Functional Analysis 7212 Homework problem list

Problem 1. Suppose A is a unital Banach algebra and fix a,b € A.

1. Show that 1 ¢ sp,(ab) if and only if 1 ¢ sp,(ba) using the identity (1 —ba)™" =
1+ b(1 —ab)"'a. Deduce that sp ,(ab) U {0} = sp ,(ba) U {0}.

2. Show that for any Banach subalgebra B C A with 1, € B, for every a € B, the
spectral radius in B of a is equal to the spectral radius in A of a, i.e., rg(a) =r4(a).

3. Suppose a,b € A commute. Prove that r(ab) < r(a)r(b) and r(a +b) < r(a) + r(b).
Hint: By (2), this computation can be performed in the unital commutative Banach
subalgebra B C A generated by a and b. In B, there is a helpful characterization of
the spectrum.

4. Deduce from part (3) that if A is commutative, the spectral radius r : A — [0, 00) is
continuous.

Problem 2. Let A be a unital Banach algebra. Suppose we have a norm convergent sequence
(a,) C A with a,, — a. Prove that for every open neighborhood U of sp(a), there is an
N > 0 such that sp(a,,) C U for all n > N.

Problem 3. Let X be a Banach space, and let [a,b] C R be a compact interval. Let
C([a, b], X) be the space of continuous functions [a, b] — X, where X has the norm topology.

1. Show that every f € C([a,b], X) is uniformly continuous.

2. Prove that C([a,b], X) is a Banach space under the norm | f] ., := SUD, 1, 5 £ ()]l x-

Problem 4. Let X be a Banach space. In this problem, we show that the Riemann integral
for continuous paths v : [a,b] — X is well-defined and is compatible with X*. Fix a
continuous path v : [a,b] — X.

1. A partition of [a,b] is a finite list P = {a =t, < t; < - <t, =b}. Wesay P < (Q
or Q refines Pif P C @ as sets. Clearly < is a partial order on partitions. Show that
partitions form a directed set under <.

2. A tagged partition of [a,b] is a pair (P,u) where P ={a =ty <t; <--<t, =0b}isa
partition of [a,b] and u € [a, b]™ such that t,_; <wu; <t, foralli=1,...,n. Show that
the partial order given on partitions in (1) induces a preorder on tagged partitions.
Note: A preorder is reflexive and transitive, but need not be anti-symmetric.



3. For a tagged partition (P,u), let xp ) = Z?Zl y(u;)(t; —t;_1). Show that (zp,,) is
a norm convergent net in X.
Hint: Take a limit as |P|| = max {A, :=t, —t, 4]i = 1,...n} — 0 and use Problem 5.
Note: Some authors define nets using preorders instead of partial orders. We need only
consider a net defined using a preorder for this problem, so let’s do so.

1 . . b b
4. Define fo v(t)dt =limzp . Prove that for every ¢ € X*, go(fa () dt) = fa e(v(t)) dt,
where the right hand side is the Riemann integral of ¢ o v : [a, b] — C.

5. Show that ”j;b y(t) dtH < fab [v(#)|| dt. Deduce that fab : C([a,b],X) — X is a bounded

linear transformation.

Problem 5. Let A be a unital Banach algebra. Show that the holomorphic functional
calculus satisfies the following properties.

1. Suppose a € A and K C C is compact such that sp(a) C K°. Show there is an
M, > 0 such that for any f € H(K*°) which has a continuous extension to K, | f(a)| <

Myl o)

2. Suppose (a,,) C A is a norm convergent sequence with a,, — a. Show that for all

f € 0(spla)), f(a,) — f(a) as n — oo.
Note: For f € O(sp(a)), note that f is holomorphic on some open set U containing K.
By Problem 2, we know that eventually sp(a,,) C U, so eventually f(a,,) is well-defined.

Problem 6. Let A be a unital Banach algebra, and let a,p € A such that ap = pa.

1. Show that for every f € O(sp(a)), f(a)p = pf(a).
Hint: First prove the result for rational f, and then apply Runge’s Theorem.

2. Suppose from here on p is an idempotent. Show that pAp is a unital Banach algebra.
3. Prove that sppAp(pa) C sp,(a).

4. Prove that for every f € O(sp,(a)), f(ap) = pf(a) when viewed in the image of the
holomorphic functional calculus (9(spp Ap(pa)) > f+ f(pa) € pAp.
Hint: First verify that the proof of the uniqueness of the holomorphic functional calculus
O(sp,(a)) > f+ f(a) € A also proves the following fact.

Fact. Suppose that U is an open neighborhood of sp ,(a), and ® : H(U) — A is a
homomorphism such that

e &(z>1)=1,4 and ®(z+> 2) = a, and
o If (f,) C H(U) converges locally uniformly to f, then ®(f,,) — ®(f).

Then ®(f) = f(a) for all f € H(U), i.e., ® is the holomorphic functional calculus
restricted to H(U) C O(sp ,(a)).



Now show that for any open neighborhood U of sp ,(a) 2 SppAp(pa), o:HU) — pAp
given by ®(f) = p(f(a)) is a homomorphism which satisfies the criteria in the above
fact with A and a replaced by pAp and pa respectively.

5. (optional) Suppose sp , (a) = K; UKy, a disjoint union of two nonempty compact sets.
Let U,,U, be disjoint non-empty subsets of C such that K; C U,. Suppose further
that the idempotent p = XU1<G) where x;, is the indicator function for U;. See if

SppAp<ap> = Kl'

Problem 7. In class, we showed that if A C B is a unital inclusion of Banach algebras and
a € A, then sp,(a) C sp,(a), and the larger set is obtained from the smaller by filling in
holes. Given an a € B and a (countable) subset (H;) of the holes of sp;(a), find a unital

(2

Banach subalgebra A C B for which sp , (a) is obtained from sp 5(a) by exactly filling in the

Problem 8. Let A € M, (C).

1. As best as you can, describe f(A) where f € O(sp(A)).
Hint: First consider the case that A is a single Jordan block.

2. Determine as best you can which matrices A € M, (C) have square roots, i.e., when
there is a B € M,,(C) such that B = A.
Note: Such a B is not necessarily unique.

Problem 9. Suppose A is a C*-algebra and a € A is normal.
1. Show a is self-adjoint if and only if sp(a) C R.
2. Show a is unitary if and only if sp(a) C T.
3. Show a is a projection if and only if sp(a) C {0,1}.
Problem 10. Let A be a C*-algebra.

1. Show that the following are equivalent for a self-adjoint a € A:

(a) sp(a) C [0,00),
(b) For all A > |a|, |a —A| < A, and
(c¢) There is a A > |al| such that ||a — A|| < A.

For now, we will call such elements spectrally positive.
Note: It is implicit here that a spectrally positive element is self-adjoint.

2. Deduce that the spectrally positive elements in a C*-algebra form a closed cone, i.e.,
A, ={a € Ala > 0} is closed, and for all A € [0,00) and a,b € A, we have \a+b €
A,



3. Show a is positive (a = b*b for some b) if and only if a is spectrally positive (a = a

*

and sp(a) C [0,00)).

Hint: First, ifsp(a) C [0,00), we can define a'/? via the continuous functional calculus.
Now suppose a = b*b for some b € B. Use the continuous functions r + max{0, z}
and r = —min{0, z} on sp(a) to write a = a, — a_ where sp(a) C [0,00) and
a,a_ = a_a, = 0. Now look at ¢ = ba_. Prove that sp(c*c) C (—o00,0] and
sp(ec®) C [0,00) using part (1) of this problem. Use part (1) of Problem 1 to deduce
that c*c = 0. Finally, deduce a_ =0, and thus a = a,_.

Problem 11. For a,b € A, wesay a <bif b—a > 0.

1.
2.

3.

Show that < is a partial order.
Show that if a < b, then for all ¢ € A, c*ac < c*be.

Suppose 0 < a < b. Prove that ||a] < ||b].

Problem 12. Let A be a C*-algebra. By the hint to part (4) of Problem 9 that for a > 0,
we can define an a'/? > 0 such that (a'/?)? = a.

1

2

3
4

Show that if b > 0 such that b = a, then b = a'/2.
Prove that if 0 < a < b, then a'/2 < b1/2,
Prove that if 0 < a (0 < a and a is invertible), then 0 < a™!.

Prove that if 0 < @ < b, then 0 < band 0 < b~ < a™'.

0t

Problem 13 (Rieffel, “Preventative Medicine”). Consider a = <(1) (1)> and b = (S O) for
s,t > 0.

1.

2.

Determine for which s,z > 0 we have b > a.

Determine for which s, > 0 we have b > a, .
Note: Since a = a*, a, is the positive part defined as in the hint to part (4) of Problem
9.

Find values of s,¢ > 0 for which b > a, b> 0, and yet b % a,.

Find values of s, > 0 such that b > a, > 0, and yet b2 # ai.

Can you find s,¢ > 0 such that b > a_ and yet b2 ¥ ai/Z?

Note: a1+/2 is the unique positive square root of a, from part (1) Problem 12.

Suppose ¢,p € M,(C) such that ¢ > 0 and p? = p* = p is a projection. Is it always
true that pep < ¢?



Problem 14. Let L?(T) denote the space of complex-valued square-integrable 1-periodic
functions on R, and let C'(T) C L?(T) denote the subspace of continuous 1-periodic functions.

(a) Prove that {e, (x) := exp(2minz)|n € Z} is an orthonormal basis for L?(T).

(b) Define F : L*(T) — £2(Z) by F(f),, = (fren)2m) = fol f(z) exp(—2minx) dx. Show
that if f € L*(T) and F(f) € £1(Z), then f € C(T), i.e., fis a.e. equal to a continuous
function.

Problem 15. Recall that each T' € B(H, K) induces a bounded sesquilinear form K x H —
C given by Br(&,n) = (£, Tn).
1. Prove that T' = By is an isometric bijective correspondence between operators in

B(H, K) and bounded sesquilinear forms K x H — C.
Hint: Adapt the proof Lemma 3.2.2 in Analysis Now (see also Ezercise 3.2.15 therein).

2. For T' € B(H, K) corresponding to By : K x H — C, we define T* € B(K, H) to be
the unique operator corresponding to the adjoint sesquilinear form B} : H x K — C
defined by

Bi(n,§) == Br(§,m) = (n, T*&) = (T'n,§) ne H¢eK.

Show that T" +— T* is a conjugate linear isometry of B(H,K) onto B(K,H), and that
|T*T) = |T|* = |TT"].

3. In the case that H = K, deduce the following:

(a) B(H) with involution 7'+ T is a C*-algebra.

(b) T = T* if and only if By is self-adjoint. That is, show 7" = T* if and only if
(T¢, &) e R for all £ € H.

(¢) T > 0if and only if By is positive. That is, show 7" > 0 if and only if (T¢,£) > 0
for all £ € H.
Hint: Use that for T = T*, we have inf {(T¢,&)|¢ € H, || = 1} = min {\|X € sp(T)}.

(d) (optional) T'> 0 and T injective if and only if By is positive definite.
Hint: For S € B(H), ker(S) = ker(S*5), so T > 0 is injective if and only if
T2 s injective.

(e) (optional) T'> 0 (T" > 0 and T'is invertible) if and only if By is positive definite,
and H is complete in the norm ||, := Bp(&,€)Y/2.
Hint: When By is positive definite and H is complete for | - ||, apply part (d)
and look at the isometry (H,| - |lp) — (H,|-|) by € — T3¢

Problem 16 (Challenge!). Suppose H is a Hilbert space. A quadratic form on H is a
function ¢ : H — C such that:

1. (quadratic) g(A¢) = |A|?q(¢) for all A € C and € € H,
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2. (parallelogram identity) ¢(n + &) + q(n — &) = 2(q(n) + ¢q(§)) for all n,& € H, and
3. (continuous) There is a C' > 0 such that |g(&)] < C|€|? for all £ € H.
Prove that .
(1,€) = i ; i*q(n + i*¢)
is a bounded sesquilinear form on H such that ¢(&) = (&,§).

Problem 17. For a Hilbert space H, we can define the conjugate Hilbert space H =
{E’]f €eH } which has the conjugate vector space structure Aé + 7 = A +n and the con-

jugate inner product (7, &) = (£, 1) -
1. Prove that H is a Hilbert space.

2. For T € B(H,K), define T: H — K by T¢ = T¢. Prove that T € B(H, K), and
I = 11.

3. Prove that = is an endofunctor on the the category Hilb of Hilbert spaces with bounded
operators (= is a functor Hilb — Hilb).

4. For each H € Hilb, construct a linear isometry u; of H* onto H satisfying uyT! = Tuy
for all T € B(H, K) where T € B(K*, H*) is the Banach adjoint of T.

Problem 18. For T' € B(H), we define its numerical radius as

R(T) := sup [(T¢,¢§)|.
l¢l<1

Prove that r(T)) < R(T) < |T|| < 2R(T'). Deduce that if T'is normal, then ||T'| = R(T).

Problem 19. Let A be a C*-algebra. An element u € A is called a partial isometry if u*u
is a projection.

1. Show that the following are equivalent:

(a) w is a partial isometry.
(b) u=uu*u

(¢) u* = u*uu*

(d) w* is a partial isometry.

Hint: For (a) = (b), apply the C*-axziom to u — uu*u.

2. We say two projections p, q € A are (Murray-von Neumann) equivalent, denoted p ~ q,
if there is a partial isometry v € A such that uu* = p and u*u = ¢q. Prove that ~ is
an equivalence relation on P(A), the set of projections of A.
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3. Describe the set of equivalence classes P(A)/ ~ for A = B((?).

Problem 20. Suppose z = wu|z| is the polar decomposition of x € B(H). Show that
x* = u*|z*| is the polar decomposition.

Problem 21 (MO:325725). Suppose A is a unital C*-algebra and I < A is an ideal. Let
q: A — A/I be the canonical surjection.

1. Show that unital x-homomorphisms C[0, 1] — A are in canonical bijection with positive
elements of A with norm at most 1.

2. Show that if a + I € A/I is positive with norm at most 1, there is a positive a € A
with norm at most 1 such that a +1 =a + I.

Hint: Since spA/I(a +1I) Cspyla), fqla)) = q(f(a)) and thus f(a+I) = f(a) + 1
forall f € C(sp ,(a)). Now pick f carefully.

3. Deduce that for every unital x-homomorphism ¢ : C[0,1] — A/I, there is a unital
x-homomorphism @ : C[0,1] — A with ¢ = ¢ o ¢.

4. Discuss the connection between the above statement and the Tietze Extension Theorem
when A is commutative.

Problem 22. Let H be a Hilbert space. Compute the extreme points of the unit balls of
1. X(H),
2. £'(H), and
3. B(H).

Problem 23. Let H be a Hilbert space. Prove that the trace Tr induces isometric isomor-
phims:

1. X(H)" = £'(H), and
2. L'(H)* =~ B(H).

Problem 24. Suppose H is a Hilbert space and K C H is a closed subspace. Let p, € B(H)
be associated orthogonal projection onto K.

1. Suppose x € B(H). Prove that:
(a) K C K if and only if zpy = prrpg-

(b) z*K C K if and only if ppx = prapg.
(¢) K C K and 2K C K if and only if [x,pg| = 0.



2. Prove that if M C B(H) is a *-closed subalgebra, then MK C K if and only if
Pk - M/.

Problem 25. Suppose H is a Hilbert space.

1. Suppose K is another Hilbert space. Define the tensor product Hilbert space HRQK by
completing the algebraic tensor product vector space H ® K in the 2-norm associated
to the sesquilinear form (n® &, 7' ® ') := (n,n')(£,&’). Find a unitary isomorphism
H®K =~ @™ " H.

2. Find a unital *-isomorphism B(@:;l H) =~ M, (B(H)).
Hint: use orthogonal projections.

3. Suppose S C B(H), and let a: B(H) — M, (B(H)) be the amplification

n

(a) a(S) = M,(S"), and

(b) I£0,1 € S, then M, (S) = a(S").
(¢) Deduce that when 0,1 € S, a(S)” = «(S”).

Prove that:

Problem 26. Let (X, 1) be a o-finite measure space, and consider the map M : L>=(X, u) —
B(L2(X, 1)) given by (M€)(z) = f(x)&(x) for € € LA(X, )

1. Prove that M is an isometric unital *-homomorphism.

2. Let A C B(L*(X, u)) be the image of the map M. Prove that A = A’.
Hint: If you’'re stuck with (2), try the case X = N with counting measure.

Problem 27. Let H be a Hilbert space. The weak operator topology (WOT) on B(H) is
the topology induced by the separating family of seminorms T+ |(T'n, )| for n,& € H. The

strong operator topology (SOT) on B(H) is induced by the separating family of seminorms
x> ||TE| y for £ € H.

1. Prove that every WOT open set is SOT open. Equivalently, prove that if a net
(T\)xea C B(H) converges to T' € B(H) SOT, then Ty, — T WOT.

2. Prove that the WOT is equal to the SOT on B(H) if and only if H is finite dimensional.
3. Show that the following are equivalent for a linear functional ¢ on B(H):

(*) There are 1y, ..., 1, &1, -, &, € H such that o(T) = 3°" (Tn;,&;).
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(*) ¢ is WOT-continuous.

( *) ¢ is SOT-continuous.
Problem 28. Suppose M C B(H) is a unital x-subalgebra. A vector £ € H is called:
o cyclic for M if M¢ is dense in H.
o separating for M if for every xz,y € M, z€ = y& implies x = y.
1. Prove that £ is cyclic for M if and only if £ is separating for M.

2. Prove that H can be orthogonally decomposed into M-invariant subspaces H = @ie ; K;,
such that each K is cyclic for M (has a cyclic vector). Prove that if H is separable,
this decomposition is countable.

3. Prove that if M is abelian and H is separable, then there is a separating vector in H
for M.

Problem 29. Suppose H is a Hilbert space, and (z,) is an increasing net of positive opera-
tors in B(H) which is bounded above by the positive operator x € B(H), i.e., A < p implies
zy <z, and 0 <z, <z for all \. Prove that the following are equivalent.

1. z, — 2« SOT.
2. zy — 2z WOT.
3. For every £ € H, we(wy) = (2,§,§) /" (26, €) = we(z).

4. There exists a dense subspace D C H such that for every £ € D, we(z,) = (7,§,§)
(@€, §) = we().

We say an increasing net of positive operators (x) increases tox € B(H) ., denoted xy  «,
if any of the above equivalent conditions hold.
Hint: Show it suffices to prove (3) = (1) and (4) = (3). Try proving these implications.

Problem 30. Let H be a Hilbert space and let ' € B(H). Prove that the following are
equivalent. (You may use any results from last semester that you'd like without proof.)

1. T'is compact and normal.

2. T has an orthonormal basis of eigenvectors (e;),-; such that the corresponding eigen-
values A, — 0, with at most countably many of the A; # 0.

3. There is a countable orthonormal subset (¢,,),cy C H and a sequence (A,,) C C such
that A, = 0and T'=3" _ A,[&,)(&,[, which converges in operator norm.



4. There is a sequence (A,,) C C such that A\,, — 0 and a countable family of finite rank
projections E,, C B(H) suchthat T'=}_ _ A, E,, which converges in operator norm.

eN TN

5. There is a discrete set X equipped with counting measure v, a function f € ¢y(X),
and a unitary U € B(¢?X, H) such that T = UM U* where M £ = f¢§ for £ € ?X.
Note: U € B(K, H) is unitary if UU* = idyg and U*U = id.

Problem 31. Suppose A is a unital C*-algebra. A linear map ¢ : A — B(H) is called
completely positive if for every a = (a; ;) > 0 in M, (A), (®(a;;)) > 0 in M, (B(H)) =
B(H™). Such a map is unital if (1) = 1.

1. Show that (z®n,y®¢&) := (P(y*z)n, &)y on A® H linearly extends to a well-defined
positive sesquilinear form.

2. Show that for Va vector space with positive sesquilinear form B( -, - ), Ng = {v € V|B(v,v) = 0}
is a subspace of V, and B descends to an inner product on V' /Np.

3. Define K to be completion of (A® H)/N,. ., in | [,. Find a unital x-homormophism
U : A — B(K), and an isometry v € B(H, K) such that ®(m) = v*¥(m)w.

Problem 32. Suppose y € B(H) is positive.

1. Show that if y ¢ K(H), then there is a A > 0 and a projection p with infinite
dimensional range such that y > Ap.

2. Deduce that if  — Tr(zy) is bounded on £P(H) where 1 < p < oo, then y € K(H).

Problem 33. Suppose A C B(H) is a unital C*-subalgebra and £ € H is a cyclic vector
for A. Consider the vector state we = (-&,§). Prove there is a bijective correspondence
between:

1. positive linear functionals ¢ on A such that 0 < ¢ < w, (we — ¢ > 0), and
2. operators 0 <z < 1in A’.

Hint: For 0 <z <1 in A’, define ¢, (a) := (ax§,§) fora € A. (Why is 0 < ¢, < we?)
For the reverse direction, use the bijective correspondence between sesquilinear forms and
operators.

Problem 34.

1. Prove that a unital *-subalgebra M C B(H) is a von Neumann algebra if and only if
its unit ball is 0-WOT compact.

2. Let M C B(H) be avon Neumann algebra and ® : M — B(K) a unital -homomorphism.
Deduce that if ® is o-WOT continuous and injective, then ®(M) is a von Neumann
subalgebra of B(K).
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Problem 35. Suppose X is a compact Hausdorff topological space and E : (X, M) — B(H)
is a Borel spectral measure. Prove that the following conditions are equivalent.

1. Eis regular, i.e., for all § € H, ¢ (S) = (E(S)E, ) is a finite regular Borel measure.
2. Forall S € M, E(S) =sup{E(K)|K is compact and K C S}.
3. Forall S € M, E(S) =inf{E(U)|U is open and S C U}

Problem 36. Suppose x € B(H) is normal. Show that X0, (%) = Pyer(z) a0d Xgp(a) (o1 =
PzE-

Problem 37. Let H be a separable Hilbert space and A C B(H) an abelian von Neumann
algebra. Prove that the following are equivalent.

1. A is maximal abelian, i.e., A = A’.
2. A has a cyclic vector £ € H.
3. For every norm separable SOT-dense C*-subalgebra A, C A, A, has a cyclic vector.

4. There is a norm separable SOT-dense C*-subalgebra A, C A such that A, has a cyclic
vector.

5. There is a finite regular Borel measure p on a compact Hausdorff second countable
space X and a unitary u € B(L*(X, ), H) such that f — uMu* is an isometric
k-isomorphism L (X, u) — A.

Hints:

For (1) = (2), use Problem 28.

For (3) = (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show
that A, = C*(H)/A, is a separable Banach space. Then show that A is o-WOT separable,
which implies SOT-separable. Take A, to be the unital C*-algebra generated by an SOT-
dense sequence. R

For (4) = (5) show that A, separable implies X = Ay is second countable. Define pn = pi¢ ¢
on X, and show that the map C(X) — H by f=>T"Y(f)€isa | |y — ||y isometry with
dense range.

Problem 38. Suppose E : (X, M) — P(H) is a spectral measure with H separable, and
let A C B(H) be the unital C*-algebra which is the image of L°°(E) under [ -dE. Suppose
there is a cyclic unit vector £ € H for A.

1. Show that we(f) = (([ fdE)E, &) is a faithful state on L>(E) (w£(|f]2) =0= f=0).

2. Consider the finite non-negative measure y = pg ¢ on (X, M). Show that a measurable
function f on (X, M) is essentially bounded with respect to E if and only if f is
essentially bounded with respect to pu.

11



3. Deduce that for essentially bounded measurable f on (X, M), | flg = [ £l L= (x,2¢,0)-

4. Construct a unitary v € B(L?(X, M, ), H) such that for all f € L>®(E) = L>®(X, M, i),

5. Deduce that A C B(H) is a maximal abelian von Neumann algebra.

Problem 39. Suppose H is a separable infinite dimensional Hilbert space. Prove that
K(H) C B(H) is the unique norm closed 2-sided proper ideal.

Problem 40. Classify all abelian von Neumann algebras A C B(H) when H is separable.
Hint: Use a mazimality argument to show you can write 1 = p + q with p,q € P(A) such
that q is diffuse and p = > p, (SOT) with all p; minimal. Then analyze Aq and Ap.

Problem 41. Suppose M C B(H) is a von Neumann algebra and p,q € P(M). Define
pAq € B(H) to be the orthogonal projection onto pH N ¢H. Prove that p A ¢ € M two
separate ways:

1. Show that pH N qH is M’-invariant, and deduce p A g € M.

2. Show that p A ¢ is the SOT-limit of (pg)™ as n — co.
Hint: You could proceed as follows, but a quicker proof would be much appreciated!

(a) Use (2) of Problem 11 to show (pq)"p is a decreasing sequence of positive operators.
(b) Show (pq)™p converges SOT to a positive operator x € M.

(c) Show that 2 = x, and deduce x < p is an orthogonal projection.

(d) Show that xqp = x, and deduce xqx = x.

(e) Show that x < q, and deduce x < p A q.

(f) Show that (p A q)(pq)™ converges SOT to both p A q and z, and deduce x = p A q.
(9) Finally, show (pq)"™ converges SOT to xq =p A q.

Define p V ¢ as the projection onto pH + gH. Show that p V ¢ € M in two separate ways:
1. Prove that pH + gH is M’-invariant, and deduce p V g € M.

2. Show that pVg=1—(1—p) A (1 —q) and use that p A g € M.

Problem 42. Suppose N C M C B(H) is a unital inclusion of von Neumann algebra and
p € P(N).

1. Prove that (N'p) N pMp = (N" N M)p.
2. Deduce that if p € P(M), Z(pMp) = Z(M)p.

3. Deduce that if p € P(M) and M is a factor, then pMp is a factor.
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4. Prove that when M is a factor and p € P(M), the map M’ — M’p by x — zp is a
unital x-algebra isomorphism.

Problem 43. Prove that the following conditions are equivalent for a von Neumann algebra
M C B(H):

1. Every non-zero g € P(M) majorizes an abelian projection p € P(M).
2. M is type I (every non-zero z € P(Z(M)) majorizes an abelian p € P(M)).

3. There is an abelian projection p € P(M) whose central support z(p) = \/ u*pu €

Z(M) is 1,,.

uelU(M)

Hints:

For (2) = (3), if p € P(M) is abelian with z(p) # 1, then there is an abelian projection
q € P(M) such that z(q) < 1—2z(p). Show that pMq = 0 and p+ q is an abelian projection.
Now use Zorn’s Lemma.

For (3) = (1), suppose p € P(M) is abelian with z(p) = 1 and ¢ € P(M) is non-zero. Show
there is a non-zero partial isometry u € M such that uu* < p and u*u < q. Deduce that uu*
s abelian, and then prove u*u is abelian.

Problem 44. Show that for every von Neumann algebra M, there are unique central pro-
jections zy, 2q , 21, and zqyp (some of which may be zero) such that

o Mz is type I, Mzy is type 1L, Mz is type I, and Mz is type III, and
o Zrtay o tam =1
Hint: You could proceed as follows:

1. First, show that if M has an abelian projection p, then z(p) is type 1. Then use a
mazimality argument to construct z;. For this, you could adapt the hint for (2) = (3)
in Problem /3.

2. Replacing M, H with M (1—z;), (1—2;) H, we may assume M has no abelian projections.
Show that if M has a finite central projection z, then Mz is type II;. Now use
a mazimality argument to construct zy . This hinges on proving the sum of two
orthogonal finite central projections is finite. (Proving this is much easier than proving
the sup of two finite projections is finite!)

3. By compression, we may now assume that M has no abelian projections and no finite
central projections. Show that if M has a nonzero finite projection p, then its central
support z(p) satisfies Mz(p) is type Il .. Use a mazimality argument to construct zy_.

4. Compressing one more time, we may assume M has no finite projections, and thus M
is purely infinite and type I1IL.
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Problem 45. Let M C B(H) be a finite dimensional von Neumann algebra.

1.
2.
3.
4.

Prove M has a minimal projection.
Deduce that Z(M) has a minimal projection.
Prove that for any minimal projection p € Z(M), Mp is a type I factor.

Prove that M is a direct sum of matrix algebras.

Problem 46. Suppose H is infinite dimensional. Prove that B(H) does not admit a c-WOT
continuous tracial state.
Optional: Instead, prove that B(H) does not admit a non-zero tracial linear functional.

Problem 47. Suppose M C B(H) and N C B(K) are von Neumann algebras, and let
H®K be the tensor product of Hilbert spaces as in Problem 25.

1.

3.

Show that for every m € M and n € N, the formula (m ® n)(n ® £) := mn ® né gives
a unique well-defined operator m @ n € B(HQK).

Let M®N = {m ®n|m € M,n € N} ¢ B(H®K). Show that the linear extension of
the map from the algebraic tensor product M ® N to M®N given by m®n = mQ®mn is
a well-defined injective unital %-algebra map onto an SOT-dense unital x-subalgebra.
Hint for injectivity: Suppose x = Zf_l m; @ n; is not zero in M ® N. Reduce to
the case {ny,...,n,} is linearly independent and all m; # 0. Show that for each
i =1,...,k, there exists a k; > 0 and {77;,53};11 such that Zf;1<”z”7;af;> = 0;_y-
(Sub-hint: Consider F' = span.{ny,...,n,} C N, a closed normed space, and look at
®: HxH— F* by (n,6) = (-n,€). Show that span, (®(H)) = F*.) Now pick

k,C € H such that (myk,() # 0, and deduce Zf;(x(/{ ®n;),® &) wgr F 0.

We denote by B(H) ® 1 the image of B(H) under the map z — 2 ® 1 € B(HQK).
Prove that B(H) ® 1 is a von Neumann algebra.

Hint: Show that (B(H)®1)" = 1QB(K). Then by symmetry, (1 B(K))' = B(H)®1
s a von Neumann algebra.

Prove that B(HRK) = B(H)®B(K).
Hint: Calculate the commutant of the image of the algebraic tensor product (B(H) ®
B(K))" = C1 and use (2).

Problem 48. Let S_ be the group of finite permutations of N.

1.

2.

Show that S is ICC. Deduce that LS is a II; factor.

Give an explicit description of a projection with trace k=™ for arbitrary n,k € N.
Hint: Find such a projection in CS,, C LS.
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3. Find an increasing sequence F,, C LS_ of finite dimensional von Neumann subalgebras

such that LS = (Uzozl F )”.

n

Note: A 11 factor which is generated by an increasing sequence of finite dimensional von
Neumann subalgebras as in (3) above is called hyperfinite.

Problem 49. Let M be a von Neuman algebra. Suppose a,b € M with 0 < a < b. Prove
there is a ¢ € M such that a = ¢*bec. Deduce that a 2-sided ideal in a von Neumann algebra
is hereditary: 0 < a < b € M implies a € M.

Problem 50. Let M be a factor. Prove that if M is finite or purely infinite, then M is
algebraically simple, i.e., M has no 2-sided ideals.
Note: You may use that a 11, factor has a (faithful o-WOT continuous) tracial state.

Problem 51. A positive linear functional ¢ € M* is called completely additive if for any

family of pairwise orthogonal projections (p;), (> p;) = >_p(p;). (Here, > p, converges
SOT.)

Suppose ¢, 1 € M* are completely additive and p € P(M) such that ¢(p) < 1(p). Then

there is a non-zero projection ¢ < p such that ¢(qrq) < ¥(qzq) for all z € M, such that
qrq # 0.
Hint: Choose a mazximal family of mutually orthogonal projections e; < p for which i(e;) <
p(e;). Consider e = \/e;, and show that ¥ (e) < ¢(e). Set ¢ = p — e, and show that for
all projections r < q, ¢(r) < ¥(r). Then show p(qrq) < ¥(qrq) for all x € M, such that
qrq # 0.

Problem 52. Show that the following conditions are equivalent for a positive linear func-
tional ¢ € M* for a von Neumann algebra M:

1. ¢ is o-WOT continuous,
2. @ is normal: x, /" x implies p(x,) ~ ¢(x), and

3. @is completely additive: for any family of pairwise orthogonal projections (p;), ¢(>_p;) =
> w(p;). (Here, Y p, converges SOT.)

Hint: For (3) = (1), show if p € P(M) is non-zero, then pick {& € H such that o(p) < (p&,&).
Use Problem 51 to find a non-zero q < p such that ¢(qrq) < (xq€,q€) for all z € M. Use
the Cauchy-Schwarz inequality to show x +— @(xq) is SOT-continuous, and thus o-WOT
continuous. Now use Zorn’s Lemma to consider a mazximal family of mutually orthogonal
projections (q;),c; for which x + @(xq;) is o-WOT continuous. Show Y q; = 1. For finite
F C I, define pp(x) = Zingo(xqi). Ordering finite subsets by inclusion, we get a net
(pp) C M,. Show that ¢ — ¢ in norm in M*. Deduce that ¢ € M, since M, C M* is
norm-closed.

Problem 53. Let ® : M — N be a unital *-homomorphism between von Neumann algebras.
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1. Prove that the following two conditions are equivalent:

(a) @ is normal: z, / x implies ®(x,) ~ ®(x).
(b) @ is o-WOT continuous.

2. Prove that if ® is normal, then ®(M) C N is a von Neumann subalgebra.
Hint: ker(®) C M is a o-WOT closed 2-sided ideal.

3. Let ¢ be a normal state on a a von Neumann algebra M, and let (H,,(2,,7,) be the

cyclic GNS representation of M associated to ¢, i.e., H, = L?(M, ), Q, € H, is the
image of 1 € M in H,,, and 7 ,(z)mQ, = zmf, for all z,m € M.

(a) Show that 7, is normal.

(b) Deduce that if ¢ is faithful, then M =~ 7
algebra acting on H.,.

»(M) C B(H,) is a von Neumann

Problem 54. Suppose ® : M — N is a unital x-algebra homomorphism between von
Neumann algebras.

1. Prove that the following conditions imply ® is normal:

(a) @ is SOT-continuous on the unit ball of M.
(b) ® is WOT-continuous on the unit ball of M.

(c) Suppose N = N” C B(H). For a dense subspace D C H, m + (®(m)n,&) is
WOT-continuous on M for any n, & € D.

2. (optional) Which of the conditions above are equivalent to normality of ®7

Problem 55. Let M be a finite von Neumann algebra with a faithful o-WQOT continuous
tracial state. Let L2M = L?*(M,tr) where ) is the image of 1,, in L?M. Identify M with
its image in B(L?M) by part (3) of Problem 53.

1. Show that J : MQ — MSQ by af2 — a*() is a conjugate-linear isometry with dense
range.

2. Deduce J has a unique extension to L?M, still denoted .J, which is a conjugate-linear
unitary, i.e, J2 =1 and (Jn, J€) = (£,n) for all n, € € L>M.
Hint: Look at n,& in M.

3. Calculate Ja*JbS) for a,b € M. Deduce that JMJ C M.
4. Show (Ja*JbQ2, cQ) = (b2, JaJcQ) for all a,b,c € M. Deduce (JaJ)* = Ja*J.
5. Show (JyQ, aQ)) = (y*Q,a) for all a € M and y € M’. Deduce JyQ = y*Q.
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6. Prove that for y € M’, (JyJ)* = Jy*J.
Hint: Try the same technique as in (4).

7. Show for all a,b € M and x,y € M’, (xJyJaf),bQ) = (JyJzal), bSY).
8. Deduce that M’ C (JM'J) = JMJ, and thus M" = JM J.

Problem 56. Let I' be a discrete group, and let LT' = {),}” C B(f?*T'). Consider the
faithful o-WOT continuous tracial state tr(x) = (xd,,d,) on LT

er-e

1. Show that ud, = A, uniquely extends to a unitary u € B(£?T, L?LT") such that for all
x € LT and € € (°T, L ué = uxé where L, € B(L?*LT) is left multiplication by =,
ie., L, (yQ) = zysd.

2. Deduce from Problem 55 that LTV = RT.

Problem 57. Use Problem 56 above to give the following alternative characterization of
LY. Let
T ={z = (z,) € *T|xxy e (T for all y € ’T'}

where (z x y), = > W ThYn1g Define a unital x-algebra structure on ¢I" by multiplication
is convolution, the unit is d., the the indicator function at e € I' (6.(g9) = d,_.), and the

involution * on (I" is given on = € /T by (x*), =T 7.
1. Show that /1" is a well-defined unital x-algebra under the above operations.

2. For o € (T define T, : £?T — (*T by T,y = x * y. Prove T, € B({?T").
Hint: Show that for all x € 4T and y,z € €°T, (T,y,z) = (y,T,.2). Then use the
Closed Graph Theorem.

3. Prove that for all x € /T, T, € LT.
Hint: Prove T,, € RI" and apply Problem 56.

4. Deduce that z + T}, is a unital *-algebra isomorphism ¢/I" — LI".

Problem 58 (V. Jones). Suppose M = M,(C) and ¢ is a state. Then ¢(x) = tr(zp) for a
unique density matrix p > 0 with tr(p) = 1. Choosing a basis of eigenvectors for p, we may

identify
1
)= <1+,\ L)
1+

for some 0 < A < 1. Observe that ¢ is faithful if and only if 0 < A < 1 if and only if p is
invertible.

1. Describe as best you can L?(M, ¢) in terms of .

2. Show that the action of M on L?(M, ¢) is faithful.
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3. From this point on, assume 0 < XA < 1. Consider S : L?*(M,p) — L*(M,¢) by
zQ — z*Q. Compute the polar decomposition S = JAY? where A = S*S.

4. Show that M’ = JMJ = SMS on L2(M, ).
5. Show that for all z € C, A*MA~* = M.

6. Deduce that we have a 1-parameter group of unitaries ¢ - o, := A® for ¢ € R which
preserve M.

Problem 59. Repeat Problem 57 for the crossed product von Neumann algebra M X, I
acting on L?M ® (T =~ L*(T', L> M) where M is a finite von Neumann algebra with faithful
normal tracial state tr, I' is a discrete group, and « : I' — Aut(M) is an action. Here, we
define

(T, M) = {x:I‘—>M

D Qe < oo}
g

> gl < oo} and
g

Mx, T ={z=(z,) € *(T,M)|z*& € (*(, L*M) for all { € ¢*(I', L>M)} .

(T, L2M) = {g :T — L2M

Here, the convolution action is given by (z * &), = >_, #,v,&, 1, where v, € U(L?M) is
the unitary implementing «,, € Aut(M). Define an analogous unital x-algebra structure on
MT and find a unital x-algebra isomorphism M, I' — M x, T".

Hint: Similar to LT, some people write elements of M x, I' as formal sums Zg T ug which

does not converge in any operator topology. Rather, Zg xgug(Q(X)ée) converges in LM Q0T .

These formal sums can be algebraically manipulated to obtain a unital x-algebra structure

using the covariance condition ugmuy = ag(m) forall g e’ and m € M. Thus

*
_ * * % _ *
(E :cgug> = g U, Ty = g Uy Ty Ul = 5 (T )u,.
9 9 9 9

Thus for x = (x,) € Mx,T', we define (z%), = a,(xy). A similar algebraic manipulation

gives the formula for multiplication, which is similar to convolution, but involves the action.

Problem 60. Prove that a x-isomorphism between von Neumann algebras is automatically
normal.

Problem 61. Suppose (X, u) is a measure space and T : X — X is a measurable bijection
preserving the measure class of u. Let ap € Aut(L>®(X, ) by (apf)(z) = f(T 1 x). Is it
always the case that the condition u({x € X|T'z = x}) = 0 is equivalent to the automorphism
ar being free? If yes, give a proof, and if not, find a counterexample together with a mild
condition under which it is true.
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Problem 62. Let F, = (a,b) be the free group on 2 generators.
1. Show that [, is ICC. Deduce L[, is a II; factor.
2. Show that the swap a <> b extends to an automorphism o of L[ ,.

3. Show that o is outer.

Problem 63.

1. (Fell’s Absorption Principle) Suppose I" is a countable group and (H,7) is a unitary
representation on a separable Hilbert space. Find a unitary u € B(/?T'®H) intertwin-
ing A@mand A® 1, ie,u\, ®@7,) = (A, ®1)uforall geT.

2. Consider the two definitions of M x_, I when (M, tr) is a tracial von Neumann algebra
and troa, = tr for all g € I'. The first is the von Neumann algebra generated by the
T, and u, on €%(T, L* M) where

(ug€)(h) = &(g~ " h) (1,,8) (h) = a1 (m)E(h).

The second is the von Neumann algebra generated by the m,, and u, on L?M ® ¢°T" given
by
T, (2R ® 6),) = mzd ® 6, Uy (TR ®6),) = a ()2 ® 6,

Find a unitary isomorphism ¢?(T', L2M) — L?>M ® ¢°T intertwining the two M-actions and
I'-actions. Deduce the two definitions of M x, I' are equivalent.

Problem 64. Prove that irrational rotation on the circle (with Lebesgue/Haar measure) is
free and ergodic.

Problem 65. Let M be a finite von Neumann algebra with a faithful normal tracial state.
1. Show for all x,y € M, |tr(xy)| < |y| tr(|z]).
2. Show for all z € M, tr(|z|) = sup {| tr(zy)||ly € M with |y| = 1}.
3. Define ||z|; = tr(]z|) on M. Show that | - |; is a norm on M.

4. Define a map ¢ : M — M, by x — ¢, where ¢, (y) = tr(zy). Show that ¢ is a
well-defined isometry from (M, | - |;) — M, with dense range.

5. Deduce that L'(M,tr) := M i isometrically isomorphic to the predual M,.

Problem 66. Continue the notation of Problem 65. Let N C M be a (unital) von Neumann
subalgebra.

1. Prove that the inclusion N — M extends to an isometric inclusion i : L'(N,tr) —
LY (M, tr).
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2.

Let E : M — N be the Banach adjoint of ¢ under the identification M, = L'(M,tr)
and N, = L'(N,tr). Show that E is uniquely characterized by the equation

try(zy) = try(E(x)y) x € M,ye N.

Note: F is called the canonical trace-preserving conditional expectation M — N.

Problem 67. Suppose M is a finite von Neumann algebra with normal faithful tracial state
tr and N C M is a (unital) von Neumann subalgebra.

1.

Prove that the inclusion N — M extends to an isometric inclusion L?(N,tr) —
L?(M,tr).

Define ey € B(L?M,L?N) be the orthogonal projection with range L?*(N,tr) =
No'le ¢ L?(M,tr). Show that for all x € M, eyzeyy C B(L?N) commutes with the
right action of NV, and thus defines an element in N by Problem 55.

Hint: Show the inclusion ek : L>N — L?*M commutes with the right N action, and
deduce ey commutes with the right N action.

For x € M, define E(x) = eyzey. Show that E(z) is uniquely characterized by the
equation
try(zy) = try(E(2)y) x €M,y € N.

Note: E is called the canonical trace-preserving conditional expectation M — N. Part (3)
implies this definition agrees with that from Problem 66.

Problem 68. Continue the notation of Problem 67.

1.

2.

Deduce that E is normal.

Deduce E(1) =1 and E is N — N bilinear, i.e., for all x € M and y,z € N, E(yxz) =

Deduce that E(z*) = E(z)*.

Show that E is completely positive, which was defined in Problem 31.
Hint: Use the characterization E(x) = eyxel from (5) of Problem 67.

Show that E(z)*E(z) < E(z*z) for all x € M.
Hint: Use the characterization E(x) = eyxzely from (5) of Problem 67. Show that
eyen s an orthogonal projection.

Show that E is faithful: E(z*z) = 0 implies z*z = 0.
Hint: Prove this by looking at the vector states w,,q for n € N.

20



Problem 69. Suppose M is a finite von Neumann algebra with faithful normal tracial state
tr. Suppose further that there is an increasing sequence of von Neumann subalgebras M; C
M, C -+ M such that (| JM,,)” = M (considered as acting on L2M). Let E,, : M — M,, be
the canonical trace-preserving conditional expectation from Problem 67.

1. Prove that the || - |,-topology agrees with the SOT on the unit ball of M. That is,
prove that x,, — « SOT if and only if |z,Q — 20|, — 0.

2. Prove that for all z € M, |E,, ()2 — 2Q||y — 0 as n — oc.

3. Deduce that E, (z) — = SOT as n — oo.

Problem 70. Suppose I' is a countable group, and let Prob(I") = {u € ElF‘u >0 and Zg u(g) = 1}.

1. Prove that Prob(I") is weak™® dense in the state space of />°T".

2. Let F' C T be finite, and consider @ge Fﬂlf with the (product) weak topology. Let K
be the weak closure of {@gng = ,u‘,u € Prob(F)} C EBgeFélF. Prove K is convex

and norm closed in @ _ AT

3. Now assume I' is amenable, i.e., there is a left I'-invariant state on £°°I". Prove that
0 € K. Deduce that I' has an approximately invariant mean.

Problem 71. Suppose I is a countable group, and let Prob(I") be as in Problem 70.
1. Prove that if a,b € [0, 1], then

1

0= = [ Wiray(@) = e @) dr
0

. Deduce that for i € Prob(I') and h € T,

b g — o = / > Xy (B g)) = Xy (1)) | dr.
0

gel

. For r € [0,1] and p € Prob(I'), let E(u,r) = {g € I'|p(g) > r}. Show that for all h € T,
hE(p,r) ={g € T|(h - p)(g) > r}.

. Calculate j(;l |\E(u, )| dr.

. Show that for r € [0,1], u € Prob(I'), and h € T,

R (1, 1) AE ()] =[xy (01 9)) = Xy (12(9)) -
gel

Deduce that |h-p— pll; = J(}l |hE(p, ) AE(p, )| dr.
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6. Suppose now that I' has an approximate invariant mean, so that for every finite subset ' C T’
and € > 0, there is a p € Prob(I") such that

S b —ply <e.

heF

Show that for the p corresponding to this F and ¢,

/ Z|hE<u7T>AE<u,T)|dr<e/ \E(p,7)| dr.
0 0

heF

Deduce there is an r € [0, 1] such that |hE(pu, 7) ANE(u,7)| < e|E(p,r)| for all h € F.

7. Use (6) above to construct a Fglner sequence for T'.

Problem 72. Recall that an ultrafilter w on a set X is a nonempty collection of subsets of
X such that:

)¢ w,

If AC BC X and A € w, then B € w,

If A)B € w, then AN B € w, and

For all A C X, either A € w or X \ A € w (but not both!).

Find a bijection from the set of ultrafilters on N to SN, the Stone-Cech compactification
of N.

Let w be an ultrafilter on N. Let X be a compact Hausdorff space and f : N — X. We
say

e x =Ilim, . f(n) if for every open neighborhood U of z, f~}(U) € w.
Prove that lim,,_, , f(n) always exists for any function f: N — X.

An ultrafilter on N is called principal if it contains a finite set. Show that every principal
ultrafilter on N contains a unique singleton set, and that any two principal ultrafilters
containing the same singleton set are necessarily equal. Thus we may identify the set
of principal ultrafilters on N with N C SN.

Determine lim f(n) for f: N — X as in (2) when w is principal.

n—w

An ultrafilter on N is called free or non-principal if it does not contain a finite set.
Let w be a free ultrafilter on N. Suppose I' = |JT',, is a locally finite group and
m,, is the uniform probability (Haar) measure on T',,. Define m : 2 — [0,1] by
m(A) = lim, ,,m,(ANT,). Prove that m is a left I'-invariant finitely additive
probability measure on I'; i.e., I is amenable.
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Problem 73. Let X be a uniformly convex Banach space and B C X a bounded set. Prove
that the function f: X — [0, 00) given by f(z) = sup,_j [b — x| x achieves its minimum at
a unique point of X.

Problem 74. Let I' be a countable discrete group. Show that an affine action a = (m, ) :
' — Aff(H) (a6 == 7, + B(g) for 7, € U(H) and B(g) € H such that a, o o) = a, for
all g,h € T') is proper if and only if the cocycle part 5 : I' — H is proper (g — |5(g)|| is a
proper map).

Problem 75. Recall that the Schur product of two matrices a,b € M, (C) is given by the

entry-wise product: (a*b); ; == a; ;b; ;.

1. Prove that if a,b > 0, then a x b > 0.

2. Suppose that p € R[z] is a polynomial whose coefficients are all non-negative. Prove
that if a > 0, then pla] > 0, where pla]; ; := p(a; ;) for a € M, (C).
Note: Here we use the notation pla] to not overload the functional calculus notation.

3. Suppose that fis an entire function whose Taylor expansion at 0 has only non-negative
real coefficients. Prove that is a > 0, then f[a] > 0, where again fla]; ; := f(a, ;) for
ae M,(C).

Problem 76. Let A be a unital C*-algebra.

1. Prove that a map ® : A — M, (C) is completely positive if and only if the map
¢ : M, (A) — C given by (a; ;) Z?J ®(a; ;) ; is positive.

Hint: for one direction, note that ¢(a) = ¢ ®(a)é where € € C* is the vector
(€1,€9,...,6€,) where e, € C" is the i-th standard basis vector. For the other di-
rection, use GNS with respect to ¢, and consider V : C" — L*(M,,(A),¢) given by
Ve, = m,(E;;)Q, where (E;;) is a system of matriz units in M, (C) C M, (A). Then
use Stinespring.

2. Let S C A be an operator subsystem, and let ¢ : S — C be a positive linear functional.
Prove ||¢| = ¢(1). Deduce that any norm-preserving (Hahn-Banach) extension of v
to A is also positive.

3. Let S C A be an operator subsystem, and let ® : S — M, (C) be a (unital) completely
positive map. Show that ® extends to a (unital) completely positive map A — M, (C).

Problem 77. Suppose I' is a countable discrete group, and suppose ¢ : LI' — LI is a
normal completely positive map. Prove that f: I' — C given by f(g) := tryr(¢(\,)N;) is a
positive definite function.

Problem 78. Prove that the following are equivalent for a finite von Neumann algebra
(M, tr) C B(H) with faithful normalized tracial state.
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. M is amenable, i.e., there is a conditional expectation E : B(H) — M.

There is a sequence (p,, : M — M) of (normal) trace-preserving completely positive
maps such that ¢, — id pointwise in | - |,;, and for all n € N, the induced map
¥ € B(L?>M) given by mQ + ¢,,(m) is finite rank.

Problem 79. Suppose that I' is a countable discrete group such that every cocycle is inner.
Suppose (H,m) is a unitary representation and (¢,,) C H is a sequence of unit vectors such
that |7,§, — &,/ = 0 asn — oo for all g € I'. Follow the steps below to find a non-zero
[-invariant vector in H. (We may assume that no &, is fixed by I'.)

1.

Enumerate I' = {g;, go, ... }. Explain why you can pass to a subsequence of (&,,) to
assume that for all n € N, |m, £, — &, <47 forall 1 <i <n.

For n € N, consider the inner cocycles 8,,(g) := &, —7,&,. Let (K,0) =D _ (H,m).
Define g : I' = K by 5(g),, := 2"03,,(9). Prove that 5(g) € H is well-defined for every
g € I'. Then show that f is a cocycle for (K, o).

Deduce f is inner and thus bounded. Thus there is a Kk € K \ {0} such that §(g) =
k—ogk forall geT.

Prove that |3,,(g)|| = 0 uniformly for g € I'. That is, show that for all £ > 0, there is
an N € N such that n > N implies |5, (g)| < ¢ for all g € I

Fix N € N such that ||By(g)| = [Exy — 76n] < 1 for all g € T'. Show there is a
§o € H\ {0} such that 7§, = ¢, for all g € T.
Hint: Look at {Tl'ng‘g € F} C (H), and apply Problem 75.

(optional) Use a similar trick to finish the proof of (1) = (2) from the same theorem
from class.

Problem 80 (optional). As best as you can, edit the equivalent definitions I gave in class
for property (T) for a countable discrete group I' to be relative to a subgroup A <T'. Then
prove all the equivalences.

Problem 81. Suppose I' =~ (X, u) is a free p.m.p. action and R = {(x,gz)|r € X,g €'}
is the corresponding countable p.m.p. equivalence relation. Follow the steps below to show
L>®(X,u)xT'= LR.

1.

Prove that 0 : (z,g) — (x, g ') induces a unitary operator v € B(L?R, L>(X x T, pu x
7)) where ~ is counting measure on I

2. Deduce that € is a p.m.p. isomorphism (X x ', u x ) — (R, v).

3. Show that v* M = A(f) for all f € L*°(X,pu). Here, (Ms§)(z,g9) = f(x)&(z,g) for

e LA(X xT,puxq).
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4. Show that v'u,v = Lgpg where ¢, € [X] is the isomorphism x + g -x. Here,

(u,€)(w, h) = &(g~ ', g 'h) for all € € L3(X x T, x ) & L2(X, 1) ® £°T.
5. Deduce that v*(L>°(X,u) xT)v C LR.

6. Show that conjugation by v takes the commutant of L>°(X, u) x I into RR.
Hint: Show that right multiplication by L (X, pn) and the right action of u, are both
taken into RR.

7. Deduce that v*(L>°(X,u) xT)v = LXR.

Problem 82. Let X be a countable p.m.p. equivalence relation on (X, u). Let A =
L*°(X,pn) C LR. Prove that the von Neumann subalgebra of B(L?(R,v)) generated by
AU JAJ is the von Neumann algebra of multiplication operators by elements of L>(R,v).

Problem 83. Let M be a von Neumann algebra. A weight on M is a function ¢ : M, —
0, 00] such that for all € [0,00) and z,y € B(H),, p(rz +y) = re(z) + ¢(y), with the
convention that for s € [0, c0),

oo ifs>0
008 =
0 ifs=0.
Define

p, = {z € Mlp(x) < oo}
n(p:{xEMx*:rEp(p}

n
_ * _ *
m, =ngn, = { E T3y,

=1

T;,Y; €n, forall i = 1,...,n}.

1. Prove that

(a) py, is a hereditary subcone of M, i.e.,
e (subcone) r > 0 and x,y € p,, implies rz +y € p,,
o (hereditary) 0 <z <y and y € p,, implies = € p,,.

(b) n, is a left ideal of M.
Hint: Prove that for all x,y € M, (xr +y)"(z £ y) < 2(z*z + y*y).

(c) m,, is algebraically spanned by p,.
Hint: Use polarization.

(d) m,NM, =p,.
(e) m, is a hereditary *-subalgebra of M (hereditary is defined the same way as
above).

2. When M = B(H) and ¢ = Tr, show my, = £'(H) and ny, = £*(H).
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