
Functional Analysis 7212 Homework problem list

Problem 1. Suppose 𝐴 is a unital Banach algebra and fix 𝑎, 𝑏 ∈ 𝐴.

1. Show that 1 ∉ sp𝐴(𝑎𝑏) if and only if 1 ∉ sp𝐴(𝑏𝑎) using the identity (1 − 𝑏𝑎)−1 =
1 + 𝑏(1 − 𝑎𝑏)−1𝑎. Deduce that sp𝐴(𝑎𝑏) ∪ {0} = sp𝐴(𝑏𝑎) ∪ {0}.

2. Show that for any Banach subalgebra 𝐵 ⊆ 𝐴 with 1𝐴 ∈ 𝐵, for every 𝑎 ∈ 𝐵, the 
spectral radius in 𝐵 of 𝑎 is equal to the spectral radius in 𝐴 of 𝑎, i.e., 𝑟𝐵(𝑎) = 𝑟𝐴(𝑎).

3. Suppose 𝑎, 𝑏 ∈ 𝐴 commute. Prove that 𝑟(𝑎𝑏) ≤ 𝑟(𝑎)𝑟(𝑏) and 𝑟(𝑎 + 𝑏) ≤ 𝑟(𝑎) + 𝑟(𝑏).
Hint: By (2), this computation can be performed in the unital commutative Banach 
subalgebra 𝐵 ⊆ 𝐴 generated by 𝑎 and 𝑏. In 𝐵, there is a helpful characterization of 
the spectrum.

4. Deduce from part (3) that if 𝐴 is commutative, the spectral radius 𝑟 ∶ 𝐴 → [0, ∞) is 
continuous.

Problem 2. Let 𝐴 be a unital Banach algebra. Suppose we have a norm convergent sequence 
(𝑎𝑛) ⊂ 𝐴 with 𝑎𝑛 → 𝑎. Prove that for every open neighborhood 𝑈 of sp(𝑎), there is an 
𝑁 > 0 such that sp(𝑎𝑛) ⊂ 𝑈 for all 𝑛 > 𝑁.

Problem 3. Let 𝑋 be a Banach space, and let [𝑎, 𝑏] ⊂ ℝ be a compact interval. Let 
𝐶([𝑎, 𝑏], 𝑋) be the space of continuous functions [𝑎, 𝑏] → 𝑋, where 𝑋 has the norm topology.

1. Show that every 𝑓 ∈ 𝐶([𝑎, 𝑏], 𝑋) is uniformly continuous.

2. Prove that 𝐶([𝑎, 𝑏], 𝑋) is a Banach space under the norm ‖𝑓‖∞ ∶= sup𝑡∈[𝑎,𝑏] ‖𝑓(𝑡)‖𝑋.

Problem 4. Let 𝑋 be a Banach space. In this problem, we show that the Riemann integral 
for continuous paths 𝛾 ∶ [𝑎, 𝑏] → 𝑋 is well-defined and is compatible with 𝑋∗. Fix a 
continuous path 𝛾 ∶ [𝑎, 𝑏] → 𝑋.

1. A partition of [𝑎, 𝑏] is a finite list 𝑃 = {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏}. We say 𝑃 ≤ 𝑄
or 𝑄 refines 𝑃 if 𝑃 ⊆ 𝑄 as sets. Clearly ≤ is a partial order on partitions. Show that 
partitions form a directed set under ≤.

2. A tagged partition of [𝑎, 𝑏] is a pair (𝑃 , 𝑢) where 𝑃 = {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏} is a 
partition of [𝑎, 𝑏] and 𝑢 ∈ [𝑎, 𝑏]𝑛 such that 𝑡𝑖−1 ≤ 𝑢𝑖 ≤ 𝑡𝑖 for all 𝑖 = 1, … , 𝑛. Show that 
the partial order given on partitions in (1) induces a preorder on tagged partitions.
Note: A preorder is reflexive and transitive, but need not be anti-symmetric.
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3. For a tagged partition (𝑃 , 𝑢), let 𝑥(𝑃 ,𝑢) = ∑𝑛
𝑖=1 𝛾(𝑢𝑖)(𝑡𝑖 − 𝑡𝑖−1). Show that (𝑥𝑃,𝑢) is 

a norm convergent net in 𝑋.
Hint: Take a limit as ‖𝑃 ‖ = max {Δ𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1|𝑖 = 1, … 𝑛} → 0 and use Problem 3.
Note: Some authors define nets using preorders instead of partial orders. We need only 
consider a net defined using a preorder for this problem, so let’s do so.

4. Define ∫1
0

𝛾(𝑡) 𝑑𝑡 = lim 𝑥(𝑃 ,𝑢). Prove that for every 𝜑 ∈ 𝑋∗, 𝜑(∫𝑏
𝑎

𝛾(𝑡) 𝑑𝑡) = ∫𝑏
𝑎

𝜑(𝛾(𝑡)) 𝑑𝑡, 
where the right hand side is the Riemann integral of 𝜑 ∘ 𝛾 ∶ [𝑎, 𝑏] → ℂ.

5. Show that ‖∫𝑏
𝑎

𝛾(𝑡) 𝑑𝑡‖ ≤ ∫𝑏
𝑎

‖𝛾(𝑡)‖ 𝑑𝑡. Deduce that ∫𝑏
𝑎

∶ 𝐶([𝑎, 𝑏], 𝑋) → 𝑋 is a bounded 
linear transformation.

Problem 5. Let 𝐴 be a unital Banach algebra. Show that the holomorphic functional 
calculus satisfies the following properties.

1. Suppose 𝑎 ∈ 𝐴 and 𝐾 ⊂ ℂ is compact such that sp(𝑎) ⊂ 𝐾∘. Show there is an 
𝑀𝐾 > 0 such that for any 𝑓 ∈ 𝐻(𝐾∘) which has a continuous extension to 𝐾, ‖𝑓(𝑎)‖ ≤
𝑀𝐾‖𝑓‖𝐶(𝐾).

2. Suppose (𝑎𝑛) ⊂ 𝐴 is a norm convergent sequence with 𝑎𝑛 → 𝑎. Show that for all 
𝑓 ∈ 𝒪(sp(𝑎)), 𝑓(𝑎𝑛) → 𝑓(𝑎) as 𝑛 → ∞.
Note: For 𝑓 ∈ 𝒪(sp(𝑎)), note that 𝑓 is holomorphic on some open set 𝑈 containing 𝐾. 
By Problem 2, we know that eventually sp(𝑎𝑛) ⊂ 𝑈, so eventually 𝑓(𝑎𝑛) is well-defined.

Problem 6. Let 𝐴 be a unital Banach algebra, and let 𝑎, 𝑝 ∈ 𝐴 such that 𝑎𝑝 = 𝑝𝑎.

1. Show that for every 𝑓 ∈ 𝒪(sp(𝑎)), 𝑓(𝑎)𝑝 = 𝑝𝑓(𝑎).
Hint: First prove the result for rational 𝑓, and then apply Runge’s Theorem.

2. Suppose from here on 𝑝 is an idempotent. Show that 𝑝𝐴𝑝 is a unital Banach algebra.

3. Prove that sp𝑝𝐴𝑝(𝑝𝑎) ⊆ sp𝐴(𝑎).

4. Prove that for every 𝑓 ∈ 𝒪(sp𝐴(𝑎)), 𝑓(𝑎𝑝) = 𝑝𝑓(𝑎) when viewed in the image of the 
holomorphic functional calculus 𝒪(sp𝑝𝐴𝑝(𝑝𝑎)) ∋ 𝑓 ↦ 𝑓(𝑝𝑎) ∈ 𝑝𝐴𝑝.
Hint: First verify that the proof of the uniqueness of the holomorphic functional calculus 
𝒪(sp𝐴(𝑎)) ∋ 𝑓 ↦ 𝑓(𝑎) ∈ 𝐴 also proves the following fact.

Fact. Suppose that 𝑈 is an open neighborhood of sp𝐴(𝑎), and Φ ∶ 𝐻(𝑈) → 𝐴 is a 
homomorphism such that

• Φ(𝑧 ↦ 1) = 1𝐴 and Φ(𝑧 ↦ 𝑧) = 𝑎, and
• If (𝑓𝑛) ⊂ 𝐻(𝑈) converges locally uniformly to 𝑓, then Φ(𝑓𝑛) → Φ(𝑓).

Then Φ(𝑓) = 𝑓(𝑎) for all 𝑓 ∈ 𝐻(𝑈), i.e., Φ is the holomorphic functional calculus 
restricted to 𝐻(𝑈) ⊆ 𝒪(sp𝐴(𝑎)).
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Now show that for any open neighborhood 𝑈 of sp𝐴(𝑎) ⊇ sp𝑝𝐴𝑝(𝑝𝑎), Φ ∶ 𝐻(𝑈) → 𝑝𝐴𝑝
given by Φ(𝑓) = 𝑝(𝑓(𝑎)) is a homomorphism which satisfies the criteria in the above 
fact with 𝐴 and 𝑎 replaced by 𝑝𝐴𝑝 and 𝑝𝑎 respectively.

5. (optional) Suppose sp𝐴(𝑎) = 𝐾1 ∪𝐾2, a disjoint union of two nonempty compact sets. 
Let 𝑈1, 𝑈2 be disjoint non-empty subsets of ℂ such that 𝐾𝑖 ⊆ 𝑈𝑖. Suppose further 
that the idempotent 𝑝 = 𝜒𝑈1

(𝑎) where 𝜒𝑈1
 is the indicator function for 𝑈1. See if 

sp𝑝𝐴𝑝(𝑎𝑝) = 𝐾1.

Problem 7. In class, we showed that if 𝐴 ⊆ 𝐵 is a unital inclusion of Banach algebras and 
𝑎 ∈ 𝐴, then sp𝐵(𝑎) ⊆ sp𝐴(𝑎), and the larger set is obtained from the smaller by filling in 
holes. Given an 𝑎 ∈ 𝐵 and a (countable) subset (𝐻𝑖) of the holes of sp𝐵(𝑎), find a unital 
Banach subalgebra 𝐴 ⊂ 𝐵 for which sp𝐴(𝑎) is obtained from sp𝐵(𝑎) by exactly filling in the 
𝐻𝑖.

Problem 8. Let 𝐴 ∈ 𝑀𝑛(ℂ).

1. As best as you can, describe 𝑓(𝐴) where 𝑓 ∈ 𝒪(sp(𝐴)).
Hint: First consider the case that 𝐴 is a single Jordan block.

2. Determine as best you can which matrices 𝐴 ∈ 𝑀𝑛(ℂ) have square roots, i.e., when 
there is a 𝐵 ∈ 𝑀𝑛(ℂ) such that 𝐵2 = 𝐴.
Note: Such a 𝐵 is not necessarily unique.

Problem 9. Suppose 𝐴 is a C*-algebra and 𝑎 ∈ 𝐴 is normal.

1. Show 𝑎 is self-adjoint if and only if sp(𝑎) ⊂ ℝ.

2. Show 𝑎 is unitary if and only if sp(𝑎) ⊂ 𝕋.

3. Show 𝑎 is a projection if and only if sp(𝑎) ⊂ {0, 1}.

Problem 10. Let 𝐴 be a C*-algebra.

1. Show that the following are equivalent for a self-adjoint 𝑎 ∈ 𝐴:

(a) sp(𝑎) ⊂ [0, ∞),
(b) For all 𝜆 ≥ ‖𝑎‖, ‖𝑎 − 𝜆‖ ≤ 𝜆, and
(c) There is a 𝜆 ≥ ‖𝑎‖ such that ‖𝑎 − 𝜆‖ ≤ 𝜆.

For now, we will call such elements spectrally positive.
Note: It is implicit here that a spectrally positive element is self-adjoint.

2. Deduce that the spectrally positive elements in a C*-algebra form a closed cone, i.e., 
𝐴+ = {𝑎 ∈ 𝐴|𝑎 ≥ 0} is closed, and for all 𝜆 ∈ [0, ∞) and 𝑎, 𝑏 ∈ 𝐴+, we have 𝜆𝑎 + 𝑏 ∈
𝐴+.
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3. Show 𝑎 is positive (𝑎 = 𝑏∗𝑏 for some 𝑏) if and only if 𝑎 is spectrally positive (𝑎 = 𝑎∗

and sp(𝑎) ⊂ [0, ∞)).
Hint: First, if sp(𝑎) ⊂ [0, ∞), we can define 𝑎1/2 via the continuous functional calculus. 
Now suppose 𝑎 = 𝑏∗𝑏 for some 𝑏 ∈ 𝐵. Use the continuous functions 𝑟 ↦ max{0, 𝑧}
and 𝑟 ↦ − min{0, 𝑧} on sp(𝑎) to write 𝑎 = 𝑎+ − 𝑎− where sp(𝑎±) ⊂ [0, ∞) and 
𝑎+𝑎− = 𝑎−𝑎+ = 0. Now look at 𝑐 = 𝑏𝑎−. Prove that sp(𝑐∗𝑐) ⊂ (−∞, 0] and 
sp(𝑐𝑐∗) ⊂ [0, ∞) using part (1) of this problem. Use part (1) of Problem 1 to deduce 
that 𝑐∗𝑐 = 0. Finally, deduce 𝑎− = 0, and thus 𝑎 = 𝑎+.

Problem 11. For 𝑎, 𝑏 ∈ 𝐴, we say 𝑎 ≤ 𝑏 if 𝑏 − 𝑎 ≥ 0.

1. Show that ≤ is a partial order.

2. Show that if 𝑎 ≤ 𝑏, then for all 𝑐 ∈ 𝐴, 𝑐∗𝑎𝑐 ≤ 𝑐∗𝑏𝑐.

3. Suppose 0 ≤ 𝑎 ≤ 𝑏. Prove that ‖𝑎‖ ≤ ‖𝑏‖.

Problem 12. Let 𝐴 be a C*-algebra. By the hint to part (4) of Problem 9 that for 𝑎 ≥ 0, 
we can define an 𝑎1/2 ≥ 0 such that (𝑎1/2)2 = 𝑎.

1. Show that if 𝑏 ≥ 0 such that 𝑏2 = 𝑎, then 𝑏 = 𝑎1/2.

2. Prove that if 0 ≤ 𝑎 ≤ 𝑏, then 𝑎1/2 ≤ 𝑏1/2.

3. Prove that if 0 < 𝑎 (0 ≤ 𝑎 and 𝑎 is invertible), then 0 < 𝑎−1.

4. Prove that if 0 < 𝑎 ≤ 𝑏, then 0 < 𝑏 and 0 < 𝑏−1 ≤ 𝑎−1.

Problem 13  (Rieffel, “Preventative Medicine”). Consider 𝑎 = (0 1
1 0) and 𝑏 = (𝑠 0

0 𝑡) for 

𝑠, 𝑡 ≥ 0.

1. Determine for which 𝑠, 𝑡 ≥ 0 we have 𝑏 ≥ 𝑎.

2. Determine for which 𝑠, 𝑡 ≥ 0 we have 𝑏 ≥ 𝑎+.
Note: Since 𝑎 = 𝑎∗, 𝑎+ is the positive part defined as in the hint to part (4) of Problem 
9.

3. Find values of 𝑠, 𝑡 ≥ 0 for which 𝑏 ≥ 𝑎, 𝑏 ≥ 0, and yet 𝑏 ≱ 𝑎+.

4. Find values of 𝑠, 𝑡 ≥ 0 such that 𝑏 ≥ 𝑎+ ≥ 0, and yet 𝑏2 ≱ 𝑎2
+.

5. Can you find 𝑠, 𝑡 ≥ 0 such that 𝑏 ≥ 𝑎+ and yet 𝑏1/2 ≱ 𝑎1/2
+ ?

Note: 𝑎1/2
+  is the unique positive square root of 𝑎+ from part (1) Problem 12.

6. Suppose 𝑐, 𝑝 ∈ 𝑀2(ℂ) such that 𝑐 ≥ 0 and 𝑝2 = 𝑝∗ = 𝑝 is a projection. Is it always 
true that 𝑝𝑐𝑝 ≤ 𝑐?
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Problem 14. Let 𝐿2(𝕋) denote the space of complex-valued square-integrable 1-periodic 
functions on ℝ, and let 𝐶(𝕋) ⊂ 𝐿2(𝕋) denote the subspace of continuous 1-periodic functions.

(a) Prove that {𝑒𝑛(𝑥) ∶= exp(2𝜋𝑖𝑛𝑥)|𝑛 ∈ ℤ} is an orthonormal basis for 𝐿2(𝕋).

(b) Define ℱ ∶ 𝐿2(𝕋) → ℓ2(ℤ) by ℱ(𝑓)𝑛 ∶= ⟨𝑓, 𝑒𝑛⟩𝐿2(𝕋) = ∫1
0

𝑓(𝑥) exp(−2𝜋𝑖𝑛𝑥) 𝑑𝑥. Show 
that if 𝑓 ∈ 𝐿2(𝕋) and ℱ(𝑓) ∈ ℓ1(ℤ), then 𝑓 ∈ 𝐶(𝕋), i.e., 𝑓 is a.e. equal to a continuous 
function.

Problem 15. Recall that each 𝑇 ∈ 𝐵(𝐻, 𝐾) induces a bounded sesquilinear form 𝐾 ×𝐻 →
ℂ given by 𝐵𝑇(𝜉, 𝜂) = ⟨𝜉, 𝑇 𝜂⟩.

1. Prove that 𝑇 ↦ 𝐵𝑇 is an isometric bijective correspondence between operators in 
𝐵(𝐻, 𝐾) and bounded sesquilinear forms 𝐾 × 𝐻 → ℂ.
Hint: Adapt the proof Lemma 3.2.2 in Analysis Now (see also Exercise 3.2.15 therein).

2. For 𝑇 ∈ 𝐵(𝐻, 𝐾) corresponding to 𝐵𝑇 ∶ 𝐾 × 𝐻 → ℂ, we define 𝑇 ∗ ∈ 𝐵(𝐾, 𝐻) to be 
the unique operator corresponding to the adjoint sesquilinear form 𝐵∗

𝑇 ∶ 𝐻 × 𝐾 → ℂ
defined by

𝐵∗
𝑇(𝜂, 𝜉) ∶= 𝐵𝑇(𝜉, 𝜂) ⟺ ⟨𝜂, 𝑇 ∗𝜉⟩ = ⟨𝑇 𝜂, 𝜉⟩ 𝜂 ∈ 𝐻, 𝜉 ∈ 𝐾.

Show that 𝑇 ↦ 𝑇 ∗ is a conjugate linear isometry of 𝐵(𝐻, 𝐾) onto 𝐵(𝐾, 𝐻), and that 
‖𝑇 ∗𝑇 ‖ = ‖𝑇 ‖2 = ‖𝑇 𝑇 ∗‖.

3. In the case that 𝐻 = 𝐾, deduce the following:

(a) 𝐵(𝐻) with involution 𝑇 ↦ 𝑇 ∗ is a C*-algebra.
(b) 𝑇 = 𝑇 ∗ if and only if 𝐵𝑇 is self-adjoint. That is, show 𝑇 = 𝑇 ∗ if and only if 

⟨𝑇 𝜉, 𝜉⟩ ∈ ℝ for all 𝜉 ∈ 𝐻.
(c) 𝑇 ≥ 0 if and only if 𝐵𝑇 is positive. That is, show 𝑇 ≥ 0 if and only if ⟨𝑇 𝜉, 𝜉⟩ ≥ 0

for all 𝜉 ∈ 𝐻.
Hint: Use that for 𝑇 = 𝑇 ∗, we have inf {⟨𝑇 𝜉, 𝜉⟩|𝜉 ∈ 𝐻, ‖𝜉‖ = 1} = min {𝜆|𝜆 ∈ sp(𝑇 )}.

(d) (optional) 𝑇 ≥ 0 and 𝑇 injective if and only if 𝐵𝑇 is positive definite.
Hint: For 𝑆 ∈ 𝐵(𝐻), ker(𝑆) = ker(𝑆∗𝑆), so 𝑇 ≥ 0 is injective if and only if 
𝑇 1/2 is injective.

(e) (optional) 𝑇 > 0 (𝑇 ≥ 0 and 𝑇 is invertible) if and only if 𝐵𝑇 is positive definite, 
and 𝐻 is complete in the norm ‖𝜉‖𝑇 ∶= 𝐵𝑇(𝜉, 𝜉)1/2.
Hint: When 𝐵𝑇 is positive definite and 𝐻 is complete for ‖ ⋅ ‖𝑇, apply part (d) 
and look at the isometry (𝐻, ‖ ⋅ ‖𝑇) → (𝐻, ‖ ⋅ ‖) by 𝜉 ↦ 𝑇 1/2𝜉.

Problem 16  (Challenge!). Suppose 𝐻 is a Hilbert space. A quadratic form on 𝐻 is a 
function 𝑞 ∶ 𝐻 → ℂ such that:

1. (quadratic) 𝑞(𝜆𝜉) = |𝜆|2𝑞(𝜉) for all 𝜆 ∈ ℂ and 𝜉 ∈ 𝐻,
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2. (parallelogram identity) 𝑞(𝜂 + 𝜉) + 𝑞(𝜂 − 𝜉) = 2(𝑞(𝜂) + 𝑞(𝜉)) for all 𝜂, 𝜉 ∈ 𝐻, and

3. (continuous) There is a 𝐶 > 0 such that |𝑞(𝜉)| ≤ 𝐶‖𝜉‖2 for all 𝜉 ∈ 𝐻.

Prove that

(𝜂, 𝜉) ∶= 1
4

3
∑
𝑘=0

𝑖𝑘𝑞(𝜂 + 𝑖𝑘𝜉)

is a bounded sesquilinear form on 𝐻 such that 𝑞(𝜉) = (𝜉, 𝜉).

Problem 17. For a Hilbert space 𝐻, we can define the conjugate Hilbert space 𝐻 =
{𝜉|𝜉 ∈ 𝐻} which has the conjugate vector space structure 𝜆𝜉 + 𝜂 = 𝜆𝜉 + 𝜂 and the con­
jugate inner product ⟨𝜂, 𝜉⟩𝐻 = ⟨𝜉, 𝜂⟩𝐻.

1. Prove that 𝐻 is a Hilbert space.

2. For 𝑇 ∈ 𝐵(𝐻, 𝐾), define 𝑇 ∶ 𝐻 → 𝐾 by 𝑇𝜉 = 𝑇 𝜉. Prove that 𝑇 ∈ 𝐵(𝐻, 𝐾), and 
‖𝑇 ‖ = ‖𝑇‖.

3. Prove that ⋅  is an endofunctor on the the category Hilb of Hilbert spaces with bounded 
operators ( ⋅  is a functor Hilb → Hilb).

4. For each 𝐻 ∈ Hilb, construct a linear isometry 𝑢𝐻 of 𝐻∗ onto 𝐻 satisfying 𝑢𝐻𝑇 𝑡 = 𝑇𝑢𝐻
for all 𝑇 ∈ 𝐵(𝐻, 𝐾) where 𝑇 𝑡 ∈ 𝐵(𝐾∗, 𝐻∗) is the Banach adjoint of 𝑇.

Problem 18. For 𝑇 ∈ 𝐵(𝐻), we define its numerical radius as

𝑅(𝑇 ) ∶= sup
‖𝜉‖≤1

|⟨𝑇 𝜉, 𝜉⟩|.

Prove that 𝑟(𝑇 ) ≤ 𝑅(𝑇 ) ≤ ‖𝑇 ‖ ≤ 2𝑅(𝑇 ). Deduce that if 𝑇 is normal, then ‖𝑇 ‖ = 𝑅(𝑇 ).

Problem 19. Let 𝐴 be a C*-algebra. An element 𝑢 ∈ 𝐴 is called a partial isometry if 𝑢∗𝑢
is a projection.

1. Show that the following are equivalent:

(a) 𝑢 is a partial isometry.
(b) 𝑢 = 𝑢𝑢∗𝑢.
(c) 𝑢∗ = 𝑢∗𝑢𝑢∗.
(d) 𝑢∗ is a partial isometry.

Hint: For (𝑎) ⇒ (𝑏), apply the C*-axiom to 𝑢 − 𝑢𝑢∗𝑢.

2. We say two projections 𝑝, 𝑞 ∈ 𝐴 are (Murray-von Neumann) equivalent, denoted 𝑝 ≈ 𝑞, 
if there is a partial isometry 𝑢 ∈ 𝐴 such that 𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 = 𝑞. Prove that ≈ is 
an equivalence relation on 𝑃 (𝐴), the set of projections of 𝐴.
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3. Describe the set of equivalence classes 𝑃 (𝐴)/ ≈ for 𝐴 = 𝐵(ℓ2).

Problem 20. Suppose 𝑥 = 𝑢|𝑥| is the polar decomposition of 𝑥 ∈ 𝐵(𝐻). Show that 
𝑥∗ = 𝑢∗|𝑥∗| is the polar decomposition.

Problem 21  (MO:325725). Suppose 𝐴 is a unital C*-algebra and 𝐼 ≤ 𝐴 is an ideal. Let 
𝑞 ∶ 𝐴 → 𝐴/𝐼 be the canonical surjection.

1. Show that unital ∗-homomorphisms 𝐶[0, 1] → 𝐴 are in canonical bijection with positive 
elements of 𝐴 with norm at most 1.

2. Show that if 𝑎 + 𝐼 ∈ 𝐴/𝐼 is positive with norm at most 1, there is a positive 𝑎̃ ∈ 𝐴
with norm at most 1 such that 𝑎̃ + 𝐼 = 𝑎 + 𝐼.
Hint: Since sp𝐴/𝐼(𝑎 + 𝐼) ⊆ sp𝐴(𝑎), 𝑓(𝑞(𝑎)) = 𝑞(𝑓(𝑎)) and thus 𝑓(𝑎 + 𝐼) = 𝑓(𝑎) + 𝐼
for all 𝑓 ∈ 𝐶(sp𝐴(𝑎)). Now pick 𝑓 carefully.

3. Deduce that for every unital ∗-homomorphism 𝜙 ∶ 𝐶[0, 1] → 𝐴/𝐼, there is a unital 
∗-homomorphism 𝜑̃ ∶ 𝐶[0, 1] → 𝐴 with 𝜙 = 𝑞 ∘ 𝜙̃.

4. Discuss the connection between the above statement and the Tietze Extension Theorem 
when 𝐴 is commutative.

Problem 22. Let 𝐻 be a Hilbert space. Compute the extreme points of the unit balls of

1. 𝒦(𝐻),

2. ℒ1(𝐻), and

3. 𝐵(𝐻).

Problem 23. Let 𝐻 be a Hilbert space. Prove that the trace Tr induces isometric isomor­
phims:

1. 𝒦(𝐻)∗ ≅ ℒ1(𝐻), and

2. ℒ1(𝐻)∗ ≅ 𝐵(𝐻).

Problem 24. Suppose 𝐻 is a Hilbert space and 𝐾 ⊆ 𝐻 is a closed subspace. Let 𝑝𝐾 ∈ 𝐵(𝐻)
be associated orthogonal projection onto 𝐾.

1. Suppose 𝑥 ∈ 𝐵(𝐻). Prove that:

(a) 𝑥𝐾 ⊆ 𝐾 if and only if 𝑥𝑝𝐾 = 𝑝𝐾𝑥𝑝𝐾.
(b) 𝑥∗𝐾 ⊆ 𝐾 if and only if 𝑝𝐾𝑥 = 𝑝𝐾𝑥𝑝𝐾.
(c) 𝑥𝐾 ⊆ 𝐾 and 𝑥∗𝐾 ⊆ 𝐾 if and only if [𝑥, 𝑝𝐾] = 0.
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2. Prove that if 𝑀 ⊆ 𝐵(𝐻) is a ∗-closed subalgebra, then 𝑀𝐾 ⊆ 𝐾 if and only if 
𝑝𝐾 ∈ 𝑀 ′.

Problem 25. Suppose 𝐻 is a Hilbert space.

1. Suppose 𝐾 is another Hilbert space. Define the tensor product Hilbert space 𝐻⊗𝐾 by 
completing the algebraic tensor product vector space 𝐻 ⊗ 𝐾 in the 2-norm associated 
to the sesquilinear form ⟨𝜂 ⊗ 𝜉, 𝜂′ ⊗ 𝜉′⟩ ∶= ⟨𝜂, 𝜂′⟩⟨𝜉, 𝜉′⟩. Find a unitary isomorphism 
𝐻⊗𝐾 ≅ ⨁dim 𝐾

𝑖=1 𝐻.

2. Find a unital ∗-isomorphism 𝐵(⨁𝑛
𝑖=1 𝐻) ≅ 𝑀𝑛(𝐵(𝐻)).

Hint: use orthogonal projections.

3. Suppose 𝑆 ⊆ 𝐵(𝐻), and let 𝛼 ∶ 𝐵(𝐻) → 𝑀𝑛(𝐵(𝐻)) be the amplification

𝑥 ⟼ (


𝑥
⋱

𝑥
)


.

Prove that:

(a) 𝛼(𝑆)′ = 𝑀𝑛(𝑆′), and
(b) If 0, 1 ∈ 𝑆, then 𝑀𝑛(𝑆)′ = 𝛼(𝑆′).
(c) Deduce that when 0, 1 ∈ 𝑆, 𝛼(𝑆)″ = 𝛼(𝑆″).

Problem 26. Let (𝑋, 𝜇) be a 𝜎-finite measure space, and consider the map 𝑀 ∶ 𝐿∞(𝑋, 𝜇) →
𝐵(𝐿2(𝑋, 𝜇)) given by (𝑀𝑓𝜉)(𝑥) = 𝑓(𝑥)𝜉(𝑥) for 𝜉 ∈ 𝐿2(𝑋, 𝜇).

1. Prove that 𝑀 is an isometric unital ∗-homomorphism.

2. Let 𝐴 ⊂ 𝐵(𝐿2(𝑋, 𝜇)) be the image of the map 𝑀. Prove that 𝐴 = 𝐴′.
Hint: If you’re stuck with (2), try the case 𝑋 = ℕ with counting measure.

Problem 27. Let 𝐻 be a Hilbert space. The weak operator topology (WOT) on 𝐵(𝐻) is 
the topology induced by the separating family of seminorms 𝑇 ↦ |⟨𝑇 𝜂, 𝜉⟩| for 𝜂, 𝜉 ∈ 𝐻. The 
strong operator topology (SOT) on 𝐵(𝐻) is induced by the separating family of seminorms 
𝑥 ↦ ‖𝑇 𝜉‖𝐻 for 𝜉 ∈ 𝐻.

1. Prove that every WOT open set is SOT open. Equivalently, prove that if a net 
(𝑇𝜆)𝜆∈Λ ⊂ 𝐵(𝐻) converges to 𝑇 ∈ 𝐵(𝐻) SOT, then 𝑇𝜆 → 𝑇 WOT.

2. Prove that the WOT is equal to the SOT on 𝐵(𝐻) if and only if 𝐻 is finite dimensional.

3. Show that the following are equivalent for a linear functional 𝜑 on 𝐵(𝐻):

(�*) There are 𝜂1, … , 𝜂𝑛, 𝜉1, … , 𝜉𝑛 ∈ 𝐻 such that 𝜑(𝑇 ) = ∑𝑛
𝑖=1⟨𝑇 𝜂𝑖, 𝜉𝑖⟩.
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(�*) 𝜑 is WOT-continuous.

(�*) 𝜑 is SOT-continuous.

Problem 28. Suppose 𝑀 ⊂ 𝐵(𝐻) is a unital ∗-subalgebra. A vector 𝜉 ∈ 𝐻 is called:

• cyclic for 𝑀 if 𝑀𝜉 is dense in 𝐻.

• separating for 𝑀 if for every 𝑥, 𝑦 ∈ 𝑀, 𝑥𝜉 = 𝑦𝜉 implies 𝑥 = 𝑦.

1. Prove that 𝜉 is cyclic for 𝑀 if and only if 𝜉 is separating for 𝑀 ′.

2. Prove that 𝐻 can be orthogonally decomposed into 𝑀-invariant subspaces 𝐻 = ⨁𝑖∈𝐼 𝐾𝑖, 
such that each 𝐾𝑖 is cyclic for 𝑀 (has a cyclic vector). Prove that if 𝐻 is separable, 
this decomposition is countable.

3. Prove that if 𝑀 is abelian and 𝐻 is separable, then there is a separating vector in 𝐻
for 𝑀.

Problem 29. Suppose 𝐻 is a Hilbert space, and (𝑥𝜆) is an increasing net of positive opera­
tors in 𝐵(𝐻) which is bounded above by the positive operator 𝑥 ∈ 𝐵(𝐻), i.e., 𝜆 ≤ 𝜇 implies 
𝑥𝜆 ≤ 𝑥𝜇, and 0 ≤ 𝑥𝜆 ≤ 𝑥 for all 𝜆. Prove that the following are equivalent.

1. 𝑥𝜆 → 𝑥 SOT.

2. 𝑥𝜆 → 𝑥 WOT.

3. For every 𝜉 ∈ 𝐻, 𝜔𝜉(𝑥𝜆) = ⟨𝑥𝜆𝜉, 𝜉⟩ ↗ ⟨𝑥𝜉, 𝜉⟩ = 𝜔𝜉(𝑥).

4. There exists a dense subspace 𝐷 ⊂ 𝐻 such that for every 𝜉 ∈ 𝐷, 𝜔𝜉(𝑥𝜆) = ⟨𝑥𝜆𝜉, 𝜉⟩ ↗
⟨𝑥𝜉, 𝜉⟩ = 𝜔𝜉(𝑥).

We say an increasing net of positive operators (𝑥𝜆) increases to 𝑥 ∈ 𝐵(𝐻)+, denoted 𝑥𝜆 ↗ 𝑥, 
if any of the above equivalent conditions hold.
Hint: Show it suffices to prove (3) ⇒ (1) and (4) ⇒ (3). Try proving these implications.

Problem 30. Let 𝐻 be a Hilbert space and let 𝑇 ∈ 𝐵(𝐻). Prove that the following are 
equivalent. (You may use any results from last semester that you’d like without proof.)

1. 𝑇 is compact and normal.

2. 𝑇 has an orthonormal basis of eigenvectors (𝑒𝑖)𝑖∈𝐼 such that the corresponding eigen­
values 𝜆𝑖 → 0, with at most countably many of the 𝜆𝑖 ≠ 0.

3. There is a countable orthonormal subset (𝜉𝑛)𝑛∈ℕ ⊂ 𝐻 and a sequence (𝜆𝑛) ⊂ ℂ such 
that 𝜆𝑛 → 0 and 𝑇 = ∑𝑛∈ℕ 𝜆𝑛|𝜉𝑛⟩⟨𝜉𝑛|, which converges in operator norm.
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4. There is a sequence (𝜆𝑛) ⊂ ℂ such that 𝜆𝑛 → 0 and a countable family of finite rank 
projections 𝐸𝑛 ⊂ 𝐵(𝐻) such that 𝑇 = ∑𝑛∈ℕ 𝜆𝑛𝐸𝑛, which converges in operator norm.

5. There is a discrete set 𝑋 equipped with counting measure 𝜈, a function 𝑓 ∈ 𝑐0(𝑋), 
and a unitary 𝑈 ∈ 𝐵(ℓ2𝑋, 𝐻) such that 𝑇 = 𝑈𝑀𝑓𝑈∗ where 𝑀𝑓𝜉 = 𝑓𝜉 for 𝜉 ∈ ℓ2𝑋.
Note: 𝑈 ∈ 𝐵(𝐾, 𝐻) is unitary if 𝑈𝑈∗ = id𝐻 and 𝑈∗𝑈 = id𝐾.

Problem 31. Suppose 𝐴 is a unital C*-algebra. A linear map Φ ∶ 𝐴 → 𝐵(𝐻) is called 
completely positive if for every 𝑎 = (𝑎𝑖,𝑗) ≥ 0 in 𝑀𝑛(𝐴), (Φ(𝑎𝑖,𝑗)) ≥ 0 in 𝑀𝑛(𝐵(𝐻)) ≅
𝐵(𝐻𝑛). Such a map is unital if Φ(1) = 1.

1. Show that ⟨𝑥 ⊗ 𝜂, 𝑦 ⊗ 𝜉⟩ ∶= ⟨Φ(𝑦∗𝑥)𝜂, 𝜉⟩𝐻 on 𝐴 ⊗ 𝐻 linearly extends to a well-defined 
positive sesquilinear form.

2. Show that for 𝑉 a vector space with positive sesquilinear form 𝐵( ⋅ , ⋅ ), 𝑁𝐵 = {𝑣 ∈ 𝑉|𝐵(𝑣, 𝑣) = 0}
is a subspace of 𝑉, and 𝐵 descends to an inner product on 𝑉 /𝑁𝐵.

3. Define 𝐾 to be completion of (𝐴 ⊗ 𝐻)/𝑁⟨ ⋅ , ⋅ ⟩ in ‖ ⋅ ‖2. Find a unital ∗-homormophism 
Ψ ∶ 𝐴 → 𝐵(𝐾), and an isometry 𝑣 ∈ 𝐵(𝐻, 𝐾) such that Φ(𝑚) = 𝑣∗Ψ(𝑚)𝑣.

Problem 32. Suppose 𝑦 ∈ 𝐵(𝐻) is positive.

1. Show that if 𝑦 ∉ 𝐾(𝐻), then there is a 𝜆 > 0 and a projection 𝑝 with infinite 
dimensional range such that 𝑦 ≥ 𝜆𝑝.

2. Deduce that if 𝑥 ↦ Tr(𝑥𝑦) is bounded on ℒ𝑝(𝐻) where 1 ≤ 𝑝 < ∞, then 𝑦 ∈ 𝐾(𝐻).

Problem 33. Suppose 𝐴 ⊆ 𝐵(𝐻) is a unital C*-subalgebra and 𝜉 ∈ 𝐻 is a cyclic vector 
for 𝐴. Consider the vector state 𝜔𝜉 = ⟨ ⋅ 𝜉, 𝜉⟩. Prove there is a bijective correspondence 
between:

1. positive linear functionals 𝜑 on 𝐴 such that 0 ≤ 𝜑 ≤ 𝜔𝜉 (𝜔𝜉 − 𝜑 ≥ 0), and

2. operators 0 ≤ 𝑥 ≤ 1 in 𝐴′.

Hint: For 0 ≤ 𝑥 ≤ 1 in 𝐴′, define 𝜑𝑥(𝑎) ∶= ⟨𝑎𝑥𝜉, 𝜉⟩ for 𝑎 ∈ 𝐴. (Why is 0 ≤ 𝜑𝑥 ≤ 𝜔𝜉?) 
For the reverse direction, use the bijective correspondence between sesquilinear forms and 
operators.

Problem 34. 

1. Prove that a unital ∗-subalgebra 𝑀 ⊆ 𝐵(𝐻) is a von Neumann algebra if and only if 
its unit ball is 𝜎-WOT compact.

2. Let 𝑀 ⊂ 𝐵(𝐻) be a von Neumann algebra and Φ ∶ 𝑀 → 𝐵(𝐾) a unital ∗-homomorphism. 
Deduce that if Φ is 𝜎-WOT continuous and injective, then Φ(𝑀) is a von Neumann 
subalgebra of 𝐵(𝐾).
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Problem 35. Suppose 𝑋 is a compact Hausdorff topological space and 𝐸 ∶ (𝑋, ℳ) → 𝐵(𝐻)
is a Borel spectral measure. Prove that the following conditions are equivalent.

1. 𝐸 is regular, i.e., for all 𝜉 ∈ 𝐻, 𝜇𝜉,𝜉(𝑆) = ⟨𝐸(𝑆)𝜉, 𝜉⟩ is a finite regular Borel measure.

2. For all 𝑆 ∈ ℳ, 𝐸(𝑆) = sup {𝐸(𝐾)|𝐾 is compact and 𝐾 ⊆ 𝑆}.

3. For all 𝑆 ∈ ℳ, 𝐸(𝑆) = inf {𝐸(𝑈)|𝑈 is open and 𝑆 ⊆ 𝑈}

Problem 36. Suppose 𝑥 ∈ 𝐵(𝐻) is normal. Show that 𝜒{0}(𝑥) = 𝑝ker(𝑥) and 𝜒sp(𝑥)∖{0} =
𝑝𝑥𝐻.

Problem 37. Let 𝐻 be a separable Hilbert space and 𝐴 ⊆ 𝐵(𝐻) an abelian von Neumann 
algebra. Prove that the following are equivalent.

1. 𝐴 is maximal abelian, i.e., 𝐴 = 𝐴′.

2. 𝐴 has a cyclic vector 𝜉 ∈ 𝐻.

3. For every norm separable SOT-dense C*-subalgebra 𝐴0 ⊂ 𝐴, 𝐴0 has a cyclic vector.

4. There is a norm separable SOT-dense C*-subalgebra 𝐴0 ⊂ 𝐴 such that 𝐴0 has a cyclic 
vector.

5. There is a finite regular Borel measure 𝜇 on a compact Hausdorff second countable 
space 𝑋 and a unitary 𝑢 ∈ 𝐵(𝐿2(𝑋, 𝜇), 𝐻) such that 𝑓 ↦ 𝑢𝑀𝑓𝑢∗ is an isometric 
∗-isomorphism 𝐿∞(𝑋, 𝜇) → 𝐴.

Hints:
For (1) ⇒ (2), use Problem 28.
For (3) ⇒ (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show 
that 𝐴∗ = ℒ1(𝐻)/𝐴⟂ is a separable Banach space. Then show that 𝐴 is 𝜎-WOT separable, 
which implies SOT-separable. Take 𝐴0 to be the unital C*-algebra generated by an SOT-
dense sequence.
For (4) ⇒ (5) show that 𝐴0 separable implies 𝑋 = 𝐴̂0 is second countable. Define 𝜇 = 𝜇𝜉,𝜉
on 𝑋, and show that the map 𝐶(𝑋) → 𝐻 by 𝑓 ↦ Γ−1(𝑓)𝜉 is a ‖ ⋅ ‖2 − ‖ ⋅ ‖𝐻 isometry with 
dense range.

Problem 38. Suppose 𝐸 ∶ (𝑋, ℳ) → 𝑃 (𝐻) is a spectral measure with 𝐻 separable, and 
let 𝐴 ⊂ 𝐵(𝐻) be the unital C*-algebra which is the image of 𝐿∞(𝐸) under ∫ ⋅ 𝑑𝐸. Suppose 
there is a cyclic unit vector 𝜉 ∈ 𝐻 for 𝐴.

1. Show that 𝜔𝜉(𝑓) = ⟨(∫ 𝑓𝑑𝐸)𝜉, 𝜉⟩ is a faithful state on 𝐿∞(𝐸) (𝜔𝜉(|𝑓|2) = 0 ⟹ 𝑓 = 0).

2. Consider the finite non-negative measure 𝜇 = 𝜇𝜉,𝜉 on (𝑋, ℳ). Show that a measurable 
function 𝑓 on (𝑋, ℳ) is essentially bounded with respect to 𝐸 if and only if 𝑓 is 
essentially bounded with respect to 𝜇.
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3. Deduce that for essentially bounded measurable 𝑓 on (𝑋, ℳ), ‖𝑓‖𝐸 = ‖𝑓‖𝐿∞(𝑋,ℳ,𝜇).

4. Construct a unitary 𝑢 ∈ 𝐵(𝐿2(𝑋, ℳ, 𝜇), 𝐻) such that for all 𝑓 ∈ 𝐿∞(𝐸) = 𝐿∞(𝑋, ℳ, 𝜇), 
(∫ 𝑓𝑑𝐸)𝑢 = 𝑢𝑀𝑓.

5. Deduce that 𝐴 ⊂ 𝐵(𝐻) is a maximal abelian von Neumann algebra.

Problem 39. Suppose 𝐻 is a separable infinite dimensional Hilbert space. Prove that 
𝐾(𝐻) ⊂ 𝐵(𝐻) is the unique norm closed 2-sided proper ideal.

Problem 40. Classify all abelian von Neumann algebras 𝐴 ⊂ 𝐵(𝐻) when 𝐻 is separable.
Hint: Use a maximality argument to show you can write 1 = 𝑝 + 𝑞 with 𝑝, 𝑞 ∈ 𝑃 (𝐴) such 
that 𝑞 is diffuse and 𝑝 = ∑ 𝑝𝑖 (SOT) with all 𝑝𝑖 minimal. Then analyze 𝐴𝑞 and 𝐴𝑝.

Problem 41. Suppose 𝑀 ⊆ 𝐵(𝐻) is a von Neumann algebra and 𝑝, 𝑞 ∈ 𝑃 (𝑀). Define 
𝑝 ∧ 𝑞 ∈ 𝐵(𝐻) to be the orthogonal projection onto 𝑝𝐻 ∩ 𝑞𝐻. Prove that 𝑝 ∧ 𝑞 ∈ 𝑀 two 
separate ways:

1. Show that 𝑝𝐻 ∩ 𝑞𝐻 is 𝑀 ′-invariant, and deduce 𝑝 ∧ 𝑞 ∈ 𝑀.

2. Show that 𝑝 ∧ 𝑞 is the SOT-limit of (𝑝𝑞)𝑛 as 𝑛 → ∞.
Hint: You could proceed as follows, but a quicker proof would be much appreciated!

(a) Use (2) of Problem 11 to show (𝑝𝑞)𝑛𝑝 is a decreasing sequence of positive operators.
(b) Show (𝑝𝑞)𝑛𝑝 converges SOT to a positive operator 𝑥 ∈ 𝑀.
(c) Show that 𝑥2 = 𝑥, and deduce 𝑥 ≤ 𝑝 is an orthogonal projection.
(d) Show that 𝑥𝑞𝑝 = 𝑥, and deduce 𝑥𝑞𝑥 = 𝑥.
(e) Show that 𝑥 ≤ 𝑞, and deduce 𝑥 ≤ 𝑝 ∧ 𝑞.
(f) Show that (𝑝 ∧ 𝑞)(𝑝𝑞)𝑛 converges SOT to both 𝑝 ∧ 𝑞 and 𝑥, and deduce 𝑥 = 𝑝 ∧ 𝑞.
(g) Finally, show (𝑝𝑞)𝑛 converges SOT to 𝑥𝑞 = 𝑝 ∧ 𝑞.

Define 𝑝 ∨ 𝑞 as the projection onto 𝑝𝐻 + 𝑞𝐻. Show that 𝑝 ∨ 𝑞 ∈ 𝑀 in two separate ways:

1. Prove that 𝑝𝐻 + 𝑞𝐻 is 𝑀 ′-invariant, and deduce 𝑝 ∨ 𝑞 ∈ 𝑀.

2. Show that 𝑝 ∨ 𝑞 = 1 − (1 − 𝑝) ∧ (1 − 𝑞) and use that 𝑝 ∧ 𝑞 ∈ 𝑀.

Problem 42. Suppose 𝑁 ⊆ 𝑀 ⊂ 𝐵(𝐻) is a unital inclusion of von Neumann algebra and 
𝑝 ∈ 𝑃(𝑁).

1. Prove that (𝑁 ′𝑝) ∩ 𝑝𝑀𝑝 = (𝑁 ′ ∩ 𝑀)𝑝.

2. Deduce that if 𝑝 ∈ 𝑃 (𝑀), 𝑍(𝑝𝑀𝑝) = 𝑍(𝑀)𝑝.

3. Deduce that if 𝑝 ∈ 𝑃 (𝑀) and 𝑀 is a factor, then 𝑝𝑀𝑝 is a factor.
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4. Prove that when 𝑀 is a factor and 𝑝 ∈ 𝑃 (𝑀), the map 𝑀 ′ → 𝑀 ′𝑝 by 𝑥 ↦ 𝑥𝑝 is a 
unital ∗-algebra isomorphism.

Problem 43. Prove that the following conditions are equivalent for a von Neumann algebra 
𝑀 ⊆ 𝐵(𝐻):

1. Every non-zero 𝑞 ∈ 𝑃 (𝑀) majorizes an abelian projection 𝑝 ∈ 𝑃 (𝑀).

2. 𝑀 is type I (every non-zero 𝑧 ∈ 𝑃 (𝑍(𝑀)) majorizes an abelian 𝑝 ∈ 𝑃 (𝑀)).

3. There is an abelian projection 𝑝 ∈ 𝑃 (𝑀) whose central support 𝑧(𝑝) = ⋁
𝑢∈𝑈(𝑀)

𝑢∗𝑝𝑢 ∈
𝑍(𝑀) is 1𝑀.

Hints:
For (2) ⇒ (3), if 𝑝 ∈ 𝑃 (𝑀) is abelian with 𝑧(𝑝) ≠ 1, then there is an abelian projection 
𝑞 ∈ 𝑃 (𝑀) such that 𝑧(𝑞) ≤ 1 − 𝑧(𝑝). Show that 𝑝𝑀𝑞 = 0 and 𝑝 + 𝑞 is an abelian projection. 
Now use Zorn’s Lemma.
For (3) ⇒ (1), suppose 𝑝 ∈ 𝑃 (𝑀) is abelian with 𝑧(𝑝) = 1 and 𝑞 ∈ 𝑃 (𝑀) is non-zero. Show 
there is a non-zero partial isometry 𝑢 ∈ 𝑀 such that 𝑢𝑢∗ ≤ 𝑝 and 𝑢∗𝑢 ≤ 𝑞. Deduce that 𝑢𝑢∗

is abelian, and then prove 𝑢∗𝑢 is abelian.

Problem 44. Show that for every von Neumann algebra 𝑀, there are unique central pro­
jections 𝑧I, 𝑧II1

, 𝑧II∞
, and 𝑧III (some of which may be zero) such that

• 𝑀𝑧I is type I, 𝑀𝑧II1
 is type II1, 𝑀𝑧II∞

 is type II∞, and 𝑀𝑧III is type III, and

• 𝑧I + 𝑧II1
+ 𝑧II∞

+ 𝑧III = 1

Hint: You could proceed as follows:

1. First, show that if 𝑀 has an abelian projection 𝑝, then 𝑧(𝑝) is type I. Then use a 
maximality argument to construct 𝑧I. For this, you could adapt the hint for (2) ⇒ (3)
in Problem 43.

2. Replacing 𝑀, 𝐻 with 𝑀(1−𝑧I), (1−𝑧I)𝐻, we may assume 𝑀 has no abelian projections. 
Show that if 𝑀 has a finite central projection 𝑧, then 𝑀𝑧 is type II1. Now use 
a maximality argument to construct 𝑧II1

. This hinges on proving the sum of two 
orthogonal finite central projections is finite. (Proving this is much easier than proving 
the sup of two finite projections is finite!)

3. By compression, we may now assume that 𝑀 has no abelian projections and no finite 
central projections. Show that if 𝑀 has a nonzero finite projection 𝑝, then its central 
support 𝑧(𝑝) satisfies 𝑀𝑧(𝑝) is type II∞. Use a maximality argument to construct 𝑧II∞

.

4. Compressing one more time, we may assume 𝑀 has no finite projections, and thus 𝑀
is purely infinite and type III.
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Problem 45. Let 𝑀 ⊆ 𝐵(𝐻) be a finite dimensional von Neumann algebra.

1. Prove 𝑀 has a minimal projection.

2. Deduce that 𝑍(𝑀) has a minimal projection.

3. Prove that for any minimal projection 𝑝 ∈ 𝑍(𝑀), 𝑀𝑝 is a type I factor.

4. Prove that 𝑀 is a direct sum of matrix algebras.

Problem 46. Suppose 𝐻 is infinite dimensional. Prove that 𝐵(𝐻) does not admit a 𝜎-WOT 
continuous tracial state.
Optional: Instead, prove that 𝐵(𝐻) does not admit a non-zero tracial linear functional.

Problem 47. Suppose 𝑀 ⊆ 𝐵(𝐻) and 𝑁 ⊆ 𝐵(𝐾) are von Neumann algebras, and let 
𝐻⊗𝐾 be the tensor product of Hilbert spaces as in Problem 25.

1. Show that for every 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁, the formula (𝑚 ⊗ 𝑛)(𝜂 ⊗ 𝜉) ∶= 𝑚𝜂 ⊗ 𝑛𝜉 gives 
a unique well-defined operator 𝑚 ⊗ 𝑛 ∈ 𝐵(𝐻⊗𝐾).

2. Let 𝑀⊗𝑁 = {𝑚 ⊗ 𝑛|𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁}″ ⊂ 𝐵(𝐻⊗𝐾). Show that the linear extension of 
the map from the algebraic tensor product 𝑀 ⊗𝑁 to 𝑀⊗𝑁 given by 𝑚⊗𝑛 ↦ 𝑚⊗𝑛 is 
a well-defined injective unital ∗-algebra map onto an SOT-dense unital ∗-subalgebra.
Hint for injectivity: Suppose 𝑥 = ∑𝑘

𝑖=1 𝑚𝑖 ⊗ 𝑛𝑖 is not zero in 𝑀 ⊗ 𝑁. Reduce to 
the case {𝑛1, … , 𝑛𝑘} is linearly independent and all 𝑚𝑖 ≠ 0. Show that for each 
𝑖 = 1, … , 𝑘, there exists a 𝑘𝑖 > 0 and {𝜂𝑖

𝑗, 𝜉𝑖
𝑗}

𝑘𝑖
𝑗=1 such that ∑

𝑘𝑖
𝑗=1⟨𝑛𝑖′𝜂𝑖

𝑗, 𝜉𝑖
𝑗⟩ = 𝛿𝑖=𝑖′ . 

(Sub-hint: Consider 𝐹 = spanℂ{𝑛1, … , 𝑛𝑘} ⊂ 𝑁, a closed normed space, and look at 
Φ ∶ 𝐻 × 𝐻 → 𝐹 ∗ by (𝜂, 𝜉) ↦ ⟨ ⋅ 𝜂, 𝜉⟩. Show that spanℂ(Φ(𝐻)) = 𝐹 ∗.) Now pick 
𝜅, 𝜁 ∈ 𝐻 such that ⟨𝑚1𝜅, 𝜁⟩ ≠ 0, and deduce ∑𝑘1

𝑗=1⟨𝑥(𝜅 ⊗ 𝜂1
𝑗 ), 𝜁 ⊗ 𝜉1

𝑗 ⟩𝐻⊗𝐾 ≠ 0.

3. We denote by 𝐵(𝐻) ⊗ 1 the image of 𝐵(𝐻) under the map 𝑥 ↦ 𝑥 ⊗ 1 ∈ 𝐵(𝐻⊗𝐾). 
Prove that 𝐵(𝐻) ⊗ 1 is a von Neumann algebra.
Hint: Show that (𝐵(𝐻)⊗1)′ = 1⊗𝐵(𝐾). Then by symmetry, (1⊗𝐵(𝐾))′ = 𝐵(𝐻)⊗1
is a von Neumann algebra.

4. Prove that 𝐵(𝐻⊗𝐾) = 𝐵(𝐻)⊗𝐵(𝐾).
Hint: Calculate the commutant of the image of the algebraic tensor product (𝐵(𝐻) ⊗
𝐵(𝐾))′ = ℂ1 and use (2).

Problem 48. Let 𝑆∞ be the group of finite permutations of ℕ.

1. Show that 𝑆∞ is ICC. Deduce that 𝐿𝑆∞ is a II1 factor.

2. Give an explicit description of a projection with trace 𝑘−𝑛 for arbitrary 𝑛, 𝑘 ∈ ℕ.
Hint: Find such a projection in ℂ𝑆∞ ⊂ 𝐿𝑆∞.
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3. Find an increasing sequence 𝐹𝑛 ⊂ 𝐿𝑆∞ of finite dimensional von Neumann subalgebras 
such that 𝐿𝑆∞ = (⋃∞

𝑛=1 𝐹𝑛)
″
.

Note: A II1 factor which is generated by an increasing sequence of finite dimensional von 
Neumann subalgebras as in (3) above is called hyperfinite.

Problem 49. Let 𝑀 be a von Neuman algebra. Suppose 𝑎, 𝑏 ∈ 𝑀 with 0 ≤ 𝑎 ≤ 𝑏. Prove 
there is a 𝑐 ∈ 𝑀 such that 𝑎 = 𝑐∗𝑏𝑐. Deduce that a 2-sided ideal in a von Neumann algebra 
is hereditary: 0 ≤ 𝑎 ≤ 𝑏 ∈ 𝑀 implies 𝑎 ∈ 𝑀.

Problem 50. Let 𝑀 be a factor. Prove that if 𝑀 is finite or purely infinite, then 𝑀 is 
algebraically simple, i.e., 𝑀 has no 2-sided ideals.
Note: You may use that a II1 factor has a (faithful 𝜎-WOT continuous) tracial state.

Problem 51. A positive linear functional 𝜑 ∈ 𝑀∗ is called completely additive if for any 
family of pairwise orthogonal projections (𝑝𝑖), 𝜑(∑ 𝑝𝑖) = ∑ 𝜑(𝑝𝑖). (Here, ∑ 𝑝𝑖 converges 
SOT.)

Suppose 𝜑, 𝜓 ∈ 𝑀∗ are completely additive and 𝑝 ∈ 𝑃 (𝑀) such that 𝜑(𝑝) < 𝜓(𝑝). Then 
there is a non-zero projection 𝑞 ≤ 𝑝 such that 𝜑(𝑞𝑥𝑞) < 𝜓(𝑞𝑥𝑞) for all 𝑥 ∈ 𝑀+ such that 
𝑞𝑥𝑞 ≠ 0.
Hint: Choose a maximal family of mutually orthogonal projections 𝑒𝑖 ≤ 𝑝 for which 𝜓(𝑒𝑖) ≤
𝜑(𝑒𝑖). Consider 𝑒 = ⋁ 𝑒𝑖, and show that 𝜓(𝑒) ≤ 𝜑(𝑒). Set 𝑞 = 𝑝 − 𝑒, and show that for 
all projections 𝑟 ≤ 𝑞, 𝜑(𝑟) < 𝜓(𝑟). Then show 𝜑(𝑞𝑥𝑞) < 𝜓(𝑞𝑥𝑞) for all 𝑥 ∈ 𝑀+ such that 
𝑞𝑥𝑞 ≠ 0.

Problem 52. Show that the following conditions are equivalent for a positive linear func­
tional 𝜑 ∈ 𝑀∗ for a von Neumann algebra 𝑀:

1. 𝜑 is 𝜎-WOT continuous,

2. 𝜑 is normal: 𝑥𝜆 ↗ 𝑥 implies 𝜑(𝑥𝜆) ↗ 𝜑(𝑥), and

3. 𝜑 is completely additive: for any family of pairwise orthogonal projections (𝑝𝑖), 𝜑(∑ 𝑝𝑖) =
∑ 𝜑(𝑝𝑖). (Here, ∑ 𝑝𝑖 converges SOT.)

Hint: For (3) ⇒ (1), show if 𝑝 ∈ 𝑃 (𝑀) is non-zero, then pick 𝜉 ∈ 𝐻 such that 𝜑(𝑝) < ⟨𝑝𝜉, 𝜉⟩. 
Use Problem 51 to find a non-zero 𝑞 ≤ 𝑝 such that 𝜑(𝑞𝑥𝑞) < ⟨𝑥𝑞𝜉, 𝑞𝜉⟩ for all 𝑥 ∈ 𝑀. Use 
the Cauchy-Schwarz inequality to show 𝑥 ↦ 𝜑(𝑥𝑞) is SOT-continuous, and thus 𝜎-WOT 
continuous. Now use Zorn’s Lemma to consider a maximal family of mutually orthogonal 
projections (𝑞𝑖)𝑖∈𝐼 for which 𝑥 ↦ 𝜑(𝑥𝑞𝑖) is 𝜎-WOT continuous. Show ∑ 𝑞𝑖 = 1. For finite 
𝐹 ⊆ 𝐼, define 𝜑𝐹(𝑥) = ∑𝑖∈𝐹 𝜑(𝑥𝑞𝑖). Ordering finite subsets by inclusion, we get a net 
(𝜑𝐹) ⊂ 𝑀∗. Show that 𝜑𝐹 → 𝜑 in norm in 𝑀∗. Deduce that 𝜑 ∈ 𝑀∗ since 𝑀∗ ⊂ 𝑀∗ is 
norm-closed.

Problem 53. Let Φ ∶ 𝑀 → 𝑁 be a unital ∗-homomorphism between von Neumann algebras.
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1. Prove that the following two conditions are equivalent:

(a) Φ is normal: 𝑥𝜆 ↗ 𝑥 implies Φ(𝑥𝜆) ↗ Φ(𝑥).
(b) Φ is 𝜎-WOT continuous.

2. Prove that if Φ is normal, then Φ(𝑀) ⊂ 𝑁 is a von Neumann subalgebra.
Hint: ker(Φ) ⊂ 𝑀 is a 𝜎-WOT closed 2-sided ideal.

3. Let 𝜑 be a normal state on a a von Neumann algebra 𝑀, and let (𝐻𝜑, Ω𝜑, 𝜋𝜑) be the 
cyclic GNS representation of 𝑀 associated to 𝜑, i.e., 𝐻𝜑 = 𝐿2(𝑀, 𝜑), Ω𝜑 ∈ 𝐻𝜑 is the 
image of 1 ∈ 𝑀 in 𝐻𝜑, and 𝜋𝜑(𝑥)𝑚Ω𝜑 = 𝑥𝑚Ω𝜑 for all 𝑥, 𝑚 ∈ 𝑀.

(a) Show that 𝜋𝜑 is normal.
(b) Deduce that if 𝜑 is faithful, then 𝑀 ≅ 𝜋𝜑(𝑀) ⊂ 𝐵(𝐻𝜑) is a von Neumann 

algebra acting on 𝐻𝜑.

Problem 54. Suppose Φ ∶ 𝑀 → 𝑁 is a unital ∗-algebra homomorphism between von 
Neumann algebras.

1. Prove that the following conditions imply Φ is normal:

(a) Φ is SOT-continuous on the unit ball of 𝑀.
(b) Φ is WOT-continuous on the unit ball of 𝑀.
(c) Suppose 𝑁 = 𝑁″ ⊆ 𝐵(𝐻). For a dense subspace 𝐷 ⊆ 𝐻, 𝑚 ↦ ⟨Φ(𝑚)𝜂, 𝜉⟩ is 

WOT-continuous on 𝑀 for any 𝜂, 𝜉 ∈ 𝐷.

2. (optional) Which of the conditions above are equivalent to normality of Φ?

Problem 55. Let 𝑀 be a finite von Neumann algebra with a faithful 𝜎-WOT continuous 
tracial state. Let 𝐿2𝑀 = 𝐿2(𝑀, tr) where Ω is the image of 1𝑀 in 𝐿2𝑀. Identify 𝑀 with 
its image in 𝐵(𝐿2𝑀) by part (3) of Problem 53.

1. Show that 𝐽 ∶ 𝑀Ω → 𝑀Ω by 𝑎Ω ↦ 𝑎∗Ω is a conjugate-linear isometry with dense 
range.

2. Deduce 𝐽 has a unique extension to 𝐿2𝑀, still denoted 𝐽, which is a conjugate-linear 
unitary, i.e, 𝐽2 = 1 and ⟨𝐽𝜂, 𝐽𝜉⟩ = ⟨𝜉, 𝜂⟩ for all 𝜂, 𝜉 ∈ 𝐿2𝑀.
Hint: Look at 𝜂, 𝜉 in 𝑀Ω.

3. Calculate 𝐽𝑎∗𝐽𝑏Ω for 𝑎, 𝑏 ∈ 𝑀. Deduce that 𝐽𝑀𝐽 ⊆ 𝑀 ′.

4. Show ⟨𝐽𝑎∗𝐽𝑏Ω, 𝑐Ω⟩ = ⟨𝑏Ω, 𝐽𝑎𝐽𝑐Ω⟩ for all 𝑎, 𝑏, 𝑐 ∈ 𝑀. Deduce (𝐽𝑎𝐽)∗ = 𝐽𝑎∗𝐽.

5. Show ⟨𝐽𝑦Ω, 𝑎Ω⟩ = ⟨𝑦∗Ω, 𝑎Ω⟩ for all 𝑎 ∈ 𝑀 and 𝑦 ∈ 𝑀 ′. Deduce 𝐽𝑦Ω = 𝑦∗Ω.
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6. Prove that for 𝑦 ∈ 𝑀 ′, (𝐽𝑦𝐽)∗ = 𝐽𝑦∗𝐽.
Hint: Try the same technique as in (4).

7. Show for all 𝑎, 𝑏 ∈ 𝑀 and 𝑥, 𝑦 ∈ 𝑀 ′, ⟨𝑥𝐽𝑦𝐽𝑎Ω, 𝑏Ω⟩ = ⟨𝐽𝑦𝐽𝑥𝑎Ω, 𝑏Ω⟩.

8. Deduce that 𝑀 ′ ⊆ (𝐽𝑀 ′𝐽)′ = 𝐽𝑀𝐽, and thus 𝑀 ′ = 𝐽𝑀𝐽.

Problem 56. Let Γ be a discrete group, and let 𝐿Γ = {𝜆𝑔}″ ⊂ 𝐵(ℓ2Γ). Consider the 
faithful 𝜎-WOT continuous tracial state tr(𝑥) = ⟨𝑥𝛿𝑒, 𝛿𝑒⟩ on 𝐿Γ.

1. Show that 𝑢𝛿𝑔 = 𝜆𝑔 uniquely extends to a unitary 𝑢 ∈ 𝐵(ℓ2Γ, 𝐿2𝐿Γ) such that for all 
𝑥 ∈ 𝐿Γ and 𝜉 ∈ ℓ2Γ, 𝐿𝑥𝑢𝜉 = 𝑢𝑥𝜉 where 𝐿𝑥 ∈ 𝐵(𝐿2𝐿Γ) is left multiplication by 𝑥, 
i.e., 𝐿𝑥(𝑦Ω) = 𝑥𝑦Ω.

2. Deduce from Problem 55 that 𝐿Γ′ = 𝑅Γ.

Problem 57. Use Problem 56 above to give the following alternative characterization of 
𝐿Γ. Let

ℓΓ = {𝑥 = (𝑥𝑔) ∈ ℓ2Γ|𝑥 ∗ 𝑦 ∈ ℓ2Γ for all 𝑦 ∈ ℓ2Γ}

where (𝑥 ∗ 𝑦)𝑔 = ∑ℎ 𝑥ℎ𝑦ℎ−1𝑔. Define a unital ∗-algebra structure on ℓΓ by multiplication 
is convolution, the unit is 𝛿𝑒, the the indicator function at 𝑒 ∈ Γ (𝛿𝑒(𝑔) = 𝛿𝑔=𝑒), and the 
involution ∗ on ℓΓ is given on 𝑥 ∈ ℓΓ by (𝑥∗)𝑔 ∶= 𝑥𝑔−1 .

1. Show that ℓΓ is a well-defined unital ∗-algebra under the above operations.

2. For 𝑥 ∈ ℓΓ define 𝑇𝑥 ∶ ℓ2Γ → ℓ2Γ by 𝑇𝑥𝑦 = 𝑥 ∗ 𝑦. Prove 𝑇𝑥 ∈ 𝐵(ℓ2Γ).
Hint: Show that for all 𝑥 ∈ ℓΓ and 𝑦, 𝑧 ∈ ℓ2Γ, ⟨𝑇𝑥𝑦, 𝑧⟩ = ⟨𝑦, 𝑇𝑥∗𝑧⟩. Then use the 
Closed Graph Theorem.

3. Prove that for all 𝑥 ∈ ℓΓ, 𝑇𝑥 ∈ 𝐿Γ.
Hint: Prove 𝑇𝑥 ∈ 𝑅Γ′ and apply Problem 56.

4. Deduce that 𝑥 ↦ 𝑇𝑥 is a unital ∗-algebra isomorphism ℓΓ → 𝐿Γ.

Problem 58  (V. Jones). Suppose 𝑀 = 𝑀2(ℂ) and 𝜑 is a state. Then 𝜑(𝑥) = tr(𝑥𝜌) for a 
unique density matrix 𝜌 ≥ 0 with tr(𝜌) = 1. Choosing a basis of eigenvectors for 𝜌, we may 
identify

𝜌 = (
1

1+𝜆
𝜆

1+𝜆
)

for some 0 ≤ 𝜆 ≤ 1. Observe that 𝜑 is faithful if and only if 0 < 𝜆 < 1 if and only if 𝜌 is 
invertible.

1. Describe as best you can 𝐿2(𝑀, 𝜙) in terms of 𝜆.

2. Show that the action of 𝑀 on 𝐿2(𝑀, 𝜙) is faithful.
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3. From this point on, assume 0 < 𝜆 < 1. Consider 𝑆 ∶ 𝐿2(𝑀, 𝜑) → 𝐿2(𝑀, 𝜑) by 
𝑥Ω ↦ 𝑥∗Ω. Compute the polar decomposition 𝑆 = 𝐽Δ1/2 where Δ = 𝑆∗𝑆.

4. Show that 𝑀 ′ = 𝐽𝑀𝐽 = 𝑆𝑀𝑆 on 𝐿2(𝑀, 𝜑).

5. Show that for all 𝑧 ∈ ℂ, Δ𝑧𝑀Δ−𝑧 = 𝑀.

6. Deduce that we have a 1-parameter group of unitaries 𝑡 ↦ 𝜎𝑡 ∶= Δ𝑖𝑡 for 𝑡 ∈ ℝ which 
preserve 𝑀.

Problem 59. Repeat Problem 57 for the crossed product von Neumann algebra 𝑀 ⋊𝛼 Γ
acting on 𝐿2𝑀 ⊗ ℓ2Γ ≅ 𝐿2(Γ, 𝐿2𝑀) where 𝑀 is a finite von Neumann algebra with faithful 
normal tracial state tr, Γ is a discrete group, and 𝛼 ∶ Γ → Aut(𝑀) is an action. Here, we 
define

ℓ2(Γ, 𝑀) = {𝑥 ∶ Γ → 𝑀| ∑
𝑔

‖𝑥𝑔Ω‖2
𝐿2𝑀 < ∞}

ℓ2(Γ, 𝐿2𝑀) = {𝜉 ∶ Γ → 𝐿2𝑀| ∑
𝑔

‖𝜉𝑔‖2 < ∞}  and

𝑀 ∝𝛼 Γ = {𝑥 = (𝑥𝑔) ∈ ℓ2(Γ, 𝑀)|𝑥 ∗ 𝜉 ∈ ℓ2(Γ, 𝐿2𝑀) for all 𝜉 ∈ ℓ2(Γ, 𝐿2𝑀)} .

Here, the convolution action is given by (𝑥 ∗ 𝜉)𝑔 = ∑ℎ 𝑥ℎ𝑣ℎ𝜉ℎ−1𝑔 where 𝑣ℎ ∈ 𝑈(𝐿2𝑀) is 
the unitary implementing 𝛼𝑢 ∈ Aut(𝑀). Define an analogous unital ∗-algebra structure on 
𝑀Γ and find a unital ∗-algebra isomorphism 𝑀 ∝𝛼 Γ → 𝑀 ⋊𝛼 Γ.
Hint: Similar to 𝐿Γ, some people write elements of 𝑀 ⋊𝛼 Γ as formal sums ∑𝑔 𝑥𝑔𝑢𝑔 which 
does not converge in any operator topology. Rather, ∑𝑔 𝑥𝑔𝑢𝑔(Ω⊗𝛿𝑒) converges in 𝐿2𝑀⊗ℓ2Γ. 
These formal sums can be algebraically manipulated to obtain a unital ∗-algebra structure 
using the covariance condition 𝑢𝑔𝑚𝑢∗

𝑔 = 𝛼𝑔(𝑚) for all 𝑔 ∈ Γ and 𝑚 ∈ 𝑀. Thus

(∑
𝑔

𝑥𝑔𝑢𝑔)
∗

= ∑
𝑔

𝑢𝑔𝑥∗
𝑔 = ∑

𝑔
𝑢𝑔𝑥∗

𝑔𝑢∗
𝑔𝑢𝑔 = ∑

𝑔
𝛼𝑔(𝑥∗

𝑔)𝑢𝑔.

Thus for 𝑥 = (𝑥𝑔) ∈ 𝑀 ∝𝛼 Γ, we define (𝑥∗)𝑔 = 𝛼𝑔(𝑥∗
𝑔). A similar algebraic manipulation 

gives the formula for multiplication, which is similar to convolution, but involves the action.

Problem 60. Prove that a ∗-isomorphism between von Neumann algebras is automatically 
normal.

Problem 61. Suppose (𝑋, 𝜇) is a measure space and 𝑇 ∶ 𝑋 → 𝑋 is a measurable bijection 
preserving the measure class of 𝜇. Let 𝛼𝑇 ∈ Aut(𝐿∞(𝑋, 𝜇)) by (𝛼𝑇𝑓)(𝑥) = 𝑓(𝑇 −1𝑥). Is it 
always the case that the condition 𝜇({𝑥 ∈ 𝑋|𝑇 𝑥 = 𝑥}) = 0 is equivalent to the automorphism 
𝛼𝑇 being free? If yes, give a proof, and if not, find a counterexample together with a mild 
condition under which it is true.
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Problem 62. Let 𝔽2 = ⟨𝑎, 𝑏⟩ be the free group on 2 generators.

1. Show that 𝔽2 is ICC. Deduce 𝐿𝔽2 is a II1 factor.

2. Show that the swap 𝑎 ↔ 𝑏 extends to an automorphism 𝜎 of 𝐿𝔽2.

3. Show that 𝜎 is outer.

Problem 63. 

1. (Fell’s Absorption Principle) Suppose Γ is a countable group and (𝐻, 𝜋) is a unitary 
representation on a separable Hilbert space. Find a unitary 𝑢 ∈ 𝐵(ℓ2Γ⊗𝐻) intertwin­
ing 𝜆 ⊗ 𝜋 and 𝜆 ⊗ 1, i.e., 𝑢(𝜆𝑔 ⊗ 𝜋𝑔) = (𝜆𝑔 ⊗ 1)𝑢 for all 𝑔 ∈ Γ.

2. Consider the two definitions of 𝑀 ⋊𝛼 Γ when (𝑀, tr) is a tracial von Neumann algebra 
and tr ∘𝛼𝑔 = tr for all 𝑔 ∈ Γ. The first is the von Neumann algebra generated by the 
𝜋𝑚 and 𝑢𝑔 on ℓ2(Γ, 𝐿2𝑀) where

(𝑢𝑔𝜉)(ℎ) ∶= 𝜉(𝑔−1ℎ) (𝜋𝑚𝜉)(ℎ) = 𝛼ℎ−1(𝑚)𝜉(ℎ).

The second is the von Neumann algebra generated by the 𝜋𝑚 and 𝑢𝑔 on 𝐿2𝑀 ⊗ ℓ2Γ given 
by

𝜋𝑚(𝑥Ω ⊗ 𝛿ℎ) = 𝑚𝑥Ω ⊗ 𝛿ℎ 𝑢𝑔(𝑥Ω ⊗ 𝛿ℎ) = 𝛼𝑔(𝑥)Ω ⊗ 𝛿𝑔ℎ.

Find a unitary isomorphism ℓ2(Γ, 𝐿2𝑀) → 𝐿2𝑀 ⊗ ℓ2Γ intertwining the two 𝑀-actions and 
Γ-actions. Deduce the two definitions of 𝑀 ⋊𝛼 Γ are equivalent.

Problem 64. Prove that irrational rotation on the circle (with Lebesgue/Haar measure) is 
free and ergodic.

Problem 65. Let 𝑀 be a finite von Neumann algebra with a faithful normal tracial state.

1. Show for all 𝑥, 𝑦 ∈ 𝑀, | tr(𝑥𝑦)| ≤ ‖𝑦‖ tr(|𝑥|).

2. Show for all 𝑥 ∈ 𝑀, tr(|𝑥|) = sup {| tr(𝑥𝑦)||𝑦 ∈ 𝑀 with ‖𝑦‖ = 1}.

3. Define ‖𝑥‖1 = tr(|𝑥|) on 𝑀. Show that ‖ ⋅ ‖1 is a norm on 𝑀.

4. Define a map 𝜑 ∶ 𝑀 → 𝑀∗ by 𝑥 ↦ 𝜑𝑥 where 𝜑𝑥(𝑦) = tr(𝑥𝑦). Show that 𝜑 is a 
well-defined isometry from (𝑀, ‖ ⋅ ‖1) → 𝑀∗ with dense range.

5. Deduce that 𝐿1(𝑀, tr) ∶= 𝑀‖⋅‖1 is isometrically isomorphic to the predual 𝑀∗.

Problem 66. Continue the notation of Problem 65. Let 𝑁 ⊆ 𝑀 be a (unital) von Neumann 
subalgebra.

1. Prove that the inclusion 𝑁 → 𝑀 extends to an isometric inclusion 𝑖 ∶ 𝐿1(𝑁, tr) →
𝐿1(𝑀, tr).
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2. Let 𝐸 ∶ 𝑀 → 𝑁 be the Banach adjoint of 𝑖 under the identification 𝑀∗ = 𝐿1(𝑀, tr)
and 𝑁∗ = 𝐿1(𝑁, tr). Show that 𝐸 is uniquely characterized by the equation

tr𝑀(𝑥𝑦) = tr𝑁(𝐸(𝑥)𝑦) 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁.

Note: 𝐸 is called the canonical trace-preserving conditional expectation 𝑀 → 𝑁.

Problem 67. Suppose 𝑀 is a finite von Neumann algebra with normal faithful tracial state 
tr and 𝑁 ⊆ 𝑀 is a (unital) von Neumann subalgebra.

1. Prove that the inclusion 𝑁 → 𝑀 extends to an isometric inclusion 𝐿2(𝑁, tr) →
𝐿2(𝑀, tr).

2. Define 𝑒𝑁 ∈ 𝐵(𝐿2𝑀, 𝐿2𝑁) be the orthogonal projection with range 𝐿2(𝑁, tr) =
𝑁Ω‖⋅‖2 ⊂ 𝐿2(𝑀, tr). Show that for all 𝑥 ∈ 𝑀, 𝑒𝑁𝑥𝑒∗

𝑁 ⊂ 𝐵(𝐿2𝑁) commutes with the 
right action of 𝑁, and thus defines an element in 𝑁 by Problem 55.
Hint: Show the inclusion 𝑒∗

𝑁 ∶ 𝐿2𝑁 → 𝐿2𝑀 commutes with the right 𝑁 action, and 
deduce 𝑒𝑁 commutes with the right 𝑁 action.

3. For 𝑥 ∈ 𝑀, define 𝐸(𝑥) = 𝑒𝑁𝑥𝑒∗
𝑁. Show that 𝐸(𝑥) is uniquely characterized by the 

equation
tr𝑀(𝑥𝑦) = tr𝑁(𝐸(𝑥)𝑦) 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑁.

Note: 𝐸 is called the canonical trace-preserving conditional expectation 𝑀 → 𝑁. Part (3) 
implies this definition agrees with that from Problem 66.

Problem 68. Continue the notation of Problem 67.

1. Deduce that 𝐸 is normal.

2. Deduce 𝐸(1) = 1 and 𝐸 is 𝑁 − 𝑁 bilinear, i.e., for all 𝑥 ∈ 𝑀 and 𝑦, 𝑧 ∈ 𝑁, 𝐸(𝑦𝑥𝑧) =
𝑦𝐸(𝑥)𝑧.

3. Deduce that 𝐸(𝑥∗) = 𝐸(𝑥)∗.

4. Show that 𝐸 is completely positive, which was defined in Problem 31.
Hint: Use the characterization 𝐸(𝑥) = 𝑒𝑁𝑥𝑒∗

𝑁 from (5) of Problem 67.

5. Show that 𝐸(𝑥)∗𝐸(𝑥) ≤ 𝐸(𝑥∗𝑥) for all 𝑥 ∈ 𝑀.
Hint: Use the characterization 𝐸(𝑥) = 𝑒𝑁𝑥𝑒∗

𝑁 from (5) of Problem 67. Show that 
𝑒∗

𝑁𝑒𝑁 is an orthogonal projection.

6. Show that 𝐸 is faithful: 𝐸(𝑥∗𝑥) = 0 implies 𝑥∗𝑥 = 0.
Hint: Prove this by looking at the vector states 𝜔𝑛Ω for 𝑛 ∈ 𝑁.
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Problem 69. Suppose 𝑀 is a finite von Neumann algebra with faithful normal tracial state 
tr. Suppose further that there is an increasing sequence of von Neumann subalgebras 𝑀1 ⊂
𝑀2 ⊂ ⋯ 𝑀 such that (⋃ 𝑀𝑛)″ = 𝑀 (considered as acting on 𝐿2𝑀). Let 𝐸𝑛 ∶ 𝑀 → 𝑀𝑛 be 
the canonical trace-preserving conditional expectation from Problem 67.

1. Prove that the ‖ ⋅ ‖2-topology agrees with the SOT on the unit ball of 𝑀. That is, 
prove that 𝑥𝑛 → 𝑥 SOT if and only if ‖𝑥𝑛Ω − 𝑥Ω‖2 → 0.

2. Prove that for all 𝑥 ∈ 𝑀, ‖𝐸𝑛(𝑥)Ω − 𝑥Ω‖2 → 0 as 𝑛 → ∞.

3. Deduce that 𝐸𝑛(𝑥) → 𝑥 SOT as 𝑛 → ∞.

Problem 70. Suppose Γ is a countable group, and let Prob(Γ) = {𝜇 ∈ ℓ1Γ|𝜇 ≥ 0 and ∑𝑔 𝜇(𝑔) = 1}.

1. Prove that Prob(Γ) is weak* dense in the state space of ℓ∞Γ.

2. Let 𝐹 ⊂ Γ be finite, and consider ⨁𝑔∈𝐹 ℓ1Γ with the (product) weak topology. Let 𝐾

be the weak closure of {⨁𝑔∈𝐹 𝑔 ⋅ 𝜇 − 𝜇|𝜇 ∈ Prob(Γ)} ⊂ ⨁𝑔∈𝐹 ℓ1Γ. Prove 𝐾 is convex 
and norm closed in ⨁𝑔∈𝐹 ℓ1Γ.

3. Now assume Γ is amenable, i.e., there is a left Γ-invariant state on ℓ∞Γ. Prove that 
0 ∈ 𝐾. Deduce that Γ has an approximately invariant mean.

Problem 71. Suppose Γ is a countable group, and let Prob(Γ) be as in Problem 70.

1. Prove that if 𝑎, 𝑏 ∈ [0, 1], then

|𝑎 − 𝑏| = ∫
1

0
|𝜒(𝑟,1](𝑎) − 𝜒(𝑟,1](𝑏)| 𝑑𝑟.

2. Deduce that for 𝜇 ∈ Prob(Γ) and ℎ ∈ Γ,

‖ℎ ⋅ 𝜇 − 𝜇‖ℓ1Γ = ∫
1

0
∑
𝑔∈Γ

|𝜒(𝑟,1](𝜇(ℎ−1𝑔)) − 𝜒(𝑟,1](𝜇(𝑔))| 𝑑𝑟.

3. For 𝑟 ∈ [0, 1] and 𝜇 ∈ Prob(Γ), let 𝐸(𝜇, 𝑟) = {𝑔 ∈ Γ|𝜇(𝑔) > 𝑟}. Show that for all ℎ ∈ Γ, 
ℎ𝐸(𝜇, 𝑟) = {𝑔 ∈ Γ|(ℎ ⋅ 𝜇)(𝑔) > 𝑟}.

4. Calculate ∫1
0

|𝐸(𝜇, 𝑟)| 𝑑𝑟.

5. Show that for 𝑟 ∈ [0, 1], 𝜇 ∈ Prob(Γ), and ℎ ∈ Γ,

|ℎ𝐸(𝜇, 𝑟)△𝐸(𝜇, 𝑟)| = ∑
𝑔∈Γ

|𝜒(𝑟,1](𝜇(ℎ−1𝑔)) − 𝜒(𝑟,1](𝜇(𝑔))|.

Deduce that ‖ℎ ⋅ 𝜇 − 𝜇‖1 = ∫1
0

|ℎ𝐸(𝜇, 𝑟)△𝐸(𝜇, 𝑟)| 𝑑𝑟.
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6. Suppose now that Γ has an approximate invariant mean, so that for every finite subset 𝐹 ⊂ Γ
and 𝜀 > 0, there is a 𝜇 ∈ Prob(Γ) such that

∑
ℎ∈𝐹

‖ℎ ⋅ 𝜇 − 𝜇‖1 < 𝜀.

Show that for the 𝜇 corresponding to this 𝐹 and 𝜀,

∫
1

0
∑
ℎ∈𝐹

|ℎ𝐸(𝜇, 𝑟)△𝐸(𝜇, 𝑟)| 𝑑𝑟 < 𝜀 ∫
1

0
|𝐸(𝜇, 𝑟)| 𝑑𝑟.

Deduce there is an 𝑟 ∈ [0, 1] such that |ℎ𝐸(𝜇, 𝑟)△𝐸(𝜇, 𝑟)| < 𝜀|𝐸(𝜇, 𝑟)| for all ℎ ∈ 𝐹.

7. Use (6) above to construct a Følner sequence for Γ.

Problem 72. Recall that an ultrafilter 𝜔 on a set 𝑋 is a nonempty collection of subsets of 
𝑋 such that:

• ∅ ∉ 𝜔,

• If 𝐴 ⊆ 𝐵 ⊆ 𝑋 and 𝐴 ∈ 𝜔, then 𝐵 ∈ 𝜔,

• If 𝐴, 𝐵 ∈ 𝜔, then 𝐴 ∩ 𝐵 ∈ 𝜔, and

• For all 𝐴 ⊂ 𝑋, either 𝐴 ∈ 𝜔 or 𝑋 ∖ 𝐴 ∈ 𝜔 (but not both!).

1. Find a bijection from the set of ultrafilters on ℕ to 𝛽ℕ, the Stone-Cech compactification 
of ℕ.

2. Let 𝜔 be an ultrafilter on ℕ. Let 𝑋 be a compact Hausdorff space and 𝑓 ∶ ℕ → 𝑋. We 
say

• 𝑥 = lim𝑛→𝜔 𝑓(𝑛) if for every open neighborhood 𝑈 of 𝑥, 𝑓−1(𝑈) ∈ 𝜔.

Prove that lim𝑛→𝜔 𝑓(𝑛) always exists for any function 𝑓 ∶ ℕ → 𝑋.

3. An ultrafilter on ℕ is called principal if it contains a finite set. Show that every principal 
ultrafilter on ℕ contains a unique singleton set, and that any two principal ultrafilters 
containing the same singleton set are necessarily equal. Thus we may identify the set 
of principal ultrafilters on ℕ with ℕ ⊂ 𝛽ℕ.

4. Determine lim𝑛→𝜔 𝑓(𝑛) for 𝑓 ∶ ℕ → 𝑋 as in (2) when 𝜔 is principal.

5. An ultrafilter on ℕ is called free or non-principal if it does not contain a finite set. 
Let 𝜔 be a free ultrafilter on ℕ. Suppose Γ = ⋃ Γ𝑛 is a locally finite group and 
𝑚𝑛 is the uniform probability (Haar) measure on Γ𝑛. Define 𝑚 ∶ 2Γ → [0, 1] by 
𝑚(𝐴) = lim𝑛→𝜔 𝑚𝑛(𝐴 ∩ Γ𝑛). Prove that 𝑚 is a left Γ-invariant finitely additive 
probability measure on Γ, i.e., Γ is amenable.
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Problem 73. Let 𝑋 be a uniformly convex Banach space and 𝐵 ⊂ 𝑋 a bounded set. Prove 
that the function 𝑓 ∶ 𝑋 → [0, ∞) given by 𝑓(𝑥) = sup𝑏∈𝐵 ‖𝑏 − 𝑥‖𝑋 achieves its minimum at 
a unique point of 𝑋.

Problem 74. Let Γ be a countable discrete group. Show that an affine action 𝛼 = (𝜋, 𝛽) ∶
Γ → Aff(𝐻) (𝛼𝑔𝜉 ∶= 𝜋𝑔𝜉 + 𝛽(𝑔) for 𝜋𝑔 ∈ 𝑈(𝐻) and 𝛽(𝑔) ∈ 𝐻 such that 𝛼𝑔 ∘ 𝛼ℎ = 𝛼𝑔ℎ for 
all 𝑔, ℎ ∈ Γ) is proper if and only if the cocycle part 𝛽 ∶ Γ → 𝐻 is proper (𝑔 ↦ ‖𝛽(𝑔)‖ is a 
proper map).

Problem 75. Recall that the Schur product of two matrices 𝑎, 𝑏 ∈ 𝑀𝑛(ℂ) is given by the 
entry-wise product: (𝑎 ∗ 𝑏)𝑖,𝑗 ∶= 𝑎𝑖,𝑗𝑏𝑖,𝑗.

1. Prove that if 𝑎, 𝑏 ≥ 0, then 𝑎 ∗ 𝑏 ≥ 0.

2. Suppose that 𝑝 ∈ ℝ[𝑧] is a polynomial whose coefficients are all non-negative. Prove 
that if 𝑎 ≥ 0, then 𝑝[𝑎] ≥ 0, where 𝑝[𝑎]𝑖,𝑗 ∶= 𝑝(𝑎𝑖,𝑗) for 𝑎 ∈ 𝑀𝑛(ℂ).
Note: Here we use the notation 𝑝[𝑎] to not overload the functional calculus notation.

3. Suppose that 𝑓 is an entire function whose Taylor expansion at 0 has only non-negative 
real coefficients. Prove that is 𝑎 ≥ 0, then 𝑓[𝑎] ≥ 0, where again 𝑓[𝑎]𝑖,𝑗 ∶= 𝑓(𝑎𝑖,𝑗) for 
𝑎 ∈ 𝑀𝑛(ℂ).

Problem 76. Let 𝐴 be a unital C*-algebra.

1. Prove that a map Φ ∶ 𝐴 → 𝑀𝑛(ℂ) is completely positive if and only if the map 
𝜑 ∶ 𝑀𝑛(𝐴) → ℂ given by (𝑎𝑖,𝑗) ↦ ∑𝑛

𝑖,𝑗 Φ(𝑎𝑖,𝑗)𝑖,𝑗 is positive.

Hint: for one direction, note that 𝜑(𝑎) = ⃗𝑒∗Φ(𝑎) ⃗𝑒 where ⃗𝑒 ∈ ℂ𝑛2
 is the vector 

(𝑒1, 𝑒2, … , 𝑒𝑛) where 𝑒𝑖 ∈ ℂ𝑛 is the 𝑖-th standard basis vector. For the other di­
rection, use GNS with respect to 𝜑, and consider 𝑉 ∶ ℂ𝑛 → 𝐿2(𝑀𝑛(𝐴), 𝜑) given by 
𝑉 𝑒𝑖 = 𝜋𝜑(𝐸𝑖𝑗)Ω𝜑 where (𝐸𝑖𝑗) is a system of matrix units in 𝑀𝑛(ℂ) ⊆ 𝑀𝑛(𝐴). Then 
use Stinespring.

2. Let 𝑆 ⊂ 𝐴 be an operator subsystem, and let 𝜓 ∶ 𝑆 → ℂ be a positive linear functional. 
Prove ‖𝜓‖ = 𝜓(1). Deduce that any norm-preserving (Hahn-Banach) extension of 𝜓
to 𝐴 is also positive.

3. Let 𝑆 ⊂ 𝐴 be an operator subsystem, and let Φ ∶ 𝑆 → 𝑀𝑛(ℂ) be a (unital) completely 
positive map. Show that Φ extends to a (unital) completely positive map 𝐴 → 𝑀𝑛(ℂ).

Problem 77. Suppose Γ is a countable discrete group, and suppose 𝜑 ∶ 𝐿Γ → 𝐿Γ is a 
normal completely positive map. Prove that 𝑓 ∶ Γ → ℂ given by 𝑓(𝑔) ∶= tr𝐿Γ(𝜑(𝜆𝑔)𝜆∗

𝑔) is a 
positive definite function.

Problem 78. Prove that the following are equivalent for a finite von Neumann algebra 
(𝑀, tr) ⊂ 𝐵(𝐻) with faithful normalized tracial state.
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1. 𝑀 is amenable, i.e., there is a conditional expectation 𝐸 ∶ 𝐵(𝐻) → 𝑀.

2. There is a sequence (𝜑𝑛 ∶ 𝑀 → 𝑀) of (normal) trace-preserving completely positive 
maps such that 𝜑𝑛 → id pointwise in ‖ ⋅ ‖𝑀, and for all 𝑛 ∈ ℕ, the induced map 
𝜑̂𝑛 ∈ 𝐵(𝐿2𝑀) given by 𝑚Ω ↦ 𝜑𝑛(𝑚)Ω is finite rank.

Problem 79. Suppose that Γ is a countable discrete group such that every cocycle is inner. 
Suppose (𝐻, 𝜋) is a unitary representation and (𝜉𝑛) ⊂ 𝐻 is a sequence of unit vectors such 
that ‖𝜋𝑔𝜉𝑛 − 𝜉𝑛‖ → 0 as 𝑛 → ∞ for all 𝑔 ∈ Γ. Follow the steps below to find a non-zero 
Γ-invariant vector in 𝐻. (We may assume that no 𝜉𝑛 is fixed by Γ.)

1. Enumerate Γ = {𝑔1, 𝑔2, … }. Explain why you can pass to a subsequence of (𝜉𝑛) to 
assume that for all 𝑛 ∈ ℕ, ‖𝜋𝑔𝑖

𝜉𝑛 − 𝜉𝑛‖ < 4−𝑛 for all 1 ≤ 𝑖 ≤ 𝑛.

2. For 𝑛 ∈ ℕ, consider the inner cocycles 𝛽𝑛(𝑔) ∶= 𝜉𝑛 − 𝜋𝑔𝜉𝑛. Let (𝐾, 𝜎) = ⨁𝑛∈ℕ(𝐻, 𝜋). 
Define 𝛽 ∶ Γ → 𝐾 by 𝛽(𝑔)𝑛 ∶= 2𝑛𝛽𝑛(𝑔). Prove that 𝛽(𝑔) ∈ 𝐻 is well-defined for every 
𝑔 ∈ Γ. Then show that 𝛽 is a cocycle for (𝐾, 𝜎).

3. Deduce 𝛽 is inner and thus bounded. Thus there is a 𝜅 ∈ 𝐾 ∖ {0} such that 𝛽(𝑔) =
𝜅 − 𝜎𝑔𝜅 for all 𝑔 ∈ Γ.

4. Prove that ‖𝛽𝑛(𝑔)‖ → 0 uniformly for 𝑔 ∈ Γ. That is, show that for all 𝜀 > 0, there is 
an 𝑁 ∈ ℕ such that 𝑛 > 𝑁 implies ‖𝛽𝑛(𝑔)‖ < 𝜀 for all 𝑔 ∈ Γ.

5. Fix 𝑁 ∈ ℕ such that ‖𝛽𝑁(𝑔)‖ = ‖𝜉𝑁 − 𝜋𝑔𝜉𝑁‖ < 1 for all 𝑔 ∈ Γ. Show there is a 
𝜉0 ∈ 𝐻 ∖ {0} such that 𝜋𝑔𝜉0 = 𝜉0 for all 𝑔 ∈ Γ.
Hint: Look at {𝜋𝑔𝜉𝑁|𝑔 ∈ Γ} ⊂ (𝐻)1 and apply Problem 73.

6. (optional) Use a similar trick to finish the proof of (1) ⇒ (2) from the same theorem 
from class.

Problem 80  (optional). As best as you can, edit the equivalent definitions I gave in class 
for property (T) for a countable discrete group Γ to be relative to a subgroup Λ ≤ Γ. Then 
prove all the equivalences.

Problem 81. Suppose Γ ↷ (𝑋, 𝜇) is a free p.m.p. action and ℛ = {(𝑥, 𝑔𝑥)|𝑥 ∈ 𝑋, 𝑔 ∈ Γ}
is the corresponding countable p.m.p. equivalence relation. Follow the steps below to show 
𝐿∞(𝑋, 𝜇) ⋊ Γ ≅ 𝐿ℛ.

1. Prove that 𝜃 ∶ (𝑥, 𝑔) ↦ (𝑥, 𝑔−1𝑥) induces a unitary operator 𝑣 ∈ 𝐵(𝐿2ℛ, 𝐿2(𝑋×Γ, 𝜇×
𝛾)) where 𝛾 is counting measure on Γ.

2. Deduce that 𝜃 is a p.m.p. isomorphism (𝑋 × Γ, 𝜇 × 𝛾) → (ℛ, 𝜈).

3. Show that 𝑣∗𝑀𝑓𝑣 = 𝜆(𝑓) for all 𝑓 ∈ 𝐿∞(𝑋, 𝜇). Here, (𝑀𝑓𝜉)(𝑥, 𝑔) = 𝑓(𝑥)𝜉(𝑥, 𝑔) for 
𝜉 ∈ 𝐿2(𝑋 × Γ, 𝜇 × 𝛾).
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4. Show that 𝑣∗𝑢𝑔𝑣 = 𝐿𝜑𝑔
 where 𝜑𝑔 ∈ [ℛ] is the isomorphism 𝑥 ↦ 𝑔 ⋅ 𝑥. Here, 

(𝑢𝑔𝜉)(𝑥, ℎ) = 𝜉(𝑔−1𝑥, 𝑔−1ℎ) for all 𝜉 ∈ 𝐿2(𝑋 × Γ, 𝜇 × 𝛾) ≅ 𝐿2(𝑋, 𝜇) ⊗ ℓ2Γ.

5. Deduce that 𝑣∗(𝐿∞(𝑋, 𝜇) ⋊ Γ)𝑣 ⊂ 𝐿ℛ.

6. Show that conjugation by 𝑣 takes the commutant of 𝐿∞(𝑋, 𝜇) ⋊ Γ into 𝑅ℛ.
Hint: Show that right multiplication by 𝐿∞(𝑋, 𝜇) and the right action of 𝑢𝑔 are both 
taken into 𝑅ℛ.

7. Deduce that 𝑣∗(𝐿∞(𝑋, 𝜇) ⋊ Γ)𝑣 = 𝐿ℛ.

Problem 82. Let ℛ be a countable p.m.p. equivalence relation on (𝑋, 𝜇). Let 𝐴 =
𝐿∞(𝑋, 𝜇) ⊂ 𝐿ℛ. Prove that the von Neumann subalgebra of 𝐵(𝐿2(ℛ, 𝜈)) generated by 
𝐴 ∪ 𝐽𝐴𝐽 is the von Neumann algebra of multiplication operators by elements of 𝐿∞(ℛ, 𝜈).

Problem 83. Let 𝑀 be a von Neumann algebra. A weight on 𝑀 is a function 𝜑 ∶ 𝑀+ →
[0, ∞] such that for all 𝑟 ∈ [0, ∞) and 𝑥, 𝑦 ∈ 𝐵(𝐻)+, 𝜑(𝑟𝑥 + 𝑦) = 𝑟𝜑(𝑥) + 𝜑(𝑦), with the 
convention that for 𝑠 ∈ [0, ∞),

∞ ⋅ 𝑠 = {
∞ if 𝑠 > 0
0 if 𝑠 = 0.

Define

𝔭𝜑 = {𝑥 ∈ 𝑀|𝜑(𝑥) < ∞}
𝔫𝜑 = {𝑥 ∈ 𝑀|𝑥∗𝑥 ∈ 𝔭𝜑}

𝔪𝜑 = 𝔫∗
𝜑𝔫𝜑 = {

𝑛
∑
𝑖=1

𝑥∗
𝑖 𝑦𝑖|𝑥𝑖, 𝑦𝑖 ∈ 𝔫𝜑 for all 𝑖 = 1, … , 𝑛} .

1. Prove that

(a) 𝔭𝜑 is a hereditary subcone of 𝑀+, i.e.,
• (subcone) 𝑟 ≥ 0 and 𝑥, 𝑦 ∈ 𝔭𝜑 implies 𝑟𝑥 + 𝑦 ∈ 𝔭𝜑
• (hereditary) 0 ≤ 𝑥 ≤ 𝑦 and 𝑦 ∈ 𝔭𝜑 implies 𝑥 ∈ 𝔭𝜑.

(b) 𝔫𝜑 is a left ideal of 𝑀.
Hint: Prove that for all 𝑥, 𝑦 ∈ 𝑀, (𝑥 ± 𝑦)∗(𝑥 ± 𝑦) ≤ 2(𝑥∗𝑥 + 𝑦∗𝑦).

(c) 𝔪𝜑 is algebraically spanned by 𝔭𝜑.
Hint: Use polarization.

(d) 𝔪𝜑 ∩ 𝑀+ = 𝔭𝜑.
(e) 𝔪𝜑 is a hereditary ∗-subalgebra of 𝑀 (hereditary is defined the same way as 

above).

2. When 𝑀 = 𝐵(𝐻) and 𝜑 = Tr, show 𝔪Tr = ℒ1(𝐻) and 𝔫Tr = ℒ2(𝐻).
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