2. Measures

We begin with an informal discussion.

Definition 2.0.1. Let X be a set. A *measure* on X is a function $\mu : \mathcal{M} \to [0, \infty]$ where $\mathcal{M} \subset P(X)$ is some collection of subsets (whose properties are to be determined) satisfying:

- (1) $\mu(\emptyset) = 0$
- (2) $\mu(\coprod E_n) = \sum \mu(E_n)$ when (E_n) is a collection of mutually disjoint subsets in \mathcal{M} , where **[**] means disjoint union.

We now would like to discuss what kind of properties the subset $\mathcal{M} \subset P(X)$ should satisfy.

- $\emptyset, X \in \mathcal{M} \ (\mathcal{M} \text{ is nonempty})$
- closed under disjoint unions (finite? countable?)

Example 2.0.2 (Counting measure). Let $\mathcal{M} = P(X)$ and $\mu(E) := |E|$.

Example 2.0.3 (Lebesgue measure). There is a measure λ on some $\mathcal{M} \subset P(\mathbb{R})$ such that

- (normalized) $\lambda([0,1)) = 1$, and
- (translation invariant) $\lambda(E+r) = \lambda(E)$ for all $E \in \mathcal{M}$ and $r \in \mathbb{R}$.

For this λ , we cannot have $\mathcal{M} = P(\mathbb{R})!$ Indeed, define an equivalence relation on [0, 1) by

$$x \sim y \qquad \Longleftrightarrow \qquad x - y \in \mathbb{Q}.$$

Using the Axiom of Choice, pick one representative from each equivalence class, and call this set E. For $q \in E \cap [0, 1)$, define

$$E_q := \{x + q | x \in E \cap [0, 1 - q)\} \cup \{x + q - 1 | x \in [1 - q, 1)\}.$$

Here is a cartoon of the basic idea:

$$\begin{bmatrix} & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

Observe that there is some countable subset $Q \subset \mathbb{Q}$ such that $[0,1) = \prod_{q \in Q} E_q$.

Now if $\mathcal{M} = P(X)$, then we'd have

$$1 = \lambda([0,1)) = \lambda\left(\coprod_{q \in Q} E_q\right) = \sum_{q \in Q} \lambda(E_q) = \sum_{q \in Q} \lambda(E) = \lambda(E) \sum 1 \in \{0,\infty\},$$

a contradiction.

Exercise 2.0.4. Let X be a nonempty set and $\mathcal{E} \subset P(X)$ any collection of subsets which is closed under finite unions and intersections. Suppose $\nu : P(X) \to [0,\infty]$ be a function which satisfies

• (finite additivity) for any disjoint sets $E_1, \ldots, E_n \in P(X), \nu\left(\prod_{i=1}^n E_i\right) = \sum_{i=1}^n \nu(E_i).$

Prove that ν also has the following properties.

- (1) (monotonicity) Show that if $A, B \in \mathcal{E}$ with $A \subset B$, then $\nu(A) \leq \nu(B)$.
- (2) (finite subadditivity) Show that for any (not necessarily disjoint) sets $E_1, \ldots, E_n \in \mathcal{E}$, $\nu\left(\bigcup_{i=1}^{n} E_i\right) \le \sum_{i=1}^{n} \nu(E_i).$
- (3) Show that for all $A, B \in \mathcal{E}, \nu(A) + \nu(B) = \nu(A \cup B) + \nu(A \cap B).$

Exercise 2.0.5. Suppose $\mathcal{E} \subset P(\mathbb{R})$ is any collection of subsets which contains the bounded open intervals and is closed under countable unions. Let $\nu : \mathcal{E} \to [0, \infty]$ be a function which satisfies

- (monotonicity) If $E, F \in \mathcal{E}$ with $E \subset F$, then $\nu(E) \leq \nu(F)$.
- (subadditivty) for any sequence of sets $(E_n)_{n=1}^{\infty} \subset \mathcal{E}, \nu(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \nu(E_n).$
- (extends length of open intervals) for all a < b in \mathbb{R} , we have $\nu((a, b)) = b a$.

Show that if $E \in \mathcal{E}$ is countable, then $\nu(E) = 0$.

2.1. σ -algebras.

Definition 2.1.1. A non-empty subset $\mathcal{M} \subset P(X)$ is called an *algebra* if

- (1) \mathcal{M} is closed under finite unions, and
- (2) \mathcal{M} is closed under complements.

Observe that every algebra

- contains $X = E \amalg E^c$ for some $E \in \mathcal{M}$, and thus $\emptyset = X^c$.
- is closed under finite intersections

$$\bigcap_{1}^{k} E_{n} = \left(\bigcap_{1}^{k} E_{n}\right)^{cc} = \left(\bigcup_{1}^{k} E_{n}^{c}\right)^{c}$$

If in addition an algebra \mathcal{M} is closed under *countable* unions, then we call \mathcal{M} a σ -algebra. Here, the ' σ ' signifies 'countable'. We call the elements of a σ -algebra *measurable sets*.

Examples 2.1.2. Lex X be a set.

- (1) $\{\emptyset, X\}$ is the trivial σ -algebra.
- (2) P(X) is the discrete σ -algebra.

Exercise 2.1.3. Define $\mathcal{M} := \{E \subset X | E \text{ or } E^c \text{ is countable}\}$. Show that \mathcal{M} is a σ -algebra.

Exercise 2.1.4. Let X be a set. A ring $\mathcal{R} \subset P(X)$ is a collection of subsets of X which is closed under unions and set differences. That is, $E, F \in \mathcal{R}$ implies $E \cup F \in \mathcal{R}$ and $E \setminus F \in \mathcal{R}$.

- (1) Let $\mathcal{R} \subset P(X)$ be a ring.
 - (a) Prove that $\emptyset \in \mathcal{R}$.
 - (b) Show that $E, F \in \mathcal{R}$ implies the symmetric difference $E \triangle F \in \mathcal{R}$.
 - (c) Show that $E, F \in \mathcal{R}$ implies $E \cap F \in \mathcal{R}$.
- (2) Show that any ring $\mathcal{R} \subset P(X)$ is an algebraic ring where the addition is symmetric difference and multiplication is intersection.
 - (a) What is $0_{\mathcal{R}}$?
 - (b) Show that this algebraic ring has *characteristic* 2, i.e., $E + E = 0_{\mathcal{R}}$ for all $E \in \mathcal{R}$.
 - (c) When is the algebraic ring \mathcal{R} unital? In this case, what is $1_{\mathcal{R}}$?
 - (d) Determine the relationship (if any) between an algebra of sets in the sense of measure theory and an algebra in the algebraic sense.
 - (e) Sometimes an algebra in measure theory is called a *field*. Why?

Trick. Suppose (E_n) is a sequence of subsets of X. Inductively define

$$F_1 := E_1 \qquad \qquad F_k := E_k \setminus \bigcup_{1}^{k-1} E_n = E_k \cap \left(\bigcup_{1}^{k-1} E_n\right)^c. \tag{II}$$

Then (F_n) is a sequence of pairwise disjoint subsets of X such that $\bigcup E_n = \coprod F_n$. Moreover, observe that if $(E_n) \subset \mathcal{M}$ for some algebra \mathcal{M} , then $(F_n) \subset \mathcal{M}$.

Definition 2.1.5. Observe that if \mathcal{M}, \mathcal{N} are σ -algebras, then so is $\mathcal{M} \cap \mathcal{N}$. This means if $\mathcal{E} \subset P(X)$, there is a *smallest* σ -algebra $\mathcal{M}(\mathcal{E})$ which contains \mathcal{E} called the σ -algebra generated by \mathcal{E} .

Exercise 2.1.6. Let $\mathcal{A} \subset P(X)$ be an algebra. Show that the following are equivalent:

- (1) \mathcal{A} is a σ -algebra,
- (2) \mathcal{A} is closed under countable disjoint unions, and
- (3) \mathcal{A} is closed under countable increasing unions.

Fact 2.1.7. Suppose $\mathcal{E}, \mathcal{F} \subset P(X)$ with $\mathcal{E} \subset \mathcal{M}(\mathcal{F})$. Then $\mathcal{M}(\mathcal{E}) \subset \mathcal{M}(\mathcal{F})$.

Example 2.1.8. Suppose (X, \mathcal{T}) is a topological space. We call $\mathcal{B}_{\mathcal{T}} := \mathcal{M}(\mathcal{T})$ the Borel σ -algebra.

Remark 2.1.9.

- A countable intersection of open sets is called a G_{δ} set.
- A countable union of closed sets is called an F_{σ} set.
- A countable union of G_{δ} sets is called a $G_{\delta\sigma}$ set.
- A countable intersection of F_{σ} sets is called an $F_{\sigma\delta}$ set.

And so on and so forth. Observe that $\mathcal{B}_{\mathcal{T}}$ contains all these types of sets, so $\mathcal{B}_{\mathcal{T}}$ is much larger than \mathcal{T} .

Proposition 2.1.10. The Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ on \mathbb{R} generated by the usual topology (which is induced by the metric $\rho(x, y) = |x - y|$) is also generated by the following collections of sets:

 $\begin{array}{l} (\mathcal{B}_{\mathbb{R}}1) \ open \ intervals \ (a,b) \\ (\mathcal{B}_{\mathbb{R}}2) \ closed \ intervals \ [a,b] \\ (\mathcal{B}_{\mathbb{R}}3) \ half-open \ intervals \ (a,b] \\ (\mathcal{B}_{\mathbb{R}}4) \ half-open \ intervals \ [a,b) \\ (\mathcal{B}_{\mathbb{R}}5) \ open \ rays \ (a,\infty) \ and \ (-\infty,a) \\ (\mathcal{B}_{\mathbb{R}}6) \ closed \ rays \ [a,\infty) \ and \ (-\infty,a] \end{array}$

Proof. First, observe that each of $(\mathcal{B}_{\mathbb{R}}1)$, $(\mathcal{B}_{\mathbb{R}}2)$, $(\mathcal{B}_{\mathbb{R}}5)$, $(\mathcal{B}_{\mathbb{R}}6)$ are all open or closed, so they lie in $\mathcal{B}_{\mathbb{R}}$. Also, $(a, b] = (a, \infty) \cap (b, \infty)^c$, so each of the sets $(\mathcal{B}_{\mathbb{R}}3)$ are contained in $\mathcal{B}_{\mathbb{R}}$. Similarly for $(\mathcal{B}_{\mathbb{R}}4)$. Hence each of $(\mathcal{B}_{\mathbb{R}}1)-(\mathcal{B}_{\mathbb{R}}6)$ lie in $\mathcal{B}_{\mathbb{R}}$, so their generated σ -algebras are contained in $\mathcal{B}_{\mathbb{R}}$ by Fact 2.1.7.

For the other directions, observe all open sets in \mathbb{R} are countable unions of open intervals. (You proved this on HW1.) Hence $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}((\mathcal{B}_{\mathbb{R}}1))$ by Fact 2.1.7. For $(j) = (\mathcal{B}_{\mathbb{R}}2)-(\mathcal{B}_{\mathbb{R}}6)$, one shows that $(\mathcal{B}_{\mathbb{R}}1)$ is contained in $\mathcal{M}((j))$:

$$(a,b) = \bigcup \left[a + \frac{1}{n}, b - \frac{1}{n} \right] \tag{B}_{\mathbb{R}}2)$$

$$=\bigcup\left(a,b-\frac{1}{n}\right] \tag{B}_{\mathbb{R}}3$$

$$= \bigcup \left[a + \frac{1}{n}, b \right) \tag{B}_{\mathbb{R}}4$$

$$= (a, \infty) \cap (-\infty, b) \tag{B}_{\mathbb{R}}5)$$

$$= \left(\left(-\infty, a \right] \cup [b, \infty) \right)^c. \tag{B}_{\mathbb{R}}6$$

Again by Fact 2.1.7, we have $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}((\mathcal{B}_{\mathbb{R}}1)) \subset \mathcal{M}((j)) \subset \mathcal{B}_{\mathbb{R}}$.

Exercise 2.1.11. Define the *h*-intervals

$$\mathcal{H} := \{\emptyset\} \cup \{(-a, b] | -\infty \le a < b < \infty\} \cup \{(a, \infty) | a \in \mathbb{R}\}.$$

Let \mathcal{A} be the collection of finite disjoint unions of elements of \mathcal{H} . Show directly from the definitions that \mathcal{A} is an algebra. Deduce that the σ -algebra $\mathcal{M}(\mathcal{A})$ generated by \mathcal{A} is equal to the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$.

Exercise 2.1.12. Denote by \mathbb{R} the extended real numbers $[-\infty, \infty]$ with its usual topology. Prove the following assertions.

- (1) The Borel σ -algebra on \mathbb{R} is generated by the open rays $(a, \infty]$ for $a \in \mathbb{R}$.
- (2) If $\mathcal{E} \subset P(\mathbb{R})$ generates the Borel σ -algebra on \mathbb{R} , then $\mathcal{E} \cup \{\{\infty\}\}$ generates the Borel σ -algebra on $\overline{\mathbb{R}}$.

Exercise 2.1.13. Let X be a set. A π -system on X is a collection of subsets $\Pi \subset P(X)$ which is closed under finite intersections. A λ -system on X is a collection of subsets $\Lambda \subset P(X)$ such that

- $X \in \Lambda$
- Λ is closed under taking complements, and
- for every sequence of disjoint subsets (E_i) in Λ , $\bigcup E_i \in \Lambda$.
- (1) Show that \mathcal{M} is a σ -algebra if and only if \mathcal{M} is both a π -system and a λ -system.
- (2) Suppose Λ is a λ -system. Show that for every $E \in \Lambda$, the set

$$\Lambda(E) := \{F \subset X | F \cap E \in \Lambda\}$$

is also a Λ -system.

Exercise 2.1.14 $(\pi - \lambda$ Theorem). Let Π be a π -system, let Λ be the smallest λ -system containing Π , and let \mathcal{M} be the smallest σ -algebra containing Π .

- (1) Show that $\Lambda \subseteq \mathcal{M}$.
- (2) Show that for every $E \in \Pi$, $\Pi \subset \Lambda(E)$ where $\Lambda(E)$ was defined in Exercise 2.1.13 above. Deduce that $\Lambda \subset \Lambda(E)$ for every $E \in \Pi$.
- (3) Show that $\Pi \subset \Lambda(F)$ for every $F \in \Lambda$. Deduce that $\Lambda \subset \Lambda(F)$ for every $F \in \Lambda$.
- (4) Deduce that Λ is a σ -algebra, and thus $\mathcal{M} = \Lambda$.

2.2. Measures.

Definition 2.2.1. A set X together with a σ -algebra \mathcal{M} is called a *measurable space*. A *measure* on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

- (vacuum) $\mu(\emptyset) = 0$, and
- (countable additivity) for every sequence of disjoint sets $(E_n) \subset \mathcal{M}, \ \mu(\coprod E_n) = \sum \mu(E_n).$

Observe that countable additivity implies finite additivity by taking all but finitely many of the E_n to be \emptyset .

We call the triple (X, \mathcal{M}, μ) a *measure space*. A measure space is called:

- finite if $\mu(X) < \infty$.
- σ -finite if $X = \bigcup E_n$ with $(E_n) \subset \mathcal{M}$ a sequence of measurable sets with $\mu(E_n) < \infty$. By disjointification (II), we may take such (E_n) to be disjoint.
- semifinite if for every $E \in \mathcal{M}$, $\mu(E) = \infty$, there is an $F \subset E$ with $F \in \mathcal{M}$ such that $0 < \mu(F) < \infty$.
- complete if $E \in \mathcal{M}$ with $\mu(E) = 0$ (E is μ -null) and $F \subset E$ implies $F \in \mathcal{M}$. Note: We will see that $\mu(F) = 0$ by monotonicity below in (μ 1) of Facts 2.2.4.

Remark 2.2.2. In probability theory, a measure space is typically denoted (Ω, \mathcal{F}, P) , and $P(\Omega) = 1$.

Examples 2.2.3.

- (1) Counting measure on P(X)
- (2) Pick $x_0 \in X$, and define μ_{x_0} on P(X) by

$$\mu_{x_0}(E) = \delta_{x_0 \in E} := \begin{cases} 0 & \text{if } x_0 \notin E\\ 1 & \text{if } x_0 \in E \end{cases}$$

We call μ_{x_0} the point mass or Dirac measure at x_0 .

(3) Pick any $f: X \to [0, \infty]$. On P(X), define

$$\mu_f(E) := \sum_{x \in E} f(x) := \sup \sum_{\substack{x \in F \\ F \text{ finite}}} f(x) = \lim_{\substack{\text{finite } F \\ \text{ordered by inclusion } x \in F}} \sum_{x \in F} f(x)$$

When f = 1, μ_f is counting measure. When $f = \delta_{x=x_0}$, we get the Dirac measure. (4) On the σ -algebra of countable or co-countable sets, define

$$\mu(E) = \begin{cases} 0 & \text{if } E \text{ is countable} \\ 1 & \text{if } E \text{ is co-countable.} \end{cases}$$

Facts 2.2.4 (Basic properties of measures). Let (X, \mathcal{M}, μ) be a measure space.

(μ 1) (Monotonicity) If $E, F \in \mathcal{M}$, then $F \subset E$ implies $\mu(F) \leq \mu(E)$. In particular, if $\mu(E) = 0$, then $\mu(F) = 0$.

Proof.
$$\mu(E) = \mu(F \amalg (E \setminus F)) = \mu(F) + \mu(E \setminus F)$$
, and $\mu(E \setminus F) \ge 0$.

(μ 2) (Subadditivity) If $(E_n) \subset \mathcal{M}$, then $\mu (\bigcup E_n) \leq \sum \mu(E_n)$.

Proof. Use disjointification (II). That is, setting $F_1 := E_1$ and $F_k := E_k \setminus \bigcup_{1}^{k-1} E_n$, we have $F_k \subset E_k$ for all k, and $\mu\left(\bigcup E_n\right) = \mu\left(\coprod F_n\right) = \sum \mu(F_n) \leq \sum \mu(E_n).$

(μ 3) (Continuity from below) If $E_1 \subset E_2 \subset E_3 \subset \cdots$ is an increasing sequence of elements of \mathcal{M} , then

$$\mu\left(\bigcup E_n\right) = \lim_{n \to \infty} \mu(E_n).$$

Proof. Set $E_0 = \emptyset$. In this setting, disjointification (II) is easy; just set $F_n := E_n \setminus E_{n-1}$ for all $n \ge 1$. Then

$$\mu\left(\bigcup E_n\right) = \mu\left(\coprod F_n\right) = \sum \mu(F_n) = \sum \mu(E_n \setminus E_{n-1})$$
$$= \lim_{k \to \infty} \sum^k \mu(E_n \setminus E_{n-1}) = \lim_{k \to \infty} \mu(E_k).$$

(μ 4) (Continuity from above) If $E_1 \supset E_2 \supset E_3 \supset \cdots$ is a decreasing sequence of elements of \mathcal{M} with $\mu(E_k) < \infty$ for some $k \in \mathbb{N}$, then

$$\mu\left(\bigcap E_n\right) = \lim_{n \to \infty} \mu(E_n).$$

Proof. We may assume $\mu(E_1) < \infty$. Set $F_1 := E_1$ and $F_n := E_1 \setminus E_n$, so that $\mu(E_1) = \mu(E_n) + \mu(F_n)$ for all $n \ge 1$. Observe that $\bigcup F_n = \bigcup E_1 \cap E_n^c = E_1 \cap \left(\bigcup E_n^c\right) = E_1 \cap \left(\bigcap E_n\right)^c = E_1 \setminus \left(\bigcap E_n\right)$. Hence $\mu\left(\bigcap E_n\right) = \mu(E_1) - \mu\left(\bigcup F_n\right) = \mu(E_1) - \lim_{n \to \infty} \mu(E_n)$ $= \mu(E_1) - \lim_{n \to \infty} (\mu(E_1) - \mu(E_n)) = \lim_{n \to \infty} \mu(E_n)$.

Exercise 2.2.5. Suppose (X, \mathcal{M}, μ) is a measure space and $(E_n) \subset \mathcal{M}$. Recall that

$$\inf E_n = \bigcup_k \bigcap_{n \ge k} E_n \quad \text{and} \quad \limsup E_n = \bigcap_k \bigcup_{n \ge k} E_n$$

- (1) Prove that $\mu(\liminf E_n) \leq \liminf \mu(E_n)$.
- (2) Suppose μ is finite. Prove that $\mu(\limsup E_n) \ge \limsup \mu(E_n)$.
- (3) Does (2) above hold if μ is not finite? Give a proof or counterexample.

Theorem 2.2.6. Suppose (X, \mathcal{M}, μ) is a measure space. Define

$$\overline{\mathcal{M}} := \{ E \cup F | E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{M} \text{ with } \mu(N) = 0 \}.$$

(1) $\overline{\mathcal{M}}$ is a σ -algebra containing \mathcal{M} .

lim

(2) There is a unique complete measure $\overline{\mu}$ on $\overline{\mathcal{M}}$ such that $\overline{\mu}|_{\mathcal{M}} = \mu$. We call $\overline{\mu}$ the completion of μ .

 $\frac{Proof.}{\overline{\mathcal{M}}} \text{ a } \sigma\text{-algebra:}$

- (0) Observe that $\emptyset \in \mathcal{M} \subset \overline{\mathcal{M}}$, so $\overline{\mathcal{M}} \neq \emptyset$.
- (1) If $(E_n \cup F_n) \subset \overline{\mathcal{M}}$, then

$$\bigcup E_n \cup F_n = \underbrace{\left(\bigcup E_n\right)}_{\in \mathcal{M}} \cup \underbrace{\left(\bigcup F_n\right)}_{\subset \bigcup N_n}.$$

Observe that each $F_n \subset N_n \in \mathcal{M}$ with $\mu(N_n) = 0$, so by countable subadditivity, we have $\mu(\bigcup N_n) \leq \sum \mu(N_n) = 0$. Hence $\overline{\mathcal{M}}$ is closed under countable unions.

(2) Suppose $E, N \in \mathcal{M}$ with $F \subset N \mu$ -null. Observe that

$$(E \cup F)^c = (E^c \cap F^c) = (E^c \cap F^c) \cap X = (E^c \cap F^c) \cap (N^c \amalg N)$$
$$= (E^c \cap \underbrace{F^c \cap N^c}_{=N^c \in \mathcal{M}}) \amalg (E^c \cap F^c \cap N) = \underbrace{(E^c \cap N^c)}_{\in \mathcal{M}} \amalg \underbrace{(E^c \cap F^c \cap N)}_{\subset N}$$

Hence $\overline{\mathcal{M}}$ is closed under taking complements.

 $\overline{\mu}$ unique: If $\overline{\mu}|_{\mathcal{M}} = \mu$, then for all $E \cup F \in \overline{\mathcal{M}}$ with $F \subset N \mu$ -null, we have

$$\mu(E) = \overline{\mu}(E) \le \overline{\mu}(E \cup F) \le \overline{\mu}(E) + \overline{\mu}(F) \le \overline{\mu}(E) + \overline{\mu}(N) = \mu(E) + \mu(N) = \mu(E).$$
 Hence $\overline{\mu}(E \cup F) = \mu(E)$.

 $\underline{\overline{\mu}}$ exists: First, we show that $\overline{\mu}(E \cup F) := \mu(E)$ is a well-defined function on $\overline{\mathcal{M}}$. Suppose $\overline{E_1 \cup F_1} = E_2 \cup F_2$ with $F_i \subset N_i \mu$ -null for i = 1, 2. Observe that

 $E_1 \subset E_1 \cup F_1 = E_2 \cup F_2 \subset E_2 \cup N_2 \implies \mu(E_1) \le \mu(E_2 \cup N_2) \le \mu(E_2) + \mu(N_2) = \mu(E_2).$

Swapping the roles of $E_1, E_2, F_1, F_2, \text{ and } N_1, N_2$, we have $\mu(E_2) \leq \mu(E_1)$.

Next, we will show $\overline{\mu}$ is a measure on \mathcal{M} :

- (0) (Vacuum) Observe that $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$.
- (1) (σ -additivity) Suppose $(E_n \cup F_n) \subset \overline{\mathcal{M}}$ is a sequence of disjoint sets with $F_n \subset N_n$ μ -null for each $n \in \mathbb{N}$. Then (E_n) and (F_n) are disjoint, and $\coprod F_n \subset \coprod N_n$ is μ -null. Hence

$$\overline{\mu}\left(\coprod E_n \cup F_n\right) = \overline{\mu}\left(\coprod E_n \cup \coprod F_n\right) = \mu\left(\coprod E_n\right) = \sum \mu(E_n) = \sum \overline{\mu}(E_n \cup F_n).$$

 $\underline{\overline{\mu} \text{ complete:}} \text{ First, note that if } F \subset N \text{ with } N \mu \text{-null, then } F = \emptyset \cup F \in \overline{\mathcal{M}}. \text{ Suppose } G \subset E \cup F \text{ where } F \subset N \text{ is } \mu \text{-null, and } \mu(E) = 0. \text{ Then observe } G \subset E \cup N \in \mathcal{M}, \text{ and } \mu(E \cup N) \leq \mu(E) + \mu(N) = 0. \text{ Hence } G \in \overline{\mathcal{M}}.$

Exercise 2.2.7. Let Π be a π -system, and let \mathcal{M} be the smallest σ -algebra containing Π . Suppose μ, ν are two measures on \mathcal{M} whose restrictions to Π agree.

- (1) Suppose that μ, ν are finite and $\mu(X) = \nu(X)$. Show $\mu = \nu$. Hint: Consider $\Lambda := \{E \in \mathcal{M} | \nu(E) = \mu(E)\}.$
- (2) Suppose that $X = \coprod_{j=1}^{\infty} X_j$ with $(X_j) \subset \Pi$ and $\mu(X_j) = \nu(X_j) < \infty$ for all $j \in \mathbb{N}$. (Observe that μ and ν are σ -finite.) Show $\mu = \nu$.

Exercise 2.2.8 (Folland §1.3, #14 and #15). Given a measure μ on (X, \mathcal{M}) , define ν on \mathcal{M} by

$$\nu(E) := \sup \left\{ \mu(F) | F \subset E \text{ and } \mu(F) < \infty \right\}.$$

- (1) Show that ν is a semifinite measure. We call it the *semifinite part* of μ .
- (2) Suppose $E \in \mathcal{M}$ with $\nu(E) = \infty$. Show that for any n > 0, there is an $F \subset E$ such that $n < \nu(F) < \infty$.

This is exactly Folland §1.3, #14 applied to ν .

- (3) Show that if μ is semifinite, then $\mu = \nu$.
- (4) Show there is a measure ρ on \mathcal{M} (which is generally not unique) which assumes only the values 0 and ∞ such that $\mu = \nu + \rho$.

Exercise 2.2.9. Suppose μ, ν are two measures on a measurable space (X, \mathcal{M}) . We say μ is *absolutely continuous* with respect to ν if $\nu(E) = 0$ implies $\mu(E) = 0$. Prove that when μ is finite, the following are equivalent:

- (1) μ is absolutely continuous with respect to ν .
- (2) For every $\varepsilon > 0$, there is a $\delta > 0$ such that $E \in \mathcal{M}$ with $\nu(E) < \delta$ implies $\mu(E) < \varepsilon$.

Which direction(s) still hold if μ is infinite?

2.3. Outer measures.

Definition 2.3.1. Let X be a set. A function $\mu^* : P(X) \to [0, \infty]$ is called an *outer measure* if

- (0) (vacuum) $\mu^*(\emptyset) = 0.$
- (1) (monotonicity) $E \subset F$ implies $\mu^*(E) \leq \mu^*(F)$.
- (2) (countable subadditivity) $\mu^* (\bigcup E_n) \leq \sum \mu^*(E_n)$ for every sequence (E_n) .

Exercise 2.3.2. Suppose $(\mu_i^*)_{i \in I}$ is a family of outer measures on X. Show that

$$\mu^*(E) := \sup_{i \in I} \mu^*_i(E)$$

is an outer measure on X.

Proposition 2.3.3. Let $\mathcal{E} \subset P(X)$ be any collection of subsets of X satisfying

- $\emptyset \in E$, and
- for all $E \subset X$, there is a sequence $(E_n) \subset \mathcal{E}$ such that $E \subset \bigcup E_n$. (Observe that if $X \in \mathcal{E}$, this condition is automatic.)

Suppose $\rho: \mathcal{E} \to [0,\infty]$ is any function such that $\rho(\emptyset) = 0$. Then

$$\mu^*(E) := \inf\left\{\sum \rho(E_n) \middle| (E_n) \subset \mathcal{E} \text{ with } E \subset \bigcup E_n\right\}$$
(2.3.4)

is an outer measure, called the outer measure induced by (\mathcal{E}, ρ) .

Proof.

- (0) Setting $E_n = \emptyset$ for all n gives $\mu^*(\emptyset) = 0$.
- (1) Observe that whenever $F \subset \bigcup F_n$ with $F_n \in \mathcal{E}$ for all n, then $E \subset F \subset \bigcup F_n$. Hence the inf for E is less than or equal to the inf for F.

(2) We'll use the following two tricks:

Trick. $\sum_{1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$ **Trick.** $r \leq s$ if and only if for all $\varepsilon > 0, r \leq s + \varepsilon$.

Suppose (E_n) is a sequence of sets and let $\varepsilon > 0$. For each n, there is a cover $(F_k^n)_k$ such that $E_n \subset \bigcup_k F_k^n$ such that

$$\sum_{k} \rho(F_k^n) \le \mu^*(E_n) + \frac{\varepsilon}{2^n}$$

Then $\bigcup E_n \subset \bigcup_n \bigcup_k F_k^n$, so

$$\mu^* \left(\bigcup E_n \right) \le \sum_n \sum_k \rho(F_k^n) \le \sum_n \mu^*(E_n) + \frac{\varepsilon}{2^n} = \sum \mu^*(E_n) + \sum \frac{\varepsilon}{2^n} = \sum \mu^*(E_n) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, $\mu^* \left(\bigcup E_n \right) \le \sum \mu^*(E_n).$

Exercise 2.3.5. Show that the second bullet point in Proposition 2.3.3 can be removed if we add the convention that $\inf \emptyset = \infty$.

Example 2.3.6. One can get an outer measure on P(X) by taking *any* measure μ on a σ -algebra \mathcal{M} and defining its induced outer measure μ^* as in (2.3.4).

We get a measure μ from an outer measure μ^* by restricting to the σ -algebra \mathcal{M}^* of μ^* -measurable sets.

Definition 2.3.7. Given an outer measure μ^* on P(X), we define the collection of μ^* -measurable sets

$$\mathcal{M}^* := \{ E \subset X | \mu^*(E \cap F) + \mu^*(E^c \cap F) = \mu^*(F) \text{ for all } F \subset X \}.$$

That is, E is μ^* -measurable if it 'splits' every other set nicely with respect to μ^* .

Remarks 2.3.8.

(1) Clearly $\mu^*(F) \le \mu^*(E \cap F) + \mu^*(E^c \cap F)$. So $E \in \mathcal{M}^* \iff \mu^*(F) \ge \mu^*(E \cap F) + \mu^*(E^c \cap F) \qquad \forall F \subset X.$ (2.3.9)

(2) All μ^* -null sets are in \mathcal{M}^* . That is, if $N \subset X$ with $\mu^*(N) = 0$, then for all $F \subset X$

$$\mu^*(\underbrace{F \cap N}_{\subset N}) + \mu^*(F \setminus N) = \mu^*(F \setminus N) \le \mu^*(F).$$

Lemma 2.3.10. For $G \subset X$ and $E, F \in \mathcal{M}^*$, define

Then we have

$$\mu^*(G) = \mu^*(G_{00}) + \mu^*(G_{01}) + \mu^*(G_{10}) + \mu^*(G_{11}).$$
(2.3.11)

Proof. Since $E \in \mathcal{M}^*$,

$$\mu^*(G) = \mu^*(G \cap E) + \mu^*(G \setminus E) = \mu^*(G_{11} \cup G_{10}) + \mu^*(G_{01} \cup G_{00}).$$

Since $F \in \mathcal{M}^*$,

$$\mu^*(G_{11} \cup G_{10}) = \mu^*(G_{11} \cup G_{10} \cap F) + \mu^*(G_{11} \cup G_{10} \setminus F) = \mu^*(G_{11}) + \mu^*(G_{10}).$$

Similarly, $\mu^*(G_{01} \cup G_{00}) = \mu^*(G_{01}) + \mu^*(G_{00})$. The result follows.

Theorem 2.3.12 (Carathéodory). Let μ^* be an outer measure on X. The collection of μ^* -measurable sets \mathcal{M}^* is a σ -algebra, and $\mu := \mu^*|_{\mathcal{M}^*}$ is a (complete) measure.

Proof.

Step 1: \mathcal{M}^* is an algebra.

- (0) Clearly $\emptyset \in \mathcal{M}^*$ since it is μ^* -null by Remarks 2.3.8(2).
- (1) If $E, F \in \mathcal{M}^*$, then for all $G \subset X$, (2.3.11) holds above. By applying (2.3.11) to $G_{10} \cup G_{11} \cup G_{01}$, we have

$$\mu^*((E \cup F) \cap G) = \mu^*(G_{10} \cup G_{11} \cup G_{01}) = \mu^*(G_{10}) + \mu^*(G_{11}) + \mu^*(G_{01}).$$

Moreover, $\mu^*((E \cup F)^c \cap G) = \mu^*(G_{00})$. Again by (2.3.11), we have

$$\mu^*((E \cup F) \cap G) + \mu^*((E \cup F)^c \cap G) = (\mu^*(G_{10}) + \mu^*(G_{11}) + \mu^*(G_{01})) + \mu^*(G_{00}) \underset{(2.3.11)}{=} \mu^*(G).$$

(2) Observe that the Carathéodory Criterion (2.3.9) is preserved under taking complements.

Step 2: \mathcal{M}^* is a σ -algebra.

Suppose $(E_n) \subset \mathcal{M}^*$ is a sequence of disjoint sets, and set $E := \coprod E_n$. By Step 1, for all $N \in \mathbb{N}, \coprod^N E_n \in \mathcal{M}^*$. Let $F \subset X$, and define $G := F \cap \coprod^N E_n$. Then since $E_N \in \mathcal{M}^*$, we have

$$\mu^*\left(F \cap \coprod^N E_n\right) = \mu^*(G) = \mu^*(E_N^c \cap G) + \mu^*(E_N \cap G) = \mu^*\left(F \cap \coprod^{N-1} E_n\right) + \mu^*(F \cap E_N).$$

By iterating as $E_n \in \mathcal{M}^*$ for all $n \in \mathbb{N}$, we have

$$\mu^*\left(F\cap\coprod^N E_n\right) = \sum^N \mu^*(F\cap E_n) \qquad \forall N\in\mathbb{N}.$$

It follows that for all $N \in \mathbb{N}$,

$$\mu^*(F) = \mu^*\left(F \cap \coprod^N E_n\right) + \mu^*\left(\underbrace{F \setminus \coprod^N E_n}_{\supset F \setminus E}\right) \ge \sum_{\substack{N \\ 31}} \mu^*(F \cap E_n) + \mu^*(F \setminus E)$$

Taking limits in $[0, \infty]$ as $N \to \infty$, we have

$$\mu^{*}(F) \geq \sum_{n}^{\infty} \mu^{*}(F \cap E_{n}) + \mu^{*}(F \setminus E)$$

$$\geq \mu^{*} \left(\prod_{n}^{\infty} F \cap E_{n} \right) + \mu^{*}(F \setminus E)$$

$$= \mu^{*}(F \cap E) + \mu^{*}(F \setminus E).$$

(2.3.13)

Thus $E = \coprod E_n \in \mathcal{M}^*$. Step 3: $\mu = \mu^*|_{\mathcal{M}^*}$ is a measure.

It remains to show μ is σ -additive on \mathcal{M}^* . Suppose $(E_n) \subset \mathcal{M}^*$ is a sequence of disjoint sets as in Step 2. Taking F = E in (2.3.13) above shows us

$$\mu^*(E) \ge \sum \mu^*(E_n) \ge \mu^*(E),$$

so equality holds.

2.4. **Pre-measures.** In the last section, we gave a prescription for constructing a complete measure on X. Start with any collection of subsets $\mathcal{E} \subset P(X)$ with $\emptyset \in \mathcal{E}$ such that for every $E \subset X$, there is some sequence $(E_n) \subset \mathcal{E}$ with $E \subset \bigcup E_n$. Take any function $\rho : \mathcal{E} \to [0, \infty]$ such that $\rho(\emptyset) = 0$. We get an induced outer measure μ^* by (2.3.4). Taking the μ^* -measurable sets \mathcal{M}^* , we get a σ -algebra, and $\mu := \mu^*|_{\mathcal{M}^*}$ is a complete measure.

However, we get little control over \mathcal{M}^* and μ . Consider the following two crucial questions:

- (1) When is $\mathcal{E} \subset \mathcal{M}^*$?
- (2) In this case, when does $\mu|_{\mathcal{E}} = \rho$? Note: we always have $\mu^* \leq \rho$, since every $E \in \mathcal{E}$ is covered by itself. But there might be some cover $E \subset \bigcup E_n$ from \mathcal{E} such that $\sum \rho(E_n) < \rho(E)$.

A sufficient condition to ensure a positive answer to both of these questions is that \mathcal{E} is an algebra, and ρ is a *premeasure*.

Definition 2.4.1. Let $\mathcal{A} \subset P(X)$ be an algebra. A function $\mu_0 : \mathcal{A} \to [0, \infty]$ is called a *premeasure* if

- (0) (vacuum) $\mu_0(\emptyset) = 0$, and
- (1) (countable additivity) for every sequence $(E_n) \subset \mathcal{A}$ of disjoint sets such that $\coprod E_n \in \mathcal{A}$, we have $\mu_0(\coprod E_n) = \sum \mu_0(E_n)$.

The adjectives *finite*, σ -*finite*, and *semi-finite* for premeasures are defined analogously to those for measures.

Facts 2.4.2. The following are basic properties of a premeasure μ_0 on an algebra $\mathcal{A} \subset P(X)$. (pre- μ 1) (finite additivity) If $E_1, \ldots, E_n \in \mathcal{A}$ are disjoint, then $\mu_0(\coprod E_n) = \sum \mu_0(E_n)$.

Proof. If
$$E_1, \ldots, E_n \in \mathcal{A}$$
 are disjoint sets, then observe that $\coprod_{i=1}^n E_i \in \mathcal{A}$. So by setting $E_i = \emptyset$ for all $i > n$, we have

$$\mu_0\left(\prod_{i=1}^n E_i\right) = \mu_0\left(\prod E_i\right) = \sum \mu_0(E_i) = \sum_{i=1}^n \mu_0(E_i).$$

(pre- μ 2) (monotonicity) If $E, F \in \mathcal{A}$ with $F \subset E$, then $\mu_0(F) \leq \mu_0(E)$.

Proof. Immediate by (pre- μ 1) since $E = F \amalg (E \setminus F)$.

(pre- μ 3) (countable subadditivity) If $(E_n) \subset \mathcal{A}$ such that $\bigcup E_n \in \mathcal{A}$, then $\mu_0(\bigcup E_n) \leq \sum \mu_0(E_n)$.

Proof. We use disjointification (II). Set $F_1 := E_1$ and inductively define $F_n := E_n \setminus \bigcup_{i=1}^{n-1} E_i$. Then $F_n \in \mathcal{A}$ for all n, and $\coprod F_n = \bigcup E_n$. Thus

$$\mu_0\left(\bigcup E_n\right) = \mu_0\left(\coprod F_n\right) = \sum \mu_0(F_n) \leq \sum \mu_0(E_n). \qquad \Box$$

(pre- μ 4) (monotone countable subadditivity) Suppose $E \in \mathcal{A}$ and $(E_n) \subset \mathcal{A}$ such that $E \subset \bigcup E_n$. Then $\mu_0(E) \leq \sum \mu_0(E_n)$. Warning: This does not follow immediately by monotonicity and countable subadditivity, since we are not assured that $\bigcup E_n \in \mathcal{A}$!

> Proof. Let $F_1 := E \cap E_1$ and inductively set $F_n := E \cap (E_n \setminus \bigcup_{i=1}^{n-1} E_i)$. Then $F_n \in \mathcal{A}$ for all n, and $\coprod F_n = E \in \mathcal{A}$. Hence $\mu_0(E) = \mu_0 \left(\coprod F_n\right) = \sum \mu_0(F_n) \leq \sum_{\text{(pre-}\mu^2)} \sum \mu_0(E_n). \square$

Remark 2.4.3. Recall that if μ_0 is only known to be finitely additive and not necessarily countably additive, then μ_0 still satisfies monotonicity and finite subadditivity (cf. Exercise 2.0.4).

Lemma 2.4.4. Suppose μ_0 is a premeasure on \mathcal{A} . Let μ^* be the induced outer measure given by (2.3.4).

(1) $\mu^*|_{\mathcal{A}} = \mu_0$, and (2) $\mathcal{A} \subset \mathcal{M}^*$.

Proof.

(1) Suppose $E \in \mathcal{A}$.

 $\mu^* \leq \mu_0$: Setting $E_1 := E$ and $E_n := \emptyset$ for all n > 1, $\mu^*(E) \leq \sum \mu_0(E_n) = \mu_0(E)$.

 $\frac{\mu^* \ge \mu_0}{E}: \text{ Let } \varepsilon > 0. \text{ By definition of } \mu^* \text{ as an infimum, there is a sequence } (E_n) \subset A \text{ such that} \\ E \subset \bigcup E_n \text{ and } \sum \mu_0(E_n) \le \mu^*(E) + \varepsilon. \text{ But by monotone countable subadditivity,} \\ \mu_0(E) \le \sum \mu_0(E_n), \text{ and thus } \mu_0(E) \le \mu^*(E) + \varepsilon. \text{ Since } \varepsilon > 0 \text{ was arbitrary, } \mu_0 \le \mu^* \text{ on } \mathcal{A}.$

(2) Suppose $E \in \mathcal{A}$ and $F \subset X$ and $\varepsilon > 0$. Pick $(F_n) \subset \mathcal{A}$ such that $F \subset \bigcup F_n$ and $\sum \mu_0(F_n) \leq \mu^*(F) + \varepsilon$. Since μ_0 is σ -additive on \mathcal{A} ,

$$\mu^*(F) + \varepsilon \ge \sum \mu_0(F_n) = \sum \mu_0(F_n \cap E) + \mu_0(F_n \cap E^c)$$
$$= \sum \mu_0(F_n \cap E) + \sum \mu_0(F_n \cap E^c)$$
$$\ge \mu^*(F \cap E) + \mu^*(F \cap E^c).$$

Since $\varepsilon > 0$ was arbitrary, we conclude that $\mu^*(F) \ge \mu^*(F \cap E) + \mu^*(F \cap E^c)$, and thus $E \in \mathcal{M}^*$.

Construction 2.4.5. Starting with a premeasure μ_0 on an algebra \mathcal{A} , we get a σ -algebra \mathcal{M}^* which contains \mathcal{A} , and a complete measure $\mu := \mu^*|_{\mathcal{M}^*}$ such that $\mu|_{\mathcal{A}} = \mu_0$.

Remark 2.4.6. Observe that by Fact 2.1.7, \mathcal{M}^* contains $\mathcal{M} := \mathcal{M}(\mathcal{A})$, the σ -algebra generated by \mathcal{A} , and $\mu|_{\mathcal{M}}$ is a (possibly non-complete) measure.

Theorem 2.4.7. Suppose μ_0 is a premeasure on an algebra \mathcal{A} , and μ is the measure on \mathcal{M}^* from Construction 2.4.5. If ν is a measure on $\mathcal{M} = \mathcal{M}(\mathcal{A})$ such that $\nu|_{\mathcal{A}} = \mu_0$, then $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{M}$, with equality when $\mu(E) < \infty$.

Proof. Suppose $E \in \mathcal{M}$. Step 1: $\nu(E) \leq \mu(E)$.

> Since $E \in \mathcal{M}$, for all sequences $(E_n) \subset \mathcal{A}$ such that $E \subset \bigcup E_n$, $\nu(E) \le \sum \nu(E_n) = \sum \mu_0(E_n).$ Hence $\nu(E) \leq \inf \left\{ \sum \mu_0(E_n) | E \subset \bigcup E_n \right\} = \mu^*(E) = \mu(E).$

Step 2: When $\mu(E) < \infty$, we show $\mu(E) \le \nu(E)$, and thus $\mu(E) = \nu(E)$.

Let
$$\varepsilon > 0$$
. Then there exists a sequence $(E_n) \subset \mathcal{A}$ such that $E \subset \bigcup E_n$ and
 $\mu\left(\bigcup E_n\right) \leq \sum \mu_0(E_n) \leq \mu(E) + \varepsilon < \infty$.
Since $E \subset \bigcup E$ and $\mu(E) < \infty$ we have

Since $E \subset \bigcup E_n$ and $\mu(E) < \infty$, we

$$\mu\left(\left(\bigcup E_n\right) \setminus E\right) = \mu\left(\bigcup E_n\right) - \mu(E) \le \varepsilon.$$
(2.4.8)

Now by continuity from below $(\mu 3)$ for both μ and ν , we have

$$\mu\left(\bigcup E_n\right) = \lim_{N \to \infty} \mu\left(\bigcup^N E_n\right) = \lim_{N \to \infty} \mu_0\left(\bigcup^N E_n\right)$$

$$= \lim_{N \to \infty} \nu\left(\bigcup^N E_n\right) = \nu\left(\bigcup E_n\right).$$
 (2.4.9)

Putting these two equations together, we have

$$\mu(E) \le \mu\left(\bigcup E_n\right) \underset{(2.4.9)}{=} \nu\left(\bigcup E_n\right) = \nu(E) + \nu\left(\left(\bigcup E_n\right) \setminus E\right)$$
$$\le \nu(E) + \mu\left(\left(\bigcup E_n\right) \setminus E\right) \underset{(2.4.8)}{\le} \nu(E) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, $\mu(E) < \nu(E)$.

This concludes the proof.

Corollary 2.4.10. Suppose μ_0 is a premeasure on an algebra \mathcal{A} , and μ is the measure on \mathcal{M}^* from Construction 2.4.5. If μ_0 is σ -finite, then μ is the unique extension of μ_0 to $\mathcal{M} = \mathcal{M}(\mathcal{A})$.

Proof. Recall that μ_0 is σ -finite if there exists a sequence $(E_n) \subset \mathcal{A}$ such that $\bigcup E_n = X$ and $\mu_0(E_n) < \infty$ for all n. Observe that by disjointification (II), we may assume that the E_n are disjoint.

Now for any other ν extending μ_0 and $E \in \mathcal{M}$, we have

$$\mu(E) = \mu\left(\coprod E \cap E_n\right) = \sum \underbrace{\mu(E \cap E_n)}_{<\infty} = \sum \nu(E \cap E_n) = \nu\left(\coprod E \cap E_n\right) = \nu(E). \quad \Box$$

Exercise 2.4.11. Suppose \mathcal{A} is an algebra on X, μ_0 a premeasure on \mathcal{A} , and μ^* the induced outer measure on P(X) given by (2.3.4). Show that for every $E \subset X$, there is a μ^* -measurable set $F \supset E$ such that $\mu^*(F) = \mu^*(E)$.

Exercise 2.4.12 (Adapted from Folland §1.4, #18 and #22). Suppose \mathcal{A} is an algebra, and let \mathcal{M} be the σ -algebra generated by \mathcal{A} . Let μ_0 be a σ -finite premeasure on \mathcal{A} , μ^* the induced outer measure given by (2.3.4), and \mathcal{M}^* the σ -algebra of μ^* -measurable sets. Show that the following are equivalent.

- (1) $E \in \mathcal{M}^*$
- (2) $E = F \setminus N$ where $F \in \mathcal{M}$ and $\mu^*(N) = 0$.
- (3) $E = F \cup N$ where $F \in \mathcal{M}$ and $\mu^*(N) = 0$.

Deduce that if μ is a σ -finite measure on \mathcal{M} , then $\mu^*|_{\mathcal{M}^*}$ on \mathcal{M}^* is the completion of μ on \mathcal{M} .

Exercise 2.4.13 (Folland §1.4, #20). Let μ^* be an outer measure on P(X), \mathcal{M}^* the σ -algebra of μ^* -measurable sets, and $\mu := \mu^*|_{\mathcal{M}^*}$. Let μ^+ be the outer measure on P(X) induced by the (pre)measure μ on the (σ -)algebra \mathcal{M}^* .

- (1) Show that $\mu^*(E) \leq \mu^+(E)$ for all $E \subset X$ with equality if and only if there is an $F \in \mathcal{M}^*$ with $E \subset F$ and $\mu^*(E) = \mu^*(F)$.
- (2) Show that if μ^* was induced from a premeasure μ_0 on an algebra \mathcal{A} , then $\mu^* = \mu^+$.
- (3) Construct an outer measure μ^* on the two point set $X = \{0, 1\}$ such that $\mu^* \neq \mu^+$.

Exercise 2.4.14. Let X be a set, \mathcal{A} an algebra on X, μ_0 a premeasure on \mathcal{A} , and μ^* the induced outer measure on P(X) given by (2.3.4). Suppose that (E_n) is an *increasing* sequence of subsets of X, i.e., $E_1 \subset E_2 \subset E_3 \subset \cdots$. Prove that

$$\mu^*\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu^*(E_n).$$

Exercise 2.4.15 (Sarason). Suppose μ_0 is a finite premeasure on the algebra $\mathcal{A} \subset P(X)$, and let $\mu^* : P(X) \to [0, \infty]$ be the outer measure induced by μ_0 . Prove that the following are equivalent for $E \subset X$.

- (1) $E \in \mathcal{M}^*$, the μ^* -measurable sets.
- (2) $\mu^*(E) + \mu^*(X \setminus E) = \mu(X).$

Hint: Use Exercise 2.4.12.

2.5. Lebesgue-Stieltjes measures on \mathbb{R} .

2.5.1. Construction of Lebesgue-Stieltjes measures. Recall from Exercise 2.1.11 that we define the collection of h-intervals by

 $\mathcal{H} := \{\emptyset\} \cup \{(a, b] | -\infty \le a < b < \infty\} \cup \{(a, \infty) | a \in \mathbb{R}\}.$

Let $\mathcal{A} = \mathcal{A}(\mathcal{H})$ be the collection of finite disjoint unions of elements of \mathcal{H} . By Exercise 2.1.11, \mathcal{A} is an algebra, and the σ -algebra generated by \mathcal{A} is $\mathcal{M}(\mathcal{A}) = \mathcal{B}_{\mathbb{R}}$, the Borel σ -algebra. Our goal is to construct a nice class of premeasures on \mathcal{A} .

Construction 2.5.1. Let $F : \mathbb{R} \to \mathbb{R}$ be any function which is

- (non-decreasing) $r \leq s$ implies $F(r) \leq F(s)$, and
- (right continuous) if $r_n \searrow a$, then $F(r_n) \searrow F(a)$

Extend F to a function $\overline{\mathbb{R}} = [-\infty, \infty] \to \overline{\mathbb{R}}$ by

$$F(-\infty) := \lim_{a \to -\infty} F(a)$$
 and $F(\infty) := \lim_{b \to \infty} F(b).$

Define $\mu_0: \mathcal{H} \to [0, \infty]$ by

- $\mu_0(\emptyset) := 0,$
- $\mu_0((a, b]) := F(b) F(a)$ for all $a \ge -\infty$, and
- $\mu_0((a,\infty)) := F(\infty) F(a)$ for all $a \ge -\infty$.

In (LS4) below, we extend $\mu_0 : \mathcal{H} \to [0, \infty]$ to a well-defined function $\mathcal{A} = \mathcal{A}(\mathcal{H}) \to [0, \infty]$. In Theorem 2.5.7 below, we prove this extension to \mathcal{A} is a *premeasure*. By Carathéodory's outer measure construction, we get an outer measure μ_F^* on $(\mathbb{R}, P(\mathbb{R}))$ by (2.3.4). By taking the σ -algebra of μ_F^* -measurable sets $\mathcal{M}_F := \mathcal{M}^*$, we get a complete measure $\mu_F := \mu_F^*|_{\mathcal{M}_F}$.

Definition 2.5.2. We call μ_F the Lebesgue-Stieltjes measure associated to F.

Remark 2.5.3. Since μ_F is σ -finite by construction, it follows from Exercise 2.4.12 that \mathcal{M}_F is the completion $\overline{\mathcal{B}}_{\mathbb{R}}$ of the Borel σ -algebra for $\mu_F|_{\mathcal{B}_{\mathbb{R}}}$. Thus, sets in \mathcal{M}_F are unions of Borel sets and subsets of Borel sets which are μ_F -null.

In the remainder of this section, we prove that μ_0 extends to a premeasure on $\mathcal{A} = \mathcal{A}(\mathcal{H})$.

Facts 2.5.4. We have the following facts about the function μ_0 .

(LS1) Splitting $(a, \infty) = (a, b] \amalg (b, \infty)$, we have $\mu_0((a, \infty)) = \mu_0((a, b]) + \mu_0((b, \infty))$. (LS2) If $(a, b] = \coprod_{i=1}^n (a_i, b_i]$, then $\mu_0((a, b]) = \sum_{i=1}^n \mu_0((a_i, b_i])$.

Proof. Re-indexing, we may assume $a = a_1 < b_1 = a_2 < b_2 = a_3 < \cdots < b_n$. Then

$$\mu_0((a,b]) = F(b) - F(a) = \sum_{i=1}^n F(b_i) - F(a_i) = \sum_{i=1}^n \mu_0((a_i,b_i]).$$

(LS3) If $E_1, \ldots, E_n \in \mathcal{H}$ are disjoint and $F \in \mathcal{H}$ such that $F \subset \coprod_{i=1}^n E_i$, then $\mu_0(F) = \sum_{i=1}^n \mu_0(F \cap E_i)$.

Proof. Removing elements of $(E_i)_{i=1}^n$ if necessary, we may assume that $F \cap E_i \neq \emptyset$ for all $i = 1, \ldots, n$. This means that $F \cap E_i \in \mathcal{H}$ for all i, and $F = \coprod_{i=1}^n F \cap E_i$. The result now follows by (LS1) and (LS2).

(LS4) If $(E_1, \ldots, E_m) \subset \mathcal{H}$ and $(F_1, \ldots, F_n) \subset \mathcal{H}$ are two collections of disjoint *h*-intervals with $\coprod_{i=1}^m E_i = \coprod_{j=1}^n F_j$, then $\sum_{i=1}^m \mu_0(E_i) = \sum_{j=1}^n \mu_0(F_j)$.

Proof. By applying (LS3) twice, we have

$$\sum_{i=1}^{m} \mu_0(E_i) \underset{(3)}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_0(E_i \cap F_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} \mu_0(E_i \cap F_j) \underset{(3)}{=} \sum_{j=1}^{n} \mu_0(F_j). \quad \Box$$

Hence μ_0 extends to a well-defined function still denoted $\mu_0: \mathcal{A} = \mathcal{A}(\mathcal{H}) \to [0, \infty]$ by

$$\mu_0\left(\prod_{i=1}^n E_i\right) := \sum_{i=1}^n \mu_0(E_i) \qquad \forall \text{ disjoint } E_1, \dots, E_n \in \mathcal{H}.$$

Corollary 2.5.5. The extension $\mu_0 : \mathcal{A} \to [0, \infty]$ afforded by (LS4) is finitely additive and thus monotone and finitely subadditive by Exercise 2.0.4.

Proof. Suppose $E = \coprod_{i=1}^{n} E_i$ with $E, E_1, \ldots, E_n \in \mathcal{A}$. Then we may write each $E_i = \coprod_{j=1}^{m_i} E_j^i$ where $E_j^i \in \mathcal{H}$ for all $j = 1, \ldots, m_i$, and thus $E = \coprod_{i=1}^{n} \coprod_{j=1}^{m_i} E_j^i$. Then by countable additivity of μ_0 on \mathcal{H} from (LS4), we have

$$\mu_0(E) = \sum_{i=1}^n \sum_{j=1}^{m_i} \mu_0(E_j^i) = \sum_{i=1}^n \mu_0(E_i).$$

Exercise 2.5.6. Describe to the best of your ability the set of accumulation points of right endpoints (b_j) for a disjoint collection of bounded h-intervals $((a_n, b_n])_{n=1}^{\infty}$ such that $\coprod (a_n, b_n] = (a, b]$ for some a < b in \mathbb{R} .

Theorem 2.5.7. The extension $\mu_0 : \mathcal{A} \to [0, \infty]$ afforded by (LS4) is a premeasure on \mathcal{A} .

Proof. It is clear that $\mu_0(\emptyset) = 0$ by construction.

Suppose $(E_n) \subset \mathcal{A}$ is a disjoint sequence such that $\coprod E_n \in \mathcal{A}$. Then there are disjoint h-intervals $F_1, \ldots, F_k \in \mathcal{H}$ such that $\coprod E_n = \coprod_{j=1}^k F_j$. We may assume that $E_n \cap F_j \neq \emptyset$ for at most one j. Thus we may partition the (E_n) into (E_n^j) such that $\coprod E_n^j = F_j$ for $j = 1, \ldots, k$. We make the following claim.

Claim. Suppose $H \in \mathcal{H}$ is a single h-interval such that $H = \coprod H_n$ where $(H_n) \subset \mathcal{H}$ is a sequence of disjoint h-intervals. Then $\mu_0(H) = \sum \mu_0(H_n)$.

Then by applying (LS4), we have

$$\mu_0\left(\coprod E_n\right) = \mu_0\left(\coprod_{j=1}^k F_j\right) = \sum_{j=1}^k \mu_0(F_j) \underset{\text{(Claim)}}{=} \sum_{j=1}^k \sum \mu_0(E_n^j) = \sum \mu_0(E_n).$$

Thus it remains to prove the claim.

Proof of claim for H = (a, b], $a, b \in \mathbb{R}$. Suppose $(a, b] = \coprod (a_j, b_j]$. Then for all $n \in \mathbb{N}$, $\coprod_{j=1}^{n} (a_j, b_j] \subset (a, b]$. By (LS4) and monotonicity, we have

$$\sum_{j=1}^{n} \mu_0((a_j, b]) = \mu_0\left(\prod_{j=1}^{n} (a_j, b_j]\right) \le \mu_0((a, b]).$$

Taking $n \to \infty$, we have $\sum \mu_0((a_j, b_j]) \le \mu_0((a, b])$. To show the reverse inequality, let $\varepsilon > 0$. Since F is right continuous,

- show the reverse mequality, let $\varepsilon > 0$. Since F is right continuous
 - there is $\delta > 0$ such that $F(a + \delta) F(a) < \frac{\varepsilon}{2}$, and
 - for all $j \ge 1$, there is $\delta_j > 0$ such that $F(b_j + \delta_j) F(b_j) < \frac{\varepsilon}{2^{j+1}}$.

Observe now that $\{(a_j, b_j + \delta_j)\}_{j=1}^{\infty}$ is an open cover of the compact interval $[a + \delta, b]$. Hence there is a finite subcover, i.e., there is an $N \in \mathbb{N}$ such that $[a + \delta, b] \subset \bigcup_{j=1}^{N} (a_j, b_j + \delta_j)$. Then we calculate

$$\begin{split} \mu_0((a,b]) &= F(b) - F(a) \\ &< F(b) - F(a+\delta) + \frac{\varepsilon}{2} \\ &= \mu_0((a+\delta,b]) + \frac{\varepsilon}{2} \\ &\leq \mu_0 \left(\bigcup_{j=1}^N (a_j,b_j+\delta_j] \right) + \frac{\varepsilon}{2} \\ &\leq \sum_{j=1}^N \mu_0((a_j,b_j+\delta_j]) + \frac{\varepsilon}{2} \\ &= \sum_{j=1}^N \left(F(b_j+\delta_j) - F(a_j) \right) + \frac{\varepsilon}{2} \\ &\leq \sum_{j=1}^N \left(F(b_j) + \frac{\varepsilon}{2^{j+1}} - F(a_j) \right) + \frac{\varepsilon}{2} \\ &= \sum_{j=1}^N \mu_0((a_j,b_j]) + \sum_{j=1}^N \frac{\varepsilon}{2^{j+1}} + \frac{\varepsilon}{2} \\ &\leq \sum_{j=1}^\infty \mu_0((a_j,b_j]) + \sum_{j=1}^\infty \frac{\varepsilon}{2^{j+1}} + \frac{\varepsilon}{2} \\ &= \sum_{j=1}^\infty \mu_0((a_j,b_j]) + \varepsilon. \end{split}$$
 Since $\varepsilon > 0$ was arbitrary, $\mu_0((a,b]) \leq \sum_{j=1}^\infty \mu_0((a_j,b_j])$.

The cases $H = (-\infty, b]$ for some $b < \infty$ and $H = (a, \infty)$ for $-\infty \le a$ are left as the following exercise.

Exercise 2.5.8. Consider the extension $\mu_0 : \mathcal{A} \to [0, \infty]$ afforded by (LS4). Suppose H is $(-\infty, b]$ for some $b < \infty$ or (a, ∞) for $-\infty \leq a$. If $H = \coprod H_n$ where $(H_n) \subset \mathcal{H}$ is a sequence of disjoint h-intervals, then $\mu_0(H) = \sum \mu_0(H_n)$.

Exercise 2.5.9 (Folland, §1.5, #28). Let $F : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous, and let μ_F be the associated Lebesgue-Stieltjes Borel measure on $\mathcal{B}_{\mathbb{R}}$. For $a \in \mathbb{R}$, define

$$F(a-) := \lim_{r \nearrow a} F(r).$$

Prove that:

(1)
$$\mu_F(\{a\}) = F(a) - F(a-),$$

(2) $\mu_F([a,b]) = F(b-) - F(a-),$
(3) $\mu_F([a,b]) = F(b) - F(a-),$ and
(4) $\mu_F((a,b)) = F(b-) - F(a).$

2.5.2. Lebesgue measure.

Definition 2.5.10. Lebesgue measure λ is the Lebesgue-Stieltjes measure μ_{id} where id : $\mathbb{R} \to \mathbb{R}$ is the identity function id(r) = r. The Lebesgue σ -algebra is $\mathcal{L} := \mathcal{M}^* = \overline{\mathcal{B}}_{\mathbb{R}}$ for $\lambda|_{\mathcal{B}_{\mathbb{R}}}$.

Definition 2.5.11. For $E \subset \mathbb{R}$ and $r, s \in \mathbb{R}$, define $rE := \{rx | x \in E\}$ and $s + E := \{s + x | x \in E\}$.

Theorem 2.5.12. Suppose $E \in \mathcal{L}$.

- (1) (dilation homogeneity) If $r \in \mathbb{R}$, then $rE \in \mathcal{L}$ and $\lambda(rE) = |r| \cdot \lambda(E)$.
- (2) (translation invariance) If $s \in \mathbb{R}$, then $s + E \in \mathcal{L}$ and $\lambda(s + E) = \lambda(E)$.

Proof. We will prove dilation homogeneity and leave translation invariance to the reader.

<u>Step 1:</u> $\mathcal{B}_{\mathbb{R}}$ is closed under $E \mapsto rE$. This is trivial if r = 0, so assume $r \neq 0$. Then multiplication by r is a bijection on $P(\mathbb{R})$ mapping open intervals to open intervals. Thus multiplication by r maps $\mathcal{B}_{\mathbb{R}}$ onto itself.

Step 2: It is a straightforward exercise to prove that $|r| \cdot \lambda$ is a measure on \mathcal{L} and $\lambda^r(E) := \overline{\lambda(rE)}$ is a measure on $\mathcal{B}_{\mathbb{R}}$.

Step 3: If $E \in \mathcal{H}$, then $\lambda^r(E) = |r| \cdot \lambda(E)$, so $\lambda^r = |r| \cdot \lambda$ on $\mathcal{A}(\mathcal{H})$ and thus all of $\mathcal{B}_{\mathbb{R}}$ by Corollary 2.4.10 (or Exercise 2.2.7) as λ^r and $|r| \cdot \lambda$ are both σ -finite.

<u>Step 4:</u> If $E \in \mathcal{L}$ is λ -null, then $rE \in \mathcal{L}$ is λ -null. Indeed, by Remark 2.5.3, $E \in \mathcal{L}$ is λ -null if and only if there is an $N \in \mathcal{B}_{\mathbb{R}}$ such that $E \subset N$ and $\lambda(N) = 0$. Now $rE \subset rN$, and $\lambda(rN) = |r| \cdot \lambda(N) = 0$ by Step 3.

Step 5: Finally, as $\mathcal{L} = \overline{\mathcal{B}_{\mathbb{R}}}$ for λ , we see λ^r and $|r| \cdot \lambda$ are both defined on \mathcal{L} and agree. \Box

Exercise 2.5.13. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra of \mathbb{R} . Suppose μ is a translation invariant measure on $\mathcal{B}_{\mathbb{R}}$ such that $\mu((0,1]) = 1$. Prove that $\mu = \lambda|_{\mathcal{B}_{\mathbb{R}}}$, the restriction of Lebesgue measure on \mathcal{L} to $\mathcal{B}_{\mathbb{R}}$.

Remark 2.5.14. By Exercise 2.5.9(1), $\lambda(\{r\}) = 0$ for all $r \in \mathbb{R}$, and thus $\lambda(E) = 0$ for all countable $E \subset \mathbb{R}$.

Example 2.5.15. The Cantor set C is defined as $\bigcap C_n$ where we define C_n inductively by 'removing middle thirds' of [0, 1].

By continuity from above ($\mu 4$) for λ , we have $\lambda(C) = \lim_{n \to \infty} \lambda(C_n)$. By Exercise 2.5.9,

$$\lambda(C_0) = 1$$

$$\lambda(C_1) = 1 - \frac{1}{3}$$

$$\lambda(C_2) = 1 - \frac{1}{3} - \frac{2}{9}$$

$$\lambda(C_3) = 1 - \frac{1}{3} - \frac{2}{9} - \frac{4}{27} \quad \text{etc.}$$

$$\implies \quad \lambda(C) = 1 - \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 1 - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = 1 - \frac{1}{3} \left(\frac{1}{1 - \frac{2}{3}}\right) = 0.$$

It is well known that C is uncountable; indeed it is in bijection with $\{0,1\}^{\mathbb{N}}$ via base 3 decimal expansions where only the digits 0 and 2 occur. (Recall that decimal expansion is not unique; one must pick a particular convention here.)

Exercise 2.5.16. Show that the function $f : \{0, 1\}^{\mathbb{N}} \to C$ given by

$$f(x) := \sum_{n=1}^{\infty} \frac{2x_n}{3^n}$$

is a homeomorphism of $\{0,1\}^{\mathbb{N}}$ onto the Cantor set.

Exercise 2.5.17. Suppose $E \in \mathcal{L}$ with $\lambda(E) > 0$. Show there is an $F \subset E$ such that $F \notin \mathcal{L}$. That is, show any Lebesgue measurable set with positive measure contains a non-measurable subset.

Exercise 2.5.18 (Sarason). Suppose $E \in \mathcal{L}$ is Lebesgue null, and $\varphi : \mathbb{R} \to \mathbb{R}$ is a C^1 function (continuous with continuous derivative). Prove that $\varphi(E)$ is also Lebesgue null.

Exercise 2.5.19. Let (X, ρ) be a metric (or simply a topological) space. A subset $S \subset X$ is called *nowhere dense* if \overline{S} does not contain any open set in X. A subset $T \subset X$ is called *meager* if it is a countable union of nowhere dense sets.

Construct a meager subset of \mathbb{R} whose complement is Lebesgue null.

Exercise 2.5.20. Suppose $F : \mathbb{R} \to \mathbb{R}$ is a bounded, non-decreasing, right continuous function, and let μ_F be the corresponding Lebesgue-Stieltjes measure. (Observe μ_F is finite.) Prove the following are equivalent:

- (1) μ_F is absolutely continuous (see Exercise 2.2.9) with respect to Lebesgue measure λ .
- (2) *F* is absolutely continuous, i.e., for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any disjoint set of open intervals $(a_1, b_1), \ldots, (a_N, b_N)$,

$$\sum_{i=1}^{n} (b_i - a_i) < \delta \qquad \Longrightarrow \qquad \sum_{i=1}^{N} (F(b_i) - F(a_i)) < \varepsilon.$$

2.5.3. Regularity properties of Lebesgue-Stieltjes measures.

Definition 2.5.21. Suppose (X, \mathcal{T}) is a Hausdorff topological space and $\mathcal{M} \subset P(X)$ is any σ -algebra containing the Borel σ -algebra $\mathcal{B}(\mathcal{T})$, i.e., $\mathcal{T} \subset \mathcal{M}$. A measure μ on \mathcal{M} is called:

- outer regular if $\mu(E) = \inf \{\mu(U) | E \subset U \text{ open} \}$
- inner regular if $\mu(E) = \sup \{\mu(K) | \text{compact } K \subset E\}$
- regular if μ is both outer and inner regular.

Proposition 2.5.22. Suppose (X, \mathcal{T}) is a Hausdorff topological space and μ is a Borel measure on $\mathcal{B}_{\mathcal{T}}$. If (X, \mathcal{T}) is σ -compact and μ is outer regular and finite on compact sets, then μ is inner regular and thus regular (and thus Radon; see Exercise 2.5.24 below).

Proof.

Step 1: Suppose X is compact and $E \in \mathcal{B}_{\mathcal{T}}$. Then \overline{E} is compact. Let $\varepsilon > 0$. By outer regularity, there is an open $U \supset \overline{E} \setminus E$ such that $\mu(U) \leq \mu(\overline{E} \setminus E) + \varepsilon$. Observe that:

- $\overline{E} \setminus E \subset U \setminus E$,
- $K := \overline{E} \setminus U$ is compact and contained in E, and

• since $\overline{E} = K \amalg (U \cap \overline{E})$ and $E \subset \overline{E}$, $E = (K \cap E) \amalg (U \cap E)$, and thus $U \cap E = K^c \cap E$. Here is a cartoon of K, E, \overline{E}, U :

We now calculate

$$\mu(K) = \mu(E) - \mu(K^{c} \cap E) \qquad (E = K \amalg (K^{c} \cap E)) \\ = \mu(E) - \mu(U \cap E) \qquad (E \cap U = E \cap K^{c}) \\ = \mu(E) - (\mu(U) - \mu(U \setminus E)) \qquad (U = (E \cap U) \amalg (U \setminus E)) \\ \ge \mu(E) - \mu(U) + \mu(\overline{E} \setminus E) \\ \ge -\varepsilon \qquad \ge \mu(E) - \varepsilon.$$

E))

Since $\varepsilon > 0$ was arbitrary, μ is inner regular.

<u>Step 2</u>: Since X is σ -compact, by disjointification, we may write $X = \coprod X_n$ where each X_n has compact closure in X. In particular, $\mu(X_n) < \infty$ for all n. Let $E \in \mathcal{B}_{\mathcal{T}}$, and write $E = \coprod E_n$

where $E_n := E \cap X_n$. By Step 1, for each *n*, there is a compact set $K_n \subset E_n \subset X_n \subset \overline{X_n}$ such that $\mu(K_n) \ge \mu(E_n) - \frac{\varepsilon}{2^{n+1}}$. Set $F_n := \coprod_{i=1}^n K_i$, which is still compact. Observe that

$$\mu(F_n) \ge \mu\left(\prod_{i=1}^n E_i\right) - \frac{\varepsilon}{2}$$

There are two cases to consider now.

If $\mu(E) = \infty$, since $\mu(\coprod_{i=1}^{n} E_i) \nearrow \infty$, eventually $\mu(F_n) > M$ for every M > 0. Hence $\sup \{\mu(F_n) | n \in \mathbb{N}\} = \infty = \mu(E)$. Otherwise, $\mu(E) < \infty$, and there is an $N \in \mathbb{N}$ such that

$$\mu(E) \le \mu\left(\prod_{i=1}^{N} E_i\right) + \frac{\varepsilon}{2} \le \mu(F_N) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \mu(F_N) + \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, we conclude μ is inner regular.

Exercise 2.5.23. Suppose (X, \mathcal{T}) is a topological space, μ is a σ -finite regular Borel measure, and $E \in \mathcal{B}_{\mathcal{T}}$ is a Borel set. Prove the following assertions.

- (1) For every $\varepsilon > 0$, there exist an open U and a closed F with $F \subset E \subset U$ and $\mu(U \setminus F) < \varepsilon$.
- (2) There exist an F_{σ} -set A and a G_{δ} -set B such that $A \subset E \subset B$ and $\mu(B \setminus A) = 0$.

Exercise 2.5.24. Suppose (X, \mathcal{T}) is a topological space, μ is a Borel measure on $\mathcal{B}_{\mathcal{T}}$. We call μ a *Radon measure* if μ is outer regular, finite on compact sets, and inner regular on all open sets.

- (1) Show that if μ is a σ -finite Radon measure, then μ is inner regular and thus regular. Deduce that the finite Radon measures are exactly the finite regular Borel measures.
- (2) Suppose μ is a σ -finite regular Borel measure. Is μ Radon? That is, is μ finite on all compact sets? Give a proof or a counterexample.

Exercise 2.5.25 (Folland, §7.2, #7). Suppose μ is a σ -finite Radon measure on (X, \mathcal{T}) and $E \in \mathcal{B}_{\mathcal{T}}$ is a Borel set. Show that $\mu_E(F) := \mu(E \cap F)$ defines another (σ -finite) Radon measure.

Remark 2.5.26. Once we have developed the theory of integration, we will be able to upgrade Proposition 2.5.22 considerably. In Corollary 5.6.10, we will show that if X is LCH such that every open set is σ -compact, then every Borel measure which is finite on compact sets is regular and thus Radon.

Exercise 2.5.27. Suppose X is a metric space (not necessarily locally compact) and let μ be a finite Borel measure. Show that the collection $\mathcal{M} \subset \mathcal{B}_X$ of sets such that

$$\mu(E) = \inf \{ \mu(U) | E \subseteq U \text{ open} \}$$
$$= \sup \{ \mu(F) | E \supseteq F \text{ closed} \}$$

is a σ -algebra containing all closed (or open) sets and is thus equal to \mathcal{B}_X . Deduce that μ is outer regular.

Exercise 2.5.28. Suppose X is a compact Hausdorff topological space, \mathcal{B}_X is the Borel σ -algebra, and μ is a regular measure on \mathcal{B}_X such that $\mu(X) = 1$. Prove there is a compact $K \subset X$ such that $\mu(K) = 1$ and $\mu(F) < 1$ for every proper compact subset $F \subsetneq K$. Remark: One strategy uses Zorn's Lemma, but it is not necessary. We now analyze the regularity of the Lebesgue-Stieltjes measure μ_F on \mathcal{M}_F where $F : \mathbb{R} \to \mathbb{R}$ is any non-decreasing right continuous function.

Exercise 2.5.29. For every $E \subset \mathbb{R}$, show that

$$\mu_F(E) = \inf\left\{\sum_{n=1}^{\infty} \mu_F((a_n, b_n]) \middle| E \subset \bigcup_{n=1}^{\infty} (a_n, b_n] \text{ with } a_n, b_n \in \mathbb{R}, \, \forall n \in \mathbb{N}\right\}.$$

Lemma 2.5.30. For all $E \in \mathcal{M}_F$, $\mu_F(E) = \inf \{ \sum_{n=1}^{\infty} \mu_F((a_n, b_n)) | E \subset \bigcup_{n=1}^{\infty} (a_n, b_n) \}$.

Proof. Denote the inf on the right hand side by $\nu(E)$. Step 1: $\mu_F(E) \leq \nu(E)$.

Suppose $E \subset \bigcup(a_n, b_n)$. We can write each $(a_n, b_n) = \coprod_{i=1}^{\infty} (a_i^n, b_i^n]$. Then $E \subset \bigcup_{n=1}^{\infty} \coprod_{i=1}^{\infty} (a_i^n, b_i^n]$, and $\mu_F(E) \leq \sum_{n,i} \mu_F((a_i^n, b_i^n]) = \sum \mu_F((a_n, b_n)).$

Step 2: $\mu_F(E) \ge \nu(E)$.

Let $\varepsilon > 0$. There exists $((a_n, b_n])$ such that $E \subset \bigcup (a_n, b_n]$ and $\sum \mu_F((a_n, b_n]) \leq \mu_F(E) + \frac{\varepsilon}{2}$. For each n, by right continuity of F, pick $\delta_n > 0$ such that $F(b_n + \delta_n) - F(b_n) < \frac{\varepsilon}{2^{n+1}}$. Then $E \subset \bigcup (a_n, b_n + \delta_n)$ and

$$\sum \mu_F((a_n, b_n + \delta_n)) \leq \sum F(b_n + \delta_n) - F(a_n)$$

$$< \sum F(b_n) - F(a_n) + \frac{\varepsilon}{2^{n+1}}$$

$$= \sum \mu_F((a_n, b_n]) + \sum \frac{\varepsilon}{2^{n+1}}$$

$$\leq \mu_F(E) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \mu_F(E) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the result follows.

This concludes the proof.

Theorem 2.5.31. The Lebesgue-Stieltjes measure μ_F on \mathcal{M}_F is regular.

Proof. Since \mathbb{R} is σ -compact and μ_F is finite on all compact intervals by Exercise 2.5.9, by Proposition 2.5.22, it remains to show μ_F is outer regular. Let $E \in \mathcal{M}_F$. By Lemma 2.5.30, given $\varepsilon > 0$, there is a sequence $((a_n, b_n))$ of open intervals such that $E \subset \bigcup (a_n, b_n)$ and $\sum \mu_F((a_n, b_n)) \leq \mu(E) + \varepsilon$. Setting $U = \bigcup (a_n, b_n)$, we have $E \subset U$ and

$$\mu_F(E) \le \mu_F(U) \le \sum \mu_F((a_n, b_n)) \le \mu(E) + \varepsilon.$$

For a real real production of the set of the set

Since $\varepsilon > 0$ was arbitrary, we have $\mu_F(E) = \inf \{\mu_F(U) | E \subset U \text{ open}\}.$

Exercise 2.5.32 (Steinhaus Theorem, Folland §1.5, #30 and #31). Suppose $E \in \mathcal{L}$ and $\lambda(E) > 0$.

- (1) Show that for any $0 \le \alpha < 1$, there is an open interval $I \subset \mathbb{R}$ such that $\lambda(E \cap I) > \alpha\lambda(I)$.
- (2) Apply (1) with $\alpha = 3/4$ to show that the set

$$E - E := \{x - y | x, y \in E\}$$

contains the interval $(-\lambda(I)/2, \lambda(I)/2)$.

2.6. Hausdorff measure. Let (X, d) be a metric space. For $A, B \subset X$ nonempty, define

$$d(a, B) := \inf \{ d(a, b) | b \in B \} \qquad \forall a \in A$$
$$d(A, B) := \inf \{ d(a, b) | a \in A, b \in B \}.$$

For a set $Y \subset X$, define

$$\operatorname{diam}(Y) := \sup \left\{ d(x, y) | x, y \in Y \right\}.$$

Definition 2.6.1. An outer measure μ^* on P(X) is called a (Carathéodory) *metric outer* measure if

• (metric finite additivity) d(A, B) > 0 (which implies $A \cap B = \emptyset$) implies $\mu^*(A \coprod B) = \mu^*(A) + \mu^*(B)$.

Proposition 2.6.2. If μ^* is a metric outer measure on P(X), then the Borel σ -algebra \mathcal{B}_d is contained in \mathcal{M}^* , the μ^* -measurable sets.

Proof. Since \mathcal{B}_d is generated by the open sets, it suffices to show all open sets are in \mathcal{M}^* . Let $U \subset X$ be open.

Step 1: We may assume $d(U, U^c) = 0$. Otherwise, for all $F \subset X$, $d(F \cap U, F \setminus U) > 0$, so $\mu^*(F) = \mu^*(F \cap U) + \mu^*(F \setminus U)$, and thus $U \in \mathcal{M}^*$.

Step 2: For $n \in \mathbb{N}$, define $A_n := \{x \in U | d(x, U^c) > 1/n\}$. Then (A_n) is increasing and $\bigcup A_n = \overline{\mathcal{U}}$. Setting $A_0 = \emptyset$, define $B_n := A_n \setminus A_{n-1}$ for all $n \in \mathbb{N}$. Then $\coprod B_n = U$, and $B_n \neq \emptyset$ frequently. Indeed, observe $B_n = \emptyset$ for all n > k if and only if $A_k = U$, which implies $d(U, U^c) \ge 1/k$.

Step 3: If |m - n| > 1 and $B_m \neq \emptyset \neq B_n$, then $d(B_m, B_n) > 0$.

Proof. Suppose $1 \leq m < n-1$. Let $x \in B_m$ and $y \in B_n$. Then $y \notin A_{n-1} \supset A_{m+1}$, so there is a $z \in U^c$ such that $d(y, z) \leq \frac{1}{m+1}$. But $x \in B_m$, so $d(x, z) > \frac{1}{m}$. By the triangle inequality,

$$d(x,y) \ge d(x,z) - d(y,z) > \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)}.$$

Taking sup over x, y, we have $d(B_m, B_n) \ge \frac{1}{m(m+1)} > 0$.

Step 4: Let $F \subset X$. If $\mu^*(F) = \infty$, then $\mu^*(F) \ge \mu^*(F \cap U) + \mu^*(F \setminus U)$. Assume $\mu^*(F) < \infty$. Then $\sum_{n=k}^{\infty} \mu^*(F \cap B_n) \to 0$ as $k \to \infty$. *Proof.* By Step 3, for all $k \in \mathbb{N}$, we have

$$\sum^{k} \mu^{*}(F \cap B_{2n-1}) = \mu^{*} \left(\coprod^{k} F \cap B_{2n-1} \right) \le \mu^{*}(F)$$
$$\sum^{k} \mu^{*}(F \cap B_{2n}) = \mu^{*} \left(\coprod^{k} F \cap B_{2n} \right) \le \mu^{*}(F).$$

Taking $k \to \infty$, we have $\sum \mu^*(F \cap B_n) \leq 2\mu^*(F) < \infty$. Hence the tail of the sum must converge to zero.

Step 5: We now calculate for all $n \in \mathbb{N}$ and $F \subset X$:

$$\mu^*(F \cap U) + \mu^*(F \setminus U) \le \mu^*(F \cap A_n) + \mu^*(F \cap (\underbrace{U \setminus A_n}_{\amalg_{k=n+1}})) + \mu^*(F \setminus U)$$
$$= \underbrace{\mu^*(F \cap A_n) + \mu^*(F \setminus U)}_{d(F \cap A_n, F \setminus U) \ge d(A_n, U^c) \ge \frac{1}{n}} + \mu^*\left(\prod_{k=n+1}^{\infty} B_k\right)$$
$$= \mu^*(F \cap (A_n \amalg F \setminus U)) + \mu^*\left(\prod_{k=n+1}^{\infty} B_k\right)$$
$$\le \mu^*(F) + \underbrace{\sum_{k=n+1}^{\infty} \mu^*(F \cap B_k)}_{\to 0 \text{ as } n \to \infty \text{ by Step 4.}}$$

We conclude that $U \in \mathcal{M}^*$.

Definition 2.6.3. Suppose (X, d) is a metric space, $p \ge 0$, and $\varepsilon > 0$. For $E \subset X$, define

$$\eta_{p,\varepsilon}^*(E) := \inf \left\{ \sum_{1}^{\infty} (\operatorname{diam}(B_n))^p \middle| \begin{array}{l} (B_n) \text{ a } \leq \varepsilon \text{-diameter cover, i.e., a sequence of open} \\ \text{balls with } \operatorname{diam}(B_n) \leq \varepsilon \text{ for all } n \text{ and } E \subset \bigcup B_n \end{array} \right\},$$

where we use the convention that $\inf \emptyset = \infty$. By Exercise 2.3.5, $\eta_{p,\varepsilon}^*$ is the outer measure induced by

$$\rho_{p,\varepsilon} : \{\emptyset\} \cup \{B_r(x) | x \in X \text{ and } r \leq \varepsilon\} \longrightarrow [0,\infty]$$
$$\emptyset \longmapsto 0$$
$$B_r(x) \longmapsto (\operatorname{diam}(B_r(x)))^p$$

Moreover, if $\varepsilon < \varepsilon'$, then $\eta_{p,\varepsilon}^*(E) \ge \eta_{p,\varepsilon'}^*(E)$ as we are taking an infimum over a smaller set (every $\le \varepsilon$ -diameter cover is a $\le \varepsilon'$ -diameter cover). Hence

$$\eta_p^*(E) := \lim_{\varepsilon \to 0} \eta_{p,\varepsilon}^*(E) = \sup_{\varepsilon > 0} \eta_{p,\varepsilon}^*(E)$$

gives an outer measure by Exercise 2.3.2.

Proposition 2.6.4. η_p^* is a metric outer measure.

Proof. Suppose $d(E, F) > \varepsilon > 0$. If there is no ε -diameter cover of $E \amalg F$, then there is no ε -diameter cover of one of E, F, and thus

$$\eta_p^*(E) + \eta_p^*(F) = \infty = \eta_p^*(E \amalg F).$$

Now suppose there exists an ε -diameter cover (B_n) of $E \amalg F$. Then for all $n \in \mathbb{N}$, B_n intersects at most one of E, F. So we may partition (B_n) into (B_n^E) and (B_n^F) such that

• $E \subset \bigcup B_n^E$ and $B_n^E \cap E \neq \emptyset$, and

•
$$F \subset \bigcup B_n^F$$
 and $B_n^F \cap F \neq \emptyset$.

Thus

$$\eta_{p,\varepsilon}^*(E) + \eta_{p,\varepsilon}^*(F) \le \sum \operatorname{diam}(B_n^E)^p + \operatorname{diam}(B_n^F)^p \le \sum \operatorname{diam}(B_n)^p$$

for any ε -diameter cover. Hence for all $\varepsilon < d(E, F)$,

$$\eta_{p,\varepsilon}^*(E) + \eta_{p,\varepsilon}^*(F) \le \eta_{p,\varepsilon}^*(E \amalg F).$$

Taking $\varepsilon \to 0$, we get

$$\eta_p^*(E \amalg F) \le \eta_p^*(E) + \eta_p^*(F) \le \eta_p^*(E \amalg F),$$

and thus equality holds.

Definition 2.6.5. Since the Borel σ -algebra \mathcal{B}_d for (X, d) is contained in the η_p^* -measurable sets \mathcal{M}_p^* by Propositions 2.6.2 and 2.6.4, we get a Borel measure $\eta_p := \eta_p^*|_{\mathcal{B}_d}$ called *p*-dimensional Hausdorff measure.

Facts 2.6.6. Here are some elementary properties about Hausdorff measures.

(Hµ1) If $f: X \to X$ is an isometry (d(f(x), f(y)) = d(x, y) for all $x, y \in X)$, then for all $E \in \mathcal{B}_d, \eta_p(E) = \eta_p(f(E))$.

Proof. For all $\varepsilon > 0$, $\eta_{p,\varepsilon}^*(E) = \eta_{p,\varepsilon}^*(f(E))$ since $E \subset \bigcup B_n$ if and only if $f(E) \subset \bigcup f(B_n)$ as isometries are injective. \Box

(H μ 2) $\eta_1 = \lambda|_{\mathcal{B}_{\mathbb{R}}}$ on \mathbb{R} with the usual metric.

Proof. Since $\eta_1((0,1]) = 1$ (observe diam $(B) = \lambda(B)$ for any open ball B and apply Lemma 2.5.30), this follows by uniqueness of the translation invariant Borel measure on \mathbb{R} from Exercise 2.5.13.

(H μ 3) If $\eta_p(E) < \infty$, then $\eta_q(E) = 0$ for all q > p.

Proof. Let $\varepsilon > 0$. Since $\eta_p(E) < \infty$, there is a sequence (B_n) of open balls with $\operatorname{diam}(B_n) \leq \varepsilon$ such that $\sum \operatorname{diam}(B_n)^p \leq \eta_p(E) + 1$. But if q > p, then

$$\eta_{q,\varepsilon}^{*}(E) \leq \sum \operatorname{diam}(B_{n})^{q}$$
$$= \sum \underbrace{\operatorname{diam}(B_{n})^{q-p}}_{\leq \varepsilon^{q-p}} \operatorname{diam}(B_{n})^{p}$$
$$\leq \varepsilon^{q-p} \sum \operatorname{diam}(B_{n})^{p}$$
$$\leq \varepsilon^{q-p}(\eta_{p}(E)+1).$$

Letting $\varepsilon \to 0$, we have

$$\eta_q(E) = \eta_q^*(E) = \lim_{\varepsilon \to 0} \eta_{q,\varepsilon}^*(E) \le \lim_{\varepsilon \to 0} \varepsilon^{q-p}(\eta_p(E) + 1) = 0.$$

(Hµ4) If $\eta_p(E) > 0$, then $\eta_q(E) = \infty$ for all q < p.

Proof. This follows as the contrapositive of $(H\mu 3)$.

Definition 2.6.7. The Hausdorff dimension of $E \in \mathcal{B}_d$ is

$$\inf \{p \ge 0 | \eta_p(E) = 0\} = \sup \{p \ge 0 | \eta_p(E) = \infty\}.$$

Remark 2.6.8. If $E \in \mathcal{B}_d$ and $p \ge 0$ such that $0 < \eta_p(E) < \infty$, then the Hausdorff dimension of E is necessarily p by Lemma 2.6.6(3,4).

Exercise 2.6.9. Prove that the Cantor set from Example 2.5.15 has Hausdorff dimension $\ln(2)/\ln(3)$.

Exercise 2.6.10. Find an uncountable subset of \mathbb{R} with Hausdorff dimension zero.