
K := [a, b] \ U , which is compact, and observe that f is continuous at all points of K (not
f |K !). For each x 2 K, pick �x > 0 such that y 2 [a, b] (not K!) and |x � y| < �x implies
|f(x) � f(y)| < "

0. Then {B�x/2(x)}x2K is an open cover of K, so there are x1, . . . , xn 2 K

such that K ⇢
S

n

i=1
B�xi/2

(xi). Set � := min {�xi/2|i = 1, . . . , n}.

Claim. If x 2 K and y 2 [a, b] and |x� y| < �/2, then |f(x)� f(y)| < 2"0.

Proof. Without loss of generality, x 2 B�1/2(x1). Then y 2 B�1(x1), and thus

|f(x)� f(y)|  |f(x)� f(x1)|+ |f(x1)� f(y)| < 2"0. ⇤

Let P be any partition of [a, b] whose intervals have length at most �. Let P 0 consist of
the intervals that intersect K and let P 00 be the intervals that do not intersect K. By the
claim, if J 2 P

0, then MJ �mj  2"0. Thus

U(f, P )� L(f, P ) =
X

J2P

(MJ �mJ)�(J)

=
X

J2P 0

(MJ �mJ)�(J) +
X

J2P 00

(MJ �mJ)�(J)



X

J2P 0

2"0�(J) +
X

J2P 00

(M �m)�(J)

 2"0(b� a) + (M �m)�(U)

 
[

J2P 00

J ✓ U

!

< "
0(2(b� a) + (M �m))

where M = sup
x2[a,b] f(x) and m := infx2[a,b] f(x). Taking "0 = "/(2(b � a) + (M � m))

works. ⇤
3.8. Product measures.

Definition 3.8.1. Given measurable spaces (X,M) and (Y,N ), a measurable rectangle is
a set of the form E ⇥ F ⇢ X ⇥ Y where E 2 M and F 2 N . The product �-algebra
M⇥N ⇢ P (X ⇥ Y ) is the �-algebra generated by the measurable rectangles.

Exercise 3.8.2. Prove that M ⇥N is the smallest �-algebra such that the canonical pro-
jection maps ⇡X : X ⇥ Y ! Y and ⇡Y : X ⇥ Y ! X are measurable. Deduce that M⇥N

is generated by ⇡�1

X
(EX) [ ⇡

�1

Y
(EY ) for any generating sets EX of M and EY of N .

Warning 3.8.3. Recall that given topological spaces X, Y , the canonical projections ⇡X :
X ⇥ Y ! X and ⇡Y : X ⇥ Y ! Y are open maps. When (X,M), (Y,N ) are measurable,
however, ⇡X , ⇡Y need not map measurable sets to measurable sets. (Unfortunately, actually
constructing a set in M⇥N whose projection to X is not measurable is quite di�cult.)

Exercise 3.8.4. Show that the subset of P (X ⇥ Y ) consisting of finite disjoint unions of
measurable rectangles is an algebra which generates M⇥N .
Hint: For E,E1, E2 2 M and F, F1, F2 2 N ,

• (E1 ⇥ F1) \ (E2 ⇥ F2) = (E1 \ E2)⇥ (F1 \ F2), and
• (E ⇥ F )c = (E ⇥ F

c)q (Ec
⇥ F )q (Ec

⇥ F
c).
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Proposition 3.8.5. Suppose (X, dX) and (Y, dY ) are metric spaces.

(1) BX ⇥ BY is generated by (TX ⇥ Y ) [ (X ⇥ TY ).
(2) BX ⇥ BY ⇢ BX⇥Y .
(3) If X, Y are separable, then BX ⇥ BY = BX⇥Y .

Proof.
(1) This is an immediate consequence of Exercise 3.8.2.
(2) Since TX ⇥ Y,X ⇥ TY ⇢ TX ⇥ TY , we have BX ⇥ BY ⇢ BX⇥Y .
(3) Suppose C ⇢ X and D ⇢ Y are countable dense subsets. Let EX , EY be the collections of
open balls centered at C,D respectively with rational radii. Note that C ⇥D is a countable
dense subset of X ⇥ Y , and thus TX ⇥ TY is generated by EX ⇥ EY ⇢ BX ⇥ BY . Hence
BX⇥Y ⇢ BX ⇥ BY . ⇤
Exercise 3.8.6.

(1) Find an example of (non-separable) metric spaces X, Y such that BX ⇥BY ( BX⇥Y .
(2) If one of X or Y is separable, is BX⇥BY = BX⇥Y ? Find a proof or a counterexample.

Exercise 3.8.7. Suppose (X,M), (Y,N ), (Z,P) are measurable spaces and f : Z ! X and
g : Z ! Y . Show that f ⇥ g : Z ! X ⇥ Y (the unique map from the universal property of
the product) is measurable if and only if f and g are measurable. Deduce that the category
of measurable spaces and measurable functions has finite categorical products.

Exercise 3.8.8. Prove that + : R ⇥ R ! R and · : R ⇥ R ! R are continuous and thus
(Borel) measurable.

Corollary 3.8.9. If f : (X,M) ! R and g : (Y,N ) ! R are measurable, then so are f + g

and fg. (This also holds for other codomains such as C and R if the sum is well-defined.)

Proof. Observe that fg and f + g are composites:

X ⇥ Y

X Y

R⇥ R

R R

R

9!f⇥g

⇡X ⇡Y

f g

· or +

⇡1 ⇡2

The composite of these measurable functions is M⇥N -measurable. ⇤
Exercise 3.8.10. Adapt the proof of Corollary 3.8.9 to give another proof that f : (X,M) !
C is measurable if and only if Re(f), Im(f) are measurable.

For the rest of this section, suppose (X,M, µ) and (Y,N , ⌫) are measure spaces, and let
A be the algebra of finite disjoint unions of measurable rectangles from Exercise 3.8.4.
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Proposition 3.8.11. For G =
`

n

k=1
Ek ⇥ Fk 2 A, define

(µ⇥ ⌫)0(G) :=
nX

k=1

µ(Ek)⌫(Fk)

with the convention that 0 ·1 = 0. Then (µ⇥ ⌫)0 is a premeasure on A.

Proof. It su�ces to show that if E 2 M and F 2 N such that E⇥F =
`

En⇥Fn for some
(non-disjoint!) sequences (En) ⇢ M and (Fn) ⇢ N , then µ(E)⌫(E) =

P
µ(En)⌫(En).

Trick. For all x 2 E and y 2 F , there is a unique k such that (x, y) 2 Ek⇥Fk. Hence,
for any fixed y 2 F , (x, y) 2 E ⇥ F for all x 2 E, and thus

E =
a

k s.t. y2Fk

Ek.

This is a disjoint union, since if x 2 Ej \Ek and y 2 Fj \Fk, then (x, y) 2 (Ej ⇥Fj)\
(Ek ⇥ Fk), so j = k. Here is a cartoon of this trick:

E

F

E1⇥F1 E2⇥F2

E3⇥F3 E4⇥F4

E=E1qE2=E3qE4

E1=E3 and E2=E4

F=F1qF3=F2qF4

F1=F2 and F3=F4

Hence for y 2 F ,

µ(E) =
X

k s.t. y2Fk

µ(Ek) =
X

µ(Ek)�Fk
(y),

and thus µ(E)�F (y) =
P

µ(Ek)�Fk
(y). Integrating over y yields

µ(E)⌫(F ) =

Z

Y

µ(E)�F (y) d⌫(y) =

Z

Y

X
µ(Ek)�Fk

(y) d⌫(y)

=
(MCT)

XZ

Y

µ(Ek)�Fk
(y) d⌫(y) =

X
µ(Ek)⌫(Fk). ⇤

Now use Carathéodory’s outer measure construction, we get an outer measure (µ ⇥ ⌫)⇤

on P (X ⇥ Y ), which restricts to a measure µ ⇥ ⌫ on the (µ ⇥ ⌫)⇤-measurable sets, which
is a �-algebra containing M ⇥ N (as sets in A are (µ ⇥ ⌫)⇤-measurable, and A generates
M⇥N ).

Exercise 3.8.12. Suppose X, Y are topological spaces and µ, ⌫ are �-finite Borel measures
on X, Y respectively.

(1) Prove that µ⇥ ⌫ is �-finite.
(2) Show that if µ, ⌫ are both outer regular, then so is µ⇥ ⌫.
(3) Show that (2) fails when the �-finite condition is dropped.

Hint: Consider a Dirac mass � at x0 such that �({x0}) = 1.
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3.9. The Fubini and Tonelli Theorems. For this section, fix measure spaces (X,M, µ)
and (Y,N , ⌫).

Definition 3.9.1. For E ⇢ X ⇥ Y , we define

• (x-section) Ex := {y 2 Y |(x, y) 2 E} = ⇡Y (E \ ({x}⇥ Y ))
• (y-section) Ey := {x 2 X|(x, y) 2 E} = ⇡X(E \ (X ⇥ {y}))

Here is a cartoon of x- and y-sections:

Ex

Ex

E
y x

y

Exercise 3.9.2. Suppose (En) ⇢ P (X ⇥ Y ). Prove the following assertions.

(1) (
S

En)x =
S
(En)x

(2) (
T
En)x =

T
(En)x

(3) (En \ Ek)x = (En)x \ (Ek)x
(4) �En(x, y) = �(En)x(y).

Deduce similar statements also hold for y-sections.

Proposition 3.9.3. Let E 2 M⇥N . For all x 2 X, Ex 2 N and for all y 2 Y , Ey
2 M.

Proof. We prove the first statement, and the second is similar.

Trick. We’ll show that the following set is a �-algebra on X ⇥ Y :

S := {E ⇢ X ⇥ Y |Ex 2 N} .

This implies the result, since S contains the measurable rectangles in M ⇥ N , which
generates M⇥N . Thus M⇥N ⇢ S.
(0) Observe ; 2 N implies ; 2 S.
(1) If (En) ⇢ S, then (En)x 2 N for all n 2 N. By Exercise 3.9.2, (

S
En)x =

S
(En)x 2 N .

Thus
S

En 2 S.
(2) If E 2 S, then Ex 2 N . Observe (Ec)x = (Ex)c 2 N , and thus Ec

2 S. ⇤
Exercise 3.9.4. Use Proposition 3.9.3 to show that L ⇥ L is not equal to L

2, where L is
the Lebesgue �-algebra and L

2 denotes the �-algebra of (�⇥ �)⇤-measurable sets in R2.

Definition 3.9.5. For f : X ⇥ Y ! R, R, or C, we define

• (x-section) fx : Y ! R, R, or C by fx(y) := f(x, y), and
• (y-section) f y : X ! R, R, or C by f

y(x) := f(x, y).

Corollary 3.9.6. If f : X ⇥ Y ! R, R, or C is M⇥N -measurable, then

• for all x 2 X, fx is N -measurable, and
• for all y 2 Y , f y is M-measurable.

Proof. We’ll prove the first statement, and the second is similar. Observe that for all x 2 X

and measurable G contained in the codomain, f�1

x
(G) = f

�1(G)x 2 N . ⇤
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Exercise 3.9.7. Suppose f : R2
! R is such that each x-section fx is Borel measurable and

each y-section f
y is continuous. Show f is Borel measurable.

Theorem 3.9.8 (Tonelli for characteristic functions). Suppose (X,M, µ) and (Y,N , ⌫) are
�-finite measure spaces. Then for all E 2 M⇥N ,

(1) The functions x 7! ⌫(Ex) and y 7! µ(Ey) are measurable, and
(2) (µ⇥ ⌫)(E) =

R
⌫(Ex) dµ(x) =

R
µ(Ey) d⌫(y).

Proof. First, we’ll assume µ, ⌫ are finite measures. Let ⇤ ⇢ M⇥N be the subset for which
(1) and (2) above hold. Observe that ⇧ := {measurable rectangles in M⇥N} is contained
in ⇤.
Step 1: ⇧ is a ⇡-system.

Proof. The intersection of 2 measurable rectangles is a measurable rectangle. ⇤

Step 2: ⇤ is a �-system. Thus by the ⇡ � � Theorem,

M⇥N = ⇤(⇧) ⇢ ⇤ ⇢ M⇥N ,

and thus equality holds.

Proof.
(0) First, note X ⇥ Y 2 ⇧ ⇢ ⇤.
(1) If E 2 ⇤ so that (1) and (2) hold for E, then as we assumed ⌫ is finite,

x 7�! ⌫((Ec)x) = ⌫((Ex)
c) = ⌫(Y )� ⌫(Ex)

is measurable (as a constant function minus a measurable function), as is y 7! µ((Ec)y),
so (1) holds for Ec. Moreover, µ⇥ ⌫ is finite, so

(µ⇥ ⌫)(Ec) = (µ⇥ ⌫)(X ⇥ Y )� (µ⇥ ⌫)(E)

=

Z

X

⌫(Y ) dµ(x)�

Z
⌫(Ex) dµ(x)

=

Z

X

(⌫(Y )� ⌫(Ex)) dµ(x)

=

Z

X

⌫((Ex)
c) dµ(x)

=

Z

X

⌫((Ec)x) dµ(x) proving part of (2) for Ec

=

Z

Y

µ((Ec)y) d⌫(y) similarly.

Thus ⇤ is closed under taking complements.
(2) Suppose (En) ⇢ ⇤ is a sequence of disjoint subsets. Observe for all x 2 X, ((En)x) ⇢
N is disjoint. Then for all n, x 7! ⌫((En)x) is measurable, and thus so is

x 7�!

X
⌫((En)x) = ⌫

⇣a
(En)x

⌘
= ⌫

⇣⇣a
En

⌘

x

⌘
.
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Similarly, y 7! µ ((
`

En)
y) is measurable, proving (1) for

`
En. We calculate

(µ⇥ ⌫)
⇣a

En

⌘
=
X

(µ⇥ ⌫)(En)

=
XZ

X

⌫((En)x) dµ(x)

=

Z

X

X
⌫((En)x) dµ(x) (by the MCT 3.3.9)

=

Z

X

⌫

⇣a
(En)x

⌘
dµ(x)

=

Z

X

⌫

⇣⇣a
En

⌘

x

⌘
dµ(x) proving part of (2) for

a
En

=

Z

Y

µ

⇣⇣a
En

⌘y⌘
d⌫(y) similarly.

Thus ⇤ is closed under taking countable disjoint unions. ⇤

Step 3: When µ, ⌫ are �-finite, write X ⇥Y as an increasing union X ⇥Y =
S
Xn ⇥Yn with

Xn ⇥ Yn measurable rectangles such that µ(Xn), ⌫(Yn) < 1 for all n 2 N. For E 2 M⇥N ,
write En := E \ (Xn ⇥ Yn), and observe En % E, so (En)x % Ex. Thus the function

x 7�! ⌫(Ex) = lim ⌫((En)x)

is measurable (as a pointwise limit of measurable functions), as is y 7�! µ(Ey). We then
calculate

(µ⇥ ⌫)(E) = lim(µ⇥ ⌫)(En)

= lim

Z

X

⌫((En)x) dµ(x)

=

Z

X

lim ⌫((En)x) dµ(x) (by the MCT 3.3.9)

=

Z

X

⌫(Ex) dµ(x)

=

Z

Y

µ(Ey) d⌫(y) similarly. ⇤

Theorem 3.9.9 (Tonelli). Suppose (X,M, µ) and (Y,N , ⌫) are �-finite measure spaces.
For f 2 L

+(X ⇥ Y,M⇥N ),

(1) x 7!

Z

Y

fx d⌫ is M-measurable (an element of L+(X,M)),

(2) y 7!

Z

X

f
y
dµ is N -measurable (an element of L+(Y,N )), and

(3)

Z

X⇥Y

f d(µ⇥ ⌫) =

Z

X

✓Z

Y

fx d⌫

◆
dµ =

Z

Y

✓Z

X

f
y
dµ

◆
d⌫.

Proof. If f = �E for some E 2 M⇥N , this is exactly the previous theorem. Since (cf+g)x =
c(fx)+gx (this is an exercise), we get the result for non-negative simple functions by linearity.
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Suppose now f 2 L
+ is arbitrary and ( n) ⇢ SF

+ such that  n % f everywhere. Then
( n)x % fx and ( n)y % f

y, so by the MCT 3.3.9,
Z

Y

( n)x d⌫ %

Z

Y

fx d⌫ and

Z

X

( n)
y
dµ %

Z

X

f
y
dµ,

which implies (1) and (2) (countable supremums of measurable functions are measurable).
Again by the MCT 3.3.9,

Z

X

✓Z

Y

fx d⌫

◆
dµ =

Z

X

✓
lim

Z

Y

( n)x d⌫

◆
dµ

= lim

Z

X

✓Z

Y

( n)x d⌫

◆
dµ

= lim

Z

X⇥Y

 n d(µ⇥ ⌫) by previous theorem

=

Z

X⇥Y

f d(µ⇥ ⌫)

=

Z

Y

✓Z

X

f
y
dµ

◆
d⌫ similarly. ⇤

Exercise 3.9.10 (Counterexample: Folland §2.5, #46). Let X = Y = [0, 1], M = N =
B[0,1], µ = � Lebesgue measure, and ⌫ counting measure. Let � = {(x, x)|x 2 [0, 1]} be the
diagonal. Prove that

R R
�� dµ d⌫,

R R
�� d⌫ dµ, and

R
�� d(µ⇥ ⌫) are all distinct.

Exercise 3.9.11. Suppose f : R ! [0,1) is Borel measurable.

(1) Show that E := {(x, y) 2 R2
|0  y  f(x)} is Borel measurable.

(2) Show that
R
f(x) d�(x) = (�⇥ �)(E).

Remark 3.9.12. Under the hypotheses of Tonelli’s Theorem 3.9.9, if in addition f 2 L
+(X⇥

Y,M⇥N ) \ L
1(µ⇥ ⌫), then

•

Z

Y

fx d⌫ < 1 (fx 2 L
1(⌫)) a.e. x 2 X, and

•

Z

X

f
y
dµ < 1 (f y

2 L
1(µ)) a.e. y 2 Y .

Corollary 3.9.13 (Fubini). Suppose (X,M, µ) and (Y,N , ⌫) are �-finite measure spaces.
If f 2 L

1(µ⇥ ⌫), then

(1) fx 2 L
1(⌫) a.e. x 2 X and f

y
2 L

1(µ) a.e. y 2 Y ,

(2)

✓
x 7!

Z

Y

fx d⌫

◆
2 L

1(µ) and

✓
y 7!

Z

X

f
y
dµ

◆
2 L

1(⌫), and

(3)

Z

X⇥Y

f d(µ⇥ ⌫) =

Z

X

✓Z

Y

fx d⌫

◆
dµ =

Z

Y

✓Z

X

f
y
dµ

◆
d⌫.

Proof. Recall that
f = Re(f)+ � Re(f)� + i Im(f)+ � i Im(f)�,

where Re(f)±, Im(f)± 2 L
+(X ⇥ Y,M ⇥ N ) \ L

1(µ ⇥ ⌫). Hence Tonelli’s Theorem 3.9.9
applies to the 4 functions, as does Remark 3.9.12. The result follows. ⇤
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Exercise 3.9.14 (Counterexample: Folland §2.5, #48). Let X = Y = N, M = N = P (N),
and µ = ⌫ counting measure. Define

f(m,n) :=

8
><

>:

1 if m = n

�1 if m = n+ 1

0 else.

Prove that
R
|f |d(µ⇥ ⌫) = 1, and

R R
f dµ d⌫ and

R R
f d⌫ dµ both exist and are unequal.

Exercise 3.9.15. Let f, g 2 L
1([0, 1],�) where � is Lebesgue measure. For 0  x  1,

define

F (x) :=

Z

[x,1]

f d� and G(x) :=

Z

[x,1]

g d�.

(1) Prove that F and G are continuous on [0, 1].
(2) Compute Z

[0, 1]2 =
| {z }

Hint!

f(x)g(y) d(�⇥ �)

to prove the integration by parts formula:
Z

[0,1]

Fg d� = F (0)G(0)�

Z

[0,1]

Gf d�.

Exercise 3.9.16. Prove the Fubini Theorem (Corollary 3.9.13) also holds replacing (M ⇥

N , µ⇥ ⌫) with its completion (M⇥N , µ⇥ ⌫)

Exercise 3.9.17. Show that the conclusions of the Fubini and Tonelli Theorems hold when
(X,M, µ) is an arbitrary measure space (not necessarily �-finite) and Y is a countable set,
N = P (Y ), and ⌫ is counting measure.

Exercise 3.9.18. Suppose (X,M, µ) and (Y,N , ⌫) are measure spaces which are not as-
sumed to be �-finite. Let f 2 L

1(µ,R) and g 2 L
1(⌫,R), and define h(x, y) := f(x)g(y).

(1) Prove that h is M⇥N -measurable.
(2) Prove that h 2 L

1(µ⇥ ⌫).

(3) Prove that

Z

X⇥Y

h d(µ⇥ ⌫) =

Z

X

f dµ

Z

Y

g d⌫.

Remark: Since (X,M, µ) and (Y,N , ⌫) are not assumed to be �-finite, you cannot directly
apply the Fubini or Tonelli Theorems!

As an application, we give the following exercise on convolution multiplication on L
1(R,�).

Exercise 3.9.19. Suppose f, g 2 L
1(R,�).

(1) Show that y 7! f(x�y)g(y) is measurable for all x 2 R and in L
1(R,�) for a.e. x 2 R.

(2) Define the convolution of f and g by

(f ⇤ g)(x) :=

Z

R
f(x� y)g(y) d�(y).

Show that f ⇤ g 2 L
1(R,�).

(3) Show that L1(R,�) is a commutative C-algebra under ·,+, ⇤.
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(4) Show that
R
R |f ⇤ g| 

R
R |f |

R
R |g|, i.e., k · k1 is submultiplicative.

Since we already know that L1(R,�) is complete, this shows that the C-algebra L
1(R,�) is

a Banach algebra.

3.10. Then n-dimensional Lebesgue integral. Recall that L is the Lebesgue �-algebra
on R and � is Lebesgue measure.

Definition 3.10.1. We define (Rn
,L

n
,�

n) as the completion of (Rn
,L⇥ · · ·⇥ L| {z }

n factors

,�⇥ · · ·⇥ �| {z }
n factors

).

Facts 3.10.2. Here are some properties of Lebesgue measure. Verification is left as an
exercise.

(1) �n is �-finite.
(2) �n is regular.
(3) For all E 2 L

n, for all " > 0, there are disjoint rectangles R1, . . . , Rn whose sides
(projections) are intervals such that �n(E M `

n
Rk) < ", where M denotes symmetric

di↵erence.
(4) ISF = SF \ L

1(�n) is dense in L
1(�n).

(5) Cc(Rn) is dense in L
1(�n).

(6) Suppose E 2 L
n.

• For all r 2 Rn, r + E 2 L
n, and �n(r + E) = �

n(E).
• For all T 2 GL(n,R), TE 2 L

n and �n(TE) = | det(T )| · �n(E).
(7) For all Ln-measurable f : Rn

! C, the following functions are also L
n-measurable:

x 7�! f(x+ r) for r 2 Rn, and

x 7�! f(Tx) for T 2 GL(n,R).
If moreover f 2 L

+ or L1(�n), then
Z

f(x+ r) d�n(x) =

Z
f(x) d�n(x) and

Z
f(x) d�n(x) = | det(T )| ·

Z
f(Tx) d�n(x).

Exercise 3.10.3. Suppose µ is a translation-invariant measure on BRn such that µ([0, 1]n) =
1. Show that µ = �

n
|BRn .

Exercise 3.10.4. Prove some assertions from Facts 3.10.2.

Exercise 3.10.5. Suppose T 2 GLn(C) and f 2 L
+ or L1(�n).

(1) Prove that f � T 2 L
+ or L1(�n) respectively.

(2) Show that Z
f(x) d�n(x) = | det(T )| ·

Z
f(Tx) d�n(x).
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4. Signed measures and differentiation

4.1. Signed measures. For this section, let (X,M) be a measurable space.

Definition 4.1.1. A function ⌫ : M ! R is called a signed measure if

• ⌫ takes on at most one of the values ±1,
• (vacuum) ⌫(;) = 0, and
• (�-additivity) for every disjoint sequence (En) ⇢ M, ⌫ (

`
En) =

P
⌫(En).

We call ⌫ finite if ⌫ does not take on the values ±1.

Remark 4.1.2. If ⌫ is a signed measure and (En) ⇢ M are disjoint, then �-additivity of ⌫
implies that the sum

P
⌫(En) must converge absolutely if |⌫ (

`
En)| < 1. Indeed, reindex-

ing the sets (En) does not change
`

En, and thus it must not change the sum
P
⌫(En).

Exercise 4.1.3.

(1) If µ1, µ2 are measures on (X,M) with at least one of µ1, µ2 finite, then ⌫ := µ1 � µ2

is a signed measure.
(2) Suppose µ is a measure on (X,M). If f : X ! R is measurable and extended

µ-integrable, i.e., at least one of
R
f± < 1, then ⌫(E) :=

R
E
f dµ is a signed measure.

It is now our goal to prove these are really the only ways to construct signed measures!

Definition 4.1.4. Suppose ⌫ is a signed measure on (X,M). We call E 2 M:

• positive if for all measurable F ✓ E, µ(F ) � 0,
• negative if for all measurable F ✓ E, µ(F )  0, and
• null if for all measurable F ✓ E, µ(F ) = 0.

Observe that N 2 M is null if and only if N is both positive and negative.

Facts 4.1.5. For ⌫ a signed measure on (X,M), we have the following facts about positive
measurable sets. Similar statements hold for negative and null measurable sets.

(1) E positive implies ⌫(E) � 0.
(2) E positive and F ✓ E measurable implies F is positive.
(3) (En) ⇢ M positive implies

S
En positive.

Proof. Disjointify the En so that
S

En =
`

Fn where F1 := E1 and Fn :=
En \

S
n�1

Ek is positive for all n 2 N. If G ⇢
S
En =

`
Fn, then

⌫(G) = ⌫

⇣
G \

a
Fn

⌘
=
X

⌫(G \ Fn) � 0. ⇤

(4) If 0 < ⌫(E) < 1, there is a positive F ✓ E such that ⌫(F ) > 0.
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Proof. If E is positive, we win. Otherwise, let n1 2 N be minimal such that that
there is a measurable E1 ⇢ E and ⌫(E1) < �

1

n1
. Observe that ⌫(E \ E1) > 0,

so if E \E1 is positive, we win. Otherwise, let n2 2 N minimal such that there
is a measurable E2 ⇢ E \ E1 with ⌫(E2) < �

1

n2
. We can inductively iterate

this procedure. Either E \
`

n
Ek is positive for some n, or we have constructed

a disjoint sequence (Ek) with ⌫(Ek) < �
1

nk
for all k. Set F := E \

`
Ek. Since

⌫(E) < 1 and E = F q
`

Ek, by countable additivity,
P

|⌫(Ek)| < 1, soP
k
�

1

nk
converges. Hence nk ! 1 as k ! 1. Since ⌫(E) > 0 and ⌫(Ek) < 0

for all k, ⌫(F ) > 0. Suppose G ⇢ F is measurable. Then ⌫(G) � �
1

nk�1
for all

k with nk > 1, and thus ⌫(G) � 0. So F is positive. ⇤

Theorem 4.1.6 (Hahn Decomposition). Let ⌫ be a signed measure on (X,M). There is a
positive set P 2 M such that P c is negative. Moreover, if Q 2 M is another positive set
such that Qc is negative, then P M Q and P

c M Q
c are null.

A positive P 2 M such that P
c is negative is called a Hahn decomposition of X with

respect to ⌫.

Proof.
Existence: We may assume 1 /2 im(⌫) ⇢ R (otherwise, replace ⌫ with �⌫). Define

r := sup {⌫(E)|E is positive} .

Then there is a sequence (En) of positive sets such that ⌫(En) ! r. Take P :=
S

En,
which is positive. Since a signed measure restricted to a positive set is a positive measure,
⌫(P ) = lim ⌫(En) = r by continuity from below (µ3). We claim that P

c is negative. If
F ⇢ P

c such that ⌫(F ) > 0, by Facts 4.1.5(4), there is a positive G ⇢ F such that ⌫(G) > 0.
Then P qG is positive with ⌫(P qG) = ⌫(P ) + ⌫(G) > r, a contradiction.
Uniqueness: Suppose P,Q ⇢ X are positive such that P c

, Q
c are negative. Then

P M Q = (P \Q) [ (Q \ P ) = (P \Q
c)| {z }

pos. and neg.

[ (Q \ P
c)| {z }

pos. and neg.

is ⌫-null. Similarly, P c M Q
c is ⌫-null. ⇤

Definition 4.1.7. We say positive measures µ1, µ2 on (X,M) aremutually singular, denoted
µ1 ? µ2, if there exist disjoint E,F 2 M such that X = E q F and µ1(F ) = 0 = µ2(E).

Theorem 4.1.8 (Jordan decomposition). Let ⌫ be a signed measure on (X,M). There exist
unique mutually singular measures ⌫± on (X,M) such that ⌫ = ⌫+ � ⌫�, which we call the
Jordan decomposition of ⌫.

Proof.
Existence: Given a Hahn decomposition X = P q P

c, ⌫+(E) := ⌫(E \ P ) and ⌫�(E) :=
�⌫(E \ P

c) are positive measures on M, such that ⌫+(P c) = 0 = ⌫�(P ) and ⌫ = ⌫+ � ⌫�.
(Observe ⌫± are independent of the Hahn decomposition.)
Uniqueness: Suppose that ⌫ = µ+ �µ� = ⌫+ � ⌫� where µ± and ⌫± are all positive measures
with µ+ ? µ� and ⌫+ ? ⌫�. Then by definition of mutual singularity, there exist two Hahn
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decompositions for ⌫: X = P q P
c such that µ+(P c) = 0 = µ�(P ) and X = Q q Q

c such
that ⌫+(Qc) = 0 = ⌫�(Q). Thus P M Q and P

c M Q
c are ⌫-null, and for all E 2 M,

µ+(E) = µ+(E \ P ) = ⌫(E \ P ) = ⌫(E \ P \Q) + ⌫(E \ P \Q
c

| {z }
⌫-null

)

= ⌫(E \ P \Q) = ⌫(E \ P \Q) + ⌫(E \ P
c
\Q| {z }

⌫-null

) = ⌫(E \Q)

= ⌫+(E \Q) = ⌫+(E).

Hence µ+ = ⌫+, and similarly, µ� = ⌫�. ⇤
Definition 4.1.9. For a signed measure ⌫ on (X,M), define L1(⌫) := L

1(⌫+)\L
1(⌫�). For

f 2 L
1(⌫), define Z

f d⌫ :=

Z
f d⌫+ �

Z
f d⌫�.

Clearly L
1(⌫) is a C-vector space and

R
is a linear functional. We define L

1(⌫) to be the
quotient of L1(⌫) by the equivalence relation f = g ⌫+-a.e. and ⌫�-a.e.

Exercise 4.1.10. Suppose ⌫ is a signed measure on (X,M). Prove that E 2 M is ⌫-null
if and only if E is ⌫+-null and ⌫�-null. Deduce that f = g ⌫+-a.e. and ⌫�-a.e if and only if
f = g up to a ⌫-null set.

Definition 4.1.11. For a signed measure ⌫ on (X,M), define the total variation of ⌫ =
⌫+ � ⌫� by |⌫| := ⌫+ + ⌫�, which is a positive measure. Observe that

|⌫(E)| = |⌫+(E)� ⌫�(E)|  ⌫+(E) + ⌫�(E) = |⌫|(E) 8E 2 M.

Hence ⌫ is finite if and only if |⌫| is finite.

Exercise 4.1.12. Suppose ⌫ is a signed measure on (X,M), let ⌫ = ⌫+ � ⌫� be its Jordan
decomposition, and let |⌫| be its total variation.

(1) Prove that for E 2 M, ⌫+(E) = sup {⌫(F )|F 2 M with F ⇢ E}.
(2) Prove that for E 2 M, ⌫�(E) = � inf {⌫(F )|F 2 M with F ⇢ E}.
(3) Prove that for E 2 M,

|⌫|(E) = sup

(
nX

i=1

|⌫(Ei)|

�����E1, . . . , En 2 M disjoint with E =
na

i=1

Ei

)
.

Exercise 4.1.13. Suppose (X,M) is a measurable space, ⌫ is a signed measure on (X,M),
and �, µ are positive measures on (X,M) such that ⌫ = � � µ. Show that ⌫+  � and
⌫�  µ where ⌫ = ⌫+ � ⌫� is the Jordan decomposition of ⌫.

Lemma 4.1.14. Suppose µ1, µ2 are measures on X with at least one of µ1, µ2 finite, and set
⌫ = µ1 � µ2. Then |⌫|(X)  µ1(X) + µ2(X).

Proof. Let ⌫ = ⌫+ � ⌫� be the Jordan decomposition of ⌫, and let X = P q P
c be a Hahn

decomposition such that ⌫+(P c) = 0 = ⌫�(P ). Then

0  ⌫+(X) = ⌫(X \ P ) = ⌫(P ) = µ1(P )� µ2(P )  µ1(P )  µ1(X)

0  ⌫�(X) = �⌫(X \ P
c) = �⌫(P c) = µ2(P

c)� µ1(P
c)  µ2(P

c)  µ2(X)

Hence |⌫|(X) = ⌫+(X) + ⌫�(X)  µ1(X) + µ2(X). ⇤
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Exercise 4.1.15 (Folland §3.1, #3). Suppose µ is a positive measure on (X,M) and ⌫ is a
signed measure on (X,M). Prove that the following are equivalent.

(1) ⌫ ? µ

(2) |⌫| ? µ

(3) ⌫+ ? µ and ⌫� ? µ.

Exercise 4.1.16 (Folland §3.1, #3). Let ⌫ be a signed measure on (X,M). Prove the
following assertions:

(1) L
1(⌫) = L

1(|⌫|).
(2) If f 2 L

1(⌫),
��R f d⌫

�� 
R
|f |d|⌫|.

(3) If E 2 M, |⌫|(E) = sup
���R

E
f d⌫

�����1  f  1
 
.

Exercise 4.1.17. Suppose µ, ⌫ are finite signed measures on the measurable space (X,M).

(1) Prove that the signed measure µ ^ ⌫ := 1

2
(µ + ⌫ � |µ � ⌫|) satisfies (µ ^ ⌫)(E) 

min{µ(E), ⌫(E)} for all E 2 M.
(2) Suppose in addition that µ, ⌫ are positive. Prove that µ ? ⌫ if and only if µ^ ⌫ = 0.

Exercise 4.1.18 (Folland §3.1, #6). Suppose

⌫(E) :=

Z

E

f dµ E 2 M

where µ is a positive measure on (X,M) and and f is an extended µ-integrable function.
Describe the Hahn decompositions of ⌫ and the positive, negative, and total variations of ⌫
in terms of f and µ.

Exercise 4.1.19. In this exercise, we will show that

M := M(X,M,R) := {finite signed measures on (X,M)}

is a Banach space with k⌫k := |⌫|(X).

(1) Prove k⌫k := |⌫|(X) is a norm on M .
(2) Show that (⌫n) ⇢ M Cauchy implies (⌫n(E)) ⇢ R is uniformly Cauchy for all E 2 M.

That is, show that for all " > 0, there is an N 2 N such that for all n � N and
E 2 M, |⌫m(E)� ⌫n(E)| < ".

(3) Use part (2) to define a candidate limit signed measure µ on M. Prove that ⌫ is
�-additive.
Hint: first prove ⌫ is finitely additive.

(4) Prove that
P
⌫(En) converges absolutely when (En) ⇢ M is disjoint, and thus ⌫ is

a finite signed measure.
(5) Show that ⌫n ! ⌫ in M .

4.2. Absolute continuity and the Lebesgue-Radon-Nikodym Theorem. For this
section, we fix a measurable space (X,M).

Definition 4.2.1. Let ⌫ be a signed measure and µ a positive measure on (X,M). We say
⌫ is absolutely continuous with respect to µ, denoted ⌫ ⌧ µ, if µ(E) = 0 implies ⌫(E) = 0.

Example 4.2.2. Let f 2 L
1(µ,R) and set ⌫(E) :=

R
E
f dµ. (This is sometimes denoted by

d⌫ := fdµ.) Then ⌫ ⌧ µ.
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Exercise 4.2.3 (Folland §3.2, #8). Suppose µ is a positive measure on (X,M) and ⌫ is a
signed measure on (X,M). Prove that the following are equivalent.

(1) ⌫ ⌧ µ

(2) |⌫| ⌧ µ

(3) ⌫+ ⌧ µ and ⌫� ⌧ µ.

Exercise 4.2.4. Suppose (X,M) is a measurable space and ⌫ is a signed measure and �, µ
are positive measures on (X,M) such that ⌫ = �� µ. Show that ⌫+  � and ⌫�  µ where
⌫ = ⌫+ � ⌫� is the Jordan decomposition of ⌫.

Exercise 4.2.5 (Adapted from Folland §3.2, #9). Suppose {⌫j} is a sequence of positive
measures on (X,M) and µ is a positive measure on (X,M). Prove the following assertions.

(1) If {⌫j} is a sequence of positive measures on (X,M) with ⌫j ? µ for all j, thenP1
j=1

⌫j ? µ.
(2) If ⌫1, ⌫2 are positive measures on (X,M) with at least one of ⌫1, ⌫2 is finite and ⌫j ? µ

for j = 1, 2, then (⌫1 � ⌫2) ? µ.
(3) If {⌫j} is a sequence of positive measures on (X,M) with ⌫j ⌧ µ for all j, thenP1

j=1
⌫j ⌧ µ.

(4) If ⌫1, ⌫2 are positive measures on (X,M) with at least one of ⌫1, ⌫2 is finite and
⌫j ⌧ µ for j = 1, 2, then (⌫1 � ⌫2) ⌧ µ.

Proposition 4.2.6. Suppose ⌫ is a finite signed measure and µ is a positive measure on
(X,M). The following are equivalent:

(1) ⌫ ⌧ µ, and
(2) For all " > 0, there is a � > 0 such that for all E 2 M, |⌫(E)| < " whenever

µ(E) < �.

Proof. Since ⌫ ⌧ µ if and only if |⌫| ⌧ µ and |⌫(E)|  |⌫|(E), we may assume ⌫ is positive.
The result now follows from a previous exercise. For completeness, we’ll provide the proof
below.

First, it is clear that (2) implies (1). Suppose (2) fails. Then there is an " > 0 such that for
all n 2 N, there is an En 2 M with µ(En) < 2�n, but ⌫(En) � ". Set F :=

T1
k=1

S1
k=n

En.
Since

µ

 1[

k=n

En

!
<

1X

n=k

2�k = 21�k
8 k 2 N,

µ(F ) = 0. But since ⌫ is finite, ⌫(F ) = limk (
S1

k=n
En) � ". Hence (1) fails. ⇤

Example 4.2.7. On (N, P (N)), define µ(E) :=
P

n2E 2�n and ⌫(E) :=
P

n2E 2n. Then
⌫ ⌧ µ and µ ⌧ ⌫, but (2) above fails as ⌫ is not finite.

Lemma 4.2.8. Suppose µ, ⌫ are finite measures on (X,M). Either ⌫ ? µ or there is an
" > 0 and E 2 M such that µ(E) > 0 and ⌫ � "µ on E, i.e., E is positive for ⌫ � "µ.

Proof. Let X = PnqP
c

n
be a Hahn decomposition for ⌫�n

�1
µ for all n 2 N. Set P :=

S
Pn

so P
c =

T
P

c

n
. Then P

c is negative for all ⌫ � n
�1
µ. Observe

0  ⌫(P c) 
1

n
µ(P c)| {z }
<1

8n 2 N,

80



so ⌫(P c) = 0. If µ(P ) = 0, then ⌫ ? µ. If µ(P ) > 0, then µ(Pn) > 0 for some n, and Pn is
positive for ⌫ � n

�1
µ. ⇤

Theorem 4.2.9 (Lebesgue-Radon-Nikodym). Let ⌫ be a �-finite signed measure and µ a �-
finite positive measure on (X,M). There are unique �-finite signed measures �, ⇢ on (X,M)
called the Lebesgue decomposition of ⌫ such that

� ? µ, ⇢⌧ µ, and ⌫ = �+ ⇢.

Moreover, there exists a unique extended µ-integrable function f called the Radon-Nikodym
derivative of ⇢ with respect to µ such that d⇢ = fdµ. If ⌫ is positive or finite, then so are �
and ⇢ respectively, and f 2 L

+ or L
1(µ) respectively.

Proof.
Case 1: Suppose µ, ⌫ are finite positive measures.
Uniqueness: Suppose �,�0 are finite signed measures such that �,�0 ? µ and f, f

0
2 L

1 such
that d⌫ = d� + fdµ = d�

0 + f
0
dµ. Then as signed measures, d(� � �

0) = (f 0
� f)dµ. But

(�� �
0) ? µ and (f 0

� f)dµ ⌧ dµ, so as signed measures by Exercise 4.2.5, d(�� �
0) = 0 =

(f 0
� f)dµ. We conclude that � = �

0 and f = f
0 in L

1.
Existence: Set

A :=

⇢
f 2 L

1(X,µ, [0,1])

����
Z

E

f dµ  ⌫(E) for all E 2 M

�
.

Observe that 0 2 A.

Claim. f, g 2 A implies f _ g 2 A.

Proof. For all E 2 M,
Z

E

f _g dµ =

Z

E\{g<f}
f dµ+

Z

E\{g<f}
g dµ  ⌫(E\{g < f})+⌫(E \{g < f}) = ⌫(E).

⇤

Set M := sup
�R

f dµ
��f 2 A

 
, and note that M  ⌫(X) < 1. Choose (fn) ⇢ A such

that
R
fn dµ % M . Set gn := max{f1, . . . , fn} 2 A and f := sup gn. Then by the Squeeze

Theorem,
Z

fn dµ 

Z
gn dµ % M.

Since gn % f pointwise,

Z

E

f dµ =
(MCT)

lim
n

Z

E

gn dµ  ⌫(E) 8E 2 M.

So f 2 A and
R
f dµ = M .
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Claim. �(E) := ⌫(E)�
R
E
f dµ � 0 is mutually singular with respect to µ. So setting

d⇢ := fdµ, we have � ? µ, ⇢⌧ µ, ⌫ = �+ ⇢, and d⇢ = fdµ.

Proof. Suppose � is not mutually singular with respect to µ. Then by Lemma 4.2.8,
there is a E 2 M and " > 0 such that µ(E) > 0 and � � "µ on E. But then for all
F 2 M,

Z

F

f + "�E dµ =

Z

F

f dµ+ "µ(E \ F )



Z

F

f dµ+ �(E \ F )

=

Z

F

f dµ+ ⌫(E \ F )�

Z

E\F
f dµ

=

Z

F\E
f dµ+ ⌫(E \ F )

 ⌫(F \ E) + ⌫(E \ F )

= ⌫(F ).

Hence f + "�E 2 A, but
R
f + "�E dµ = M + "µ(E) > M , a contradiction. ⇤

Case 2: Suppose µ, ⌫ are �-finite positive measures.
Existence: Write X =

`
Xn such that µ(Xn) < 1 and ⌫(Xn) < 1 for all n. Set µn(E) :=

µ(E \ Xn) and ⌫n(E) := ⌫(E \ Xn) for all n. By Case 1, there exist positive measures
�n ? µn and fn 2 L

1

+
(Xn, µn) such that d⌫n = d�n + fndµn. Since µn(Xc

n
) = ⌫n(Xc

n
) = 0,

we have

�n(X
c

n
) = ⌫n(X

c

n
)�

Z

Xc
n

fn dµn = 0.

Hence we may assume fn|Xc
n
= 0. Set � :=

P
�n and f :=

P
fn 2 L

+. Then � ? µ by
Exercise 4.2.5, � and fdµ are �-finite, and d⌫ = d�+ fdµ.
Uniqueness: If �0 is another positive measure such that �0 ? µ and f

0
2 L

+ such that
d⌫ = d�

0 + f
0
dµ. Setting �0

n
(E) := �

0(E \Xn) for E 2 M and f
0
n
:= f

0
�Xn , by Uniqueness

from Case 1, we have �0
n
= �n and f

0
n
= fn in L

1(µn). Then

�
0 =

X
�
0
n
=
X

�n = � on X, and

f
0 =

X
f
0
n
=
X

fn = f in L
1(µ).

Case 3: Suppose µ is �-finite positive and ⌫ is �-finite signed. In this case, we use the Jordan
Decomposition Theorem 4.1.8 to get ⌫ = ⌫+ � ⌫� with ⌫+ ? ⌫�. We apply Case 2 to ⌫±
separately and subtract the results. This shows existence and uniqueness. ⇤
Remark 4.2.10. If µ is �-finite positive and ⌫ is �-finite signed with ⌫ ⌧ µ, there is a
unique extended µ-integrable function d⌫

dµ
called the Radon-Nikodym derivative of ⌫ with

respect to µ such that d⌫ = d⌫

dµ
dµ.

Exercise 4.2.11. Suppose ⌫ is a �-finite signed measure.
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(1) Show that
��� d⌫

d|⌫|

��� = 1, |⌫|-a.e.

(2) Suppose further that ⌫ ⌧ µ for some �-finite positive measure µ on (X,M). Show
that for all f 2 L

1(⌫), f d⌫

dµ
2 L

1(µ) and
R
f d⌫ =

R
f

d⌫

dµ
dµ.

(3) Suppose even further that µ ⌧ � for some �-finite positive measure �. Show ⌫ ⌧ �

and d⌫

d�
= d⌫

dµ

dµ

d�
.

Definition 4.2.12. A signed measure ⌫ on a topological space (X, T ) is called regular if |⌫|
is regular.

Exercise 4.2.13. Suppose ⌫ is a finite signed Borel measure on the LCH spaceX. Determine
which of the conditions below are equivalent.

(1) ⌫ is regular.
(2) ⌫± is regular.
(3) For every E 2 BX and " > 0, there is an open U ⇢ X with E ⇢ U such that

|⌫(U)� ⌫(E)| < ".

Which of the above conditions are equivalent if

• X is �-compact?
• ⌫ is not finite?

4.3. Complex measures. For this section, fix a measurable space (X,M).

Definition 4.3.1. A function ⌫ : M ! C is called a complex measure if

• (vacuum) ⌫(;) = 0, and
• (�-additivity) For every disjoint sequence (En) ⇢ M, ⌫ (

`
En) =

P
⌫(En).

Observe that if ⌫ is a complex measure on (X,M), then Re(⌫) and Im(⌫) are finite signed
measures on (X,M).

Remark 4.3.2. As in Remark 4.1.2, if ⌫ is a complex measure and (En) ⇢ M are disjoint,
then �-additivity of ⌫ implies that the sum

P
⌫(En) converges absolutely.

Exercise 4.3.3. Prove the following assertions.

(1) If µ0, µ1, µ2, µ3 are finite measures on (X,M), then
P

3

k=0
i
k
µk is a complex measure.

(2) For µ a measure on (X,M) and f 2 L
1(µ), ⌫(E) :=

R
E
f dµ is a complex measure

on (X,M).

By the Jordan Decomposition Theorem 4.1.8, we get the following corollary:

Corollary 4.3.4. If ⌫ is a complex measure on (X,M), there exist unique pairs of mutually
singular finite measures Re(⌫)± and Im(⌫)± such that

⌫ = Re(⌫)+| {z }
=:⌫0

�Re(⌫)�| {z }
=:⌫2

+i(Im(⌫)+| {z }
=:⌫1

� Im(⌫)�| {z }
=:⌫3

) =:
3X

k=0

i
k
⌫k.

Definition 4.3.5. For a complex measure ⌫ on (X,M), we define L1(⌫) :=
T

3

k=0
L
1(⌫k). We

define L1(⌫) to be the quotient under the equivalence relation f = g ⌫k-a.e. for k = 0, 1, 2, 3.
For f 2 L

1(⌫k), we define
Z

f d⌫ :=
3X

k=0

i
k

Z
f d⌫k.
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Warning 4.3.6. The total variation of a complex measure ⌫ =
P

3

k=0
i
k
⌫k is not

P
3

k=0
⌫k.

We must use the complex Radon-Nikodym Theorem 4.3.9 below.

Definition 4.3.7. Suppose ⌫ is a complex measure and µ is a positive measure on (X,M).
We say:

• ⌫ ? µ if Re(⌫) ? µ and Im(⌫) ? µ, and
• ⌫ ⌧ µ if Re(⌫) ⌧ µ and Im(⌫) ⌧ µ.

Exercise 4.3.8. Suppose ⌫ is a complex measure and µ is a positive measure on (X,M).
Show that ⌫ ⌧ µ if and only if for all E 2 M, µ(E) = 0 implies |⌫(E)| = 0.

Theorem 4.3.9 (Complex Lebesgue-Radon-Nikodym). If ⌫ is a complex measure on (X,M)
and µ is a �-finite positive measure on (X,M), there exists a unique complex measure � on
(X,M) and a unique f 2 L

1(µ) such that � ? µ and d⌫ = d�+ fdµ.

Proof. Apply the Lebesgue-Radon-Nikodym Theorem 4.2.9 to Re(⌫) and Im(⌫) separately
and then recombine. ⇤
Exercise 4.3.10. Repeat Exercise 4.2.11 for ⌫ a complex measure on (X,M).

Lemma 4.3.11. Suppose ⌫ is a complex measure on (X,M). There is a unique positive
measure |⌫| on (X,M) satisfying the following property:

• For all positive measures µ on (X,M) and f 2 L
1(µ) such that d⌫ = fdµ, d|⌫| =

|f |dµ.

We call |⌫| the total variation of ⌫.

Proof. First consider µ := |Re(⌫)|+ | Im(⌫)|. Since |Re(⌫)| ⌧ µ and | Im(⌫)| ⌧ µ, we have
Re(⌫) ⌧ µ and Im(⌫) ⌧ µ, and thus ⌫ ⌧ µ. By the complex Lebesgue-Radon-Nikodym
Theorem 4.3.9, there is an f 2 L

1(µ) such that d⌫ = fdµ. Define d|⌫| := |f |dµ. Observe this
uniquely determines |⌫| if it satisfies the uniqueness property in the bullet point above. So
suppose that d⌫ = gd⇢ for another positive measure ⇢ on (X,M) and g 2 L

1(⇢). Consider
µ+ ⇢ on (X,M) and observe that ⌫ ⌧ µ, µ ⌧ µ+ ⇢, and ⇢⌧ µ+ ⇢. Hence

dµ =
dµ

d(µ+ ⇢)
d(µ+ ⇢) and d⇢ =

d⇢

d(µ+ ⇢)
d(µ+ ⇢).

Since

f
dµ

d(µ+ ⇢)
d(µ+ ⇢) = fdµ = d⌫ = gd⇢ = g

d⇢

d(µ+ ⇢)
d(µ+ ⇢),

by Exercise 4.3.10 we have

f
dµ

d(µ+ ⇢)
=

d⌫

d(µ+ ⇢)
= g

d⇢

d(µ+ ⇢)
(µ+ ⇢)-a.e.

This implies

|f |
dµ

d(µ+ ⇢)
=

����f
dµ

d(µ+ ⇢)

���� =
����g

d⇢

d(µ+ ⇢)

���� = |g|
d⇢

d(µ+ ⇢)
(µ+ ⇢)-a.e.

Again by Exercise 4.3.10, |f |dµ = d|⌫| = |g|d⇢, and thus ⌫ satisfies the uniqueness condition
in the bullet point. ⇤
Facts 4.3.12. Suppose ⌫ is a complex measure on (X,M).
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(1) ⌫ ⌧ |⌫|, as

|⌫(E)| =

����
Z

E

f dµ

���� 
Z

E

|f | dµ = |⌫|(E) 8, E 2 M.

(2) If ⌫ is a finite signed measure (Im(⌫) = 0), then d⌫ = (�P � �P c)d|⌫|, and so
d|⌫|

0 = (�P + �P c)d|⌫| = d|⌫| for any Hahn decomposition X = P q P
c for ⌫. This

means this new definition |⌫|
0 for a complex measure agrees with the old definition

|⌫| for a finite signed measure.
(3) Observe that if d⌫ = fdµ, then

dRe(⌫) = Re(f)dµ

d Im(⌫) = Im(f)dµ
=)

d|Re(⌫)| = |Re(f)|dµ

d| Im(⌫)| = | Im(f)|dµ

Since |f |
2 = |Re(f)|2 + | Im(f)|2, we have

d|⌫|

dµ
= |f | =

�
|Re(f)|2 + | Im(f)|2

�1/2
=

 ✓
d|Re(⌫)|

dµ

◆2

+

✓
d| Im(⌫)|

dµ

◆2
!1/2

.

Exercise 4.3.13. Suppose ⌫ is a complex measure on (X,M). Prove that |Re(⌫)|  |⌫| ,
| Im(⌫)|  |⌫| , and |⌫|  |Re(⌫)|+ | Im(⌫)| as [0,1)-valued functions on M.

Exercise 4.3.14. Suppose ⌫ is a complex measure on (X,M).

(1) Prove that L1(⌫) = L
1(|⌫|).

(2) Show that for f 2 L
1(⌫),

����
Z

fd⌫

���� 
Z

|f |d|⌫|.

Exercise 4.3.15. In this exercise, we will show that

M := M(X,M,C) := {complex measures on (X,M)}

is a Banach space with k⌫k := |⌫|(X).

(1) Prove that max{kRe(⌫)k, k Im(⌫)k}  k⌫k  2max{kRe(⌫)k, k Im(⌫)k}.
(2) Show that if (V, k · kV ), (W, k · kW ) are normed vector spaces, then k(v, w)k1 :=

max{kvk, kwk} is a norm on V �W . Moreover, show that if (V, k ·kV ) and (W, k ·kW )
are complete, then so is (V �W, k · k1).

(3) Show that M(X,M,C) = M(X,M,R) � iM(X,M,R), where M(X,M,R) was
defined in Exercise 4.1.19.

(4) Show that k·k on M(X,M,C) is equivalent to k·k1 on M(X,M,R)�iM(X,M,R).
Deduce that M(X,M,C) is complete.

Definition 4.3.16. A complex Borel measure ⌫ on a topological space (X, T ) is called
regular if |⌫| is regular.

Exercise 4.3.17. Repeat Exercise 4.2.13 for a complex Borel measure ⌫, where (2) is re-
placed by

(2’) Re(⌫) and Im(⌫) are regular signed measures.
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4.4. Lebesgue di↵erentiation. Here, I will be following notes from a graduate course I
took in Fall 2005 at UC Berkeley from Sarason. We will treat di↵erentiation of f 2 L

1(�n),
and we’ll then explain how to extend these results to

L
1

loc
:= L

1

loc
(�n) := {f : Rn

! C|f is integrable on bounded measurable sets} .

Definition 4.4.1. A cube in Rn is a set Q ⇢ Rn of the form Q =
Q

n

k=1
Ik where each Ik is

a closed interval of the same length, which we denote by `(Q).

• For x 2 Rn, define C(x) := {cubes Q|x 2 Q and 0 < `(Q) < 1}.
• For Q a cube and r > 0, rQ is the cube with the same center as Q, but with
`(rQ) = r`(Q).

Our goal is to prove the following theorem.

Theorem 4.4.2 (Lebesgue Di↵erentiation). For all f 2 L
1

loc
,

lim
`(Q)!0

x2Q

1

�n(Q)

Z

Q

f d�
n = f(x) a.e. (LDT)

As a direct corollary, we get (for n = 1):

Theorem 4.4.3 (Fundamental Theorem of Calculus). Suppose f 2 L
1(�). Define F (x) :=R

(�1,x)
f d�. Then F

0(x) = f(x) a.e.

Proof. Observe

lim
h!0

F (x+ h)� F (x)

h
= lim

h!0

x2Qh:=[x,x+h]

1

�(Qh)

Z

Qh

f d� =
(LDT)

f(x) a.e. ⇤

Definition 4.4.4 (Hardy-Littlewood Maximal Function). For f 2 L
1

loc
, define Mf := Rn

!

[0,1] by

(Mf)(x) := sup

⇢
1

�n(Q)

Z

Q

|f | d�
n

����Q 2 C(x)

�
.

The function M : L1

loc
! {f : Rn

! [0,1]} is called the Hardy-Littlewood maximal function.

Facts 4.4.5. The Hardy-Littlewood maximal function satisfies the following properties:

(1) M(rf) = |r| ·Mf for all r 2 R.
(2) M(f + g)  Mf +Mg for all f, g 2 L

1

loc
.

(3) Mf > 0 everywhere unless f = 0 a.e.
(4) Mf is lower semicontinuous ({Mf > r} is open for all r 2 R), and thus measurable.

Example 4.4.6. For �[�1,1] : R ! C,

M�[�1,1](x) =

8
<

:

1 x 2 [�1, 1]
2

1 + |x|
x /2 [�1, 1]

and thus M�[�1,1] /2 L
1. Here is a cartoon:

�1 1 x

Q

�[�1,1]
1

1

�(Q)

Z

Q

�[�1,1] d� =
2

1 + x
.
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Exercise 4.4.7 (Sarason). Prove that for the f defined below, f 2 L
1(�), but Mf /2 L

1

loc
:

f(x) :=

8
<

:

1

|x|(ln |x|)2
if |x|  1

2

0 if |x| > 1

2
.

Theorem 4.4.8 (Hardy-Littlewood Maximal, a.k.a. HLMT). There is a c > 0, only depend-
ing on n, such that for all f 2 L

1(�n) and a > 0,

�
n({Mf > a})  c ·

kfk1

a
.

Remark 4.4.9. The HLMT 4.4.8 is a generalization of Chebyshev’s Inequality for a measure
space (X,M, µ): for all a � 0,

R
{a|f |} |f | dµ � aµ({a  |f |}). Hence for all f 2 L

1(µ) and
a � 0,

µ({a  |f |}) 
kfk1

a
. (4.4.10)

To prove the HLMT 4.4.8, we’ll use a variation of the Vitali Covering Lemma. We’ll prove
the more general Vitali Covering Lemma, and I’ll leave the exact variation that we’ll use to
prove the HLMT as an exercise.

Lemma 4.4.11 (Vitali Covering). Let B be some collection of open balls in Rn, and let
U =

S
B2B B. If c < �

n(U), then there exist disjoint B1, . . . , Bk 2 B such that
P

k

j=1
�
n(Bj) >

3�n
c.

Proof. Since �n is regular, there is a compact K ⇢ U such that c < �
n(K). Then there

exist finitely many balls in B which cover K, say A1, . . . , Am. Define B1 to be the largest
(in terms of radius) of the Ai, and inductively for j � 2, define Bj to be the larges of the
the Ai disjoint from B1, . . . , Bj�1. Since there are finitely many Ai, this process terminates,
giving B1, . . . , Bk.

Trick. If Ai is not one of B1, . . . , Bk, there is a smallest 1  j  k such that Ai\Bj 6=
;. Then rad(Ai)  rad(Bj), so Ai ⇢ 3Bj, where 3Bj has the same center as Bj, but
three times the radius.

Then K ⇢
S

k 3Bj, so

c < �
n(K) 

kX
�
n(3Bj) = 3n

kX
�
n(Bj). ⇤

Exercise 4.4.12 (Sarason, variation of Vitali Covering Lemma 4.4.11). Suppose E ⇢ Rn

(not assumed to be Borel measurable) and let C be a family of cubes covering E such that

sup {`(Q)|Q 2 C} < 1.

Show there exists a sequence (Qk) ⇢ C of disjoint cubes such that
1X

k=1

�
n(Qk) � 5�n(�n)⇤(E).

Hint: Inductively choose Qk such that 2`(Qk) is larger than the sup of the lengths of all cubes
which do not intersect Q1, . . . , Qk�1, with Q0 = ; by convention.
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Proof of HLMT 4.4.8. Suppose f 2 L
1(�n) and a > 0. Let E = {a < Mf} and

C =

⇢
cubes Q

����a <
1

�n(Q)

Z

Q

|f | d�
n

�
.

By definition, the cubes in C cover E. Observe that a < `(Q)�n
kfk1 implies `(Q) <⇣

kfk1
a

⌘1/n

. By Exercise 4.4.12, there is a sequence (Qi) ⇢ C of disjoint cubes such that
P
�
n(Qi) � 5�n

�
n(E). Then

�
n(E)  5n

X
�
n(Qi)  5n

X 1

a

Z

Qi

|f | d�
n
 5n ·

kfk1

a
. ⇤

Proof of the Lebesgue Di↵erentiation Theorem 4.4.2.
Step 1: (LDT) for all f 2 L

1 implies (LDT) for all f 2 L
1

loc
.

Proof. Suppose f 2 L
1

loc
. It su�ces to show that for all R > 0, (LDT) holds a.e. x 2

QR(0) :=
Q

n[�R,R]. For x 2 QR(0) and Q 2 C(x) with `(Q)  1, the value
of 1

`(Q)n

R
Q
f d�

n only depends on f(y) for y 2 QR+1(0). So we can replace f with

f�QR+1(0)
2 L

1. ⇤

Step 2: (LDT) for all f 2 Cc(Rn) implies (LDT) for all f 2 L
1.

Proof. For Q 2 C(0) and f 2 L
1, define (IQf)(x) :=

1

�n(Q)

R
Q+x

f d�
n. Observe IQ is

linear, and |IQf |  Mf everywhere. Now fix f 2 L
1 and " > 0. Let

E" :=

8
><

>:
x 2 Rn

�������
lim sup
`(Q)!0

Q2C(0)

|IQf(x)� f(x)| > "

9
>=

>;
.

We’ll show (�n)⇤(E") = 0, which implies E" 2 L
n and �

n(E") = 0. If "0 < ", then
E" ⇢ E"0 . Hence

S
E1/n has measure zero, which implies the result.

In order to show (�n)⇤(E") = 0, let � > 0. Since Cc(Rn) ⇢ L
1 is dense, there is a

continuous g 2 Cc(Rn) such that kf � gk1 < �. Then

|IQf � f | = |IQ(f � g) + (IQg � g) + (g � f)|

 |IQ(f � g)|+ |(IQg � g)|+ |(g � f)|

 M(f � g) + |(IQg � g)|| {z }
!0

+|g � f |

By assumption, as `(Q) ! 0 for Q 2 C(0), |(IQg � g)| ! 0. Hence

E" ⇢

n
"

2
< M(f � g)

o
[

n
"

2
< |f � g|

o
.
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By the HLMT 4.4.8 and Chebyshev’s Inequality (4.4.10),

(�n)⇤(E")  �
n

⇣n
"

2
< M(f � g)

o⌘
+ �

n

⇣n
"

2
< |f � g|

o⌘


ckf � gk1

"/2
+

kf � gk1

"/2

=
2(c+ 1)

"
· kf � gk1

<
2(c+ 1)

"
· �.

But � > 0 was arbitrary, so (�n)⇤(E") = 0. ⇤

Step 3: (LDT) holds for all g 2 Cc(Rn).

Proof. Observe that g is uniformly continuous. Let " > 0, and pick � > 0 such that
x, y 2 Q with `(Q) < � implies |g(x)� g(y)| < ". Then for all such Q,

����g(x)�
1

�n(Q)

Z

Q

g(y) d�n(y)

���� 
1

�n(Q)

Z

Q

|g(x)� g(y)| d�n(y) < ".

Since " > 0 was arbitrary, the result follows. ⇤

Combining Steps 1-3 yields the result. ⇤
Definition 4.4.13. Suppose E 2 L

n. A point x 2 E is called a Lebesgue point of density of
E if

lim
`(Q)!0

Q2C(x)

�
n(Q \ E)

�n(Q)
= 1.

Corollary 4.4.14. For E 2 L
n, almost all points of E are Lebesgue points of density.

Proof. Apply the Lebesgue Di↵erentiation Theorem 4.4.2 to �E. ⇤
Exercise 4.4.15 (Steinhaus Theorem, version 2). Suppose that A,B ⇢ R are sets with
positive Lebesgue measure. Prove that there is an interval I with �(I) > 0 such that

I ✓ A+B = {a+ b|a 2 A and b 2 B} .

Definition 4.4.16. For f 2 L
1(�n), x 2 Rn is called a Lebesgue point of f if

lim
`(Q)!0

Q2C(x)

1

�n(Q)

Z

Q

|f � f(x)| d�n = 0.

Corollary 4.4.17. For f 2 L
1

loc
, almost all points of Rn are Lebesgue points of f .

Proof. As in the proof of the Lebesgue Di↵erentiation Theorem 4.4.2, we may assume f 2 L
1.

Let D ⇢ C be a countable dense subset (Q+ iQ will su�ce). For d 2 D, set

Ed :=

8
<

:x 2 Rn

������
lim

`(Q)!0

Q2C(x)

1

�n(Q)

Z

Q

|f � d|� |f(x)� d| d�
n = 0

9
=

; .
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By the Lebesgue Di↵erentiation Theorem 4.4.2, Ec

d
is �n-null, which implies Ed 2 L

n. Set
E :=

T
d2D Ed 2 L

n, and observe E
c =

S
d2D E

c

d
is still �n-null. We claim that every x 2 E

is a Lebesgue point of f . Indeed, if x 2 E, then for all d 2 D,

|f � f(x)|  |f � d|+ |f(x)� d| = (|f � d|� |f(x)� d|) + 2|f(x)� d|.

This implies for all d 2 D,

lim sup
`(Q)!0

Q2C(x)

1

�n(Q)

Z

Q

|f � f(x)| d�n  2|f(x)� d|+ lim sup
`(Q)!0

Q2C(x)

1

�n(Q)

Z

Q

|f � d|� |f(x)� d| d�
n

| {z }
=0

= 2|f(x)� d|.

But since D is dense in C, we can approximate f(x) by d 2 D up to any " > 0. We conclude
that x is a Lebesgue point of f . ⇤

4.5. Functions of bounded variation. Recall that the Lebesgue-Stieltjes measures on R
were constructed from non-decreasing right continuous functions F : R ! R. They enjoyed
the properties of being a complete measure which is equal to the completion of the restriction
to BR, which is a regular Borel measure.

We can adapt this construction to get a complex measure from a function F : R ! C with
bounded variation.

Definition 4.5.1. For a function F : R ! C, define its total variation TF : R ! [0,1] by

TF (x) := sup

(
nX

i=1

|F (xi)� F (xi�1)|

�����n 2 N and �1 < x0 < x1 < · · · < xn = x

)
.

Observe that TF is a non-decreasing function. We say F has bounded variation if TF is
bounded, which is equivalent to limx!1 TF (x) < 1. We define

BV := {F : R ! C|F has bounded variation} .

Exercise 4.5.2. Prove that for all a, b 2 R with a < b and F : R ! C,

TF (b) = TF (a) + sup

(
nX

i=1

|F (xi)� F (xi�1)|

�����n 2 N and a = x0 < x1 < · · · < xn = b

)
.

The sup on the right hand side is called the total variation of F on [a, b]. We say F has
bounded variation on [a, b] if this number is bounded.

Exercise 4.5.3. Show that if F is di↵erentiable and F
0 is bounded, then F 2 BV[a, b] for

all a < b in R.

Facts 4.5.4. Here are some facts about functions with bounded variation.

(BV1) If F : R ! R is increasing, then F 2 BV if and only if F is bounded.
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Proof. For any �1 < x0 < x1 < · · · < xn = x,
nX

i=1

|F (xi)� F (xi�1)| = F (x)� F (x0).

Hence TF is bounded if and only if F is bounded. ⇤

(BV2) F 2 BV if and only if TF 2 BV.

Proof. If F 2 BV, then TF : R ! [0,1] is increasing and bounded, and thus
in BV by (BV1). Conversely, if TF 2 BV, then TF is bounded by (BV1), and
thus F 2 BV. ⇤

(BV3) BV is a complex vector space which is closed under complex conjugation.

Proof. The triangle inequality implies TF+G  TF + TG, homogeneity (|wz| =
|w| · |z|) implies TzF  |z| · TF , and |z| = |z| for z 2 C implies T

F
= TF . ⇤

(BV4) F 2 BV if and only if Re(F ), Im(F ) 2 BV.

Proof. Just observe that Re(F ) = 1

2
(F + F ) and Im(F ) = 1

2i
(F � F ), so the

result follows from (BV3). ⇤

(BV5) If F : R ! R and F 2 BV, then TF ± F are increasing (and in BV).

Proof. Suppose a < b in R. Let " > 0, and choose x0 < x1 < · · · < xn = a such
that

nX

i=1

|F (xi)� F (xi�1)| � TF (a)� ".

Then since F (b) = (F (b)� F (a)) + F (a),

TF (b)± F (b) �
nX

i=1

|F (xi)� F (xi�1)|+ |F (b)� F (a)|

| {z }
TF (b)

±F (b)

=
nX

i=1

|F (xi)� F (xi�1)|+ |F (b)� F (a)| ± (F (b)� F (a))| {z }
�0

±F (a)

� TF (a)� "± F (a)

Since " > 0 was arbitrary, we have TF ± F is increasing. (The parenthetical
follows from (BV3).) ⇤

(BV6) If F : R ! C, then F 2 BV if and only if F =
P

3

k=0
i
k
Fk where Fk : R ! R is

bounded and increasing for k = 0, 1, 2, 3.
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Proof. By (BV4), F 2 BV if and only if Re(F ), Im(F ) 2 BV, so we may assume
F : R ! R. If F 2 BV, just observe

F =
1

2
(TF + F )�

1

2
(TF � F ).

The converse follows from (BV1) and (BV3). ⇤

(BV7) If F 2 BV, then F (x+) := limy&x F (y) and F (x�) := limy%x F (y) exist for all x 2 R,
as do F (±1) := limy!±1 F (y).

Proof. This follows from (BV6). ⇤

Remark 4.5.5. For an R-valued F 2 BV, we call

F =
1

2
(TF + F )�

1

2
(TF � F )

the Jordan decomposition of F . We call 1

2
(TF ± F ) the positive/negative variations of F

respectively.

Definition 4.5.6. The space of normalized functions of bounded variation is

NBV := {F 2 BV|F is right continuous and F (�1) = 0} .

Observe that NBV is a complex vector subspace of BV closed under complex conjugation.

Exercise 4.5.7. Suppose f 2 L
1(�) where � is Lebesgue measure on R. Consider the

function F : R ! C by F (x) =
R

x

�1 f(t) dt.

(1) Prove directly from the definitions that F 2 NBV.
(2) Describe TF to the best of your ability. Justify your answer.

Lemma 4.5.8. Suppose F : R ! C.
(1) If F 2 BV, then TF (�1) = 0.
(2) If moreover F is right-continuous, then so is TF .

Hence F 2 NBV implies TF 2 NBV.

Proof.
(1) Let " > 0. For x 2 R, choose x0 < x1 < · · · < xn = x such that

nX

i=1

|F (xi)� F (xi�1)| � TF (x)� ".

By Exercise 4.5.2

TF (x)� TF (x0) � TF (x)� ",

and thus TF (y)  " for all y  x0. Since " > 0 was arbitrary, TF (�1) = 0.
(2) Now suppose F is right continuous. Fix x 2 R, and define

↵ := lim
y&x

TF (y)� TF (x).
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To show ↵ = 0, fix " > 0, and let � > 0 such that 0 < h < � implies both |F (x+h)�F (x)| < "

and
TF (x+ h)� TF (x)� ↵ = TF (x+ h)� lim

y&x

TF (y) < ". (4.5.9)

Now fixing 0 < h < �, by Exercise 4.5.2, there are x = x0 < x1 < · · · < xn = x+h such that

3

4
↵ 

3

4
(TF (x+ h)� TF (x)) 

nX

j=1

|F (xj)� F (xj�1)|

which by right continuity of F and the choice of � implies

3

4
↵� " 

3

4
(TF (x+ h)� TF (x))� |F (x1)� F (x0)| 

nX

j=2

|F (xj)� F (xj�1)|. (4.5.10)

Again using Exercise 4.5.2,

3

4
↵ 

3

4
(TF (x1)� TF (x)) 

kX

i=1

|F (ti)� F (ti�1)|. (4.5.11)

Combining these inequalities, we have

↵ + " > TF (x+ h)� TF (x) by (4.5.9)

�

kX

i=1

|F (ti)� F (ti�1)|+
nX

j=2

|F (xj)� F (xj�1)| by Exercise 4.5.2

�
3

4
↵ +

3

4
↵� " by (4.5.10) and (4.5.11)

=
3

2
↵� ".

This implies ↵  4", but since " > 0 was arbitrary, ↵ = 0. ⇤
Theorem 4.5.12.

(1) If ⌫ is a complex Borel measure on R, then F⌫(x) := ⌫((�1, x]) defines a function
in NBV.

(2) If F 2 NBV, there is a unique complex Borel measure ⌫F such that F (x) = ⌫F ((�1, x]).

Proof. For a complex Borel measure ⌫, we have ⌫ =
P

3

k=0
i
k
⌫k where each ⌫k is a finite

positive measure. If we set Fk := ⌫k((�1, x]), then Fk is increasing and right continuous,
Fk(�1) = 0, and Fk(1) = ⌫k(R) < 1. Thus each Fk 2 NBV, and thus F⌫ :=

P
3

k=0
i
k
Fk is

in NBV.
Conversely, by (BV6) and Lemma 4.5.8, any F 2 NBV can be written as F =

P
3

k=0
i
k
Fk

where each Fk : R ! [0,1) is increasing and in NBV. By the Lebesgue-Stieltjes construction,
for each Fk, there is a finite regular Borel measure ⌫k on R with ⌫k((�1, x]) = Fk(x). Setting
⌫ :=

P
3

k=0
i
k
⌫k gives a complex Borel measure such that F (x) = ⌫((�1, x]). Uniqueness

follows by being determined on h-intervals together with the ⇡ � � Theorem. ⇤
Exercise 4.5.13. Suppose F 2 NBV, and let ⌫F be the corresponding complex Borel mea-
sure from Theorem 4.5.12.

(1) Prove that ⌫F is regular.
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(2) Prove that |⌫F | = ⌫TF .
One could proceed as follows.
(a) Define G(x) := |⌫F |((�1, x]). Show that |⌫F | = ⌫TF if and only if G = TF .
(b) Show TF  G.
(c) Show that |⌫F (E)|  ⌫TF (E) whenever E is an interval.
(d) Show that |⌫F |  ⌫TF .

Exercise 4.5.14. Show that if F 2 NBV, then (⌫F )± = ⌫ 1
2 (TF±F )

, i.e., the positive/negative

variations of F exactly correspond to the positive/negative parts of the Jordan decomposition
of ⌫F .
Hint: Use Exercise 4.5.13.

4.6. Bounded variation, di↵erentiation, and absolute continuity. We now want to
connect functions of bounded variation and ordinary di↵erentiation on R.

Definition 4.6.1. Recall that F : R ! C is called absolutely continuous if for every " > 0,
there exists � > 0 such that for any finite set of disjoint open intervals (a1, b1), . . . , (an, bn),

nX

i=1

(bi � ai) < � =)
nX

i=1

|F (bi)� F (ai)| < ".

Exercise 4.6.2. Suppose F 2 NBV. Show F is absolutely continuous if and only if TF is
absolutely continuous.
Hint: Use Exercise 4.5.2.

Proposition 4.6.3. If F 2 NBV, then F is absolutely continuous if and only if ⌫F ⌧ �.

Proof.

Claim. We may assume F is [0,1)-valued and increasing. Thus ⌫F = µF is an
honest Lebesgue-Stieltjes measure.

Proof. By Exercises 4.3.13 and 4.5.13(2), ⌫F ⌧ � if and only if |⌫F | = ⌫TF ⌧ �. By
Exercise 4.6.2, F is absolutely continuous if and only if TF is absolutely continuous.
Hence we may replace F with TF 2 NBV which is [0,1)-valued and increasing. ⇤

That µF ⌧ � for a Lebesgue-Stieltjes measure is equivalent to absolute continuity of a
bounded, right-continuous F : R ! [0,1) with F (�1) = 0 now follows Exercise 2.5.20. We
provide a proof here for completeness and convenience using Proposition 4.2.6 which states:

• µF ⌧ � if and only if for all " > 0, there is a � > 0 such that for all E 2 M,
µF (E) < " whenever �(E) < �.

First, suppose µF ⌧ �. For any finite set of disjoint h-intervals ((ai, bi])ni=1
, we have

X

i=1

(bi � ai) = �

⇣a
(ai, bi]

⌘
< � =) µF

⇣a
(ai, bi]

⌘
=

nX

i=1

µF ((ai, bi]) < ".

This immediately implies F is absolutely continuous.
Conversely, suppose F is absolutely continuous, and " > 0. Pick � > 0 for F as in the

definition of absolute continuity for any 0 < "
0
< ". Suppose E 2 L such that �(E) < �. By

outer regularity of � and µF (by Exercise 4.5.13(1)), there is an open set U with E ⇢ U such
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that �(U) < �. Then U is a countable disjoint union of open intervals by Exercise 1.1.24,
say U =

`
(ai, bi). For each n 2 N,

nX

i=1

(bi � ai)  �(U) < � =)
nX

i=1

µF ((ai, bi]) =
nX

i=1

F (bi)� F (ai) < "
0
.

Taking the limit as n ! 1, we have

1X

i=1

(bi � ai)  �(U) < � =)
1X

i=1

µF ((ai, bi]) =
1X

i=1

F (bi)� F (ai)  "
0
< ".

Hence µF ⌧ �. ⇤

Exercise 4.6.4. Prove that if F : [a, b] ! C with a, b 2 R is absolutely continuous, then
F 2 BV[a, b].

Exercise 4.6.5 (cf. Folland Thm. 3.22). Denote by �n Lebesgue measure on Rn. Suppose ⌫
is a regular signed or complex Borel measure on Rn which is finite on compact sets (and thus
Radon and �-finite). Let d⌫ = d⇢ + fd�

n be its Lebesgue-Radon-Nikodym representation
from Theorem 4.3.9. Then for �n-a.e. x 2 Rn,

lim
`(Q)!0

Q2C(x)

⌫(Q)

�n(Q)
= f(x).

Hint: One could proceed as follows.

(1) Show that d|⌫| = d|⇢|+ |f |d�
n. Deduce that ⇢ and fd�

n are regular, and f 2 L
1

loc
.

(2) Use the Lebesgue Di↵erentiation Theorem to reduce the problem to showing

lim
`(Q)!0

Q2C(x)

|⇢|(Q)

�n(Q)
= 0 �

n-a.e. x 2 Rn.

Thus we may assume ⇢ is positive.
(3) Since ⇢ ? �

n, pick P ⇢ Rn Borel measurable such that ⇢(P ) = �
n(P c) = 0. For

a > 0, define

Ea :=

8
<

:x 2 P

������
lim

`(Q)!0

Q2C(x)

|⇢|(Q)

�n(Q)
> a

9
=

; .

Let " > 0. Since ⇢ is regular, there is an open U" � P such that ⇢(U") < ". Adapt
the proof of the HLMT to show there is a constant c > 0, depending only on n, such
that for all a > 0,

�
n(Ea)  c ·

⇢(U")

a
= c ·

"

a

(Choose your family of cubes to be contained in U".) Deduce that �n(Ea) = 0.

Lemma 4.6.6. Suppose that F : R ! R is increasing or F 2 BV.

(1) The set of points at which F is discontinuous is countable.
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(2) Suppose in addition F is right continuous. Let µF be the corresponding (regular,
�-finite) Lebesgue-Stieltjes measure, and let d� = d⇢ + fd� be its Lebesgue-Radon-
Nikodym representation from Theorem 4.3.9. Then F is di↵erentiable �-a.e. with
F

0(x) = f(x) �-a.e.
(3) Setting G(x) := limy&x F (y), F and G are di↵erentiable a.e., with F

0 = G
0 a.e.

Proof. Since every F 2 BV is a linear combination of four increasing, bounded functions
R ! R by (BV6), we may assume F : R ! R is an arbitrary increasing function.
(1) Observe that at every discontinuity x 2 R, the open interval

✓
lim
y%x

F (y), lim
y&x

F (y)

◆
6= ;

and thus contains a rational point. Since F is increasing, these open intervals at distinct
discontinuities will be disjoint, and we can construct an injective mapping from the set of
discontinuities to Q.
(2) Suppose in addition that F is right-continuous. Let D ⇢ R be the countable set of
discontinuities of F , and observe that �(D) = 0. By Exercise 4.6.5,

lim
`(Q)!0

Q2C(x)

µF (Q)

�(Q)
= f(x) �-a.e. x 2 R.

Now observe that for x /2 D and h > 0, by Exercise 2.5.9,

µF ([x, x+ h]) = lim
y%x

µF ((y, x+ h]) = lim
y%x

F (x+ h)� F (y) = F (x+ h)� F (x)

If in addition x� h /2 D, then we also have

µF ([x� h, x]) = F (x)� F (x� h).

Since D is countable and F is increasing, we may take the following limit for x 2 D
c along

h ! 0 such that x� |h| /2 D to conclude that

lim
h!0

F (x+ h)� F (x)

h
= lim

h!0

x�|h|/2D

µF ([min{x, x+ h},max{x, x+ h}])

�([min{x, x+ h},max{x, x+ h}])

= f(x) �-a.e. x 2 D
c by Exercise 4.6.5.

(3), Step 1: G is increasing and right-continuous, and thus G is di↵erentiable a.e. by (2).

If a < b in R, then since F is increasing,

G(a) = lim
x&a

F (x) = lim
x&a

a<x<b

F (x)  F (b)  G(b),

and thus G is increasing. To show G is right continuous at x 2 R, let " > 0. Since
G(x) = limy&x F (y), we can pick �0 > 0 such that 0 < h

0
< �

0 implies F (x+h
0)�G(x) <

". Then for any 0  h < � < h
0
< �

0,

G(x+ h)�G(x)  F (x+ h
0)�G(x) < ".
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(2), Step 2: Setting H := G� F � 0, H 0 exists and is zero a.e.

First, note H(d) > 0 for all d 2 D, and
X

d2D
|d|<N

H(d) =
X

d2D
|d|<N

G(d)� F (d)  G(N)� F (N) < 1. (4.6.7)

Claim. Setting ⌘ :=
P

d2D H(d)�d where �d is the Dirac point mass at d, ⌘ is a
regular Borel measure such that ⌘ ? �.

Proof. Observe ⌘ is finite on compact sets by (4.6.7). We define h : R ! R by
picking an arbitrary r0 2 D

c, setting h(r0) = 0, and setting

h(r) :=

8
<

:

P
d2D

r0<dr

H(d) if r > r0

�
P

d2D
r<d<r0

H(d) if r < r0.

Observe that h is increasing and right-continuous, and by construction, the
Lebesgue-Stieltjes measure µh = ⌘, which is thus regular. Since ⌘ is supported
on D and �(D) = 0, we have ⌘ ? �. ⇤

Now for |h| 6= 0, again by Exercise 4.6.5,
����
H(x+ h)�H(x)

h

���� 
H(x+ h) +H(x)

|h|
 2

⌘([x� |h|, x+ |h|])

�([x� |h|, x+ |h|])
h!0
��! 0 a.e. x 2 R.

We conclude that H 0 = 0 a.e.

This concludes the proof. ⇤
Facts 4.6.8. Suppose F 2 NBV, and let ⌫F = ⇢F + fd� where f 2 L

1(�) be the Lebesgue-
Radon-Nikodym Representation of ⌫F from Theorem 4.3.9.

(NBV01) F
0 exists �-a.e. with F

0 = f 2 L
1(�).

Proof. By (BV6), F =
P

3

k=0
i
k
Fk where each Fk : R ! R is an increasing

right-continuous function in NBV. Let µFk
= ⇢Fk

+ fkd� where fk 2 L
1(�) for

k = 0, 1, 2, 3 be the Lebesgue-Radon-Nikodym representation of the Lebesgue-
Stieltjes measure µFk

from Theorem 4.2.9. By Lemma 4.6.6(2), F 0
k
exists �-a.e.,

and F
0
k
= fk �-a.e. By the proof of the Complex Lebesgue-Radon-Nikodym

Theorem 4.3.9, we have f =
P

3

k=0
i
k
fk. Hence

F
0 =

3X

k=0

i
k
F

0
k
=

3X

k=0

i
k
fk = f �-a.e. ⇤

(NBV02) ⌫F ? � if and only if F 0 = 0 a.e.

Proof. This follows immediately from (NBV01) and the Lebesgue-Radon-
Nikodym Representation of ⌫F . ⇤
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(NBV03) ⌫F ⌧ � if and only if F (x) =
R

x

�1 F
0(t) dt.

Proof. Observe ⌫F ⌧ � if and only if ⇢F = 0 if and only if d⌫F = F
0
d� by

(NBV01). This last condition is equivalent to

F (x) = ⌫F ((�1, x]) =

Z
x

�1
F

0(t) dt. ⇤

Proposition 4.6.9. The following are equivalent for F : R ! C.
(1) F 2 NBV is absolutely continuous.
(2) F is di↵erentiable a.e., F 0

2 L
1(�), and F (x) =

R
x

�1 F
0(t) dt.

(3) There is an f 2 L
1(�) such that F (x) =

R
x

�1 f(t) dt.

Proof.
(1) ) (2): If F 2 NBV is absolutely continuous, then ⌫F ⌧ � by Proposition 4.6.3. By

(NBV01), F is di↵erentiable a.e. with F
0
2 L

1(�), and by (NBV03), F (x) =
R

x

�1 F (t) dt.
(2) ) (3): Trivial.
(3) ) (1): Since f 2 L

1(�), d⌫ := fd� is a complex Borel measure. Thus

F (x) =

Z
x

�1
f(t) dt = ⌫((�1, x])

defines a function in NBV by Theorem 4.5.12(1). Since ⌫ ⌧ � by construction, F is absolutely
continuous by Proposition 4.6.3. ⇤

We leave the proof of the following corollary to the reader.

Corollary 4.6.10 (Fundamental Theorem of Calculus for Lebesgue Integrals). Let a, b 2 R
with a < b, and suppose F : [a, b] ! C. The following are equivalent.

(1) F is absolutely continuous on [a, b].
(2) F is di↵erentiable a.e. on [a, b], F 0

2 L
1([a, b],�), and F (x)� F (a) =

R
x

a
F

0(t) dt.
(3) F (x)� F (a) =

R
x

a
f(t) dt for some f 2 L

1([a, b],�).

Exercise 4.6.11 (Folland §3.5, #37). Show that F : R ! R is Lipschitz continuous (there
is an M > 0 such that |F (x)�F (y)|  M |x�y| for all x, y 2 R) if and only if F is absolutely
continuous and |F

0
|  M a.e.
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