability the set of accumulation points of
right endpoints (bj) for a disjoint collection of bounded h-intervals ((an, bn])1n=1

such that`
(an, bn] = (a, b] for some a < b in R.

Theorem 2.5.7. The extension µ0 : A ! [0,1] a↵orded by (LS4) is a premeasure on A.

Proof. It is clear that µ0(;) = 0 by construction.
Suppose (En) ⇢ A is a disjoint sequence such that

`
En 2 A. Then there are disjoint

h-intervals F1, . . . , Fk 2 H such that
`

En =
`

k

j=1
Fj. We may assume that En \ Fj 6= ;

for at most one j. Thus we may partition the (En) into (Ej

n
) such that

`
E

j

n
= Fj for

j = 1, . . . , k. We make the following claim.

Claim. Suppose H 2 H is a single h-interval such that H =
`

Hn where (Hn) ⇢ H

is a sequence of disjoint h-intervals. Then µ0(H) =
P

µ0(Hn).

Then by applying (LS4), we have

µ0

⇣a
En

⌘
= µ0

 
ka

j=1

Fj

!
=

kX

j=1

µ0(Fj) =
(Claim)

kX

j=1

X
µ0(E

j

n
) =

X
µ0(En).

Thus it remains to prove the claim.
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Proof of claim for H = (a, b], a, b 2 R. Suppose (a, b] =
`
(aj, bj]. Then for all n 2 N,`

n

j=1
(aj, bj] ⇢ (a, b]. By (LS4) and monotonicity, we have

nX

j=1

µ0((aj, b]) = µ0

 
na

j=1

(aj, bj]

!
 µ0((a, b]).

Taking n ! 1, we have
P

µ0((aj, bj])  µ0((a, b]).
To show the reverse inequality, let " > 0. Since F is right continuous,

• there is � > 0 such that F (a+ �)� F (a) < "

2
, and

• for all j � 1, there is �j > 0 such that F (bj + �j)� F (bj) <
"

2j+1 .

Observe now that {(aj, bj + �j)}1j=1
is an open cover of the compact interval [a +

�, b]. Hence there is a finite subcover, i.e., there is an N 2 N such that [a + �, b] ⇢S
N

j=1
(aj, bj + �j). Then we calculate

µ0((a, b]) = F (b)� F (a)

< F (b)� F (a+ �) +
"

2

= µ0((a+ �, b]) +
"

2

 µ0

 
N[

j=1

(aj, bj + �j]

!
+

"

2



NX

j=1

µ0((aj, bj + �j]) +
"

2

=
NX

j=1

(F (bj + �j)� F (aj)) +
"

2



NX

j=1

⇣
F (bj) +

"

2j+1
� F (aj)

⌘
+

"

2

=
NX

j=1

µ0((aj, bj]) +
NX

j=1

"

2j+1
+

"

2



1X

j=1

µ0((aj, bj]) +
1X

j=1

"

2j+1
+

"

2

=
1X

j=1

µ0((aj, bj]) + ".

Since " > 0 was arbitrary, µ0((a, b]) 
P1

j=1
µ0((aj, bj]). ⇤

The cases H = (�1, b] for some b < 1 and H = (a,1) for �1  a are left as the
following exercise. ⇤
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Exercise 2.5.8. Consider the extension µ0 : A ! [0,1] a↵orded by (LS4). Suppose H is
(�1, b] for some b < 1 or (a,1) for �1  a. If H =

`
Hn where (Hn) ⇢ H is a sequence

of disjoint h-intervals, then µ0(H) =
P

µ0(Hn).

Exercise 2.5.9 (Folland, §1.5, #28). Let F : R ! R be increasing and right continuous,
and let µF be the associated Lebesgue-Stieltjes Borel measure on BR. For a 2 R, define

F (a�) := lim
r%a

F (r).

Prove that:

(1) µF ({a}) = F (a)� F (a�),
(2) µF ([a, b)) = F (b�)� F (a�),
(3) µF ([a, b]) = F (b)� F (a�), and
(4) µF ((a, b)) = F (b�)� F (a).

2.5.2. Lebesgue measure.

Definition 2.5.10. Lebesgue measure � is the Lebesgue-Stieltjes measure µid where id :
R ! R is the identity function id(r) = r. The Lebesgue �-algebra is L := M

⇤ = BR for �|BR .

Definition 2.5.11. For E ⇢ R and r, s 2 R, define rE := {rx|x 2 E} and s + E :=
{s+ x|x 2 E}.

Theorem 2.5.12. Suppose E 2 L.

(1) (dilation homogeneity) If r 2 R, then rE 2 L and �(rE) = |r| · �(E).
(2) (translation invariance) If s 2 R, then s+ E 2 L and �(s+ E) = �(E).

Proof. We will prove dilation homogeneity and leave translation invariance to the reader.
Step 1: BR is closed under E 7! rE. This is trivial if r = 0, so assume r 6= 0. Then
multiplication by r is a bijection on P (R) mapping open intervals to open intervals. Thus
multiplication by r maps BR onto itself.
Step 2: It is a straightforward exercise to prove that |r| · � is a measure on L and �

r(E) :=
�(rE) is a measure on BR.
Step 3: If E 2 H, then �

r(E) = |r| · �(E), so �
r = |r| · � on A(H) and thus all of BR by

Corollary 2.4.10 (or Exercise 2.2.7) as �r and |r| · � are both �-finite.
Step 4: If E 2 L is �-null, then rE 2 L is �-null. Indeed, by Remark 2.5.3, E 2 L is �-null
if and only if there is an N 2 BR such that E ⇢ N and �(N) = 0. Now rE ⇢ rN , and
�(rN) = |r| · �(N) = 0 by Step 3.
Step 5: Finally, as L = BR for �, we see �

r and |r| · � are both defined on L and agree. ⇤

Exercise 2.5.13. Let BR be the Borel �-algebra of R. Suppose µ is a translation invariant
measure on BR such that µ((0, 1]) = 1. Prove that µ = �|BR , the restriction of Lebesgue
measure on L to BR.

Remark 2.5.14. By Exercise 2.5.9(1), �({r}) = 0 for all r 2 R, and thus �(E) = 0 for all
countable E ⇢ R.
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Example 2.5.15. The Cantor set C is defined as
T

Cn where we define Cn inductively by
‘removing middle thirds’ of [0, 1].

C0 =
0 1

C1 =
0 1

3
2
3

1

C2 =
0 1

9
2
9

1
3

2
3

7
9

8
9

1

...
...

By continuity from above (µ4) for �, we have �(C) = limn!1 �(Cn). By Exercise 2.5.9,

�(C0) = 1

�(C1) = 1�
1

3

�(C2) = 1�
1

3
�

2

9

�(C3) = 1�
1

3
�

2

9
�

4

27
etc.

=) �(C) = 1�
1X

n=1

2n�1

3n
= 1�

1

3

1X

n=0

✓
2

3

◆n

= 1�
1

3

✓
1

1� 2

3

◆
= 0.

It is well known that C is uncountable; indeed it is in bijection with {0, 1}N via base 3
decimal expansions where only the digits 0 and 2 occur. (Recall that decimal expansion is
not unique; one must pick a particular convention here.)

Exercise 2.5.16. Show that the function f : {0, 1}N ! C given by

f(x) :=
1X

n=1

2xn

3n

is a homeomorphism of {0, 1}N onto the Cantor set.

Exercise 2.5.17. Suppose E 2 L with �(E) > 0. Show there is an F ⇢ E such that F /2 L.
That is, show any Lebesgue measurable set with positive measure contains a non-measurable
subset.

Exercise 2.5.18 (Sarason). Suppose E 2 L is Lebesgue null, and ' : R ! R is a C
1

function (continuous with continuous derivative). Prove that '(E) is also Lebesgue null.

Exercise 2.5.19. Let (X, ⇢) be a metric (or simply a topological) space. A subset S ⇢ X

is called nowhere dense if S does not contain any open set in X. A subset T ⇢ X is called
meager if it is a countable union of nowhere dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Exercise 2.5.20. Suppose F : R ! R is a bounded, non-decreasing, right continuous
function, and let µF be the corresponding Lebesgue-Stieltjes measure. (Observe µF is finite.)
Prove the following are equivalent:
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(1) µF is absolutely continuous (see Exercise 2.2.9) with respect to Lebesgue measure �.
(2) F is absolutely continuous, i.e., for every " > 0, there exists � > 0 such that for any

disjoint set of open intervals (a1, b1), . . . , (aN , bN),

nX

i=1

(bi � ai) < � =)
NX

i=1

(F (bi)� F (ai)) < ".

2.5.3. Regularity properties of Lebesgue-Stieltjes measures.

Definition 2.5.21. Suppose (X, T ) is a Hausdor↵ topological space and M ⇢ P (X) is any
�-algebra containing the Borel �-algebra B(T ), i.e., T ⇢ M. A measure µ on M is called:

• outer regular if µ(E) = inf {µ(U)|E ⇢ U open}
• inner regular if µ(E) = sup {µ(K)|compact K ⇢ E}

• regular if µ is both outer and inner regular.

Proposition 2.5.22. Suppose (X, T ) is a Hausdor↵ topological space and µ is a Borel
measure on BT . If (X, T ) is �-compact and µ is outer regular and finite on compact sets,
then µ is inner regular and thus regular (and thus Radon; see Exercise 2.5.24 below).

Proof.
Step 1: Suppose X is compact and E 2 BT . Then E is compact. Let " > 0. By outer

regularity, there is an open U � E \ E such that µ(U)  µ(E \ E) + ". Observe that:

• E \ E ⇢ U \ E,
• K := E \ U is compact and contained in E, and
• since E = Kq(U \E) and E ⇢ E, E = (K\E)q(U \E), and thus U \E = K

c
\E.

Here is a cartoon of K,E,E, U :

K U\E E\E U\E

U

E = q

E = q q

U = q q

We now calculate

µ(K) = µ(E)� µ(Kc
\ E) (E = K q (Kc

\ E))

= µ(E)� µ(U \ E) (E \ U = E \K
c)

= µ(E)� (µ(U)� µ(U \ E)) (U = (E \ U)q (U \ E))

� µ(E)�µ(U) + µ(E \ E)| {z }
��"

(E \ E ⇢ U \ E)

� µ(E)� ".

Since " > 0 was arbitrary, µ is inner regular.
Step 2: SinceX is �-compact, by disjointification, we may writeX =

`
Xn where eachXn has

compact closure in X. In particular, µ(Xn) < 1 for all n. Let E 2 BT , and write E =
`

En
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where En := E \ Xn. By Step 1, for each n, there is a compact set Kn ⇢ En ⇢ Xn ⇢ Xn

such that µ(Kn) � µ(En)�
"

2n+1 . Set Fn :=
`

n

i=1
Ki, which is still compact. Observe that

µ(Fn) � µ

 
na

i=1

Ei

!
�

"

2
.

There are two cases to consider now.
If µ(E) = 1, since µ(

`
n

i=1
Ei) % 1, eventually µ(Fn) > M for every M > 0. Hence

sup {µ(Fn)|n 2 N} = 1 = µ(E). Otherwise, µ(E) < 1, and there is an N 2 N such that

µ(E)  µ

 
Na

i=1

Ei

!
+

"

2
 µ(FN) +

"

2
+

"

2
= µ(FN) + ".

Since " > 0 was arbitrary, we conclude µ is inner regular. ⇤
Exercise 2.5.23. Suppose (X, T ) is a topological space, µ is a �-finite regular Borel measure,
and E 2 BT is a Borel set. Prove the following assertions.

(1) For every " > 0, there exist an open U and a closed F with F ⇢ E ⇢ U and
µ(U \ F ) < ".

(2) There exist an F�-set A and a G�-set B such that A ⇢ E ⇢ B and µ(B \ A) = 0.

Exercise 2.5.24. Suppose (X, T ) is a topological space, µ is a Borel measure on BT . We
call µ a Radon measure if µ is outer regular, finite on compact sets, and inner regular on all
open sets.

(1) Show that if µ is a �-finite Radon measure, then µ is inner regular and thus regular.
Deduce that the finite Radon measures are exactly the finite regular Borel measures.

(2) Suppose µ is a �-finite regular Borel measure. Is µ Radon? That is, is µ finite on all
compact sets? Give a proof or a counterexample.

Exercise 2.5.25 (Folland, §7.2, #7). Suppose µ is a �-finite Radon measure on (X, T ) and
E 2 BT is a Borel set. Show that µE(F ) := µ(E \ F ) defines another (�-finite) Radon
measure.

Remark 2.5.26. Once we have developed the theory of integration, we will be able to
upgrade Proposition 2.5.22 considerably. In Corollary 5.6.10, we will show that if X is LCH
such that every open set is �-compact, then every Borel measure which is finite on compact
sets is regular and thus Radon.

Exercise 2.5.27. Suppose X is a metric space (not necessarily locally compact) and let µ
be a finite Borel measure. Show that the collection M ⇢ BX of sets such that

µ(E) = inf {µ(U)|E ✓ U open}

= sup {µ(F )|E ◆ F closed}

is a �-algebra containing all closed (or open) sets and is thus equal to BX . Deduce that µ is
outer regular.

Exercise 2.5.28. Suppose X is a compact Hausdor↵ topological space, BX is the Borel
�-algebra, and µ is a regular measure on BX such that µ(X) = 1. Prove there is a compact
K ⇢ X such that µ(K) = 1 and µ(F ) < 1 for every proper compact subset F ( K.
Remark: One strategy uses Zorn’s Lemma, but it is not necessary.
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We now analyze the regularity of the Lebesgue-Stieltjes measure µF on MF where F :
R ! R is any non-decreasing right continuous function.

Exercise 2.5.29. For every E ⇢ R, show that

µF (E) = inf

( 1X

n=1

µF ((an, bn])

�����E ⇢

1[

n=1

(an, bn] with an, bn 2 R, 8n 2 N
)
.

Lemma 2.5.30. For all E 2 MF , µF (E) = inf {
P1

n=1
µF ((an, bn))|E ⇢

S1
n=1

(an, bn)}.

Proof. Denote the inf on the right hand side by ⌫(E).
Step 1: µF (E)  ⌫(E).

Suppose E ⇢
S
(an, bn). We can write each (an, bn) =

`1
i=1

(an
i
, b

n

i
]. Then E ⇢S1

n=1

`1
i=1

(an
i
, b

n

i
], and

µF (E) 
X

n,i

µF ((a
n

i
, b

n

i
]) =

X
µF ((an, bn)).

Step 2: µF (E) � ⌫(E).

Let " > 0. There exists ((an, bn]) such that E ⇢
S
(an, bn] and

P
µF ((an, bn]) 

µF (E) + "

2
. For each n, by right continuity of F , pick �n > 0 such that F (bn + �n) �

F (bn) <
"

2n+1 . Then E ⇢
S
(an, bn + �n) and

X
µF ((an, bn + �n)) 

X
F (bn + �n)� F (an)

<

X
F (bn)� F (an) +

"

2n+1

=
X

µF ((an, bn]) +
X "

2n+1

 µF (E) +
"

2
+

"

2
= µF (E) + ".

Since " > 0 was arbitrary, the result follows.

This concludes the proof. ⇤
Theorem 2.5.31. The Lebesgue-Stieltjes measure µF on MF is regular.

Proof. Since R is �-compact and µF is finite on all compact intervals by Exercise 2.5.9, by
Proposition 2.5.22, it remains to show µF is outer regular. Let E 2 MF . By Lemma 2.5.30,
given " > 0, there is a sequence ((an, bn)) of open intervals such that E ⇢

S
(an, bn) andP

µF ((an, bn))  µ(E) + ". Setting U =
S
(an, bn), we have E ⇢ U and

µF (E)  µF (U) 
X

µF ((an, bn))  µ(E) + ".

Since " > 0 was arbitrary, we have µF (E) = inf {µF (U)|E ⇢ U open}. ⇤
Exercise 2.5.32 (Steinhaus Theorem, Folland §1.5, #30 and #31). Suppose E 2 L and
�(E) > 0.
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(1) Show that for any 0  ↵ < 1, there is an open interval I ⇢ R such that �(E \ I) >
↵�(I).

(2) Apply (1) with ↵ = 3/4 to show that the set

E � E := {x� y|x, y 2 E}

contains the interval (��(I)/2,�(I)/2).

2.6. Hausdor↵ measure. Let (X, d) be a metric space. For A,B ⇢ X nonempty, define

d(a,B) := inf {d(a, b)|b 2 B} 8 a 2 A

d(A,B) := inf {d(a, b)|a 2 A, b 2 B} .

For a set Y ⇢ X, define

diam(Y ) := sup {d(x, y)|x, y 2 Y } .

Definition 2.6.1. An outer measure µ
⇤ on P (X) is called a (Carathéodory) metric outer

measure if

• (metric finite additivity) d(A,B) > 0 (which implies A\B = ;) implies µ⇤(A
`

B) =
µ
⇤(A) + µ

⇤(B).

Proposition 2.6.2. If µ⇤ is a metric outer measure on P (X), then the Borel �-algebra Bd

is contained in M
⇤, the µ

⇤-measurable sets.

Proof. Since Bd is generated by the open sets, it su�ces to show all open sets are in M
⇤.

Let U ⇢ X be open.
Step 1: We may assume d(U,U c) = 0. Otherwise, for all F ⇢ X, d(F \ U, F \ U) > 0, so
µ
⇤(F ) = µ

⇤(F \ U) + µ
⇤(F \ U), and thus U 2 M

⇤.
Step 2: For n 2 N, define An := {x 2 U |d(x, U c) > 1/n}. Then (An) is increasing and

S
An =

U . Setting A0 = ;, define Bn := An \ An�1 for all n 2 N. Then
`

Bn = U , and Bn 6= ;

frequently. Indeed, observe Bn = ; for all n > k if and only if Ak = U , which implies
d(U,U c) � 1/k.
Step 3: If |m� n| > 1 and Bm 6= ; 6= Bn, then d(Bm, Bn) > 0.

Proof. Suppose 1  m < n � 1. Let x 2 Bm and y 2 Bn. Then y /2 An�1 � Am+1,
so there is a z 2 U

c such that d(y, z)  1

m+1
. But x 2 Bm, so d(x, z) > 1

m
. By the

triangle inequality,

d(x, y) � d(x, z)� d(y, z) >
1

m
�

1

m+ 1
=

1

m(m+ 1)
.

Taking sup over x, y, we have d(Bm, Bn) �
1

m(m+1)
> 0. ⇤

Step 4: Let F ⇢ X. If µ⇤(F ) = 1, then µ
⇤(F ) � µ

⇤(F \U)+µ
⇤(F \U). Assume µ⇤(F ) < 1.

Then
P1

n=k
µ
⇤(F \ Bn) ! 0 as k ! 1.
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Proof. By Step 3, for all k 2 N, we have
kX

µ
⇤(F \B2n�1) = µ

⇤

 
ka
F \B2n�1

!
 µ

⇤(F )

kX
µ
⇤(F \ B2n) = µ

⇤

 
ka
F \B2n

!
 µ

⇤(F ).

Taking k ! 1, we have
P

µ
⇤(F \ Bn)  2µ⇤(F ) < 1. Hence the tail of the sum

must converge to zero. ⇤

Step 5: We now calculate for all n 2 N and F ⇢ X:

µ
⇤(F \ U) + µ

⇤(F \ U)  µ
⇤(F \ An) + µ

⇤(F \ ( U \ An| {z }`1
k=n+1 Bk

)) + µ
⇤(F \ U)

= µ
⇤(F \ An) + µ

⇤(F \ U)| {z }
d(F\An,F\U)�d(An,U

c)� 1
n

+µ
⇤

 1a

k=n+1

Bk

!

= µ
⇤(F \ (An q F \ U)) + µ

⇤

 1a

k=n+1

Bk

!

 µ
⇤(F ) +

1X

k=n+1

µ
⇤(F \Bk).

| {z }
! 0 as n ! 1 by Step 4.

We conclude that U 2 M
⇤. ⇤

Definition 2.6.3. Suppose (X, d) is a metric space, p � 0, and " > 0. For E ⇢ X, define

⌘
⇤
p,"
(E) := inf

( 1X

1

(diam(Bn))
p

�����
(Bn) a  "-diameter cover, i.e., a sequence of open
balls with diam(Bn)  " for all n and E ⇢

S
Bn

)
,

where we use the convention that inf ; = 1. By Exercise 2.3.5, ⌘⇤
p,"

is the outer measure
induced by

⇢p," : {;} [ {Br(x)|x 2 X and r  "} �! [0,1]

; 7�! 0

Br(x) 7�! (diam(Br(x)))
p
.

Moreover, if " < "
0, then ⌘

⇤
p,"
(E) � ⌘

⇤
p,"0(E) as we are taking an infimum over a smaller set

(every  "-diameter cover is a  "
0-diameter cover). Hence

⌘
⇤
p
(E) := lim

"!0

⌘
⇤
p,"
(E) = sup

">0

⌘
⇤
p,"
(E)

gives an outer measure by Exercise 2.3.2.

Proposition 2.6.4. ⌘⇤
p
is a metric outer measure.
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Proof. Suppose d(E,F ) > " > 0. If there is no "-diameter cover of E q F , then there is no
"-diameter cover of one of E,F , and thus

⌘
⇤
p
(E) + ⌘

⇤
p
(F ) = 1 = ⌘

⇤
p
(E q F ).

Now suppose there exists an "-diameter cover (Bn) of E q F . Then for all n 2 N, Bn

intersects at most one of E,F . So we may partition (Bn) into (BE

n
) and (BF

n
) such that

• E ⇢
S

B
E

n
and B

E

n
\ E 6= ;, and

• F ⇢
S
B

F

n
and B

F

n
\ F 6= ;.

Thus

⌘
⇤
p,"
(E) + ⌘

⇤
p,"
(F ) 

X
diam(BE

n
)p + diam(BF

n
)p 

X
diam(Bn)

p

for any "-diameter cover. Hence for all " < d(E,F ),

⌘
⇤
p,"
(E) + ⌘

⇤
p,"
(F )  ⌘

⇤
p,"
(E q F ).

Taking " ! 0, we get

⌘
⇤
p
(E q F )  ⌘

⇤
p
(E) + ⌘

⇤
p
(F )  ⌘

⇤
p
(E q F ),

and thus equality holds. ⇤

Definition 2.6.5. Since the Borel �-algebra Bd for (X, d) is contained in the ⌘⇤
p
-measurable

sets M
⇤
p
by Propositions 2.6.2 and 2.6.4, we get a Borel measure ⌘p := ⌘

⇤
p
|Bd

called p-
dimensional Hausdor↵ measure.

Facts 2.6.6. Here are some elementary properties about Hausdor↵ measures.

(Hµ1) If f : X ! X is an isometry (d(f(x), f(y)) = d(x, y) for all x, y 2 X), then for all
E 2 Bd, ⌘p(E) = ⌘p(f(E)).

Proof. For all " > 0, ⌘
⇤
p,"
(E) = ⌘

⇤
p,"
(f(E)) since E ⇢

S
Bn if and only if

f(E) ⇢
S

f(Bn) as isometries are injective. ⇤

(Hµ2) ⌘1 = �|BR on R with the usual metric.

Proof. Since ⌘1((0, 1]) = 1 (observe diam(B) = �(B) for any open ball B and
apply Lemma 2.5.30), this follows by uniqueness of the translation invariant
Borel measure on R from Exercise 2.5.13. ⇤

(Hµ3) If ⌘p(E) < 1, then ⌘q(E) = 0 for all q > p.
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Proof. Let " > 0. Since ⌘p(E) < 1, there is a sequence (Bn) of open balls with
diam(Bn)  " such that

P
diam(Bn)p  ⌘p(E) + 1. But if q > p, then

⌘
⇤
q,"
(E) 

X
diam(Bn)

q

=
X

diam(Bn)
q�p

| {z }
"q�p

diam(Bn)
p

 "
q�p
X

diam(Bn)
p

 "
q�p(⌘p(E) + 1).

Letting " ! 0, we have

⌘q(E) = ⌘
⇤
q
(E) = lim

"!0

⌘
⇤
q,"
(E)  lim

"!0

"
q�p(⌘p(E) + 1) = 0. ⇤

(Hµ4) If ⌘p(E) > 0, then ⌘q(E) = 1 for all q < p.

Proof. This follows as the contrapositive of (Hµ3). ⇤

Definition 2.6.7. The Hausdor↵ dimension of E 2 Bd is

inf {p � 0|⌘p(E) = 0} = sup {p � 0|⌘p(E) = 1} .

Remark 2.6.8. If E 2 Bd and p � 0 such that 0 < ⌘p(E) < 1, then the Hausdor↵
dimension of E is necessarily p by Lemma 2.6.6(3,4).

Exercise 2.6.9. Prove that the Cantor set from Example 2.5.15 has Hausdor↵ dimension
ln(2)/ ln(3).

Exercise 2.6.10. Find an uncountable subset of R with Hausdor↵ dimension zero.
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