
Notes on Fredholm operators David Penneys

Let X,Y be Banach spaces.

Definition 1. A bounded linear map T ∈ B(X,Y ) is called Fredholm if dim(kerT ) < ∞ and
codim(TX) < ∞. In this case, we define the (Fredholm) index of T to be ind(T ) := dim(kerT ) −
codim(TX).

Exercise 2. As an exercise, verify the following claims:

(1) Invertible bounded maps have index zero.

(2) If K ∈ B(X) is compact, then for all λ ∈ C \ {0}, K − λ1 is Fredholm with index zero.

(3) The shift operator S± ∈ B(`p) for 1 ≤ p ≤ ∞ defined by (S±x)n = xn±1 is Fredholm with
index ±1.

(4) If X,Y are finite dimensional and T ∈ B(X,Y ), then by the Rank-Nullity Theorem, ind(T ) =
dim(X)− dim(Y ).

Lemma 3. Suppose E,F ⊆ X are closed subspaces with F finite dimensional.

(1) The subspace E + F ⊆ X is closed.

(2) If in addition E is complemented, then E + F ⊆ X is complemented.

Proof. Consider the canonical surjection Q : X → X/E. Then QF ⊆ X/E is finite dimensional
and thus closed, and E + F = Q−1(QF ) is closed since Q is continuous.

Suppose now that E is complemented, and let P ∈ B(X) be an idempotent with PX = E.
Then (1− P )F ⊆ (1− P )X is finite dimensional, and thus complemented. Let Q0 ∈ B((1− P )X)
be an idempotent with Q0(1−P )X = (1−P )F . Extend Q0 to Q ∈ B(X) by Q = 0 on PX. Then
QP = PQ = 0, so P +Q ∈ B(X) is an idempotent with (P +Q)X = E + F .

Proposition 4. Suppose T ∈ B(X,Y ) such that codim(TX) <∞. Then TX is closed.

Proof. Pick y1, . . . , yn ∈ Y such that {y1+TX, . . . , yn+TX} are a basis for the vector space Y/TX,
and define F = span{y1, . . . , yn} ⊂ Y . Now consider the Banach space Z = X/ kerT ⊕ F with the
`1 norm ‖(x + kerT ) + f‖Z := ‖x + kerT‖X/ kerT + ‖f‖F . We define a linear map S : Z → Y by
S((x + kerT ) + f) = Tx + f . It is straightforward to verify S is bounded and bijective, and thus
invertible by the Open Mapping Theorem. Finally, we have S(X/ kerT ) = TX is closed as S is a
closed map.

Corollary 5. If T ∈ B(X,Y ) is Fredholm, then for any closed subspace E ⊆ X, TE is closed.

Proof. Define S : Z = X/ kerT ⊕ F → Y as in the proof of Proposition 4. Since ker(T ) is finite
dimensional, by Lemma 3.(1), E + kerT is closed in X, and thus (E + kerT )/ kerT is closed in
X/ kerT and also in Z. Finally, we have S((E + kerT )/ kerT ) = TE is closed as S is a closed
map.

Theorem 6 (Atkinson). For T ∈ B(X,Y ), the following are equivalent:

(1) T is Fredholm.

(2) There is an S ∈ B(Y,X) such that ST − 1 and TS − 1 are both finite rank.
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(3) There is an S ∈ B(Y,X) such that ST − 1 and TS − 1 are both compact.

(4) There are S1, S2 ∈ B(Y,X) such that S1T − 1 and TS2 − 1 are both compact.

Proof.

(1)⇒ (2) : Let T be Fredholm. Let P ∈ B(X) be an idempotent such that ker(T ) = ker(P ), and
let Q ∈ B(Y ) be an idempotent such that TX = QY . (Note here that TX is closed by Proposition
4 and has finite codimension, and is thus complemented.) We may decompose T as a matrix of
operators(

QTP QT (1− P )
(1−Q)TP (1−Q)T (1− P )

)
=

(
T0 0
0 0

)
:

(
PX

(1− P )X = ker(P ) = ker(T )

)
→
(
QY = TX
(1−Q)Y

)
.

Now T0 ∈ B(PX,QY ) is invertible by the Open Mapping Theorem, so let S0 ∈ B(QY,PX) be its
inverse. We may extend S0 to an operator in B(Y,X) by defining the matrix of operators(

S0 0
0 0

)
:

(
QY = TX
(1−Q)Y

)
→
(

PX
(1− P )X = ker(P ) = ker(T )

)
.

It is straightforward to verify that

ST =

(
1 0
0 0

)
= P = 1− (1− P ) (6.a)

TS =

(
1 0
0 0

)
. = Q = 1− (1−Q) (6.b)

Now 1− P has range ker(T ) which is finite dimensional, and QY = TX has finite codimension, so
1−Q has finite rank.

(2)⇒ (3)⇒ (4) : Trivial.

(4)⇒ (1) : Note that S1T = 1 + K1 for some compact K1 ∈ B(X). Then ker(T ) ⊆ ker(S1T ) =
ker(1 +K1), which is finite dimensional. Now TS2 = 1 +K2 for some compact K2 ∈ B(Y ). Then
(1 +K2)Y ⊆ TX, and (1 +K2)Y has finite codimension in Y .

Definition 7. For T ∈ B(X,Y ), an S as in Theorem 6.(3) is called a Fredholm inverse for T .

Exercise 8. As an exercise, verify the following properties of Fredholm operators:

(1) T ∈ B(X) is Fredholm if and only if T +K(X) is invertible in the Calkin algebra B(X)/K(X).

(2) If T ∈ B(X,Y ) is Fredholm, then so is T +K for all compact operators K ∈ K(X,Y ).

(3) A Fredholm inverse of a Freholm operator is also Fredholm.

(4) If S ∈ B(Y,X) is a Fredholm inverse for T ∈ B(X,Y ), then for any compact K ∈ K(Y ), S+K
is also a Fredholm inverse for T .

(5) For any two Fredholm inverses S1, S2 ∈ B(Y,X) for T ∈ B(X,Y ), S1 − S2 ∈ K(Y,X).

(6) The product of two Freholm operators is Fredholm.

(7) The adjoint of a Fredholm operator T ∈ B(X,Y ) is Fredolm, and ind(T ∗) = − ind(T ).
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Lemma 9. Suppose P,Q ∈ B(X) are idempotents. Then PQ = Q if and only if QX ⊆ PX. In
this case, QP is an idempotent with range QX which commutes with P .

Proof. Suppose PQ = Q, and let q ∈ QX. Then Pq = PQq = Qq = q, and thus q ∈ PX.
Conversely, suppose QX ⊆ PX. We can write x ∈ X uniquely as q + y with q ∈ QX and
y ∈ (1−Q)X. Then Qx = q = Pq = PQx.

Note now that P commutes with QP , since PQP = (PQ)P = QP = QP 2. Hence QPQP =
Q2P = QP , and QP is an idempotent. Clearly QPX ⊆ QX. Conversely, if q ∈ QX ⊆ PX, we
have QPq = q, so QX ⊆ QPX.

Remarks 10. Suppose (E,F ) are complementary closed subspaces of X. Let P ∈ B(X) be the
idempotent such that PX = E and (1− P )X = F .

(1) Suppose Q ∈ B(X) is an idempotent with QX ⊆ PX. Since the idempotent QP from Lemma
9 commutes with P , we see P − QP is an idempotent. Thus we can decompose E into two
complementary subspaces E = E1 ⊕ E2 with E1 = QX = QPX and E2 = (P −QP )X. Thus
X = E1 ⊕ E2 ⊕ F .

(2) Suppose Q ∈ B(X) is an idempotent with PX ⊆ QX. Since the idempotent PQ from Lemma 9
commutes with Q, Q−PQ is an idempotent, F1 = (Q−PQ)X = (1−P )QX ⊆ (1−P )X = F ,
and QX = E ⊕ F1. Now we claim F1 is complemented in F . Indeed, by another application
of Lemma 9 to the inclusion (Q − PQ)X ⊆ (1 − P )X, we have R = (1 − P )Q(1 − P ) is an
idempotent with range (Q−PQ)X, and 1−P−R is an idempotent. Setting F2 = (1−P−R)X,
we have F = F1 ⊕ F2 and X = E ⊕ F1 ⊕ F2.

Definition 11. We call T ∈ B(X,Y )

• left Fredholm if TX is closed and complemented and kerT is finite dimensional.

• right Fredholm if kerT is complemented and codim(TX) <∞.

Note that T right Fredholm implies TX is closed and complemented by Proposition 4.

Theorem 12 (Atkinson). For T ∈ B(X,Y ), (1) - (3) below are equivalent, as are (1’)- (3’):

(1) T is left Fredholm

(2) There is an S ∈ B(Y,X) such that ST − 1 has finite rank.

(3) There is an S ∈ B(Y,X) such that ST − 1 is compact.

(1’) T is right Fredholm

(2’) There is an S ∈ B(Y,X) such that TS − 1 is finite rank.

(3’) There is an S ∈ B(Y,X) such that TS − 1 is compact.

Proof.

(1)⇒ (2): This follows directly from the proof of (1) ⇒ (2) from Theorem 6. Since TX is closed
and complemented and kerT is finite dimensional, we can still define the idempotents P ∈ B(X)
and Q ∈ B(Y ). We still get ST = P = 1− (1− P ) as in (6.a) and 1− P has finite rank. However,
it is not necessarily the case that 1 − Q has finite rank, since we do not know if TX has finite
codimension.
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(1′)⇒ (2′) Again, this follows directly from the proof of (1)⇒ (2) from Theorem 6. In this case, we
have that 1−Q has finite rank since codim(TX) <∞, but since we do not know if kerT is finite
dimensional, we cannot conclude that 1− P has finite rank.

(2)⇒ (3) and (2′)⇒ (3′) : Trivial.

(3)⇒ (1): Suppose there is an S ∈ B(Y,X) such that ST − 1 = K ∈ K(X) is compact. As in the
proof of Theorem 6, kerT ⊆ kerST = ker(1+K) is finite dimensional. Now by the spectral analysis
of compact operators, there is a pair of closed complementary K-invariant subspaces (E,F ) of X
such that X = E ⊕ F , E is finite dimensional, (1 +K)|F is invertible, and (1 +K)|E is nilpotent.
Thus T |F has left inverse (ST )|−1F S, and thus TF is closed and complemented. But TX = TE+TF
with TE finite dimensional, and thus X is closed and complemented by Lemma 3.(2).

(3′)⇒ (1′): Suppose TS − 1 = K ∈ K(Y ) is compact. As in the proof of Theorem 6, (1 + K)Y ⊆
TX, and (1 + K)Y has finite codimension, as does TX. (Again, this implies TX is closed and
complemented by Proposition 4.) By the spectral analysis of compact operators, there is a pair
of closed complementary K-invariant subspaces (M,N) of Y such that Y = M ⊕ N , N is finite
dimensional, (1 + K)|M is invertible, and (1 + K)|N is nilpotent. Since TS = 1 + K, we have
M ⊆ TX ⊆ Y . By Lemma 9 and Remarks 10, we can further decompose N = N1 ⊕N2 such that
TX = N2 ⊕M and Y = N1 ⊕N2 ⊕M .

Now define E = T−1N2 and F = T−1M . Since TX = M⊕N2, (E,F ) are closed complementary
subspaces of X. We claim that ker(T ) = ker(T |E)⊕ker(T |F ). Indeed, if x ∈ kerT , we can uniquely
write x = e+ f with e ∈ E and f ∈ F . If Tx = Te+ Tf = 0, then since Te ∈ N2 and Tf ∈M , we
have Te = −Tf ∈ N2 ∩M = (0), and thus Te = Tf = 0.

It remains to prove that ker(T |E) and ker(T |F ) are complemented in E and F respectively. We
can then add idempotents similar to Remarks 10 to see that ker(T ) is complemented. First, T |F
has right inverse S|M (TS)|−1M , so ker(T |F ) is complemented. Second, T |E ∈ B(E,N2) is onto a
finite dimensional space. It is easily seen that such a map has a bounded right inverse (any right
inverse will do). Hence ker(T |E) is complemented.

Remark 13. We see that T ∈ B(X) is left/right Fredholm if and only if T + K(X) is left/right
invertible in the Calkin algebra B(X)/K(X) respectively.

Exercise 14. For an exact sequence of finite dimensional vector spaces

0→ V0 → V1 → · · · → Vn → 0,

we have
∑n

j=0(−1)j dim(Vj) = 0.

Theorem 15 (Multiplication). If T ∈ B(X,Y ) and S ∈ B(Y,Z) are Fredholm, then ST is Fredholm
with ind(ST ) = ind(S) + ind(T ).

Proof. That ST is Fredholm is contained in Exercise 8. Consider the sequence of finite dimensional
vector spaces

0→ kerT
i−→ kerST

T |kerST−−−−−→ kerS
Q|kerS−−−−→ Y/TX

S̃−→ Z/STX
q−→ Z/SY → 0,

where i is inclusion, Q : Y → TX is the canonical quotient map, S̃(y + TX) = Sy + STX, and
q(z + STX) = z + SY . The reader can verify that the above sequence is exact, so by Exercise 14,
we have

0 = dim(kerT )− dim(kerST ) + dim(kerS)− codim(TX) + codim(STX)− codim(SY )

= ind(T )− ind(ST ) + ind(S).

The proof is complete.
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Corollary 16. If S ∈ B(Y,X) is a Fredholm inverse for T ∈ B(X,Y ), then ind(S) = − ind(T ).

Proof. Recall that by the Fredholm Alternative for compact operators, 1 +K has Fredholm index
zero for all compact K ∈ B(X). Thus 0 = ind(1 +K) = ind(ST ) = ind(S) + ind(T ).

Theorem 17 (Stability). For T ∈ B(X,Y ) Fredholm, there is an ε > 0 such that for all R ∈
B(X,Y ) with ‖R‖ < ε, T +R is Fredholm and ind(T +R) = ind(T ).

Proof. Let S ∈ B(Y,X) be a Fredholm inverse of T , and set ε = ‖S‖−1. Then there are compact
operators K1 ∈ B(X) and K2 ∈ B(Y ) such that ST = 1 +K1 and TS = 1 +K2. If ‖R‖ < ε, then
S(T +R) = 1 +K1 + SR, and ‖SR‖ < 1. Thus 1 + SR and 1 +RS are invertible, and

(1 + SR)−1S(T +R) = 1 + (1 + SR)−1K1 ∈ 1 +K(X)

S(T +R)(1 +RS)−1 = 1 +K2(1 +RS)−1 ∈ 1 +K(Y ).

Hence T +R is Fredholm. Now using Theorem 15 applied to the above equations, we have

0 = ind((1 + SR)−1) + ind(S) + ind(T +R) = 0− ind(T ) + ind(T +R).

This concludes the proof.

Corollary 18. The set of Fredholm operators in B(X,Y ) is open, and the index is a continuous
map from the set of Fredholm operators to Z.

Corollary 19. If T ∈ B(X,Y ) is Fredholm and K ∈ B(X,Y ) is compact, then T +K is Fredholm
and ind(T +K) = ind(T ).

Proof. That T +K is Fredholm is contained in Exercise 8. By Theorem 17, the function [0, 1]→ Z
by t 7→ ind(T + tK) is continuous, and thus constant.
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