Notes on Fredholm operators David Penneys

Let X,Y be Banach spaces.

Definition 1. A bounded linear map T € B(X,Y) is called Fredholm if dim(kerT) < oo and
codim(7'X) < oco. In this case, we define the (Fredholm) index of T to be ind(7") := dim(kerT") —
codim(T'X).

Exercise 2. As an exercise, verify the following claims:
(1) Invertible bounded maps have index zero.
(2) If K € B(X) is compact, then for all A € C\ {0}, K — Al is Fredholm with index zero.

(3) The shift operator Sy € B(¢P) for 1 < p < oo defined by (S+z), = @p+1 is Fredholm with
index +£1.

(4) If X, Y are finite dimensional and 7" € B(X,Y), then by the Rank-Nullity Theorem, ind(7") =
dim(X) — dim(Y).

Lemma 3. Suppose E, F C X are closed subspaces with F' finite dimensional.

(1) The subspace E + F C X is closed.
(2) If in addition E is complemented, then E+ F C X is complemented.

Proof. Consider the canonical surjection ) : X — X/FE. Then QF C X/F is finite dimensional
and thus closed, and E + F = Q' (QF) is closed since @ is continuous.

Suppose now that F is complemented, and let P € B(X) be an idempotent with PX = F.
Then (1 — P)F C (1 — P)X is finite dimensional, and thus complemented. Let Qp € B((1 — P)X)
be an idempotent with Qo(1 — P)X = (1 — P)F. Extend Qo to Q € B(X) by @ =0 on PX. Then
QP =PQ =0,s0 P+ Q € B(X) is an idempotent with (P + Q)X = E+ F. O

Proposition 4. Suppose T' € B(X,Y) such that codim(T'X) < co. Then T'X s closed.

Proof. Pick y1,...,yn € Y such that {y1+7TX,...,y,+T X} are a basis for the vector space Y/T X,
and define F' = span{yi,...,y,} C Y. Now consider the Banach space Z = X/ker T & F with the
0" norm ||(z +kerT) + fllz := ||z + ker T|| x/ker + || f]|7. We define a linear map S : Z — Y by
S((z+kerT) + f) = Tx + f. It is straightforward to verify S is bounded and bijective, and thus
invertible by the Open Mapping Theorem. Finally, we have S(X/kerT) = T'X is closed as S is a
closed map. ]

Corollary 5. If T € B(X,Y) is Fredholm, then for any closed subspace E C X, TE is closed.

Proof. Define S : Z = X/kerT @ F — Y as in the proof of Proposition 4. Since ker(7') is finite
dimensional, by Lemma 3.(1), E + ker T is closed in X, and thus (F + kerT")/ker T is closed in
X/kerT and also in Z. Finally, we have S((F + kerT)/kerT) = TE is closed as S is a closed
map. ]

Theorem 6 (Atkinson). For T € B(X,Y), the following are equivalent:
(1) T is Fredholm.

(2) There is an S € B(Y, X) such that ST — 1 and T'S — 1 are both finite rank.



(8) There is an S € B(Y,X) such that ST —1 and T'S — 1 are both compact.
(4) There are Sy, S2 € B(Y, X) such that ST — 1 and T'Sy — 1 are both compact.

Proof.

(1) = (2) : Let T be Fredholm. Let P € B(X) be an idempotent such that ker(7') = ker(P), and
let @ € B(Y) be an idempotent such that TX = QY. (Note here that T'X is closed by Proposition
4 and has finite codimension, and is thus complemented.) We may decompose T as a matrix of
operators

(0 %arr o 20ra”m) = (5 6): (0= rx —xar) 1) ~ (B0 )

Now Ty € B(PX,QY) is invertible by the Open Mapping Theorem, so let Sy € B(QY, PX) be its
inverse. We may extend Sy to an operator in B(Y, X) by defining the matrix of operators

<Soo 8) ‘ <C<21Y :fof > - <<1 - P)X = ﬁff(p) = ker<T>) |

It is straightforward to verify that

ST:<(1) 8):13: —(1-P) (6.2)
TS:<(1) 8).:@:1_(1_@ (6.b)

Now 1 — P has range ker(7") which is finite dimensional, and QY = T'X has finite codimension, so
1 — @ has finite rank.

(2) = (3) = (4) : Trivial.

(4) = (1) : Note that S17 = 1 + K; for some compact K; € B(X). Then ker(T) C ker(S5:T) =
ker(1 + K1), which is finite dimensional. Now T'Sy = 1 + K» for some compact Ko € B(Y). Then
(1+ K2)Y CTX, and (1 + K2)Y has finite codimension in Y. O

Definition 7. For T' € B(X,Y), an S as in Theorem 6.(3) is called a Fredholm inverse for T'.
Exercise 8. As an exercise, verify the following properties of Fredholm operators:
1) T € B(X) is Fredholm if and only if T+ KC(X) is invertible in the Calkin algebra B(X)/K(X).
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(1)
(2) If T € B(X,Y) is Fredholm, then so is T+ K for all compact operators K € IC(X,Y).
(3) A Fredholm inverse of a Freholm operator is also Fredholm.

(4)

4) If S € B(Y, X) is a Fredholm inverse for 7' € B(X,Y’), then for any compact K € K(Y), S+ K
is also a Fredholm inverse for 7.

(5) For any two Fredholm inverses S1,S2 € B(Y, X) for T € B(X,Y), S1 — Sy € K(Y, X).
(6) The product of two Freholm operators is Fredholm.

(7) The adjoint of a Fredholm operator T' € B(X,Y) is Fredolm, and ind(7™*) = —ind(7).



Lemma 9. Suppose P,Q € B(X) are idempotents. Then PQ = Q if and only if QX C PX. In
this case, QP is an idempotent with range QX which commutes with P.

Proof. Suppose PQ = @, and let ¢ € QX. Then Pq = PQq = QQq = ¢, and thus ¢ € PX.
Conversely, suppose QX C PX. We can write x € X uniquely as ¢ + y with ¢ € QX and
y€ (1—-Q)X. Then Qr = g = Pq = PQu.

Note now that P commutes with QP, since PQP = (PQ)P = QP = QP?. Hence QPQP =
Q?P = QP, and QP is an idempotent. Clearly QPX C QX. Conversely, if ¢ € QX C PX, we
have QPqg = q, so QX C QPX. ]

Remarks 10. Suppose (E, F') are complementary closed subspaces of X. Let P € B(X) be the
idempotent such that PX = F and (1 — P)X = F.

(1) Suppose Q € B(X) is an idempotent with QX C PX. Since the idempotent QP from Lemma
9 commutes with P, we see P — QP is an idempotent. Thus we can decompose F into two
complementary subspaces F = F1 @ Fy with Fy = QX = QPX and Fy = (P — QP)X. Thus
X = E1 &b E2 o F.

(2) Suppose Q € B(X) is an idempotent with PX C QX. Since the idempotent PQ from Lemma 9
commutes with @, @ — PQ is an idempotent, F} = (Q—PQ)X = (1-P)QX C(1-P)X =F,
and QX = F @ Fi. Now we claim Fj is complemented in F'. Indeed, by another application
of Lemma 9 to the inclusion (@ — PQ)X C (1 — P)X, we have R = (1 — P)Q(1 — P) is an
idempotent with range (Q— PQ)X, and 1— P— R is an idempotent. Setting F» = (1-P—R)X,
we have F =1 @ Fy and X = E@® | @ Fs.

Definition 11. We call T € B(X,Y)

e left Fredholm if TX is closed and complemented and ker T is finite dimensional.

e right Fredholm if ker T is complemented and codim(7'X) < oc.
Note that T right Fredholm implies T'X is closed and complemented by Proposition 4.
Theorem 12 (Atkinson). For T € B(X,Y), (1) - (3) below are equivalent, as are (1°)- (3’):
(1) T is left Fredholm
(2) There is an S € B(Y, X) such that ST — 1 has finite rank.

(3) There is an S € B(Y, X)) such that ST — 1 is compact.

(1°) T is right Fredholm
(2°) Thereis an S € B(Y,X) such that T'S — 1 is finite rank.

(8°) There is an S € B(Y, X) such that TS — 1 is compact.

Proof.

(1) = (2): This follows directly from the proof of (1) = (2) from Theorem 6. Since T'X is closed
and complemented and ker 7" is finite dimensional, we can still define the idempotents P € B(X)
and @ € B(Y). We still get ST =P =1—(1— P) as in (6.a) and 1 — P has finite rank. However,
it is not necessarily the case that 1 — ) has finite rank, since we do not know if T'X has finite
codimension.



(1) = (2') Again, this follows directly from the proof of (1) = (2) from Theorem 6. In this case, we
have that 1 — @ has finite rank since codim(7'X) < oo, but since we do not know if ker 7" is finite
dimensional, we cannot conclude that 1 — P has finite rank.

(2) = (3) and (2') = (3') : Trivial.

(3) = (1): Suppose there is an S € B(Y, X) such that ST —1 = K € K(X) is compact. As in the
proof of Theorem 6, ker T' C ker ST = ker(1+ K) is finite dimensional. Now by the spectral analysis
of compact operators, there is a pair of closed complementary K-invariant subspaces (E, F') of X
such that X = F @ F, E is finite dimensional, (1 + K)|F is invertible, and (1 4+ K)|g is nilpotent.
Thus 7| has left inverse (ST)| 'S, and thus TF is closed and complemented. But TX = TE+TF
with T'E finite dimensional, and thus X is closed and complemented by Lemma 3.(2).

(3') = (1'): Suppose T'S —1 =K € K(Y) is compact. As in the proof of Theorem 6, (1 + K)Y C
TX, and (1 + K)Y has finite codimension, as does TX. (Again, this implies TX is closed and
complemented by Proposition 4.) By the spectral analysis of compact operators, there is a pair
of closed complementary K-invariant subspaces (M, N) of Y such that Y = M @& N, N is finite
dimensional, (1 + K)|ps is invertible, and (1 + K)|y is nilpotent. Since T'S = 1 + K, we have
M CTX CY. By Lemma 9 and Remarks 10, we can further decompose N = N1 @& Ny such that
TX=NodpMandY =N &N, d M.

Now define E = T"'Ny and F = T~'M. Since TX = M@ N, (E, F) are closed complementary
subspaces of X. We claim that ker(T") = ker(7T'|g) @ ker(T|r). Indeed, if x € ker T', we can uniquely
writex =e+ fwitheec Fand fe F. f Te =Te+Tf =0, then since Te € Ny and Tf € M, we
have Te = —Tf € No N M = (0), and thus Te=Tf = 0.

It remains to prove that ker(7'|g) and ker(T'|r) are complemented in E and F' respectively. We
can then add idempotents similar to Remarks 10 to see that ker(T") is complemented. First, T|p
has right inverse S|y (T'S)|;;, so ker(T|r) is complemented. Second, T|p € B(E, N) is onto a
finite dimensional space. It is easily seen that such a map has a bounded right inverse (any right
inverse will do). Hence ker(T'|g) is complemented. O

Remark 13. We see that T € B(X) is left/right Fredholm if and only if 7'+ K(X) is left/right
invertible in the Calkin algebra B(X)/K(X) respectively.

Exercise 14. For an exact sequence of finite dimensional vector spaces
0O—=-VW—=Vi—=--- =V, =0,

we have Z?ZO(—l)j dim(V;) = 0.

Theorem 15 (Multiplication). IfT' € B(X,Y) and S € B(Y, Z) are Fredholm, then ST is Fredholm

with ind(ST) = ind(S) + ind(T).

Proof. That ST is Fredholm is contained in Exercise 8. Consider the sequence of finite dimensional
vector spaces

0 = ker T % ker ST 1257, yop 5 Qs y iy 50 719mx % 7/8y - 0,

where 4 is inclusion, @ : Y — TX is the canonical quotient map, S(y +TX) = Sy + ST X, and
q(z+ STX) = z+ SY. The reader can verify that the above sequence is exact, so by Exercise 14,
we have
0 = dim(ker T") — dim(ker ST') 4+ dim(ker S) — codim(7'X) + codim(STX) — codim(SY)
= ind(7T") — ind(ST) + ind(S).

The proof is complete. O]



Corollary 16. If S € B(Y, X) is a Fredholm inverse for T' € B(X,Y), then ind(S) = — ind(T).

Proof. Recall that by the Fredholm Alternative for compact operators, 1 + K has Fredholm index
zero for all compact K € B(X). Thus 0 = ind(1 + K) = ind(ST) = ind(S) + ind(7T). O

Theorem 17 (Stability). For T € B(X,Y) Fredholm, there is an ¢ > 0 such that for all R €
B(X,Y) with |R|| < e, T + R is Fredholm and ind(T + R) = ind(T).

Proof. Let S € B(Y,X) be a Fredholm inverse of T, and set ¢ = ||S||~!. Then there are compact
operators K1 € B(X) and Ko € B(Y) such that ST =1+ K; and T'S =1+ Ks. If |R|| < ¢, then
S('+R)=1+K;+ SR, and ||SR|| < 1. Thus 1 + SR and 1 + RS are invertible, and

(1+SR)'S(T+R)=1+(1+SR) K, €1+ K(X)
S(T+R)(1+RS) ' =1+Ky(1+RS)'el1+K(Y).
Hence T 4 R is Fredholm. Now using Theorem 15 applied to the above equations, we have
0 =ind((1+ SR)™") +ind(S) + ind(T + R) = 0 — ind(T) + ind(T + R).
This concludes the proof. ]

Corollary 18. The set of Fredholm operators in B(X,Y) is open, and the indez is a continuous
map from the set of Fredholm operators to 7.

Corollary 19. If T € B(X,Y) is Fredholm and K € B(X,Y) is compact, then T + K is Fredholm
and ind(T + K) = ind(T).

Proof. That T+ K is Fredholm is contained in Exercise 8. By Theorem 17, the function [0,1] — Z
by t — ind(7T + tK) is continuous, and thus constant. O



