Let X, Y be Banach spaces.

Definition 1. A bounded linear map $T \in \mathcal{B}(X,Y)$ is called *Fredholm* if $\dim(\ker T) < \infty$ and $\operatorname{codim}(TX) < \infty$. In this case, we define the *(Fredholm) index* of T to be $\operatorname{ind}(T) := \dim(\ker T) - \operatorname{codim}(TX)$.

Exercise 2. As an exercise, verify the following claims:

- (1) Invertible bounded maps have index zero.
- (2) If $K \in \mathcal{B}(X)$ is compact, then for all $\lambda \in \mathbb{C} \setminus \{0\}$, $K \lambda 1$ is Fredholm with index zero.
- (3) The shift operator $S_{\pm} \in \mathcal{B}(\ell^p)$ for $1 \leq p \leq \infty$ defined by $(S_{\pm}x)_n = x_{n\pm 1}$ is Fredholm with index ± 1 .
- (4) If X, Y are finite dimensional and $T \in \mathcal{B}(X, Y)$, then by the Rank-Nullity Theorem, $\operatorname{ind}(T) = \dim(X) \dim(Y)$.

Lemma 3. Suppose $E, F \subseteq X$ are closed subspaces with F finite dimensional.

- (1) The subspace $E + F \subseteq X$ is closed.
- (2) If in addition E is complemented, then $E + F \subseteq X$ is complemented.

Proof. Consider the canonical surjection $Q: X \to X/E$. Then $QF \subseteq X/E$ is finite dimensional and thus closed, and $E + F = Q^{-1}(QF)$ is closed since Q is continuous.

Suppose now that E is complemented, and let $P \in \mathcal{B}(X)$ be an idempotent with PX = E. Then $(1-P)F \subseteq (1-P)X$ is finite dimensional, and thus complemented. Let $Q_0 \in \mathcal{B}((1-P)X)$ be an idempotent with $Q_0(1-P)X = (1-P)F$. Extend Q_0 to $Q \in \mathcal{B}(X)$ by Q = 0 on PX. Then QP = PQ = 0, so $P + Q \in \mathcal{B}(X)$ is an idempotent with (P + Q)X = E + F.

Proposition 4. Suppose $T \in \mathcal{B}(X,Y)$ such that $\operatorname{codim}(TX) < \infty$. Then TX is closed.

Proof. Pick $y_1, \ldots, y_n \in Y$ such that $\{y_1 + TX, \ldots, y_n + TX\}$ are a basis for the vector space Y/TX, and define $F = \operatorname{span}\{y_1, \ldots, y_n\} \subset Y$. Now consider the Banach space $Z = X/\ker T \oplus F$ with the ℓ^1 norm $\|(x + \ker T) + f\|_{Z} := \|x + \ker T\|_{X/\ker T} + \|f\|_{F}$. We define a linear map $S: Z \to Y$ by $S((x + \ker T) + f) = Tx + f$. It is straightforward to verify S is bounded and bijective, and thus invertible by the Open Mapping Theorem. Finally, we have $S(X/\ker T) = TX$ is closed as S is a closed map.

Corollary 5. If $T \in \mathcal{B}(X,Y)$ is Fredholm, then for any closed subspace $E \subseteq X$, TE is closed.

Proof. Define $S: Z = X/\ker T \oplus F \to Y$ as in the proof of Proposition 4. Since $\ker(T)$ is finite dimensional, by Lemma 3.(1), $E + \ker T$ is closed in X, and thus $(E + \ker T)/\ker T$ is closed in $X/\ker T$ and also in Z. Finally, we have $S((E + \ker T)/\ker T) = TE$ is closed as S is a closed map.

Theorem 6 (Atkinson). For $T \in \mathcal{B}(X,Y)$, the following are equivalent:

- (1) T is Fredholm.
- (2) There is an $S \in \mathcal{B}(Y,X)$ such that ST-1 and TS-1 are both finite rank.

- (3) There is an $S \in \mathcal{B}(Y,X)$ such that ST-1 and TS-1 are both compact.
- (4) There are $S_1, S_2 \in \mathcal{B}(Y, X)$ such that $S_1T 1$ and $TS_2 1$ are both compact.

Proof.

 $(1) \Rightarrow (2)$: Let T be Fredholm. Let $P \in \mathcal{B}(X)$ be an idempotent such that $\ker(T) = \ker(P)$, and let $Q \in \mathcal{B}(Y)$ be an idempotent such that TX = QY. (Note here that TX is closed by Proposition 4 and has finite codimension, and is thus complemented.) We may decompose T as a matrix of operators

$$\begin{pmatrix} QTP & QT(1-P) \\ (1-Q)TP & (1-Q)T(1-P) \end{pmatrix} = \begin{pmatrix} T_0 & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} PX \\ (1-P)X = \ker(P) = \ker(T) \end{pmatrix} \rightarrow \begin{pmatrix} QY = TX \\ (1-Q)Y \end{pmatrix}.$$

Now $T_0 \in \mathcal{B}(PX, QY)$ is invertible by the Open Mapping Theorem, so let $S_0 \in \mathcal{B}(QY, PX)$ be its inverse. We may extend S_0 to an operator in $\mathcal{B}(Y, X)$ by defining the matrix of operators

$$\begin{pmatrix} S_0 & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} QY = TX \\ (1-Q)Y \end{pmatrix} \to \begin{pmatrix} PX \\ (1-P)X = \ker(P) = \ker(T) \end{pmatrix}.$$

It is straightforward to verify that

$$ST = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = P = 1 - (1 - P)$$
 (6.a)

$$TS = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} . = Q = 1 - (1 - Q)$$
 (6.b)

Now 1 - P has range $\ker(T)$ which is finite dimensional, and QY = TX has finite codimension, so 1 - Q has finite rank.

 $(2) \Rightarrow (3) \Rightarrow (4)$: Trivial.

 $(4) \Rightarrow (1)$: Note that $S_1T = 1 + K_1$ for some compact $K_1 \in \mathcal{B}(X)$. Then $\ker(T) \subseteq \ker(S_1T) = \ker(1 + \overline{K_1})$, which is finite dimensional. Now $TS_2 = 1 + K_2$ for some compact $K_2 \in \mathcal{B}(Y)$. Then $(1 + K_2)Y \subseteq TX$, and $(1 + K_2)Y$ has finite codimension in Y.

Definition 7. For $T \in \mathcal{B}(X,Y)$, an S as in Theorem 6.(3) is called a Fredholm inverse for T.

Exercise 8. As an exercise, verify the following properties of Fredholm operators:

- (1) $T \in \mathcal{B}(X)$ is Fredholm if and only if $T + \mathcal{K}(X)$ is invertible in the Calkin algebra $\mathcal{B}(X)/\mathcal{K}(X)$.
- (2) If $T \in \mathcal{B}(X,Y)$ is Fredholm, then so is T+K for all compact operators $K \in \mathcal{K}(X,Y)$.
- (3) A Fredholm inverse of a Freholm operator is also Fredholm.
- (4) If $S \in \mathcal{B}(Y,X)$ is a Fredholm inverse for $T \in \mathcal{B}(X,Y)$, then for any compact $K \in K(Y)$, S+K is also a Fredholm inverse for T.
- (5) For any two Fredholm inverses $S_1, S_2 \in \mathcal{B}(Y, X)$ for $T \in \mathcal{B}(X, Y), S_1 S_2 \in K(Y, X)$.
- (6) The product of two Freholm operators is Fredholm.
- (7) The adjoint of a Fredholm operator $T \in \mathcal{B}(X,Y)$ is Fredolm, and $\operatorname{ind}(T^*) = -\operatorname{ind}(T)$.

Lemma 9. Suppose $P, Q \in \mathcal{B}(X)$ are idempotents. Then PQ = Q if and only if $QX \subseteq PX$. In this case, QP is an idempotent with range QX which commutes with P.

Proof. Suppose PQ = Q, and let $q \in QX$. Then Pq = PQq = Qq = q, and thus $q \in PX$. Conversely, suppose $QX \subseteq PX$. We can write $x \in X$ uniquely as q + y with $q \in QX$ and $y \in (1 - Q)X$. Then Qx = q = Pq = PQx.

Note now that P commutes with QP, since $PQP = (PQ)P = QP = QP^2$. Hence $QPQP = Q^2P = QP$, and QP is an idempotent. Clearly $QPX \subseteq QX$. Conversely, if $q \in QX \subseteq PX$, we have QPq = q, so $QX \subseteq QPX$.

Remarks 10. Suppose (E, F) are complementary closed subspaces of X. Let $P \in \mathcal{B}(X)$ be the idempotent such that PX = E and (1 - P)X = F.

- (1) Suppose $Q \in \mathcal{B}(X)$ is an idempotent with $QX \subseteq PX$. Since the idempotent QP from Lemma 9 commutes with P, we see P QP is an idempotent. Thus we can decompose E into two complementary subspaces $E = E_1 \oplus E_2$ with $E_1 = QX = QPX$ and $E_2 = (P QP)X$. Thus $X = E_1 \oplus E_2 \oplus F$.
- (2) Suppose $Q \in \mathcal{B}(X)$ is an idempotent with $PX \subseteq QX$. Since the idempotent PQ from Lemma 9 commutes with Q, Q PQ is an idempotent, $F_1 = (Q PQ)X = (1 P)QX \subseteq (1 P)X = F$, and $QX = E \oplus F_1$. Now we claim F_1 is complemented in F. Indeed, by another application of Lemma 9 to the inclusion $(Q PQ)X \subseteq (1 P)X$, we have R = (1 P)Q(1 P) is an idempotent with range (Q PQ)X, and 1 P R is an idempotent. Setting $F_2 = (1 P R)X$, we have $F = F_1 \oplus F_2$ and $X = E \oplus F_1 \oplus F_2$.

Definition 11. We call $T \in \mathcal{B}(X,Y)$

- $left\ Fredholm\ if\ TX$ is closed and complemented and $ker\ T$ is finite dimensional.
- right Fredholm if ker T is complemented and $\operatorname{codim}(TX) < \infty$.

Note that T right Fredholm implies TX is closed and complemented by Proposition 4.

Theorem 12 (Atkinson). For $T \in \mathcal{B}(X,Y)$, (1) - (3) below are equivalent, as are (1')- (3'):

- (1) T is left Fredholm
- (2) There is an $S \in \mathcal{B}(Y, X)$ such that ST 1 has finite rank.
- (3) There is an $S \in \mathcal{B}(Y, X)$ such that ST 1 is compact.
- (1') T is right Fredholm
- (2') There is an $S \in \mathcal{B}(Y,X)$ such that TS-1 is finite rank.
- (3') There is an $S \in \mathcal{B}(Y,X)$ such that TS-1 is compact.

Proof.

 $(1) \Rightarrow (2)$: This follows directly from the proof of $(1) \Rightarrow (2)$ from Theorem 6. Since TX is closed and complemented and ker T is finite dimensional, we can still define the idempotents $P \in \mathcal{B}(X)$ and $Q \in \mathcal{B}(Y)$. We still get ST = P = 1 - (1 - P) as in (6.a) and 1 - P has finite rank. However, it is not necessarily the case that 1 - Q has finite rank, since we do not know if TX has finite codimension.

- $\underline{(1')} \Rightarrow \underline{(2')}$ Again, this follows directly from the proof of $(1) \Rightarrow (2)$ from Theorem 6. In this case, we have that 1 Q has finite rank since $\operatorname{codim}(TX) < \infty$, but since we do not know if $\ker T$ is finite dimensional, we cannot conclude that 1 P has finite rank.
- $(2) \Rightarrow (3)$ and $(2') \Rightarrow (3')$: Trivial.
- $(3) \Rightarrow (1)$: Suppose there is an $S \in \mathcal{B}(Y,X)$ such that $ST 1 = K \in \mathcal{K}(X)$ is compact. As in the proof of Theorem 6, $\ker T \subseteq \ker ST = \ker(1+K)$ is finite dimensional. Now by the spectral analysis of compact operators, there is a pair of closed complementary K-invariant subspaces (E,F) of X such that $X = E \oplus F$, E is finite dimensional, $(1+K)|_F$ is invertible, and $(1+K)|_E$ is nilpotent. Thus $T|_F$ has left inverse $(ST)|_F^{-1}S$, and thus TF is closed and complemented. But TX = TE + TF with TE finite dimensional, and thus X is closed and complemented by Lemma 3.(2).
- $(3') \Rightarrow (1')$: Suppose $TS 1 = K \in K(Y)$ is compact. As in the proof of Theorem 6, $(1 + K)Y \subseteq TX$, and (1 + K)Y has finite codimension, as does TX. (Again, this implies TX is closed and complemented by Proposition 4.) By the spectral analysis of compact operators, there is a pair of closed complementary K-invariant subspaces (M, N) of Y such that $Y = M \oplus N$, N is finite dimensional, $(1 + K)|_M$ is invertible, and $(1 + K)|_N$ is nilpotent. Since TS = 1 + K, we have $M \subseteq TX \subseteq Y$. By Lemma 9 and Remarks 10, we can further decompose $N = N_1 \oplus N_2$ such that $TX = N_2 \oplus M$ and $Y = N_1 \oplus N_2 \oplus M$.

Now define $E = T^{-1}N_2$ and $F = T^{-1}M$. Since $TX = M \oplus N_2$, (E, F) are closed complementary subspaces of X. We claim that $\ker(T) = \ker(T|_E) \oplus \ker(T|_F)$. Indeed, if $x \in \ker T$, we can uniquely write x = e + f with $e \in E$ and $f \in F$. If Tx = Te + Tf = 0, then since $Te \in N_2$ and $Tf \in M$, we have $Te = -Tf \in N_2 \cap M = (0)$, and thus Te = Tf = 0.

It remains to prove that $\ker(T|_E)$ and $\ker(T|_F)$ are complemented in E and F respectively. We can then add idempotents similar to Remarks 10 to see that $\ker(T)$ is complemented. First, $T|_F$ has right inverse $S|_M(TS)|_M^{-1}$, so $\ker(T|_F)$ is complemented. Second, $T|_E \in \mathcal{B}(E, N_2)$ is onto a finite dimensional space. It is easily seen that such a map has a bounded right inverse (any right inverse will do). Hence $\ker(T|_E)$ is complemented.

Remark 13. We see that $T \in \mathcal{B}(X)$ is left/right Fredholm if and only if T + K(X) is left/right invertible in the Calkin algebra $\mathcal{B}(X)/\mathcal{K}(X)$ respectively.

Exercise 14. For an exact sequence of finite dimensional vector spaces

$$0 \to V_0 \to V_1 \to \cdots \to V_n \to 0,$$

we have $\sum_{j=0}^{n} (-1)^{j} \dim(V_{j}) = 0$.

Theorem 15 (Multiplication). If $T \in \mathcal{B}(X,Y)$ and $S \in \mathcal{B}(Y,Z)$ are Fredholm, then ST is Fredholm with $\operatorname{ind}(ST) = \operatorname{ind}(S) + \operatorname{ind}(T)$.

Proof. That ST is Fredholm is contained in Exercise 8. Consider the sequence of finite dimensional vector spaces

$$0 \to \ker T \xrightarrow{i} \ker ST \xrightarrow{T|_{\ker ST}} \ker S \xrightarrow{Q|_{\ker S}} Y/TX \xrightarrow{\tilde{S}} Z/STX \xrightarrow{q} Z/SY \to 0,$$

where i is inclusion, $Q: Y \to TX$ is the canonical quotient map, $\widetilde{S}(y+TX) = Sy + STX$, and q(z+STX) = z + SY. The reader can verify that the above sequence is exact, so by Exercise 14, we have

$$0 = \dim(\ker T) - \dim(\ker ST) + \dim(\ker S) - \operatorname{codim}(TX) + \operatorname{codim}(STX) - \operatorname{codim}(SY)$$
$$= \operatorname{ind}(T) - \operatorname{ind}(ST) + \operatorname{ind}(S).$$

The proof is complete.

Corollary 16. If $S \in \mathcal{B}(Y,X)$ is a Fredholm inverse for $T \in \mathcal{B}(X,Y)$, then $\operatorname{ind}(S) = -\operatorname{ind}(T)$.

Proof. Recall that by the Fredholm Alternative for compact operators, 1 + K has Fredholm index zero for all compact $K \in \mathcal{B}(X)$. Thus $0 = \operatorname{ind}(1 + K) = \operatorname{ind}(ST) = \operatorname{ind}(S) + \operatorname{ind}(T)$.

Theorem 17 (Stability). For $T \in \mathcal{B}(X,Y)$ Fredholm, there is an $\varepsilon > 0$ such that for all $R \in \mathcal{B}(X,Y)$ with $||R|| < \varepsilon$, T + R is Fredholm and $\operatorname{ind}(T + R) = \operatorname{ind}(T)$.

Proof. Let $S \in \mathcal{B}(Y,X)$ be a Fredholm inverse of T, and set $\varepsilon = ||S||^{-1}$. Then there are compact operators $K_1 \in \mathcal{B}(X)$ and $K_2 \in \mathcal{B}(Y)$ such that $ST = 1 + K_1$ and $TS = 1 + K_2$. If $||R|| < \varepsilon$, then $S(T+R) = 1 + K_1 + SR$, and ||SR|| < 1. Thus 1 + SR and 1 + RS are invertible, and

$$(1+SR)^{-1}S(T+R) = 1 + (1+SR)^{-1}K_1 \in 1 + \mathcal{K}(X)$$
$$S(T+R)(1+RS)^{-1} = 1 + K_2(1+RS)^{-1} \in 1 + \mathcal{K}(Y).$$

Hence T+R is Fredholm. Now using Theorem 15 applied to the above equations, we have

$$0 = \operatorname{ind}((1 + SR)^{-1}) + \operatorname{ind}(S) + \operatorname{ind}(T + R) = 0 - \operatorname{ind}(T) + \operatorname{ind}(T + R).$$

This concludes the proof.

Corollary 18. The set of Fredholm operators in $\mathcal{B}(X,Y)$ is open, and the index is a continuous map from the set of Fredholm operators to \mathbb{Z} .

Corollary 19. If $T \in \mathcal{B}(X,Y)$ is Fredholm and $K \in \mathcal{B}(X,Y)$ is compact, then T+K is Fredholm and $\operatorname{ind}(T+K) = \operatorname{ind}(T)$.

Proof. That T+K is Fredholm is contained in Exercise 8. By Theorem 17, the function $[0,1] \to \mathbb{Z}$ by $t \mapsto \operatorname{ind}(T+tK)$ is continuous, and thus constant.