1. TOPOLOGY
Suppose f: X — Y is a function. Then f induces functions
frPX)=PY) by A f(A):={f(a)la € A}
ff1:PY)— P(X) by Bw f(B):={zeX|f(x) € B}

Exercise 1.0.1.

(1) Determine the relationship between f~'(f(A)) and A C X. When are they equal?
(2) Determine the relationship between f(f~*(B)) and B C X. When are they equal?
(3) Prove that A — f(A) preserves unions, but not necessarily intersections or comple-

ments. Under what conditions on f does this preserve intersections? complements?
(4) Prove that B + f~'(B) preserves unions, intersections, and complements.

1.1. Topology basics.

Definition 1.1.1. A topology on a set X is a collection T of subsets of X such that:
o). XcT,

e 7 is closed under arbitrary unions, and
e 7T is closed under finite intersections.

The elements of T are called open sets. An open set containing x € X is called a neighborhood
of . Complements of elements of 7 are called closed sets.

Definition 1.1.2. Observe that if S, 7T are topologies on X, then so is SN7T. This means if
E C P(X), there is a smallest topology T (£) which contains &£ called the topology generated
by E.
Definition 1.1.3. Suppose (X, T) is a topological space. A neighborhood/local base for T
at x € X is a subset B(z) C T consisting of neighborhoods of = such that

e for all U € T such that x € U, there is a V' € B(z) such that V C U.

A base for T is a subset B C T which contains a neighborhood base for T at every point of
X.

Example 1.1.4. Given a topological space (X, T), the set T (x) of all open subsets which
contain x is a neighborhood base at x.

Exercise 1.1.5. Show that B C 7T is a base if and only if every U € 7T is a union of members
of B.

Definition 1.1.6. Suppose (X, 7)) is a topological space. We call (X, T):

e first countable if there is a countable neighborhood base for T at every z € X
e second countable if there is a countable base for T.

Exercise 1.1.7. Show that second countable implies separable, i.e., there is a countable
dense subset.

Exercise 1.1.8. Suppose X is first countable and A € X. Then € A (the smallest closed
subset of X containing A) if and only if there is a sequence (z,) C A such that z,, — x (for

every open subset U containing x, (x,) is eventually in U).
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Definition 1.1.9. Suppose X,Y are topological spaces. A function f : X — Y is called
continuous at x € X if for every neighborhood V' of f(x), there is a neighborhood U of x
such that f(U) C V. We call f continuous if f is continuous at x for all z € X.

Exercise 1.1.10. Show that f : X — Y is continuous if and only if the preimage of every
open set in Y is open in X, i.e., for every V € Ty,

V) ={z e X|f(x) eV} e Tx.
Exercise 1.1.11. Show that the composite of continuous functions is continuous.

Exercise 1.1.12. Prove the following assertions.

(1) Given f : X — Y and a topology T on Y, {f~(U)|U € T} is a topology on X.
Moreover it is the weakest topology on X such that f is continuous.

(2) Given f: X — Y and a topology S on X, {U C Y|f~1(U) € S} is a topology on Y.
Moreover it is the strongest topology on Y such that f is continuous.

1.1.1. Metric spaces.
Definition 1.1.13. A metric space is a set X together with a distance function d : X x X —
[0, 00) satisfying

o (definite) d(x,y) = 0 if and only if x = v,

e (symmetric) d(z,y) = d(y,x) for all z,y € X, and

e (triangle inequality) d(z,z) < d(x,y) + d(y, z) for all z,y,z € X.
The topology Ty induced by d is generated by the open balls of radius r

B (z) :={y € X|d(z,y) <r} r > 0.

That is, U is open with respect to d if and only if for every x € U, there is an » > 0 such
that B,.(z) C U. Observe that every metric space is first countable.
Exercise 1.1.14. Let (X, d) be a metric space. Show tha (X, 7;) is second countable if and
only if (X, 7;) is separable.

Exercise 1.1.15. T'wo metrics di,d, on X are called equivalent if there is a C' > 0 such
that

Ctdy(x,y) < do(w,y) < Cdy(z,y) Vo, y € X.
Show that equivalent metrics induce the same topology on X. That is, show that U C X is
open with respect to d; if and only if U is open with respect to ds.

Exercise 1.1.16 (Sarason). Let (X, d) be a metric space.

(1) Let o : [0,00) — [0, 00) be a continuous non-decreasing function satisfying
e «o(s) =0 if and only if s = 0, and
e a(s+1t) <a(s)+ alt) for all s,t > 0.
Define o(x,y) := a(d(z,y)). Show that o is a metric, and o induces the same topology
on X as d.
(2) Define dy,ds : X x X — [0,00) by

(o) = d(z,y) ifd(z,y) <1
WY = 1 otherwise.
__d(z,y)
1+d(z,y)
2
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Use part (1) to show that d; and dy are metrics on X which induce the same topology
on X asd.

Exercise 1.1.17. Suppose V is a F-vector space for F = R or C. A norm on V is a function
||| : V= [0,00) such that

o (definite) ||v]| = 0 if and only if v = 0.
e (homogeneous) ||A-v|| = |\|-||v]| forall A € Fand v € V.
e (subadditive) |lu+ v|| < [Jul| + ||v].

(1) Prove that d(u,v) := ||lu,v|| defines a metric on V.
(2) Prove that the following conditions are equivalent:

(a) (V,d) is a complete metric space, i.e., every Cauchy sequence converges.
(

b) For every sequence (v,) C V with 3 [|v,|| < 00, the sequence (32" v,) converges.
1.1.2. Connectedness.

Definition 1.1.18 (Relative topology). Suppose X is a topological space and A C X is a
subset. The relative topology on A is given by U C A is open if and only if there is an open
set V' C X such that U =V N A.

Exercise 1.1.19. Suppose X is a topological space and A C X is a subset. Show that
F C A is closed if and only if there is a closed set G C X such that F'= G N A.

Definition 1.1.20 ((Dis)connected set). Let X be a topological space. We call a subset
X disconnected if there exist non-empty, disjoint open sets U,V such that X = U I V. A
subset A C X is disconnected if it is disconnected in its relative topology. If a subset is not
disconnected, it is called connected. That is, A C X is connected if and only if whenever
A C X can be written as the disjoint union A = U IV with U, V relatively open in A, then
U or V is empty.

Exercise 1.1.21. Prove that the unit interval [0, 1] C R is connected.

Exercise 1.1.22.

(1) Suppose f : X — Y is continuous and A C X is connected. Prove f(A) C Y is
connected.

(2) A subset A C X is called path connected if for every z,y € A, there is a continuous
map v : [0,1] — A (called a path) such that v(0) = = and (1) = y. Prove that a
path connected subset is connected.

Exercise 1.1.23. Recall that an interval I C R is a subset such that a < b < cand a,c € |
implies b € I.

(1) Show that all intervals in R are connected.
(2) Prove that if X C R is not an interval, then X is not connected.

Exercise 1.1.24.

(1) Show that every open subset of R is a countable disjoint union of open intervals.
(2) Show that every open subset of R is a countable union of open intervals where both

endpoints are rational.
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1.1.3. Separation azioms.

Definition 1.1.25. We have the following separation properties for a topological space
(X, 7).

(Ty) For every x,y € X distinct, there is an open set U € T which contains exactly one
of x,y.

(T1) For every z,y € X distinct, there is an open set U € T which only contains z.
(Observe that by swapping = and y, there is also an open set V' € T which only
contains y.)

(T3) (a.k.a. Hausdorff) for every x,y € X distinct, there are disjoint open sets U,V € T
such that x € U and y € V.

(T3) (a.k.a. Regular) (7)) and for every closed F' C X and x € F*, there are disjoint open
sets U,V € T such that F C U and x € V.

(Ty) (a.k.a. Normal) (77) and for every disjoint closed sets F,G C X, there are disjoint
open sets U,V € T such that F C U and G C V.

Exercise 1.1.26. Let X be a set. The finite complement topology T has its opens those
sets U such that U¢ is finite and the empty set. Show 7 is (7}). When is 7 Hausdorff?

Exercise 1.1.27. Suppose X is a normal topological space and F' C G C X with F' closed
and G open. Show there is an open U such that F C U C U C G.

Lemma 1.1.28. Suppose X is a normal topological space and A, B C X are disjoint non-
empty closed sets. Consider the dyadic rationals:

D .= {E
271

There are open sets (Ug)gep such that

OA_CUdCFdCBCforalldED, and
o U, C Uy whenever d < d'.

k
Dypi={—|k=1,..2"-1}.

We construct U, for d € D,, inductively. Here is a cartoon of the main idea:

( N\
( N\

nGN,k:I,...,Q”—l}C(O,l) (1.1.29)

Proof. For n € N, set

1] 1

ool
|
ool~1

'Y () o
oL

\ J
- J

Base case: Let U,/ be any open set A C Uy C Uyjo C B
Inductive Step: Suppose that U; have been defined for all d € D; U ...,UD,. Then, using
the convention Uy := A and U; := B¢, we define U2k7+i for Kk =0,1,...,2" — 1 to be any

on+

open set such that
Uk/anU%%CUMCUw. O
271

on+1 2m
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Lemma 1.1.30 (Urysohn). Let X be a normal topological space. If A, B C X are disjoint
nonempty closed subsets, there is a continuous function f: X — [0,1] such that f|4 = 0 and

fls=1.

Proof. For the dyadic rationals D C (0,1) as in (1.1.29), we have open sets (Uy)q4ep satisfying
the conditions in Lemma 1.1.28. Define f : X — [0,1] by f(z) :=sup{d|z ¢ Us}. It is clear
by construction that f|4 =0 and f|g = 1. Also observe that

(D1) f(z) > d implies that = ¢ Uy, and f(z) < d', then o € Uy.

(D2) If 2 ¢ Uy, then f(z) > d, and if x € Uy, then f(x) < d'.
It remains to prove that f is continuous. Fix xyp € X and € > 0.
Case 1: Suppose 0 < f(z) < 1. Choose d,d" € D such that d < f(z9) < d and d' —d < e.
By (D1) above, 7g € Uy \ Ug. By (D2) above, |f(x) — f(z0)| < € for all x € Uy \ U,.
Case 2: f(x) =0 or 1. Similar to above and omitted. O

Theorem 1.1.31 (Tietze Extension). Suppose X is normal, A C X is closed, and f: A —
la, b] is continuous. Then there is a continuous function F': X — [a,b] such that F|y = f.

Proof. Without loss of generality, [a,b] = [0, 1]. (Otherwise, replace f with (f —a)/(b—a).)
We inductively construct a sequence of continuous functions (g,) on X such that
e 0<g,<2"1/3" for all n € N, and

e 0< f=> 1k < (%)n on A for alln e N.

Then by (a), > g, converges uniformly to a continuous limit function F on X, and by (b),

Base case: Set B := f71(]0,1/3]) C A and C := f71([2/3,1]) C A. Since f is continuous
on A, B,C C A C X are closed. By Urysohn’s Lemma, there is a continuous function
g1: X —[0,1/3] such that g1|p = 0 and ¢;|¢ = 1/3. Then

(1 1
§ — U= g on BCA
2 2 2
f=a < 5—025 on A\ (BUC(C) Sg on A.
1 2
\ —'53:35 onC CA

Inductive Step: Suppose we have constructed gy, ...
tion g, : X — [0,2"7'/3"] such that g, = 0 on {f — S7_| g
on {f — 3771 gr > 2"/3"}. This implies that f — 37_, g

case.

,gn_1- Then there is a continuous func-

<271/3"} and g, = 2"71/3"
< 2"/3" on A as in the base
U

1.2. Locally compact Hausdorff spaces.

Definition 1.2.1. A topological space X is called compact if every open cover has a finite
subcover.

Exercise 1.2.2. A collection of subsets of (A;);e; of X has the finite intersection property
if for any finite J C I, we have () ies Aj # (). Prove that the following are equivalent.

(1) Every open cover of X has a finite subcover.
(2) For every collection of closed subsets (F;);c; with the finite intersection property,

mieIFi # 0.
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Fact 1.2.3. An interval in R is compact if and only if it is closed and bounded.

Exercise 1.2.4. In this exercise, you will prove that the half-open interval topology on (0, 1]
is Lindelof, i.e., every open cover has a countable sub-cover.

(1) Suppose U C R is open and suppose ((a;,b;));es is a collection of open intervals

which cover U:
U C U(aj, bj)
jeJ
Show there is a countable sub-cover, i.e., show that there is a countable subset I C J

such that
U C U(ai, bz)
iel
Hint: Use Fxercise 1.1.24.
(2) Suppose ((aj,b;])jes is a collection of half-open intervals which cover (0, 1]:

(07 1] C U(aj, bj]
jet
Show there is a countable sub-cover, i.e., show that there is a countable subset I C J

such that
(0,1] | J(as, bi].
el
Exercises 1.2.5. Suppose X is a topological space. Verify the following assertions.
(1) If X is compact and F' C X is closed, then F' is compact.
(2) If X is Hausdorff, K C X is compact, and = ¢ K, then there are disjoint open U, V'
such that x € U and K C V. In particular, K is closed.
(3) If X is compact Hausdorff, then X is normal.
(4) If X is compact and f: X — Y is continuous, then f(X) is compact.
(5) If X is compact and Y is Hausdorff, and continuous bijection f : X — Y is auto-
matically a homeomorphism (i.e., f~! is continuous).

Exercise 1.2.6 (Lebesgue Number Lemma). Suppose (X, d) is a compact metric space.
Prove that for every open cover (U;);cr, there is a § > 0 such that for every xy € X, there is
an ig € I such that Bs(zg) C Uy,.

Exercise 1.2.7. Consider the following conditions:
(1) For every x € X, there is a neighborhood U of x such that U is compact.
(2) For every x € X, there is a neighborhood base B(z) consisting of neighborhoods U
of x such that U is compact.
(3) For every x € X and every neighborhood U of z, there is an open V withx € V C U
with V' compact.
(4) For every x € X and every neighborhood U of z, there is an open V with x € V' C
V C U with V compact.
Determine which conditions imply which other conditions. Then show all the above condi-
tions are equivalent when X is Hausdorff.

Definition 1.2.8. A Hausdorff space satisfying one (equivalently all) of the conditions in

Exercise 1.2.7 is called a locally compact Hausdorff (LCH) space.
6



Exercise 1.2.9. Suppose X is a second countable LCH space. Prove the following assertions.
(1) X is o-compact, i.e., there is a sequence (K,) of compact subsets of X such that
X =K,
(2) Every compact K C X is a Gs-set, i.e., a countable intersection of open sets.

Exercise 1.2.10 (Baire Category). Suppose X is either:

(1) a complete metric space, or

(2) an LCH space.
Suppose (U,,) is a sequence of open dense subsets of X. Prove that (U, is dense in X.
Hint: Let Vi be an arbitrary non-empty open set. Inductively construct an increasing sequence
(Vi)n>1 of non-empty open subsets with V,, C V., C Uni1 NV, such that in the two cases
above,

(1) V,, is a ball of radius 1/n for alln € N, or

(2) V,, is compact for all n € N.

Exercise 1.2.11. Suppose X is LCH. Verify the following assertions.

(1) If K ¢ U C X where K is compact and U is open, there is an open V with K C
V c V Cc U with V compact.
Hint: Use Ezercise 1.2.7(4).

(2) (Urysohn) If K C U C X as above, there is a continuous f : X — [0, 1] such that
flx = 1 and f = 0 outside of a compact subset of U.

(3) (Tietze) Of K C X is compact and f € C(K), there is an F' € C.(X) such that

Flx = f.
Definition 1.2.12. Let X be an LCH space. We define the following function algebras:

e ('(X) is the algebra of continuous (C-valued) functions on X.

e C.(X) is the algebra of continuous functions of compact support, i.e., there is a
compact set K such that f|ge = 0. We'll write supp(f) := {z|f(x) # 0}, so f has
compact support if and only if supp(f) is compact.

e Cy(X) is the algebra of continuous functions which vanish at infinity, i.e., for all
e >0, {|f|] > e} is compact.

e C,(X) is the algebra of continuous bounded functions.

We write C(X,R), C.(X,R), Co(X,R), Cp(X,R) for the real subalgebras of real-valued func-
tions. Observe that
Ce(X) C Co(X) C Cp(X) C O(X).

The uniform/oo-norm on Cy(X) is given by

1l = sup L)

zeX
Exercise 1.2.13. Show that C(X), C.(X), Co(X), Cp(X) are all complex algebras. More-
over, show C.(X), Co(X) are unital if and only if X is compact.

Exercise 1.2.14 (Dini’s Lemma). Suppose X is a compact topological space and (f,) C
C(X,[0,1]). Show that if f,(z) “\, 0 pointwise, then f,, N\, 0 uniformly.

Theorem 1.2.15. Suppose X is LCH.
(1) || - loo is @ norm on Cy(X).



(2) Cp(X) is complete with respect to || - ||oo-
(8) Co(X) C Cyp(X) is closed (and thus complete).
(1) Cx)' = Go(x).

Proof.

(1) Exercise.

(2) Suppose (fy,) is uniformly Cauchy. Then (f,(z)) is Cauchy in C for every z € X. Define
f(z) := lim f,,(x), which is continuous (use £/3 argument). Then one shows || f, |l C [0, 0)
is bounded. Finally, you can show f,, — f uniformly, and sup |f(z)| < sup || f.] < oo.

(3) Suppose (fn) C Co(X) such that f, — f in Cp(X). Let ¢ > 0. Pick N € N such that
n > N implies ||f — fulloo < €/2. Since fy € Co(X), {|fn| > €/2} is compact. Then
{If| = e} C{|f~n] = €/2} is compact as a closed subset of a compact set.

(4) It suffices to prove that we can uniformly approximate any function in Cy(X) by a function
in Co(X). Let f € Cp(X) and e > 0so that K := {|f| > €} is compact. By the LCH Urysohn
Lemma (Exercise 1.2.11(2)), there is a continuous function g : X — [0, 1] such that g|x =1
and ¢ has compact support. Then fg € C.(X), and || f — fg|l < . O

Exercise 1.2.16. Suppose (X,7) is a locally compact topological space and (f,) is a se-
quence of continuous C-valued functions on X. Show that the following are equivalent:
(1) There is a continuous function f : X — C such that f,|x — f|x uniformly on every
compact K C C.
(2) For every compact K C X, (f,|x) is uniformly Cauchy.

Deduce that C(X) is complete in the topology of local uniform convergence.

Exercise 1.2.17. Suppose X is a locally compact Hausdorff space, K C X is compact, and
{Uy,...,U,} is an open cover of K. Prove that there are g; € C.(X,[0,1]) fori =1,...,n
such that g; =0 on Uf and Y, g; = 1 everywhere on K.

1.3. Convergence in topological spaces. Let (X, 7) be a topological space. Recall that
a sequence (x,) converges to x, denoted x, — =z if for every open U € T with z € U,
there is an N € N such that n > N implies z, € U (z, is eventually in U for every open
neighborhood U of x). Not all spaces are first countable, so sequences do not suffice to
describe the topology!

1.3.1. Nets.

Definition 1.3.1. A directed set is a set I equipped with a preorder (reflexive and transitive
binary relation) < satisfying
e for all i,5 € I, thereis a k € I such that i <k and j < k.

Examples 1.3.2.

(1) N, R, or any linearly ordered set.
(2) R\ {a} where z <y if and only if |x — a| > |y — a| (y is closer to a than x is).
(3) Any neighborhood base T(z) at x € X, ordered by reverse inclusion (U < V iff
vV CU).
(4) If X is any infinite set, { " C X|F is finite} ordered by inclusion.
Definition 1.3.3. Let X be a nonempty set and [ a directed set. A net in X based on [
(or an I-net in X) is a function x : I — X, where write z; := z(i) and x = (;)es-

Given an I-net (x;);c; and a subset S C X, we say
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e (x;) is eventually in S if there is some j € I such that for all ¢ > j, x; € S.

o (x;) is frequently in S if for every j € I, there is an i > j such that z; € S.

We say (x;) converges to x € X if (x;) is eventually in every neighborhood of x. We say x
is a cluster point of (x;) if (x;) is frequently in every neighborhood of x.

Proposition 1.3.4. Suppose X is a topological space and A C X. The following are equiv-
alent for v € X:

(1) x is an accumulation/limit point of A (for all open U such that x € U, AN (U \ {z})
is not empty), and
(2) there is a net in A\ {x} that converges to x.

Proof.

(1) = (2): Let B(z) be any neighborhood base at x, ordered by reverse inclusion. (For ex-
ample, we can take T (), the set of all open sets which contain x.) For every U € B(x),
pick zyy € UN (A \ {x}). (Observe this requires the Axiom of Choice!) Then observe that

(Tv)ven() converges to x.
(2) = (1): Exercise. O

Corollary 1.3.5. A subset A C X s closed if and only if every convergent net in A only
converges to points in A.

Proposition 1.3.6. X is Hausdorff if and only if every convergent net has a unique limit.

Proof.

=>: If there is a net without a unique limit, any 2 distinct limit points of the same net cannot
be separted by disjoint open sets.

<: We'll prove the contrapositive. Suppose X is not Hausdorff, so there are x,y € X such
that for every neighborhoods U,V of z,y respectively, U NV is nonempty. Let B(z), B(y)
be a neighborhood base for T at x,y respectively, both ordered by reverse inclusion. Direct
B(z) x B(y) by (Uy,V1) > (Us, Vo) if and only if Uy € Us and Vi C V5. Then for all

(U, V) € B(z) x B(y), choose a point z,yy € UNV. (Again, this uses the Axiom of Choice!)
This net converges to both x and y. 0

Proposition 1.3.7. A function f : X — Y is continuous if and only if for every convergent
netx; —»x in X, f(x;) = f(z) inY.

Proof.
=: Suppose f : X — Y is continuous. Let (x;) be a convergent net with z; — z in X.
We need to show that f(z;) — f(z) in Y. Let V be an open neighborhood of f(z) in Y.
Observe that f~'(V) is open in X, and z € f~!(V). Since z; — =, (x;) is eventually in
f~YV). Hence f(x;) is eventually in V.
<«: We'll show that the preimage of every closed set is closed. Let FF C Y be closed. We may
assume [’ is non-empty. By Corollary 1.3.5, it suffices to prove that every convergent net
(z;) in f~Y(F) only converges to points of f~*(F). So suppose (z;) is a convergent net in
f7YF), and say x; — z. Then f(x;) € F for all 4, and f(z;) — f(x) by assumption. Since
F is closed, by Corollary 1.3.5, f(z) € F, and thus z € f~'(F). O

Definition 1.3.8. A subnet of an I-net (x;) consists of a J-net (y;) together with a function

f +J — I which need not be injective such that
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oy =uxy forallje J,ie,y=zof:J—X.
e for all i € I, there is a jy € J such that f(j) > i for all j > jo, i.e., for every i € I,
(f(j)) is eventually greater than i.

Observe that if x; — , then y; — z for any subnet (y;) of (z;).

Proposition 1.3.9. Suppose (x;) is a net in X and x € X. The following are equivalent:

(1) = is a cluster point of (x;).
(2) there is a subnet (y;) of (x;) such that y; — x.

Proof.

(1) = (2): Choose a neighborhood base B(z) at x. Define J := I x B(z) where (i1, U;) <
(19, Us) iff 41 < iy and Uy D Us. For each (i,U) € J, define f(i,U) := i’ to be any i" with
v >4 and zy € U. Then if (i1,U1) < (iQ,UQ), 1 <19 < f(iz,Ug), and Tf(ia,Us) € U, C Uy.
This means (z ;7)) is a subnet of (x;) converging to x.

(2) = (1): Exercise. O

Exercise 1.3.10. When (X, 7) is first countable, then Propositions 1.3.4, 1.3.6, 1.3.7, and
1.3.9 and Corollary 1.3.5 all hold with sequences instead of nets.

Exercise 1.3.11. Suppose (X, d) is a metric space. Prove that the following are equivalent:

(1) X is compact.
(2) X is sequentially compact (every sequence has a convergent subsequence).
(3) X is complete and totally bounded.

Deduce that if in addition X is complete and A C X, then A is compact if and only if A is
totally bounded.

Theorem 1.3.12. Suppose X is a topological space. The following are equivalent:

(1) X is compact.

(2) For every family of closed sets (F;) with the finite intersection property, (| F; is
nonempty.

(3) Every net in X has a cluster point.

(4) Every net in X has a convergent subnet.

Proof.
(1) < (2): This is Exercise 1.2.2.

(3) & (4): This follows by Proposition 1.3.9.
(2) = (3): Let (x;) be anet in X. For i € I, define A; := {z;|j > i}. Observe [ 4; is the set

of cluster points of (z;). Moreover, (A;) has the finite intersection property, so (4;) also has
the finite intersection property. We conclude by (2) that (] 4; is nonempty, and thus (a;)
has a cluster point.

(3) = (2): We'll prove the contrapositive. If (2) fails, then there is a family of closed sets (F;)
with the finite intersection property such that () F; = ). Define J to be the set of non-empty
finite intersections of (F;) ordered by reverse inclusion. Since (F;) has the finite intersection
property, for every F € J, F is nonempty. Use the Axiom of Choice to pick zp € F for

every F' € J. Then any cluster point of (z5) lies in (o, F = F; = 0. O
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1.3.2. Filters.

Exercise 1.3.13 (Pedersen Analysis Now, E1.3.4 and E1.3.6). A filter on a set X is a
collection F of non-empty subsets of X satisfying

e A B € Fimplies AN B € F, and
e Ac Fand A C B implies B € F.

Suppose T is a topology on X. We say a filter F converges to x € X if every open
neighborhood U of z lies in F.

(1) Show that A C X is open if and only if A € F for every filter F that converges to a
point in A.

(2) Show that if F and G are filters and F C G (G is a subfilter of F), then G converges
to z whenever F converges to x.

(3) Suppose (x,) is a net in X. Let F be the collection of sets A such that (z,) is
eventually in A. Show that F is a filter. Then show that x) — z if and only if F
converges to .

(4) Show that (X, 7)) is Hausdorff if and only if every convergent filter has a unique limit.

Exercise 1.3.14 (Pedersen Analysis Now, E1.3.5). A filter F on a set X is called an ultra-
filter if it is not properly contained in any other filter.

(1) Show that a filter F is an ultrafilter if and only if for every A C X, we have either
AeForAe F.
(2) Use Zorn’s Lemma to prove that every filter is contained in an ultrafilter.

Exercise 1.3.15. Let X and Y be sets and f: X — Y a function. Let F be an ultrafilter
on X. Prove that f*(F) :={A CY|f ' (A) € F} is an ultrafilter on Y.

Exercise 1.3.16. Given a filter F on X, show that F is an ultrafilter if and only if [ JI_, A; €
F implies that A; € F for some i € {1,...,n}.

Exercise 1.3.17. Let X be a nonempty set and let U be a collection of subsets of X.
Note: It is not assumed that U is a filter!
Show that the following two statements are equivalent.

(1) U is an ultrafilter on X.

(2) Whenever X can be partitioned into three disjoint sets X = A; IT Ay 1T A3, there is
a unique ¢ € {1,2,3} such that A; € U.
Hint: The A;’s need not be distinct nor non-empty.

Exercise 1.3.18. Let (X, T) be a topological space. A net (z))en is called universal if for
every subset Y C X, (z,) is either eventually in Y or eventually in Y°. Show that every net
has a universal subnet.

Hint: Let (x)) be a net in X. We say a filter F on X is associated to (z)) if (xx) is
frequently in every F € F.

(1) Show that the set of filters associated to (x)) is non-empty.

(2) Order the set of filters associated to (xy) by inclusion. Show that if (F;) is a totally
ordered set of filters for (xy), then UF; is also a filter for (xy).

(8) Use Zorn’s Lemma to assert there is a maximal filter F associated to (xy).

(4) Show that F is an ultrafilter.

(5) Find a subnet of (x)) that is universal.
11



Exercise 1.3.19. Let (X, 7)) be a topological space. Prove that the following are equivalent:
(1) (X,T) is compact
(2) every ultrafilter converges
(3) every universal net converges.

1.4. Categories, universal properties, and product topology.

Definition 1.4.1. A category C is a collection of objects together with a set of morphisms
C(a — b) for every ordered pair of objects a,b € C and a composition operation — o¢ — :
Cb—c)xCla—b)—Cla—c)ie, f:a—band g:b— ¢, then go f:a — ¢ such that
e composition is associative, i.e., ho(go f) = (hog)o fforall f:a—b g:b—c,
and h:c—d.
e every object has an identity morphism, i.e., for every b € C, there is aid, : b — b
such that idyof = f forall f:a—band goid, =g forallg:b— ¢

Definition 1.4.2. Suppose (X;);cs is a family of sets. The (categorical) product is the
Cartesian product

[[x = {m:]—>UX,~

el i€l

x; = x(i) € Xl}

together with the canonical projection maps 7; : [[ X; — X given by 7;(x) = ;. It satisfies
the following universal property :

e (product) for any set Z and functions f; : Z — X; for i € I, there is a unique function
[1fi: Z—=1[X;suchthat mjo[[fi=f; forall j el

Z

IS i

[Tier Xi —— X,

fj

Exercise 1.4.3. Suppose Y is another set together with functions 6; : Y — X, for all i € T
satisfying the universal property of the product. Show there is a unique bijection between
Y and [] X; which is compatible with the projection maps. In this sense, we say that the
product is unique up to unique isomorphism.

Exercise 1.4.4. A set [[ X; together with maps ¢; : X; — [[ X, for each j € I is called the
coproduct of (X;);ey if it satisfies the following universal property:

e (coproduct) for any set Z and functions f; : X; — Z for i € I, there is a unique
function [[ f; : [[ Xi — Z such that ([] fi) o ¢; = f;.

X; — [ics Xi

Ji EH!LIfi
*

A

(1) Show that the coproduct, if it exists, is unique up to unique isomorphism.

(2) What is the coproduct in the category of sets?
12



Definition 1.4.5. Suppose (X;);cs is a family of topological spaces. The (categorical) prod-
uct is the Cartesian product [[,.; X; equipped with the weakest topology such that the
canonical projection maps m; : [[X; — X; are continuous for every j € I. We call this
topology the product topology.

Exercise 1.4.6. Prove that the open sets [[ U; with U; C X open where only finitely many
of the U; are not equal to X; form a base for the product topology.

Exercise 1.4.7. Prove that [[ X; with the product topology together with the canonical
projection maps m; : [[ X; — X is the categorical product in the category of topological
spaces with continuous maps. That is, prove the product satisfies the universal property in
Definition 1.4.2 subject to the additional condition that all functions are continuous.

Exercise 1.4.8. What is the categorical coproduct of topological spaces?

Theorem 1.4.9 (Tychonoff). Suppose (X;)icr is a family of compact topological spaces.
Then the product [ X; is compact in the product topology.

Proof. Discussion section. 0

Definition 1.4.10. Suppose C,D are categories. A (covariant) functor F' : C — D assigns
to each object ¢ € C an object F(c) € D and to each morphism f € C(a — b) a morphism
F(f) € D(F(a) — F(b)) such that

e F(id.) = idp() for all objects c € C, and

e (gof)=F(g)o F(f) forall f € C(a—b)and geC(b— c).
A contravariant functor F : C — D is similar to a functor, but instead of the second bullet
point above, we have F(go f) = F(f) o F(g) for composable f, g.

Exercise 1.4.11. Let Set denote the category of sets and functions.
(1) For a function f : X — Y, define P(f) : P(X) — P(Y) by P(f)(4) = f(A) =
{f(a)la € A}. Show that PSet — Set is a functor.
(2) For a set X, define P~*(X) := P(X) = {A C X}. For a function f : X — Y and
B C Y, define P~(f)(B) := f~}(B) = {z € X|f(z) € B}. Show that P~ : Set —

Set is a contravariant functor.

Exercise 1.4.12. Let Top denote the category topological spaces and continuous maps.

(1) There is a forgetful functor Forget : Top — Set which forgets the topology.

(2) Given a set X, we can endow it with the discrete topology Tgisc := P(X). This gives
a functor L : Set — Top. Show that if Y is any topological space, then every function
X — Y is continuous with respect to the discrete topology on X. In other words,

Top(L(X) — Y) = Set(X — Forget(Y)).

(3) Given a set Y, we can endow it with the trivial topology Ty := {0, Y }. This gives
a functor R : Set — Top. Show that if X is any topological space and Y is a set,
then every function X — Y is continuous with respect to the trivial topology on Y.
In other words,

Set(Forget(X) — Y) = Top(X — R(Y)).
13



Exercise 1.4.13. Let CptHsd denote the category of compact Hausdorff topological spaces
and continuous maps. Let Alg, denote the category of unital complex algebras and unital
algebra homomorphisms. Show that X — C(X) and f: X — Y mapsto —o f: C(Y) —
C'(X) gives a contravariant functor CptHsd — Alg,.

Exercise 1.4.14.

(1) Given LCH spaces X, Y and a continuous function f : X — Y, when does the image
of the map —o f : Cy(Y) — C(X) lie in Cp(X)?

(2) Show that on the correct category LCH of locally compact Hausdorff topological
spaces, the assignments X — Cy(X) and f +— — o f define a contravariant functor
to Alg, the category of non-unital complex algebras and algebra homomorphisms

1.5. The Stone-Weierstrass Theorem. Weierstrass’ original theorem from 1885:
(1) The polynomials are dense in Cla, b] where —oo < a < b < 0.
(2) A continuous function on R with period 27 can be uniformly approximated by a
finite linear combination of functions of the form sin(nz),cos(nz) for n € N, i.e., a
trigonometric polynomial.

Theorem 1.5.1 (R-Stone-Weierstrass). Suppose X is compact Hausdorff and A C C(X,R)
is a closed R-subalgebra which separates points (for all distinct z,y € X, there is an f € A
such that f(x) and f(y) are distinct).

e If A contains a non-vanishing function, then A = C(X,R).
o [f every f € A has a zero, then there exists a unique xq € X such that

A={f € C(X,R)|f(x) = 0} .

Exercise 1.5.2. Suppose X is compact Hausdorff and A C C'(X,F) is a subalgebra where

F is R or C. Prove that A is also a subalgebra. Deduce that if A separates points, then so
does A.

Lemma 1.5.3. On any compact K C R, the function x +— |z| on R can be uniformly
approximated on K by a polynomial which vanishes at zero.

Proof. We give a proof of Sarason. We’ll show for R > 0, there is a sequence of polynomials
(pr) which converges uniformly to | - | on [—R, R] such that p,(0) = 0 for all n. Without
loss of generality, R = 1. It suffices to find a sequence (g,) of polynomials converging to
q(t) :=1—|t| on [—1, 1] such that ¢,(0) = 1 for all n. Observe that

q takes values in [0,1] and (1 — ¢(¢))? = ¢* for all [t| < 1. (%)

For a given t € [—1,1], consider the equation (1 — s)> = ¢2. It has 2 solutions, namely
s = 1=+ |t], and exactly one of these values of s lies in [0,1]. Hence ¢(t) is unique function
on [—1, 1] satisfying (x). We can rewrite (x) as

1
q takes values in [0, 1] and ¢(t) = 5(1 — 2+ q(t)?). (%)

We define (g,) inductively by
e ¢o(t) =1, and

o Guii(t) = 5(1 = +qu(t)?).
14



By induction, for all n > 0, we have ¢, takes values in [0, 1], ¢,(0) = 1, and

1 1

qn — dn+1 = §<qr2b—1 - quL) = §<Qn71 - Qn)(anl + Qn) > 0.

(Indeed, observe that ¢;(t) = 1—3$t2, so go—¢1 = 2t > 0.) This means that (g,) is monotone
decreasing by construction. Let ¢ be the pointwise limit. Observe that ¢ satisfies (xx) by

construction, so ¢ = ¢ by uniqueness! Now as ¢, N\, ¢ on [—1, 1] pointwise, ¢, — ¢ uniformly
by Dini’s Lemma (Exercise 1.2.14). O

Lemma 1.5.4. If A C C(X,R) is a closed R-subalgebra, then A is a lattice (for all f,g € A,
the functions fV g := max{f, g} and fV g :=min{f, g} belong to A).

Proof. Suppose a € A and a # 0. Then —%— : X — [—1,1]. By Lemma 1.5.3, for all € > 0,

llalloo

there is a polynomial p on [—1, 1] with p(0) = 0 and | |t| —p(t)| < € for all t € [—1, 1]. Hence

Ia(rt)|_p<@(9v"))‘<5 Vae X,

lalloo lallo

4l ( a ) _.
_p .

| lafloo
———

€A -
Since p(0) = 0, p(a/||a|l«) € span{a”|n € N} C A. Since the algebra A is closed and € > 0
was arbitrary, |a|/||a]l« € A, and thus |a| € A. Hence for all a,b € A,

In other words,

1
max{a,b} = §(a + b+ |a—bl)

1
min{a, b} = é(a +b—a—10|)
are both elements of A. OJ
Lemma 1.5.5. Suppose A C C(X,R) is a R-vector space which is also a lattice. Suppose
f € C(X,R) satisfies
o for all e > 0 and all distinct z,y € X, there is an a,, € A such that
[f(@) —aey(2)] <& and  [f(y) —asy(y)| <e.

Then f € A.
Proof. For every ¢ > 0 and z,y € X, pick a,, € A such that |f(z) — a,,(z)| < € and
|f(y) — azy(y)| < e. Then z,y are both in:

Uy ={2 € X|f(2) < azy(z) +¢}

Vew =17 € Xlasy(2) < f(2) +€}.
Fix € X. Then sets (U, ,)yex are an open cover of X. Since X is compact, X C |y, Upy,
for some yy,...,y, € X. Then a, := \/_, as, € A, and f(2) < a,(2) + ¢ for all z € X
in construction. Also, a,(z) < f(z) + ¢ for all z € W, := (), V., which is some open
neighborhood of z. Varying over x € X, (W, ),cx are an open cover, so there are finitely
many zi,...,r, € X such that X C Ule W,, by compactness. Setting a. := /\f:1 Ay,

satisfies || f — a.|lo < €. Since £ was arbitrary, we conclude that f € A. O
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Proof of the R-Stone-Weierstrass Theorem 1.5.1. Suppose x # y in X. Since point evalua-
tion is an R-algebra homomorphism A — R, then

Avy = {(f(z), fW)|f € A} CR?
is a R-subalgebra. The only R-subalgebras of R? are:

(0,0) R x {0} {0} xR A ={(z,x)|z € R} R?.
Since A separates points, A, , # (0,0) or A for all x # y.

Claim. A, , = R? for all x # y except for when x,y are equal to one possible o € R.

Proof. If there are x # y such that A, , # R?, then without loss of generality, 4, , =
{0} x R. Thus f(z) = 0 for all f € A. Since A separates points, f(z') = 0 for all
f € Aimplies 2’ = z. So A,, =R? for all y # x # 2. O

Claim. A,, = R? for all x # y if and only if A contains a non-vanishing function.

Proof of Claim. If A contains a non-vanishing function, then A, , = R? for all  # y.
Conversely, suppose A, , = R? for all  # y. Then for all z € X, choose a continuous
function a, € A such that a,(x) # 0. Observe that the sets (U, := {a, # 0}).ex form
an open cover of X, so by compactness, there are 1, ..., z, such that X C (J_, U,,.
By Lemma 1.5.4, A is a lattice, so

a:=max{az,,...,0z,, Qg .-, —0, } = max{|ay],...,|a |} € A.
Since |a,,| > 0 on U, for all i = 1,...,n, we have a(z) > 0 for all x € X by
construction. U

From these claims, we see that either A contains a non-vanishing function, in which case
A, = R? for all z # y, or every function in A vanishes at some point of X, in which case
there is a unique zy € X such that a(xy) =0 for all a € A.

Case 1: For all z # y in X and f € C(X,R), there is an a,, € A such that f(z) = a,4(x)
and f(y) = a,(y). By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f € A.

Case 2: For all zg # © # y # zo and f € {g € C(X,R)|g(z¢) = 0} (which is a closed sub-
algebra/ideal of C'(X,R)), there is an a,, € A such that f(z) = a,,(z) and f(y) = a,,(v).
By Lemma 1.5.4, A is a lattice, and by Lemma 1.5.5, f € A. O

Theorem 1.5.6 (C-Stone-Weierstrass). Suppose X is a compact Hausdorff space. Let
A C C(X) be a closed subalgebra that separates points of X and is closed under complex
conjugation.

e If A contains a non-vanishing function, then A = C(X).

o [fevery f € A has a zero, then there exists a unique xq € X such that

A= {f € C(X)|f(x0) = 0}.

Proof. Note that Ay, := {f € A|f = 7} is an R-subalgebra of A. (Here, ‘sa’ stands for self-
adgjoint.) Since A is closed under complex conjugation, for all f € A, Re(f), Im(f) € A, and
thus A = Ag, @ iAs.. Moreover, C(X) = C(X,R) @ iC(X,R) by similar reasoning. Hence
the strategy is to apply the R-Stone-Weierstrass Theorem 1.5.1 to Az, C C(X, R).
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First, observe Ag, separates points, since if f € A separates x, y, then one of Re(f), Im(f) €
Ag, separates x, y. Second, observe that Ag, is closed, since if (f,,) C As, converges uniformly,
then its limit lies in A as A is closed, and since (f,,) must converge pointwise, its limit only
takes real values and thus lies in Ag,.

We now check the two cases in the statement of the theorem.

Case 1: If A contains a non-vanishing function f, then |f|?> = ff € As, does not vanish. By
the R-Stone-Weierstrass Theorem 1.5.1, Ag, = C(X,R), and thus

A=A, ®id, = C(X,R)®iC(X,R) = C(X).

Case 2: If every element of A vanishes somewhere, then so does every element of A, C A.
By the R-Stone-Weierstrass Theorem 1.5.1, Ag, = {f € C(X,R)|f(x¢) = 0}, and thus

A=Aq @iAs,
= {f € C(X,R)[f(x0) = 0} @ i{f € C(X,R)[f(20) = 0}
={f € C(X)[f(x0) =0} . O

Exercise 1.5.7. Suppose X is LCH and A C Cy(X) is a closed subalgebra that sepa-
rates points and is closed under complex conjugation. Then either A = Cy(X) or A =
{f € Co(X)|f(x0) = 0} for some zy € X.

Hint: Use the one point (Alexandroff) compactification discussed in §1.0 below.

Exercise 1.5.8. Show the following collections of functions are uniformly dense in the ap-
propriate algebras:

(1) For a < bin R, the polynomials R[¢t] C C([a,b],R).

(2) For a < bin R, the piece-wise linear functions PW L C C([a,b],R).

(3) For K C C compact, the polynomials C[z,z] C C(K).

(4) For R/Z, the trigonometric polynomials span {sin(27nz), cos(2rnz)|n € NU {0}} C
C(R/Z,R).

Exercise 1.5.9.

(1) Use the difference quotient to show that complex cojugation = : C — C given by
z +— Z is nowhere complex differentiable.

(2) Let D C C be the open unit disk {|z| < 1}. Describe the uniform closure of C[z], the
polynomials in z, in C'(D).
Hint: You may use without proof Morera’s Theorem from Complex Analysis which
states on any open domain U C C, the local uniform limit of complex differentiable
functions is complex differentiable.

(3) Discuss your answer in the context of the Stone-Weierstrass Theorem.

Exercise 1.5.10. Let X, Y be compact Hausdorff spaces. For f € C'(X) and g € C(Y), de-
fine (f®g)(z,y) := f(z)g(y). Prove that span{f ® g|f € C(X) and g € C(Y)} is uniformly
dense in C(X xY).

Exercise 1.5.11 (Sarason). Suppose f € C([0,1],R) such that fol 2" f(z)dx = 0 for all
n > 2020. Prove that f = 0.
Hint: Consider A := span{z"|n > 2020} C C([0,1],R).
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Exercise 1.5.12 (Sarason). Find a sequence of polynomials in R[¢t] C C'(R, R) that simulta-
neously converges to 1 uniformly on every compact subinterval of (0, c0) and to —1 uniformly
on every compact subinterval of (—oo, 0).

1.6. One point (Alexandroff) and Stone-Cech compactification.

Definition 1.6.1. Suppose X is a topological space. An embedding ¢ : X — Y is a
continuous injection which is a homeomorphism onto its image, i.e., ¢! : o(X) — X is
continuous with respect to the relative topology.

A compactification of a topological space X consists of a compact space K and an embed-
ding ¢ : X — K such that ¢(X) is dense in K.

Example 1.6.2. Consider the map [0,1) — S* := {z € C||z| = 1} by r — exp(2mir). This
map is a continuous bijection, but not a homeomorphism onto its image.

Examples 1.6.3. Compactifications of R include:

(1) the extended real numbers R = [—o00, o]

(2) the ‘one point’ compactification R U {oo} = S?

(3) You can add (0,0) and S' in R? to an embedding R < R? as a spiral.

(4) You can add a circle S* embedded in a 2-toruse T? C R? to an embedding R — T?
which coils R around the torus from either side.

Definition 1.6.4. Suppose X is an LCH space, and choose any object co ¢ X. Define
X* = X1I{oco}, where IT denotes disjoint union (coproduct in Set). We say U C X* is open
if and only if either

e U C X isopenin X, or
e 0o € U, and U* is compact.

Due to the next theorem, we call X*® the (Alexandroff) one point compactification of X.

Theorem 1.6.5. If X is LCH, then the space X*® is compact Hausdorff, and the inclusion
X — X* is an embedding.

Proof. The inclusion X < X* is obviously an embedding.

Compact: Suppose (U;) is an open cover of X*. Then there is some Uy such that co € Uy
and U§ is compact. Then (U; N X)) is an open cover of U§, which is compact. So pick a finite
subcover.

Hausdorff: Since X is Hausdorft, it suffices to separate x € X from oo € X*. Since X is LCH,
there is an open neighborhood U € X of z such that U C X is compact. Set V := U’ in
X*, which is an open neighborhood of oo disjoint from U. U

Definition 1.6.6. A topological space X is completely regular if for every closed FF C X
and x € F°, there is a continuous function f: X — [0, 1] such that f(z) =1 and f|p = 0.
We call X Tychonoff if X is completely regular and 7.

Exercises 1.6.7.

(1) X Tychonoff implies X is Hausdorff.
(2) Every normal space is Tychonoff by Urysohn’s Lemma.

(3) Any subspace of a Tychonoff space is Tychonoff.
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Lemma 1.6.8 (Embedding). Suppose X is a topological space & C C(X,[0,1]) is a family
of continuous functions. Define e : X — [0,1]* := {f : ® = [0,1]} = [];¢[0, 1] (which is
compact in the product topology!) by x — (f(x))fea-

(1) e is continuous.
(2) e is injective if and only if ® separates points, i.e., for all x # y in X, there is an

f € ® such that f(x) # f(y).
(3) If @ separates points from closed sets (for all F C X closed and x € F€, there is an

f € ® such that f(x) ¢ f(F)), then e is an open map of X onto e(X).
(4) If ® separates points and ® separates points from closed sets, then e is an embedding.

Proof.

(1) Observe that 7y 0 e = f is continuous for all f € ®. Thus e is continuous by the
universal property defining the product in Top.
(2) e(x) # e(y) if and only if there is an f € ® such that

f(x) = (mpoe)(z) # (mroe)(y) = f(y).

(3) Suppose ® separates points from closed sets. Let U C X be open. Suppose = € U.
We want to find an open set V' C [0, 1]® such that e(x) € VNe(X) C e(U). There is

an f € ® such that f(z) ¢ f(U¢). Then W := [0, 1]\ f(U¢) is an open set containing
f(z), soe(z) € W]?l(W), which is open in [0, 1]%. Observe that

ely) ey (W)ne(X) <= [fly)¢fU) = yeU.
Setting V := 7rJ71(W), we have e(z) € VNe(X) C e(U) as desired.
(4) By (1) and (2), e : X — [0,1]® is a continuous injection. By (3), e~ on e(X) is
continuous. So e is a homeomorphism onto its image. 0

Corollary 1.6.9. X is Tychonoff if and only if there exists an embedding X — [0,1]F for
some set I.

Definition 1.6.10. Suppose X is Tychonoff and set ® := C'(X, [0, 1]). Consider the embed-
ding e : X < [0,1]® by e(z); := f(x). The Stone-Cech compactification of X is X = e(X),
with X — BX being the corestriction of e, still denoted e.

Suppose f : X — Y is any continuous map between Tychonoff spaces. Define F :
0,1]®x — [0, 1]®Y componentwise for g € ®y = C(Y,[0,1]) by m,(F(p)) := 7yor(p). Then F
is continuous, since m, 0 F' = myos : [0,1]*% — [0, 1] is continuous for all g € ®y. Moreover,
for all v € X,

mo(Flex(2))) = mgop(ex(x)) = 9(f(2)) = my(ey (f(2))-

This means that Foex =ey o f: X — [0,1]®". Hence im(F|zx) C ey(Y) = BY. Define
Bf = F|sx : BX — BY. Observe we have the following commutative diagram:

X <25 BX —— [0,1]%%

lf lﬂf lF (1.6.11)

Y <2 BY —— [0,1]*.
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Remark 1.6.12. Suppose X,Y are Tychonoff and f : X — Y is continuous. We note for
future use that if every h € ®x factorizes as h = g o f for some g € Py, then F from
Definition 1.6.10 is injective. Indeed, if p, p’ € [0, 1]®%, we have

F(p) = F(p) <= my(F(p)) = m(F () Vge oy
= Teor(p) = 7rgOf<p/> Vge by
> m(p) = m(p') Vhe o(X)
= p=7p.

Theorem 1.6.13. The Stone-Cech compactification (8X,e) satisfies the universal property

e For every compact Hausdorff space Z and continuous function f : X — Z, there
exists a unique continuous function Bf : X — Z such that foe = f.

BX

SN 3f
e AN
\\
N

x 15z

Proof. First, given any compactification ¢ : X — K, compact Hausdorff Z, and continuous
map f : X — Z, there exists at most one continuous function g : K — Z such that goyp = f.
So it suffices to prove existence of f Just observe that since Z is compact, ez (Z) C fZ is
dense and compact, so ez(Z) = BZ. Hence ez : Z — (7 is a continuous bijection from a
compact space to a Hausdorff space, and is thus a homeomorphism. So the map f: X = Z
given by

sx gz 2y
satisfies fo ex = f by the commutative diagram (1.6.11). O

Exercise 1.6.14. If ¢ : X — Y is any compactification of X satisfying the universal
property in Theorem 1.6.13, then ¢ : fX — Y is a homeomorphism.

Corollary 1.6.15. Let X be Tychonoff and ¢ : X — K a compactification.
(1) The unique lift ¢ : X — K is surjective.
(2) Suppose for all f € Cyp(X) thereis a g € C(K) such that f = gop. Then @ : X — K
18 a homeomorphism.

Proof.

(1) Since poex = ¢ and ¢(X) is dense in K, ¢(fX) is dense in K. But X is compact
and @ is continuous, so p(SX) is compact. Since K is compact Hausdorff, compact
subsets are closed, and thus ¢(5X) = K.

(2) By (1), it suffices to prove that ¢ : X — K is injective. Then since X is compact
and K is Hausdorff, the continuous bijection ¢ is automatically a homeomorphism.
Injectivity follows by Remark 1.6.12. Indeed, every f € ®&x C Cy(X) factorizes as
f=gopfor some g € Og. O

Proposition 1.6.16. Stone-Cech compactification is a functor 8 : Tych — CptHsd.

Proof.
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id: Since
BidXOOSX == 6XoidX:€X:id5X06X
(1.6.11)

we must have fidx = idgx as they agree on the dense subset X C 8X.
—o—: Suppose f: X —- Y and g: Y — Z are continuous with all spaces Tychonoff. Since

ﬁ(gof)offx(': ezogo f Bgoeyo f BgoBfoex,

1.6.11) (1611) (1.6 11)
B(go f) = BgoBf as the agree on the dense subset X C fX. 0

Exercise 1.6.17 (Adapted from Folland §4.8, #74). Consider N(with the discrete topology)
as a subset of its Stone-Cech compactification SN.
(1) Prove that if A, B are non-empty disjoint subsets of N, then their closures in SN are
disjoint.
(2) Suppose (x,) C N is a sequence which is not eventually constant. Show there exist
non-empty disjoint subsets A, B C N such that (z,) is frequently in A and frequently
in B.
(3) Deduce that no sequence in N converges in SN unless it is eventually constant.

Exercise 1.6.18 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Let UN be the set of ultrafilters on N. For a subset S C N, define [S] := {F € UN|S € F}.
Show that the function S + [S] satisfies the following properties:

(1) [0] = 0 and [N] = UN.

(2) For all S,T C N,

()[]C[]lfandonlylfSCT
(b) [S] =[T] if and only if S =T.
(c) [SJUT] = [SUT].
(d)%s]ﬂ[] [SNT].

(e) [5] = [S].
(3) Find a sequence of subsets (5,,) of N such that [ JS,] # J[S.]-

(4) Find a sequence of subsets (.S,,) of N such that [ S,] # ([S.)-

Exercise 1.6.19 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf).
Assume the notation of Exercise 1.6.18.

(1) Show that {[S]|S C N} is a base for a topology on UN.

(2) Show that all the sets [S] are both closed and open in UN.

(3) Show that UN is compact.

(4) For n € N, let F,, = {S C N|n € S}. Show F, is an ultrafilter on N.

Note: FEach F, is called a principal ultrafilter on N.

(5) Show that {F,|n € N} is dense in UN.

(6) Show that for every compact Hausdorff space K and every function f : N — K|
there is a continuous function f : UN — K such that f(F,) = f(n) for every n € N.
Deduce that UN is homeomorphic to the Stone-Cech compactification SN.

Hint: Gwen [ : N — K, use Ezercise 1.3.15 to get an wultrafiller on K from an
ultrafilter on N. Then use Exercises 1.3.13(4) and 1.5.19(2) to define f(F) for F €
UN.
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