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6 Analytic and approximation properties
We discuss various analytic and approximation properties for countable discrete groups. In 
this section, Γ always denotes a countable discrete group.

6.1 Positive definite functions and cp multipliers
This section follows a mini-course I took from Narutaka Ozawa at IMSc in February 2009. 
Let Γ be a discrete countable group.

Definition 6.1.1. A function 𝑓 ∶ Γ → ℂ is called positive definite if for every 𝑔1, … , 𝑔𝑛 ∈ Γ, 
[𝑓(𝑔−1

𝑖 𝑔𝑗)] is positive in 𝑀𝑛(ℂ).

Lemma 6.1.2. Suppose 𝑎 ∈ 𝑀𝑛(ℂ) is positive and constant along the diagonal. Then 
|𝑎𝑖𝑗| ≤ 𝑎𝑘𝑘 for all 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛.

Proof. Let 𝑏 ∈ 𝑀𝑛(ℂ) such that 𝑎 = 𝑏∗𝑏. Then for all 𝑖, 𝑗,

|𝑎𝑖𝑗|2 = |⟨𝑒𝑖|𝑎𝑒𝑗⟩|2 = |⟨𝑏𝑒𝑖|𝑏𝑒𝑗⟩|2 ≤
(CS)

‖𝑏𝑒𝑖‖2‖𝑏𝑒𝑗‖2 = ⟨𝑒𝑖|𝑎𝑒𝑖⟩ ⋅ ⟨𝑒𝑗|𝑎𝑒𝑗⟩ = 𝑎𝑖𝑖𝑎𝑗𝑗.

Since 𝑎𝑖𝑖 = 𝑎𝑗𝑗, we have |𝑎𝑖𝑗| ≤ 𝑎𝑖𝑖. ∎

Proposition 6.1.3. If 𝑓 ∶ Γ → ℂ is positive definite, then 𝑓 ∈ ℓ∞Γ with ‖𝑓‖∞ = 𝑓(𝑒).

Proof. For 𝑔 ∈ Γ, |𝑓(𝑔)| = |𝑎12| ≤ 𝑎11 = 𝑓(𝑒) for 𝑎 = ( 𝑓(𝑒) 𝑓(𝑔)
𝑓(𝑔−1) 𝑓(𝑒)) ≥ 0. ∎

Definition 6.1.4. Given 𝑓 ∶ Γ → ℂ, we get a multiplier 𝑀𝑓 ∶ ℂΓ → ℂΓ by

𝑀𝑓 ∑ 𝑥𝑔𝑔 ∶= ∑ 𝑓(𝑔)𝑥𝑔𝑔.

Theorem 6.1.5. For 𝑓 ∶ Γ → ℂ, the following are equivalent:
1. 𝑓 is positive definite.

2. The sesquilinear form ⟨∑ 𝑥𝑔𝑔, ∑ 𝑦ℎℎ⟩
𝑓

∶= ∑ 𝑓(ℎ−1𝑔)𝑥𝑔𝑦ℎ on ℂΓ is positive.

3. 𝑓 is a coefficient of a unitary representation, i.e., there is a Hilbert space 𝐻 and group 
homomorphism 𝜋 ∶ Γ → 𝑈(𝐻) and 𝜂 ∈ 𝐻 such that 𝑓(𝑔) = ⟨𝜋𝑔𝜂, 𝜂⟩.

4. 𝑀𝑓 extends to a normal cp map 𝐿Γ → 𝐿Γ.
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Proof. 

(1) ⇔ (2): Observe that [𝑓(𝑔−1
𝑖 𝑔𝑗] ∈ 𝑀𝑛(ℂ) is positive if and only if for all 𝑥 ∈ ℂ𝑛, 

𝑥∗[𝑓(𝑔−1
𝑖 𝑔𝑗)]𝑥 ≥ 0. This condition is equivalent to ⟨ ⋅ , ⋅ ⟩𝑓 ≥ 0.

(2) ⇒ (3): Let ℓ2
𝑓Γ denote the completion of the quotient of ℂΓ under the length 

zero vectors under ⟨ ⋅ , ⋅ ⟩𝑓. We get a Γ-action 𝜋 ∶ Γ → 𝑈(ℓ2
𝑓Γ) as usual by 

(𝜋𝑔𝜉)(ℎ) ∶= 𝜉(𝑔−1ℎ). Indeed, 𝜋−1
𝑔 = 𝜋𝑔−1 , and 𝜋𝑔 is isometric:

‖𝜋𝑔𝜉‖2
𝑓 = ∑

ℎ,𝑘
𝑓(𝑘−1ℎ)𝜉(𝑔−1ℎ)𝜉(𝑔−1𝑘) = ∑

ℎ,𝑘
𝑓((𝑔−1𝑘)−1(𝑔−1ℎ))𝜉(𝑔−1ℎ)𝜉(𝑔−1𝑘) = ‖𝜉‖2

𝑓.

Finally, note 𝑓(𝑔) = ⟨𝜋𝑔𝛿𝑒, 𝛿𝑒⟩ for all 𝑔 ∈ Γ.

(3) ⇒ (4): We will use Fell’s Absorption Principle, which you proved on homework, 
which states that if (𝐻, 𝜋) is any unitary representation of Γ and 𝜆 ∶ Γ → 𝑈(ℓ2Γ)
is the left regular representation, then (ℓ2Γ ⊗ 𝐻, 𝜆 ⊗ 𝜋) is unitarily equivalent 
to (ℓ2Γ ⊗ 𝐻, 𝜆 ⊗ 1).
The 𝐿Γ-representation 𝜋̃ ∶ 𝐿Γ → 𝐵(ℓ2Γ ⊗ 𝐻) given by

𝑔 ↦ 𝜆𝑔 ⊗ 1 ↦ 𝜆𝑔 ⊗ 𝜋𝑔

is normal as it is a composite of normal unitary ∗-homomorpisms. Define 𝑣 ∶
ℓ2Γ → ℓ2Γ ⊗ 𝐻 by 𝜉 ↦ 𝜉 ⊗ 𝜂

‖𝜂‖ , which is an isometry. Observe that for all 
𝑔, ℎ ∈ Γ,

𝑣∗𝜋̃(𝜆𝑔)𝑣𝛿ℎ = 𝑣∗𝜋̃(𝜆𝑔)𝛿ℎ⊗ 𝜂
‖𝜂‖

= 𝑣∗𝛿𝑔ℎ⊗𝜋𝑔
𝜂

‖𝜂‖
= 1

‖𝜂‖2 ⟨𝜋𝑔𝜂, 𝜂⟩𝛿𝑔ℎ = 1
‖𝜂‖2 𝑓(𝑔)𝜆𝑔𝛿ℎ.

Thus by linearity, for all 𝑥 ∈ ℂΓ, 𝑀𝑓𝑥 = ‖𝜂‖2𝑣∗𝜋̃(𝑥)𝑣, which is manifestly 
normal and cp.

(4) ⇒ (1): Let 𝑔1, … , 𝑔𝑛 ∈ Γ. Then

[𝜆𝑔−1
𝑖 𝑔𝑗

] = [



𝜆𝑔1
⋮

𝜆𝑔𝑛

]



∗

[𝜆𝑔1
⋯ 𝜆𝑔𝑛

] ≥ 0

in 𝑀𝑛(𝐿Γ). Now since 𝑀𝑓 is cp, [𝑀𝑓𝜆𝑔−1
𝑖 𝑔𝑗

] ≥ 0 in 𝑀𝑛(𝐿Γ), so

[𝑓(𝑔−1
𝑖 𝑔𝑗)] = [




𝜆𝑔1
⋱

𝜆𝑔𝑛

]



[𝑀𝑓𝜆𝑔−1
𝑖 𝑔𝑗

] [



𝜆𝑔1
⋱

𝜆𝑔𝑛

]



∗

≥ 0

in 𝑀𝑛(𝐿Γ), and thus also in 𝑀𝑛(ℂ).

∎
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Example 6.1.6. Suppose 𝜑 ∶ 𝐿Γ → 𝐿Γ is cp. Define 𝑓(𝑔) ∶= tr(𝜑(𝜆𝑔)𝜆∗
𝑔). We claim that 

𝑀𝑓 is cp as it is the composite of the following cp maps:

𝐿Γ 𝐿Γ ⊗ 𝐿Γ 𝐿Γ ⊗ 𝐿Γ 𝐿Γ
𝜆𝑔 𝜆𝑔 ⊗ 𝜆𝑔 𝜆𝑔 ⊗ 𝜆ℎ 𝛿𝑔=ℎ𝜆𝑔

𝑥 ⊗ 𝑦 𝑥 ⊗ 𝜑(𝑦)

Δ id ⊗𝜑 Ad(𝑣)

where 𝑣𝛿𝑔 ∶= 𝛿𝑔 ⊗ 𝛿𝑔. The above composite applied to 𝜆𝑔 is

𝜆𝑔 ↦ 𝜆𝑔 ⊗ 𝜆𝑔 ↦ 𝑣∗(𝜆𝑔 ⊗ 𝜑(𝜆𝑔))𝑣.

If 𝜑(𝜆𝑔)𝛿𝑒 = ∑ 𝑦ℎ𝛿ℎ, then applying the above operator to the separating vector 𝛿𝑒, we 
obtain

𝑣∗(𝜆𝑔 ⊗ 𝜑(𝜆𝑔))𝑣𝛿𝑒 = 𝑣∗(𝜆𝑔 ⊗ 𝜑(𝜆𝑔))(𝛿𝑒 ⊗ 𝛿𝑒) = 𝑣∗ ∑
ℎ

𝑦ℎ𝛿𝑔 ⊗ 𝛿ℎ = 𝑦𝑔𝛿𝑔 = 𝑦𝑔𝜆𝑔𝛿𝑒.

Finally we know that 𝑦𝑔 = tr(𝜆∗
𝑔𝜑(𝜆𝑔)), verifying the claim.

Example 6.1.7. If Λ ≤ Γ is a subgroup, then the characterisic function 𝜒Λ(𝑔) ∶= ⟨𝜋𝑔𝛿Λ, 𝛿Λ⟩
is positive definite, where 𝜋 ∶ Γ → 𝑈(ℓ2Γ/Λ). In this case, 𝑀𝜒Λ

= 𝐸𝐿Λ, the canonical trace-
preserving conditional expectation.

Recall that the reduced group C∗-algebra C∗
𝑟Γ is the norm closure of span 𝜆Γ ⊂ 𝐵(ℓ2Γ).

Definition 6.1.8. The universal group C∗-algebra C∗Γ is the closure of the group algebra 
ℂΓ under the uniform norm

‖𝑥‖𝑢 ∶= sup {‖𝜋(𝑥)‖|(𝐻, 𝜋) a unitary representation of Γ} .

Observe ‖ ⋅ ‖𝑢 is well-defined as ‖𝜋(𝑔)‖𝑢 = 1 for all 𝑔 ∈ Γ.

Remark 6.1.9. The proof of (3) ⇒ (4) in Theorem 6.1.5 also shows that if 𝑓 ∶ Γ → ℂ is 
positive definite, we also get a cp multiplier on C∗

𝑟Γ and C∗Γ. Moreover, we have ‖𝑀𝑓‖ ≤
‖𝑓‖∞ as a cp multiplier on either of C∗

𝑟Γ, C∗Γ.

6.2 Amenability for discrete groups
The following is the main result of this section.

Theorem 6.2.1. The following are equivalent for a countable discrete group Γ. If any/all 
are satisfied, we call Γ amenable.

(A1) There is a state 𝑚 ∈ (ℓ∞Γ)∗ such that 𝑚(𝑔⋅𝑓) = 𝑚(𝑓) for all 𝑔 ∈ Γ, where (𝑔 ⋅𝑓)(ℎ) ∶=
𝑓(𝑔−1ℎ).
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(A2) Γ has a left invariant mean, i.e., there is a finitely additive (left) Γ-invariant probability 
measure on 2Γ, the power set of Γ.

(A3) Γ has an approximate invariant mean, i.e., for every finite 𝐹 ⊂ Γ and 𝜀 > 0, there is a

𝜇 ∈ Prob(Γ) ∶= {𝜇 ∈ ℓ1Γ|𝜇 ≥ 0 and ∑
𝑔

𝜇(𝑔) = 1}

such that max𝑔∈𝐹 ‖𝑔 ⋅ 𝜇 − 𝜇‖ < 𝜀, where (𝑔 ⋅ 𝜇)(𝐴) ∶= 𝜇(𝑔−1𝐴).

(A4) (Følner sequence) there is a sequence of finite subsets ∅ ≠ 𝐹𝑛 ⊂ Γ with Γ = ⋃ 𝐹𝑛 such 
that

|𝑔𝐹𝑛△𝐹𝑛|
|𝐹𝑛|

→ 0 ∀ 𝑔 ∈ Γ.

Here, △ denotes the symmetric difference of sets.

(A5) The left regular representation 𝜆 ∶ Γ → 𝑈(ℓ2Γ) has almost invariant vectors, i.e., for 
every finite 𝐹 ⊂ Γ and 𝜀 > 0, there is a 𝜉 ∈ ℓ2Γ such that ‖𝜆𝑔𝜉 − 𝜉‖ < 𝜀‖𝜉‖ for all 
𝑔 ∈ 𝐹.

(A6) The trivial representation is weakly contained in the left regular representation, i.e., 
there is sequence of unit vectors (𝜉𝑛) ⊂ ℓ2Γ such that ‖𝜆𝑔𝜉𝑛 − 𝜉𝑛‖ → 0 for all 𝑔 ∈ Γ.

(A7) There is a sequence (𝑓𝑛) of finitely supported positive definite functions on Γ such that 
𝑓𝑛 → 1 pointwise.

(A8) C∗
𝑟Γ ≅ C∗Γ

(A9) There is a 1-dimensional representation of C∗
𝑟Γ.

(A10)(Kesten Criterion) For all finite 𝐹 ⊂ Γ,

‖ 1
|𝐹 |

∑
𝑔∈𝐹

𝜆𝑔‖
𝐵(ℓ2Γ)

= 1.

(A11)(𝐿Γ amenable) There is a conditional expectation 𝐸 ∶ 𝐵(ℓ2Γ) → 𝐿Γ.

(A12)(Hypertrace) There is a state 𝜑 ∈ 𝐵(ℓ2Γ)∗ such that

• 𝜑(𝑥𝜆𝑔) = 𝜑(𝜆𝑔𝑥) for all 𝑔 ∈ Γ and 𝑥 ∈ 𝐵(ℓ2Γ), and
• 𝜑|𝐿Γ = tr𝐿Γ (recall that tr𝐿Γ = 𝜔𝛿𝑒

= ⟨ ⋅ 𝛿𝑒, 𝛿𝑒⟩).

Non-Example 6.2.2. The free group 𝔽𝑛 for 𝑛 ≥ 2 is not amenable. For 𝑛 = 2, suppose 
𝔽2 = ⟨𝑎, 𝑏⟩. For 𝑥 ∈ {𝑎, 𝑏, 𝑎−1, 𝑏−1⟩, let 𝑊𝑥 be the set of reduced words starting with 𝑥, so 
that 𝔽2 can be written as a disjoint union

𝔽2 = {𝑒} ⊔ 𝑊𝑎 ⊔ 𝑊𝑏 ⊔ 𝑊𝑎−1 ⊔ 𝑊𝑏−1 .
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But since 𝑊𝑏 ⊔ 𝑊𝑎−1 ⊔ 𝑊𝑏−1 ⊂ 𝑎𝑊𝑎−1 and 𝑊𝑎 ⊔ 𝑊𝑎−1 ⊔ 𝑊𝑏−1 ⊂ 𝑏𝑊𝑏−1 , we also have

𝑊𝑎 ⊔ 𝑎𝑊𝑎−1 = 𝔽2 = 𝑊𝑏 ⊔ 𝑏𝑊𝑏−1

so that 𝔽2 has no invariant mean.

Example 6.2.3. Finite groups are amenable.

Example 6.2.4. The sets 𝐹𝑛 ∶= [−𝑛, 𝑛] give a Følner sequence for ℤ. Indeed, for all 𝑚 ∈ ℤ, 
eventually 𝑛 ≥ 𝑚, for which

|(𝑚 + 𝐹𝑛)△𝐹𝑛|
|𝐹𝑛|

= 2𝑚
2𝑛 + 1

𝑛→∞
−−−→ 0.

𝑚

𝑚
𝐹𝑛

𝑚+𝐹𝑛

Example 6.2.5. A discrete countable group Γ is called locally finite if Γ = lim→ Γ𝑛 where 
each Γ𝑛 is finite, i.e., every finite subset 𝐹 ⊂ Γ is contained in a finite subgroup. Let 𝑚𝑛 be 
the uniform measure on Γ𝑛 and let 𝜔 be a non-principal/free ultrafilter on ℕ, i.e., 𝜔 ∈ 𝛽ℕ∖ℕ. 
For 𝑓 ∈ ℓ∞Γ, we define

𝑚(𝑓) ∶= lim
𝜔

𝑚𝑛(𝑓|Γ𝑛
),

and one checks 𝑚(𝑔 ⋅ 𝑓) = 𝑚(𝑓) for all 𝑔 ∈ Γ.

Example 6.2.6. The class of amenable groups is closed under products, extensions, sub­
groups, quotients, and direct limits.

Example 6.2.7. Combining Examples 6.2.3, 6.2.4, and 6.2.6, all abelian groups are amenable. 
Indeed, every group is the direct limit of its finitely generated subgroups.

We now prove the following implications:

(A12) (A11) (A5) (A10)

(A1) (A3) (A4) (A6)

(A2) (A9) (A8) (A7)

(A1)⇒(A2). If 𝑚 ∈ (ℓ∞Γ)∗ is a left Γ-invariant state, define 𝜇 ∶ 2Γ → [0, 1] by 
𝜇(𝐴) ∶= 𝑚(𝜒𝐴). ∎
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(A2)⇒(A1). If 𝜇 ∶ 2Γ → [0, 1] is a left Γ-invariant mean, define 𝑚(𝑓) ∶= ∫ 𝑓 𝑑𝜇, which 
is a left Γ-invariant state on ℓ∞Γ. Here, ∫ 𝑓 𝑑𝜇 is defined in the usual way, first for 
positive functions as a sup over simple 0 ≤ 𝜙 ≤ 𝑓, and then extending to all bounded 
functions. ∎

Exercise 6.2.8. Prove (A1)⇒(A3) (originally due to Day) and (A3)⇒(A4) (originally due 
to Namioka).

Exercise 6.2.9. Show (A5)⇔(A6).

(A4)⇒(A6). Suppose (𝐹𝑛) is a Følner sequence for Γ. Consider the unit vectors 
𝜉𝑛 ∶= |𝐹𝑛|−1/2𝜒𝐹𝑛

∈ ℓ2Γ. For all 𝑔 ∈ Γ,

‖𝜆𝑔𝜉𝑛 − 𝜉𝑛‖2
2 = ∑

ℎ
|𝜉𝑛(𝑔−1ℎ) − 𝜉𝑛(ℎ)|2

= 1
|𝐹𝑛|

∑
ℎ

|𝜒𝐹𝑛
(𝑔−1ℎ) − 𝜒𝐹𝑛

(ℎ)|2

= 𝑔𝐹𝑛△𝐹𝑛
|𝐹𝑛|

𝑛→∞
−−−→ 0. ∎

(A6)⇒(A7). Let (𝜉𝑛) ⊂ ℓ2Γ be a sequence of unit vectors such that ‖𝜆𝑔𝜉𝑛 − 𝜉𝑛‖ → 0
for all 𝑔 ∈ Γ. For 𝑛 ∈ ℕ, define 𝜑𝑛(𝑔) ∶= ⟨𝜆𝑔𝜉𝑛, 𝜉𝑛⟩, which is positive definite by 
Theorem 6.1.5. Moreover, for all 𝑔 ∈ Γ,

|𝜑𝑛(𝑔) − 1| = |⟨𝜆𝑔𝜉𝑛, 𝜉𝑛⟩ − ⟨𝜉𝑛, 𝜉𝑛⟩| = |⟨𝜆𝑔𝜉𝑛 − 𝜉𝑛, 𝜉𝑛⟩| ≤ ‖𝜆𝑔𝜉𝑛 − 𝜉𝑛‖
𝑛→∞
−−−→ 0.

We can inductively construct finite subsets 𝐸𝑛 ⊂ Γ with 𝐸𝑛 ⊆ 𝐸𝑛+1 and ⋃ 𝐸𝑛 = Γ
such that ‖𝜂𝑛 − 𝜉𝑛‖ < 2−𝑛, where 𝜂𝑛 ∶= 𝜉𝑛|𝐸𝑛

. Setting 𝑓𝑛(𝑔) ∶= ⟨𝜆𝑔𝜂𝑛, 𝜂𝑛⟩, we have 
𝑓𝑛 is positive definite, finitely supported, and for all 𝑔 ∈ Γ,

|𝜑𝑛(𝑔) − 𝑓𝑛(𝑔)| = |⟨𝜆𝑔𝜉𝑛, 𝜉𝑛⟩ − ⟨𝜆𝑔𝜂𝑛, 𝜂𝑛⟩| = |⟨𝜆𝑔𝜉𝑛, 𝜉𝑛 − 𝜂𝑛⟩ − ⟨𝜆𝑔(𝜂𝑛 − 𝜉𝑛), 𝜂𝑛⟩|

≤ 2‖𝜉𝑛 − 𝜂𝑛‖ = 21−𝑛 𝑛→∞
−−−→ 0. ∎

Definition 6.2.10  (Banach limits in 𝐵(𝐻)).
Let Lim denote any positive extension of lim𝑛→∞ from 𝑐 to ℓ∞ obtained from Hahn-

Banach. If (𝑥𝑛) ⊂ 𝐵(𝐻) is a norm-bounded sequence, define Lim 𝑥𝑛 by ⟨Lim 𝑥𝑛𝜂, 𝜉⟩ ∶=
Lim⟨𝑥𝑛𝜂, 𝜉⟩. Observe Lim 𝑥𝑛 lies in the WOT-closure of Conv{𝑥𝑛}, so if (𝑥𝑛) ⊂ 𝑀 ⊆ 𝐵(𝐻)
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for some von Neumann algebra, then Lim 𝑥𝑛 ∈ 𝑀. Moreover, if 𝑥𝑛 ≥ 0 for all 𝑛, then 
Lim 𝑥𝑛 ≥ 0 also.

Now suppose Φ𝑛 ∶ 𝑀 → 𝑀 is a sequence of ucp maps. Then map (Lim Φ𝑛)(𝑥) ∶=
Lim Φ𝑛(𝑥) is manifestly ucp. Indeed, if (𝑥𝑖𝑗) ∈ 𝑀𝑛(𝑀)+, then for all 𝜉1, … , 𝜉𝑛 ∈ 𝐻,

⟨[(Lim Φ𝑛)(𝑥𝑖𝑗)] [


𝜉1
⋮

𝜉𝑛

]


, [


𝜉1
⋮

𝜉𝑛

]


⟩ = Lim ⟨[Φ𝑛(𝑥𝑖𝑗)] [


𝜉1
⋮

𝜉𝑛

]


, [


𝜉1
⋮

𝜉𝑛

]


⟩ ≥ 0.

(A4)⇒(A11). Given a Følner sequence (𝐹𝑛), define Φ𝑛 ∶= 1
|𝐹𝑛| ∑𝑔∈𝐹𝑛

𝜌𝑔𝑥𝜌∗
𝑔 where 

𝜌 ∶ Γ → 𝐵(ℓ2Γ) is the right regular representation. Setting 𝐸 ∶= Lim Φ𝑛, we see 
𝐸(𝑥) ∈ 𝑅Γ′ = 𝐿Γ as

‖𝜌ℎ ( 1
|𝐹𝑛|

∑
𝑔∈𝐹𝑛

𝜌𝑔𝑥𝜌∗
𝑔) 𝜌∗

ℎ − 1
|𝐹𝑛|

∑
𝑔∈𝐹𝑛

𝜌𝑔𝑥𝜌∗
𝑔‖ ≤ |ℎ𝐹𝑛|△|𝐹𝑛|

|𝐹𝑛|
⋅ ‖𝑥‖

𝑛→∞
−−−→ 0.

Since each Φ𝑛 is cp and preserves 𝐿Γ, 𝐸 is cp and preserves 𝐿Γ. ∎

(A11)⇒(A12). Immediate from the more general Theorem 6.2.11 below. ∎

Theorem 6.2.11. Suppose 𝑀 ⊂ 𝐵(𝐻) is a von Neumann algebra with normal faithful 
tracial state tr. The following are equivalent:

• There is a conditional expectation 𝐸 ∶ 𝐵(𝐻) → 𝑀, i.e., a unital completely positive 
map 𝐵(𝐻) → 𝑀 which is 𝑀-bimodular.

• There is a hypertrace for 𝑀, i.e., there is a state 𝜑 ∈ 𝐵(𝐻)∗ such that 𝜑(𝑥𝑚) = 𝜑(𝑚𝑥)
for all 𝑥 ∈ 𝐵(𝐻) and 𝑚 ∈ 𝑀 and 𝜑|𝑀 = tr𝑀.

Proof. 

⇒: Set 𝜑 ∶= tr𝑀 ∘𝐸. Then for all 𝑥 ∈ 𝐵(𝐻) and 𝑚 ∈ 𝑀,

𝜑(𝑥𝑚) = tr𝑀(𝐸(𝑥𝑚)) = tr𝑀(𝐸(𝑥)𝑚) = tr𝑀(𝑚𝐸(𝑥)) = tr𝑀(𝐸(𝑚𝑥)) = 𝜑(𝑚𝑥).

Since 𝐸(1) = 1, it also follows that 𝜑(𝑚) = tr𝑀(𝑚).

⇐: For 𝑥 ∈ 𝐵(𝐻), define 𝜓𝑥 on 𝑀 by 𝜓𝑥(𝑚) ∶= 𝜑(𝑚𝑥).

Claim. When 𝑥 ≥ 0, 𝜓𝑥 is a state on 𝑀 such that 0 ≤ 𝜓𝑥 ≤ ‖𝑥‖⋅tr𝑀 = ‖𝑥‖⋅𝜔Ω𝑀
.
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Proof of claim. For 𝑚 ∈ 𝑀+, observe that

𝜓𝑥(𝑚) = 𝜑(𝑚1/2𝑥𝑚1/2)
= |⟨𝑥𝑚1/2Ω, 𝑚1/2Ω⟩𝜑|
≤

(CS)
|⟨𝑥𝑚1/2Ω, 𝑥𝑚1/2Ω⟩𝜑|1/2 ⋅ |⟨𝑚1/2Ω, 𝑚1/2Ω⟩𝜑|1/2

= 𝜑(𝑚1/2𝑥2𝑚1/2)1/2𝜑(𝑚)1/2

≤ ‖𝑥‖ ⋅ 𝜑(𝑚).

Since 𝜑|𝑀 = tr𝑀, 𝜓𝑥(𝑚) ≤ ‖𝑥‖ tr(𝑚) for all 𝑥 ∈ 𝐵(𝐻)+ and 𝑚 ∈ 𝑀+. ∎

Claim. When 𝑥 ≥ 0, 𝜓𝑥 is normal.

Proof of claim. If (𝑚𝑖) ⊂ 𝑀+ such that 𝑚𝑖 ↗ 𝑚, then

𝜓𝑥(𝑚 − 𝑚𝑖) ≤ ‖𝑥‖ ⋅ tr(𝑚 − 𝑚𝑖) ↘ 0. ∎

Claim. For each 𝑥 ∈ 𝐵(𝐻)+, there is a unique 𝐸(𝑥) ∈ 𝑀+ such that 𝜓𝑥(𝑚) =
tr𝑀(𝑚𝐸(𝑥)) for all 𝑚 ∈ 𝑀.

Proof of claim. 

Uniqueness: If 𝑦, 𝑧 ∈ 𝑀 such that tr𝑀(𝑚𝑦) = tr𝑀(𝑚𝑧) for all 𝑚 ∈ 𝑀, then

⟨𝑦Ω, 𝑚∗Ω⟩𝐿2𝑀 = ⟨𝑧Ω, 𝑚∗Ω⟩𝐿2𝑀 ∀ 𝑚 ∈ 𝑀.

It follows that 𝑦Ω = 𝑧Ω, which implies 𝑦 = 𝑧 as Ω is separating.
Existence: First, suppose 𝑥 ≥ 0. Since 0 ≤ 𝜓𝑥 ≤ ‖𝑥‖ tr𝑀 = ‖𝑥‖𝜔Ω𝑀

, there is a 
unique 𝑥′ ∈ 𝑀 ′ with 0 ≤ 𝑥′ ≤ ‖𝑥‖ such that

𝜓𝑥(𝑚) = ⟨𝑚𝑥′Ω𝑀, Ω𝑀⟩𝐿2𝑀 ∀ 𝑚 ∈ 𝑀.

Since 𝑀 ′ = 𝐽𝑀𝐽, there is a unique 𝐸(𝑥) ∈ 𝑀+ such that 𝑥′ = 𝐽𝐸(𝑥)𝐽, 
and thus

𝜓𝑥(𝑚) = ⟨𝑚𝐽𝐸(𝑥)𝐽Ω𝑀, Ω𝑀⟩𝐿2𝑀 = ⟨𝑚𝐸(𝑥)Ω𝑀, Ω𝑀⟩𝐿2𝑀 = tr𝑀(𝑚𝐸(𝑥)) ∀ 𝑚 ∈ 𝑀.

∎

Claim. The right action of 𝑀 on 𝐿2(𝐵(𝐻), 𝜑) given by 𝑥Ω𝜑 ↦ 𝑥𝑚Ω𝜑 is 
bounded.
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Proof. For all 𝑥 ∈ 𝐵(𝐻),

‖𝑥𝑚Ω‖2
𝜑 = 𝜑(𝑚∗𝑥∗𝑥𝑚) = 𝜑(𝑚𝑚∗𝑥∗𝑥) = tr𝑀(𝑚𝑚∗𝐸(𝑥∗𝑥))

= tr𝑀(𝐸(𝑥∗𝑥)1/2𝑚𝑚∗𝐸(𝑥∗𝑥)1/2) ≤ ‖𝑚𝑚∗‖ ⋅ tr𝑀(𝐸(𝑥∗𝑥))
= ‖𝑚𝑚∗‖ ⋅ 𝜑(𝑥∗𝑥) = ‖𝑚‖2 ⋅ ‖𝑥Ω‖2

𝜑. ∎

We now mimic the proof of Stinespring’s Theorem. Observe that the map 𝑣 ∶
𝐿2𝑀 → 𝐿2(𝐵(𝐻), 𝜑) given by 𝑚Ω𝑀 ↦ 𝑚Ω𝜑 is an 𝑀 − 𝑀 bilinear isometry. 
It follows immediately that 𝐸(𝑥) ∶= 𝑣∗𝑥𝑣 ∈ 𝐵(𝐿2𝑀) commutes with the right 
𝑀-action and thus lies in 𝑀, thus giving our 𝑀 − 𝑀 bimodular ucp map. It 
remains to prove that our new definition of 𝐸(𝑥) agrees with our old definition, 
i.e., tr𝑀(𝑚𝑣∗𝑥𝑣) = 𝜑(𝑚𝑥) for all 𝑚 ∈ 𝑀:

tr𝑀(𝑚𝑣∗𝑥𝑣) = ⟨𝑣∗𝑚𝑥𝑣Ω𝑀, Ω𝑀⟩𝐿2𝑀 = ⟨𝑚𝑥Ω𝜑, Ω𝜑⟩𝜑 = 𝜑(𝑚𝑥). ∎

(A12)⇒(A1). Recall ℓ∞Γ ↪ 𝐵(ℓ2Γ) by (𝑓𝜉)(𝑔) ∶= 𝑓(𝑔)𝜉(𝑔). Observe that if 𝑓 ∈ ℓ∞Γ
and 𝑔 ∈ Γ, then

(𝜆𝑔𝑓𝜆∗
𝑔𝜉)(ℎ) = (𝑓𝜆𝑔−1𝜉)(𝑔−1ℎ) = 𝑓(𝑔−1ℎ)(𝜆𝑔−1𝜉)(𝑔−1ℎ) = 𝑓(𝑔−1ℎ)𝜉(ℎ) = ((𝑔⋅𝑓)𝜉)(ℎ).

Restricting the 𝐿Γ-hypertrace 𝜑 to ℓ∞Γ ⊂ 𝐿Γ, we have

𝜑(𝑔 ⋅ 𝑓) = 𝜑(𝜆𝑔𝑓𝜆∗
𝑔) = 𝜑(𝑓),

so 𝜑 yields a Γ-invariant state on ℓ∞Γ. ∎

(A7)⇒(A8). First, note that ‖𝜆𝑥‖ ≤ ‖𝑥‖𝑢 for all 𝑥 ∈ C∗
𝑟Γ, and thus 𝜆 ∶ ℂΓΓ → 𝐵(ℓ2Γ)

extends to a surjective unital ∗-homomorphism 𝜆̃ ∶ C∗Γ → C∗
𝑟Γ ⊂ 𝐵(ℓ2Γ). We must 

show 𝜆̃ is injective.
Suppose (𝑓𝑛) is a sequence of finitely supported positive definite functions on Γ
which converges to 1 pointwise. By Remark 6.1.9, we get cp multipliers 𝑀𝑛, 𝑀𝑛,𝑟

on C∗Γ, C∗
𝑟Γ respectively. To prove 𝜆̃ is injective, we will use the following two facts.

(1) 𝜆̃ ∘ 𝑀𝑛 = 𝑀𝑛,𝑟𝜆̃ on C∗Γ, since both are continuous with respect to ‖ ⋅ ‖𝑢 and they 
agree on the dense subspace ℂΓ.

(2) Since 𝑓𝑛 → 1 pointwise, 𝑀𝑛𝑥 → 𝑥 for 𝑥 ∈ ℂΓ. Since ‖𝑓𝑛‖∞ are uniformly bounded 
by sup 𝑓𝑛(𝑒) as 𝑓𝑛(𝑒) → 1, 𝑀𝑛𝑥 → 𝑥 for all 𝑥 ∈ C∗Γ by density of ℂΓ in C∗Γ by 
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a standard 𝜀/3 argument.

Suppose 𝑥 ∈ C∗Γ such that Λ̃(𝑥) = 0. Then by (1) above,

𝜆̃(𝑀𝑛𝑥) = 𝑀𝑛,𝑟𝜆̃(𝑥) = 0 ∀ 𝑛 ∈ ℕ.

But since 𝑓𝑛 is finitely supported, 𝑀𝑛𝑥 ∈ ℂΓ for all 𝑛, and thus 𝜆̃(𝑀𝑛𝑥) = 0 implies 
𝑀𝑛𝑥 = 0. Thus 𝑥 = lim 𝑀𝑛𝑥 = 0 by (2). ∎

(A8)⇒(A9). Note that C∗Γ has a 1-dimensional representation as the trivial repre­
sentation ℂΓ → ℂ by ∑ 𝑥𝑔𝑔 ↦ ∑ 𝑥𝑔 on ℂ is subordinate to ‖ ⋅ ‖𝑢. ∎

Lemma 6.2.12. Let 𝐴 be a unital C∗-algebra. Suppose 𝜑 ∈ 𝐴∗ is a state and 𝑎 ∈ 𝐴 such 
that 𝜑(𝑎∗𝑎) = |𝜑(𝑎)|2. Then for all 𝑏 ∈ 𝐴, 𝜑(𝑎)𝜑(𝑏) = 𝜑(𝑏𝑎).

Proof. Let (𝐻𝜑, 𝜋𝜑, Ω𝜑) be the cyclic GNS representation of 𝐴 with respect to 𝜑. Note 
that

‖𝜋𝜑(𝑎)Ω𝜑‖2 = 𝜑(𝑎∗𝑎) = |𝜑(𝑎)|2 = |⟨𝜋𝜑(𝑎)Ω𝜑, Ω𝜑⟩|2 ‖
(CS)

𝜋𝜑(𝑎)Ω𝜑‖2,

and thus the Cauchy-Schwarz inequality above is an equality. Thus there is an 𝛼 ∈ ℂ
such that

𝜋𝜑(𝑎)Ω𝜑 = 𝛼Ω𝜑.

It follows immediately that

𝜑(𝑏𝑎) = ⟨𝜋𝜑(𝑏)𝜋𝜑(𝑎)Ω𝜑, Ω𝜑⟩ = 𝛼⟨𝜋𝜑(𝑏)Ω𝜑, Ω𝜑⟩ = 𝜑(𝑎)𝜑(𝑏). ∎

(A9)⇒(A1). Let 𝜙 ∶ C∗
𝑟Γ → ℂ be a 1-dimensional representation. Then 𝜙 is a state, 

and we can extend 𝜙 to a state 𝜑 ∈ 𝐵(ℓ2Γ)∗ by Hahn-Banach. Note that for every 
𝑔 ∈ Γ,

𝜑(𝜆𝑔𝜆∗
𝑔) = 𝜑(𝜆∗

𝑔𝜆𝑔) = 𝜑(1) = 1 = |𝜑(𝜆𝑔)|2.

Then for all 𝑓 ∈ ℓ∞Γ, 𝑔 ⋅ 𝑓 = 𝜆𝑔𝑓𝜆∗
𝑔, and thus by Lemma 6.2.12,

𝜑(𝑔 ⋅ 𝑓) = 𝜑(𝜆𝑔𝑓𝜆∗
𝑔) = 𝜑(𝜆𝑔)𝜑(𝑓)𝜑(𝜆∗

𝑔) = 𝜑(𝑓)

and thus 𝜑 restricts to a Γ-invariant state on ℓ∞Γ. ∎
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(A6)⇒(A10). Let (𝜉𝑛) ⊂ ℓ2Γ be a sequence of almost invariant vectors. Then for 
every finite 𝐹 ⊂ Γ,

1 = lim
𝑛

‖ 1
|𝐹 |

∑
𝑔∈𝐹

𝜉𝑛‖
2

= lim
𝑛

‖ 1
|𝐹 |

∑
𝑔∈𝐹

𝜆𝑔𝜉𝑛‖
2

≤ ‖ 1
|𝐹 |

∑
𝑔∈𝐹

𝜆𝑔‖ ≤ 1. ∎

(A10)⇒(A5). Let 𝐹 ⊂ Γ be finite such that 𝐹 = 𝐹 −1. Then 𝑥 = 1
|𝐹 | ∑𝑔∈𝐹 𝜆𝑔 is 

self-adjoint and has operator norm equal to 1. Let 𝜀 > 0. There is a 𝜉 ∈ ℓ2Γ such 
that |⟨𝑥𝜉, 𝜉⟩| > 1 − 𝜀′, where 𝜀′ > 0 is to be determined in terms of 𝜀 and |𝐹 |. Let 
|𝜉| ∈ ℓ2Γ be the pointwise absolute value of 𝜉: |𝜉|(𝑔) ∶= |𝜉(𝑔)|. We calculate

1 − 𝜀′ < |⟨𝑥𝜉, 𝜉⟩| = |∑
𝑔∈Γ

(𝑥𝜉)(𝑔)𝜉(𝑔)|

≤ ∑
𝑔∈Γ

|(𝑥𝜉)(𝑔)| ⋅ |𝜉(𝑔)| ≤ ∑
𝑔∈Γ

(𝑥|𝜉|)(𝑔) ⋅ |𝜉|(𝑔)

= ⟨𝑥|𝜉|, |𝜉|⟩ 1
𝐹

∑
𝑔∈𝐹

⟨𝜆𝑔|𝜉|, |𝜉|⟩⏟⏟⏟⏟⏟
≤1 ∀𝑔∈𝐹

.

Thus for all 𝑔 ∈ 𝐹, ⟨𝜆𝑔|𝜉|, |𝜉|⟩ > 1 − |𝐹 |𝜀′, and we have

‖𝜆𝑔|𝜉| − |𝜉|‖2 = ‖𝜆𝑔|𝜉|‖2 + ‖|𝜉|‖2 − ⟨𝜆𝑔|𝜉|, |𝜉|⟩ − ⟨𝜆𝑔−1 |𝜉|, |𝜉|⟩
= 1 − ⟨𝜆𝑔|𝜉|, |𝜉|⟩ + 1 − ⟨𝜆𝑔−1 |𝜉|, |𝜉|⟩
< 2|𝐹 |𝜀′ < 𝜀2

whenever 𝜀′ < min{ 𝜀2

2|𝐹 | ,
1

|𝐹 |}. ∎

6.3 Amenability for von Neumann algebras
TODO: 

6.4 The Haagerup property for discrete groups and tracial von 
Neumann algebras

For this section, Γ is a discrete countable group.

Definition 6.4.1. We say Γ has the Haagerup property if
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[HP] there is a sequence (𝜑𝑛) of positive definite 𝑐0 functions on Γ such that 𝜑𝑛 → 1
pointwise.

Example 6.4.2. 

1. All amenable grops have [HP], as finitely supported implies 𝑐0.

2. Free groups 𝔽𝑛 with 𝑛 ≥ 2 have [HP]. We will prove this once we have a second 
equivalent characterization of [HP].

3. 𝑆𝐿(2, ℤ) = ℤ/4 ∗ℤ/2 ℤ/6 ⊃ 𝔽2 as an index 12 subgroup.

4. 𝑃 𝑆𝐿(2, ℤ) = ℤ/2 ∗ ℤ/3

5. Groups which act on trees (e.g. 𝔽𝑛 acting on its Cayley graph)

6. Coxeter groups ⟨𝑔1, … , 𝑔𝑛|(𝑔𝑖𝑔𝑗)𝑚
𝑖𝑗  where 𝑚𝑖𝑖 = 1, 𝑚𝑖𝑗 ≥ 2 𝑖 ≠ 𝑗⟩. Here, 𝑚𝑖𝑗 = ∞ is 

ok, which means there is no relation of this form.

7. The class of groups with [HP] is closed under taking subgroups, direct products, free 
products.

8. If 𝐻 has [HP] and 𝐻 ≤ 𝐺 with finite index, then 𝐺 has [HP].

Definition 6.4.3. A cocycle of Γ is a triple (𝐻, 𝜋, 𝛽) where (𝐻, 𝜋) is a unitary representation 
and 𝛽 ∶ Γ → 𝐻 such that

𝛽(ℎ𝑔) = 𝛽(ℎ) + 𝜋ℎ𝛽(𝑔) ∀ 𝑔, ℎ ∈ Γ.

A cocycle is called inner if there is a 𝜉 ∈ 𝐻 such that 𝛽(𝑔) = 𝜉 − 𝜋𝑔𝜉 for all 𝑔 ∈ Γ.

Facts 6.4.4. We have the following facts about cocycles.

(𝛽1) 𝛽(𝑒) = 𝛽(𝑒2) = 𝛽(𝑒) + 𝜋𝑒𝛽(𝑒) = 2𝛽(𝑒), so 𝛽(𝑒) = 0.

(𝛽2) 0 = 𝛽(𝑒) = 𝛽(𝑔−1𝑔) = 𝛽(𝑔−1) + 𝜋𝑔−1𝛽(𝑔), so 𝛽(𝑔−1) = −𝜋𝑔−1𝛽(𝑔).

(𝛽3) ‖𝛽(𝑔−1ℎ)‖ = ‖𝛽(𝑔−1) + 𝜋𝑔−1𝛽(ℎ)‖ = ‖ − 𝜋𝑔−1𝛽(𝑔) + 𝜋𝑔−1𝛽(ℎ)‖ = ‖𝛽(𝑔) − 𝛽(ℎ)‖.

The motivation for these cocycles is as follows. Let

Aff(𝐻) ∶ = {affine invertible transformations of 𝐻}
= {𝜉 ↦ 𝑢𝜉 + 𝜂|𝜂 ∈ 𝐻, 𝑢 ∈ 𝑈(𝐻)}

Observe that Aff(𝐻) is a group under composition:

𝜉 ↦ 𝑢2𝜉 + 𝜂2 ↦ 𝑢1(𝑢2𝜉 + 𝜂2) + 𝜂1 = 𝑢1𝑢2𝜉 + (𝑢2𝜂2 + 𝜂1).

Thus we may identify Aff(𝐻) = 𝐻 ⋊ 𝑈(𝐻) with multiplication (𝑢1, 𝜂1) ⋅ (𝜂2, 𝑢2) ∶= (𝜂1 +
𝑢1𝜂2, 𝑢1𝑢2).
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Definition 6.4.5. An affine isometric action of Γ on 𝐻 is a group homomorphism 𝛼 ∶ Γ →
Aff(𝐻).

Example 6.4.6. Given a cocycle (𝐻, 𝜋, 𝛽), we get an affine isometric action by

𝛼𝑔𝜉 ∶= 𝜋𝑔𝜉 + 𝛽(𝑔).

The cocycle condition implies 𝛼𝑔𝛼ℎ = 𝛼𝑔ℎ:

𝛼𝑔𝛼ℎ𝜉 = 𝛼𝑔(𝜋ℎ𝜉 + 𝛽(ℎ)) = 𝜋𝑔(𝜋ℎ𝜉 + 𝛽(ℎ)) + 𝛽(𝑔) = 𝜋𝑔ℎ𝜉 + 𝜋𝑔𝛽(ℎ) + 𝛽(𝑔)⏟⏟⏟⏟⏟⏟⏟
𝛽(ℎ𝑔)

= 𝛼𝑔ℎ𝜉.

Conversely, observe that an affine isometric action 𝛼 ∶ Γ → Aff(𝐻) gives a unitary 
representation 𝜋 ∶ Γ → 𝑈(𝐻) by the quotient map:

𝜋 ∶ Γ
𝛼
−→ Aff(𝐻) = 𝐻 ⋊ 𝑈(𝐻) ↠ 𝑈(𝐻)

Observe that there is a unique 𝛽(𝑔) ∈ 𝐻 such that 𝛼𝑔 = (𝛽(𝑔), 𝜋𝑔) ∈ Aff(𝐻), i.e., 𝛼𝑔𝜉 =
𝜋𝑔𝜉 + 𝛽(𝑔) for all 𝜉 ∈ 𝐻 and 𝑔 ∈ Γ. This 𝛽 is a cocycle:

𝛽(ℎ) + 𝜋ℎ𝛽(𝑔) = 𝜋ℎ(𝛼𝑔𝜉) − 𝛼ℎ(𝛼𝑔𝜉) + 𝜋ℎ(𝜋𝑔𝜉 − 𝛼𝑔𝜉) = 𝜋ℎ𝑔𝜉 − 𝛼ℎ𝑔𝜉 = 𝛽(ℎ𝑔).

Exercise 6.4.7. Let 𝑋 be a uniformly convex Banach space and 𝐵 ⊂ 𝑋 a bounded set. 
Then

inf
𝑥∈𝑋

sup
𝑏∈𝐵

‖𝑥 − 𝑏‖

is attained at a unique 𝑥 ∈ 𝑋.

Lemma 6.4.8. A cocycle (𝐻, 𝜋, 𝛽) is inner if and only if it is bounded.
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Proof. 

⇒: If (𝐻, 𝜋, 𝛽) is inner with 𝛽(𝑔) = 𝜉 − 𝜋𝑔𝜉, then

‖𝛽(𝑔)‖ = ‖𝜉 − 𝜋𝑔𝜉‖ ≤ 2‖𝜉‖ ∀ 𝑔 ∈ Γ.

⇐: Consider the affine action of Γ on 𝐻 associated to (𝜋, 𝛽). If 𝛽 is bounded, then 
the orbit Γ ⋅ 0𝐻 is bounded as

𝛼𝑔0𝐻 = 𝜋𝑔0𝐻 + 𝛽(𝑔) = 𝛽(𝑔).

By Exercise 6.4.7, there is a unique 𝜉 ∈ 𝐻 minimizing sup𝑔∈Γ ‖𝛽(𝑔) − 𝜉‖. We 
claim that 𝛽(𝑔) = 𝜉 − 𝜋𝑔𝜉 for all 𝑔 ∈ Γ. Indeed, for every 𝜂 ∈ Γ ⋅ 0𝐻 and 𝑔 ∈ Γ,

‖𝛼𝑔𝜉 − 𝛼𝑔𝜂⏟
∈Γ⋅0𝐻

‖ = ‖𝜋𝑔(𝜉 − 𝜂)‖ = ‖𝜉 − 𝜂‖,

so by uniqueness in Exercise 6.4.7, 𝛼𝑔𝜉 = 𝜉 for all 𝑔 ∈ Γ. Hence

𝜉 = 𝛼𝑔𝜉 = 𝜋𝑔𝜉 + 𝛽(𝑔) ⟺ 𝛽(𝑔) = 𝜉 − 𝜋𝑔𝜉

for all 𝑔 ∈ Γ. ∎

Definition 6.4.9. A function 𝑓 ∶ 𝑋 → 𝑌 between topological spaces is called proper if 
whenever 𝐾 ⊂ 𝑌 is compact, 𝑓−1𝐾 ⊂ 𝑋 is compact. An affine action 𝛼 ∶ Γ → Aff(𝐻) is 
called proper if the map Γ × 𝐻 → 𝐻 × 𝐻 given by (𝑔, 𝜉) ↦ (𝑔𝜉, 𝜉) is proper.

A cocycle 𝛽 ∶ Γ → 𝐻 is called proper if 𝑔 ↦ ‖𝛽(𝑔)‖ is proper, i.e., for all 𝑁 ∈ ℕ, 
{𝑔 ∈ Γ|‖𝛽(𝑔)‖ < 𝑁} is finite.

Exercise 6.4.10. Show that an affine action 𝛼 = (𝐻, 𝜋, 𝛽) is proper if and only if 𝛽 is 
proper.

Exercise 6.4.11. Suppose 𝑎, 𝑏 ∈ 𝑀𝑛(ℂ) ≥ 0. Prove that the Schur product 𝑎 ∗ 𝑏 ∈ 𝑀𝑛(ℂ)
is also positive, where (𝑎 ∗ 𝑏)𝑖𝑗 ∶= 𝑎𝑖𝑗𝑏𝑖𝑗.

Deduce that if 𝑎 ≥ 0, then the pointwise exponential [exp(𝑎𝑖𝑗)] ≥ 0.

Proposition 6.4.12  (Schoenberg). If 𝛽 ∶ Γ → 𝐻 is a cocycle, then for all 𝑟 > 0, 𝑓𝑟(𝑔) ∶=
exp(−𝑟‖𝛽(𝑔)‖2) is positive definite, and 𝑓𝑟 → 1 pointwise as 𝑟 ↘ 0. Moreover,

• 𝑓𝑟 ∈ 𝑐0Γ if and only if 𝛽 is proper, and

• 𝑓𝑟 → 1 uniformly as 𝑟 ↘ 0 if and only if 𝛽 is bounded.
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Proof. By scaling 𝛽 linearly, we may assume 𝑟 = 1, and we wrte 𝑓 = 𝑓1. Note that

𝑓(𝑔−1ℎ) =
(𝛽3)

exp(−‖𝛽(𝑔) − 𝛽(ℎ)‖2)

= exp(−‖𝛽(𝑔)‖2) ⋅ exp(−‖𝛽(ℎ)‖2) ⋅ exp(2ℜ⟨𝛽(𝑔), 𝛽(ℎ)⟩).

Fix 𝑔1, … , 𝑔𝑛 ∈ Γ. First, note that [exp(−‖𝛽(𝑔𝑖)‖2) ⋅ exp(−‖𝛽(𝑔𝑗)‖2)] ≥ 0 as it equals

[


exp(−‖𝛽(𝑔1)‖2)
⋮

exp(−‖𝛽(𝑔𝑛)‖2)
]


⋅ [exp(−‖𝛽(𝑔1)‖2) ⋯ exp(−‖𝛽(𝑔𝑛)‖2)] .

Second, we show that [exp(2ℜ⟨𝛽(𝑔𝑖), 𝛽(𝑔𝑗)⟩)] ≥ 0 by the following steps.

Step 1: [⟨𝛽(𝑔𝑖), 𝛽(𝑔𝑗)⟩] ≥ 0. Indeed, each 𝜉 ∈ 𝐻 can be viewed as a bounded linear 
map |𝜉⟩ ∶ ℂ → 𝐻 by 1 ↦ 𝜉, and for all 𝑥 = (𝑥𝑖)𝑛

𝑖=1 ∈ ℂ𝑛,

∑
𝑖,𝑗

𝑥𝑖⟨𝛽(𝑔𝑖), 𝛽(𝑔𝑗)⟩𝑥𝑗 = (
𝑛

∑
𝑗=1

𝑥𝑗|𝛽(𝑔𝑗)⟩)
∗

(
𝑛

∑
𝑖=1

𝑥𝑖|𝛽(𝑔𝑖)⟩) ≥ 0.

Step 2: If 𝑎 ∈ 𝑀𝑛(ℂ)+, then

⟨𝑎𝜉, 𝜉⟩ℂ𝑛⟩ =
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜉𝑗𝜉𝑖 =
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝜉𝑗𝜉𝑖 = ⟨𝑎𝜉, 𝜉⟩ℂ𝑛⟩ ≥ 0,

and thus ℜ(𝑎) = 𝑎 + 𝑎
2

≥ 0.

Step 3: Since exp(2ℜ⟨𝛽(𝑔), 𝛽(ℎ)⟩) = ∑
𝑛≥0

(2ℜ⟨𝛽(𝑔), 𝛽(ℎ)⟩)𝑛

𝑛!
, by Exercise 6.4.11,

[2ℜ⟨𝛽(𝑔𝑖), 𝛽(𝑔𝑗)⟩] ≥ 0 ⟹ [exp(2ℜ⟨𝛽(𝑔𝑖), 𝛽(𝑔𝑗)⟩)] ≥ 0.

Finally, we see that the matrix in question is exactly the Schur product of two 
positive matrices, which is again positive by Exercise 6.4.11.
The final claims about the 𝑓𝑟 are immediate. ∎

Theorem 6.4.13. For a countable discrete group Γ, the following are equivalent:

1. Γ has [HP].

2. Γ admits a proper cocycle.

3. Γ admits a proper affine isometric action on a Hilbert space.
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Proof. 

(1) ⇒ (2): Omitted.

(2) ⇔ (3): Immediate from Exercise 6.4.10 above.

(2) ⇒ (1): Suppose 𝛽 ∶ Γ → 𝐻 is a proper cocycle. Schoenberg’s result 6.4.12 gives 
𝑐0 positive definite functions 𝑓1/𝑛(𝑔) ∶= exp(−‖𝛽(𝑔)‖2/𝑛) such that 𝑓𝑟 → 1
pointwise as 𝑛 → ∞.

∎

Theorem 6.4.14. If Γ acts faithfully on a tree 𝑇 preserving the distance of vertices, then Γ
has [HP].

Proof. Let 𝐻 denote ℓ2(oriented edges of 𝑇 ), so that each edge appears twice with 
opposite orientations. For vertices 𝑢, 𝑣 ∈ 𝑇, define:

• 𝑑(𝑢, 𝑣) ∶= the length of the geodescic [𝑢, 𝑣] from 𝑢 to 𝑣 in 𝑇, and

• the signed characteristic function 𝜒[𝑢,𝑣] ∈ 𝐻 by

𝜒[𝑢,𝑣](𝜀) ∶=
{


0 if 𝜀 ∉ [𝑢, 𝑣]
1 if 𝜀 ∈ [𝑢, 𝑣]
−1 if 𝜀 ∈ [𝑣, 𝑢]

We observe the following two important relations:

𝜒[𝑢,𝑣] + 𝜒[𝑣,𝑤] = 𝜒[𝑢,𝑤] ∀ vertices 𝑢, 𝑣, 𝑤 ∈ 𝑇 (6.4.15)
‖𝜒[𝑢,𝑣]‖2 = 2𝑑(𝑢, 𝑣) ∀ vertices 𝑢, 𝑣 ∈ 𝑇 . (6.4.16)

The Γ action on 𝑇 gives a unitary representation 𝜋 ∶ Γ → 𝐵(𝐻) by left translation 
such that

𝜋𝑔𝜒[𝑢,𝑣] = 𝜒[𝑔𝑢,𝑔𝑣] ∀ vertices 𝑢, 𝑣 ∈ 𝑇 . (6.4.17)

Now fix a vertex 𝑡0 ∈ 𝑇, and define 𝛽 ∶ Γ → 𝐻 by 𝛽(𝑔) = 𝜒[𝑔𝑡0,𝑡0]. For all 𝑔, ℎ ∈ Γ,

𝛽(ℎ𝑔) = 𝜒[ℎ𝑔𝑡0,𝑡0]

= 𝜒[ℎ𝑔𝑡0,𝑔𝑡0] + 𝜒[ℎ𝑡0,𝑡0] (6.4.15)
= 𝜋ℎ𝜒[𝑔𝑡0,𝑡0] + 𝜒[ℎ𝑡0,𝑡0] (6.4.17)
= 𝛽ℎ𝛽(𝑔) + 𝛽(ℎ),

so 𝛽 is a cocycle. By (6.4.16), ‖𝛽(𝑔)‖2 = 2𝑑(𝑔𝑡0, 𝑡0) → ∞ as 𝑔 → ∞, so 𝛽 is proper. 
Hence Γ has [HP] by Theorem 6.4.13. ∎
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Example 6.4.18. The free group 𝔽𝑛 acts on its Cayley graph, which is a tree.

Definition 6.4.19. Let (𝑀, tr) be a tracial von Neumann algebra. We say (𝑀, tr) has the 
Haagerup property if there is a sequence (𝜑𝑛 ∶ 𝑀 → 𝑀) of normal trace-preserving cp maps 
such that:

• 𝜑𝑛 → id pointwise-‖ ⋅ ‖2, and

• on 𝐿2𝑀, 𝜑𝑛(𝑚Ω) ∶= 𝜑𝑛(𝑚)Ω is compact as an operator in 𝐵(𝐿2𝑀).

This second condition is analogous to the 𝑐0 condition for Γ.

Remark 6.4.20. Suppose (𝜑𝑛) is a sequence of trace-preserving ucp maps on 𝐿Γ. If 𝜑𝑛 →
id𝐿Γ pointwise-‖⋅‖2, then the positive definite functions 𝑓𝑛(𝑔) ∶= tr(𝜑𝑛(𝜆𝑔)𝜆∗

𝑔) from Example 
6.1.6 converge to 1 pointwise. Indeed,

|𝑓𝑛(𝑔) − 1| = |⟨𝜑𝑛(𝜆𝑔), 𝜆𝑔⟩𝐿2(𝐿Γ) − ⟨𝜆𝑔, 𝜆𝑔⟩𝐿2(𝐿Γ)|

= |⟨(𝜑̂𝑛 − 1)𝛿𝑔, 𝛿𝑔⟩ℓ2Γ ≤
(CS)

‖(𝜑̂𝑛 − 1)𝛿𝑔‖ℓ2Γ
𝑛→∞
−−−→ 0.

Lemma 6.4.21. If 𝑥 ∈ 𝐾(𝐻) and (𝑒𝑖) is an ONB for 𝐻, then |𝜔𝑒𝑖
(𝑥)| = |⟨𝑥𝑒𝑖, 𝑒𝑖⟩| → 0 as 

𝑖 → ∞.

Proof. Since every 𝑥 ∈ 𝐾(𝐻) is a linear combination of 4 positive compact operators, 
we may assume 𝑥 ≥ 0. Let 𝑥 = ∑ 𝑠𝑛|𝑓𝑛⟩⟨𝑓𝑛| be a Schmidt decomposition of 𝑥 with 
𝑠𝑛 ↘ 0 as 𝑛 → ∞. Let 𝜀 > 0 and pick 𝑁 > 0 such that 𝑛 ≥ 𝑁 implies 𝑠𝑛 < 𝜀/2. 
Since |⟨𝑒𝑖, 𝑓𝑛⟩|2 → 0 as 𝑖 → ∞, there is an 𝑖0 such that 𝑖 > 𝑖0 implies

𝑁−1
∑
𝑛=0

𝑠𝑛|⟨𝑒𝑖, 𝑓𝑛⟩|2 < 𝜀
2

.

We now calculate that whenever 𝑖 > 𝑖0,

⟨𝑥𝑒𝑖, 𝑒𝑖⟩ =
∞

∑
𝑛=0

𝑠𝑛|⟨𝑒𝑖, 𝑓𝑛⟩|2 <
𝑁−1
∑
𝑛=0

𝑠𝑛|⟨𝑒𝑖, 𝑓𝑛⟩|2 + 𝑠𝑁

∞
∑
𝑛≥𝑁

|⟨𝑒𝑖, 𝑓𝑛⟩|2 < 𝜀
2

+ 𝜀
2

= 𝜀. ∎

Theorem 6.4.22. A countable discrete group Γ has [HP] if and only if 𝐿Γ has [HP].

Proof. 

⇒: Let (𝑓𝑛) be a sequence of 𝑐0 positive definite functions Γ → ℂ which converges 
to 1 pointwise. Without loss of generality, we may assume 𝑓𝑛(𝑒) = 1 for all 𝑛; 
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otherwise replace 𝑓𝑛 with 𝑓𝑛/𝑓𝑛(𝑒). The cp multipliers 𝑀𝑓𝑛
∶ 𝐿Γ → 𝐿Γ witness 

that 𝐿Γ has [HP]. Indeed, 𝑀̂𝑓𝑛
∈ 𝐵(ℓ2Γ) is clearly compact as it is diagonal 

with eigenvalues going to 0, and

‖(𝑀𝑓𝑛
(𝑥) − 𝑥)𝛿𝑒‖2

2 = ‖(𝑀̂𝑓𝑛
− 1)𝑥𝛿𝑒‖2

2 = ∑
𝑔

|𝑓𝑛(𝑔) − 1|2|𝑥𝑔|2
𝑛→∞
−−−→ 0

as each 𝑓𝑛 ∈ 𝑐0Γ with ‖𝑓𝑛‖ = 𝑓𝑛(𝑒) = 1 for all 𝑛. Explicitly, |𝑓𝑛(𝑔) − 1|2 ≤ 4 for 
all 𝑛, so we may choose ℎ ∈ Γ large in some ordering so that ∑𝑔>ℎ |𝑥𝑔|2 < 𝜀2/8, 
and we may then choose 𝑁 so that 𝑛 > 𝑁 implies

∑
𝑔≤ℎ

|𝑓𝑛(𝑔) − 1|2|𝑥𝑔|2 < 𝜀2/2.

⇐: Suppose (𝜑𝑛) witness that 𝐿Γ has [HP]. Then 𝑓𝑛(𝑔) ∶= tr𝐿Γ(𝜑𝑛(𝜆𝑔)𝜆∗
𝑔) is posi­

tive definite by Example 6.1.6. To see that 𝑓𝑛 ∈ 𝑐0Γ, we have that

|𝑓𝑛(𝑔)| = | tr𝐿Γ(𝜑𝑛(𝜆𝑔)𝜆∗
𝑔)| = |⟨𝜑𝑛(𝜆𝑔), 𝜆𝑔⟩𝐿2(𝐿Γ)| = |𝜔𝜆𝑔

(𝜑̂𝑛)|
𝑔→∞
−−−→ 0

by Lemma 6.4.21. Since 𝜑𝑛 → id𝐿Γ pointwise-‖⋅‖2, 𝑓𝑛 → 1 pointwise by Remark 
6.4.20 ∎

6.5 Kazhdan’s Property (T) for discrete groups
For this section, Γ is a countable discrete group, and Λ ≤ Γ is a subgroup.

Definition 6.5.1. We say Γ has property (T) relative to Λ whenever (𝑓𝑛) is a sequence of 
positive definite functions Γ → ℂ such that 𝑓𝑛 → 1 pointwise, then 𝑓𝑛|Λ → 1 uniformly on 
Λ. We say Γ has property (T) if Γ has property (T) relative to Γ. In other words:
(T) whenever (𝑓𝑛) is a sequence of positive definite functions Γ → ℂ such that 𝑓𝑛 → 1

pointwise, then 𝑓𝑛 → 1 uniformly.

Example 6.5.2. 

1. All finite groups have (T).

2. 𝑆𝐿(2, ℤ) has [HP] as 𝔽2 ≤ 𝑆𝐿(2, ℤ) with index 12, but 𝑆𝐿(𝑛, ℤ) has (T) for 𝑛 ≥ 3.

3. ℤ2 ≤ ℤ2 ⋊ 𝑆𝐿(2, ℤ) has relative (T).

{


[


1 ∗
1 ∗

1
]


}


≤
{


[


𝑎 𝑏 ∗
𝑐 𝑑 ∗

1
]


| [𝑎 𝑏
𝑐 𝑑] ∈ 𝑆𝐿(2, ℤ)

}


Observe that neither of these groups has (T).
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Facts 6.5.3. 

1. If Γ has (T) relative to Λ and Γ has [HP], then Λ is finite. In particular, Γ has [HP] 
and (T) if and only if Γ is finite.

2. If Γ has relative (T) with respect to an infinite subgroup Λ, then Γ does not have [HP]. 
Thus [HP] is not preserved under extensions.

Theorem 6.5.4. The following are equivalent.

(T1) Γ has (T), i.e., for all sequences (𝑓𝑛) of positive deifnite functions with 𝑓𝑛 → 1
pointwise, 𝑓𝑛 → 1 uniformly.

(T2) Every cocycle 𝛽 ∶ Γ → 𝐻 is inner (equivalently bounded).

(T3) Every affine Γ-action has a fixed point.

(T4) If (𝐻, 𝜋) is a unitary representation of Γ with a sequence of unit vectors (𝜉𝑛) such that 
‖𝜋𝑔𝜉𝑛 − 𝜉𝑛‖ → 0 for all 𝑔 ∈ Γ, then there is a non-zero 𝜉 ∈ 𝐻 such that 𝜋𝑔𝜉 = 𝜉 for all 
𝑔 ∈ Γ.

(T5) There is a 𝛿 > 0 and a finite 𝐹 ⊂ Γ such that for every unitary representation (𝐻, 𝜋)
and 𝜉 ∈ (𝐻)1 with ‖𝜋𝑔𝜉 − 𝜉‖ < 𝛿 for all 𝑔 ∈ 𝐹, there is an 𝜉0 ∈ (𝐻)1 with 𝜋𝑔𝜉0 = 𝜉0
for all 𝑔 ∈ Γ.

(T6) For all 𝜀 > 0, there is a 𝛿 > 0 and a finite 𝐹 ⊂ Γ such that for every unitary 
representation (𝐻, 𝜋) and 𝜉 ∈ (𝐻)1 with ‖𝜋𝑔𝜉 − 𝜉‖ < 𝛿 for all 𝑔 ∈ 𝐹, there is an 
𝜉0 ∈ (𝐻)1 with ‖𝜉 − 𝜉0‖ < 𝜀 and 𝜋𝑔𝜉0 = 𝜉0 for all 𝑔 ∈ Γ.

(T7) For all 𝜀 > 0, there is a 𝛿 > 0 and a finite 𝐹 ⊂ Γ such that for all positive definite 
𝑓 ∶ Γ → ℂ with |𝑓(𝑔) − 1| < 𝛿 on 𝐹, we have |𝑓(𝑔) − 1| < 𝜀 for all 𝑔 ∈ Γ.

We prove the following implications:

(T1) (T7) (T6)

(T3) (T2) (T4) (T5)

(T1)⇒(T2). Let 𝛽 ∶ Γ → 𝐻 be a cocycle. By Schoenberg’s result 6.4.12, for all 𝑟 > 0, 
𝑓𝑟(𝑔) ∶= exp(−𝑟‖𝛽(𝑔)‖2) is positive definite, and 𝑓𝑟(𝑔) → 1 pointwise as 𝑟 → 0+. By 
(T1), 𝑓1/𝑛 → 0 uniformly, which implies 𝛽 is bounded. Thus 𝛽 is inner by Lemma 
6.4.8. ∎

19



(T2)⇔(T3). Observe that for all 𝛼 ∈ Aff(𝐻),

𝜉 = 𝛼𝑔𝜉 = 𝜋𝑔𝜉 + 𝛽(𝑔) ⟺ 𝛽(𝑔) = 𝜉 − 𝜋𝑔𝜉 ∀ 𝑔 ∈ Γ.

Hence 𝛼 has a fixed point if and only if 𝛽 is inner. ∎

¬(T5)⇒ ¬(T4). Let Γ = {𝑔1, 𝑔2, … } be an enumeration and set 𝐹𝑛 = {𝑔1, … , 𝑔𝑛} ⊂ Γ
and 𝛿𝑛 = 1/𝑛. Then for each 𝑛, there is a unitary representation (𝐻𝑛, 𝜋𝑛, 𝜉𝑛) such 
that ‖𝜉𝑛‖ = 1, ‖𝜋𝑛(𝑔)𝜉𝑛 − 𝜉𝑛‖ < 1/𝑛 for all 𝑔 ∈ 𝐹𝑛, but the Γ-invariant subspace 
𝐻𝜋𝑛𝑛 = 0. Set (𝐻, 𝜋) ∶= ⨁(𝐻𝑛, 𝜋𝑛). Then (𝜉𝑛) where 𝜉𝑛 lives in only the 𝑛-th 
component is a sequence of almost invariant vectors, but there is no Γ-invariant vector 
in (𝐻, 𝜋) as every projection map (𝐻, 𝜋) → (𝐻𝑛, 𝜋𝑛) is Γ-equivariant. ∎

(T6)⇒(T5). Trivial - just take an arbitrary 𝜀 > 0. ∎

(T5)⇒(T6). Let 𝜀 > 0. Pick 𝛿′ > 0 and a finite set 𝐹 ′ ⊂ Γ satisfying (T5). We set 
𝛿 = 𝜀′𝛿′ for a to-be-determined 𝜀′ > 0 in terms of 𝜀 and set 𝐹 = 𝐹 ′. Suppose (𝐻, 𝜋)
is a unitary Γ-representation with 𝜉 ∈ 𝐻 a (𝛿, 𝐹 )-almost invariant vector as in (T6). 
Consider the Γ-fixed points

𝐻𝜋 ∶= {𝜂 ∈ 𝐻|𝜋𝑔𝜂 = 𝜂 ∀ 𝑔 ∈ Γ} .

If 𝜉 ∈ 𝐻𝜋, then we are finished. If not, our strategy will be to project 𝜉 to 𝐻𝜋 and 
show that this vector is non-zero and close to 𝜉 after renormalizing.
To this end, let 𝑝 be the orthogonal projection onto 𝐻𝜋 so that

‖𝜋𝑔𝜂 − 𝜂‖ = ‖𝜋𝑔(1 − 𝑝)𝜂 + 𝜋𝑔𝑝𝜂 − 𝜂‖ = ‖𝜋𝑔(1 − 𝑝)𝜂 + (1 − 𝑝)𝜂‖ ∀ 𝜂 ∈ 𝐻.

Note that (𝐻𝜋)⟂ = (1 − 𝑝)𝐻 does not contain any non-zero invariant vectors. Since 
𝜋|(1−𝑝)𝐻 is a unitary Γ-representation, by (T5), for all unit vectors 𝜂 ∈ (1 − 𝑝)𝐻, 
‖𝜋𝑔𝜂 − 𝜂‖ ≥ 𝛿′ for some 𝑔 ∈ 𝐹. This means

‖𝜋𝑔(1 − 𝑝)𝜉 − (1 − 𝑝)𝜉‖ ≥ 𝛿′‖(1 − 𝑝)𝜉‖.

We now calculate that

𝜀′𝛿′ = 𝛿 ≥ ‖𝜋𝑔𝜉−𝜉‖ = ‖𝜋𝑔(1−𝑝)𝜉−(1−𝑝)𝜉‖ ≥ 𝛿′‖(1−𝑝)𝜉‖ ⟹ ‖(1−𝑝)𝜉‖ ≤ 𝜀′.

As 𝜉 is a unit vector, this means that if 𝜀′ < 1, then 𝑝𝜉 ≠ 0, and we may set 
𝜉0 ∶= 𝑝𝜉/‖𝑝𝜉‖ ∈ 𝐻𝜋. It remains to show 𝜉0 is close to 𝜉 when 𝜀′ is small enough. 
Indeed,

𝜉0 − 𝑝𝜉 = 𝑝𝜉
‖𝑝𝜉‖

− 𝑝𝜉 = 1 − ‖𝑝𝜉‖
‖𝑝𝜉‖

𝑝𝜉
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which implies

‖𝜉0 − 𝑝𝜉‖ ≤ 1 − ‖𝑝𝜉‖ = ‖𝜉‖ − ‖𝑝𝜉‖ ≤ ‖(1 − 𝑝)𝜉‖ ≤ 𝜀′

by the reverse triangle inequality. Finally, we calculate

‖𝜉0 − 𝜉‖ ≤ ‖𝜉0 − 𝑝𝜉‖ + ‖𝑝𝜉 − 𝜉‖ = ‖𝜉0 − 𝑝𝜉‖ + ‖(1 − 𝑝)𝜉‖ ≤ 2𝜀′ < 𝜀

as long as 𝜀′ < min{𝜀/2, 1}. ∎

(T6)⇒(T7). Let 𝜀 > 0, and choose (𝐹 ′, 𝛿′) as in (T6) for 𝜀′ > 0 a function of 𝜀 to 
be determined. Set 𝐹 = 𝐹 ′ ∪ (𝐹 ′)−1 ∪ {𝑒} and let 𝛿 be a function of 𝜀 and 𝛿′ to 
be determined. Suppose 𝑓 ∶ Γ → ℂ is positive definite such that |𝑓(𝑔) − 1| < 𝛿 for 
all 𝑔 ∈ 𝐹. By Theorem 6.1.5, there is a unitary Γ-representation (𝐻, 𝜋, 𝜂) such that 
𝑓(𝑔) = ⟨𝜋𝑔𝜂, 𝜂⟩ for all 𝑔 ∈ Γ. Since 𝑒 ∈ 𝐹,

|‖𝜂‖2 − 1‖ = |𝑓(𝑒) − 1| < 𝛿.

Set 𝜉 ∶= 𝜂/‖𝜂‖, and we record the estimate

|1 − ⟨𝜋𝑔𝜉, 𝜉⟩| ≤ |1 − 𝑓(𝑔)|⏟⏟⏟⏟⏟
<𝛿

+ |⟨𝜋𝑔𝜂, 𝜂⟩ − ⟨𝜋𝑔𝜉, 𝜉⟩|⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤|‖𝜂‖2−1|⋅⟨𝜋𝑔𝜉,𝜉⟩<𝛿⋅1

< 2𝛿 ∀ 𝑔 ∈ 𝐹.

Then for all 𝑔 ∈ 𝐹,

‖𝜋𝑔𝜉 − 𝜉‖2 = 1 − ⟨𝜋𝑔𝜉, 𝜉⟩ + 1 − ⟨𝜋𝑔−1𝜉, 𝜉⟩ ≤ |1 − ⟨𝜋𝑔𝜉, 𝜉⟩| + |1 − ⟨𝜋𝑔−1𝜉, 𝜉⟩| ≤ 4𝛿 < 𝛿′2

if 𝛿 < 𝛿′2/4. By (T6), there is a unit vector 𝜉0 ∈ 𝐻 such that 𝜋𝑔𝜉0 = 𝜉0 for all 𝑔 ∈ Γ
and ‖𝜉 − 𝜉0‖ < 𝜀′. Then for all 𝑔 ∈ Γ,

|1 − 𝑓(𝑔)| = |⟨𝜋𝑔𝜉0, 𝜉0⟩ − ⟨𝜋𝑔𝜂, 𝜂⟩|
= |⟨𝜋𝑔(𝜉0 − 𝜉), 𝜉0⟩ + ⟨𝜋𝑔𝜉, (𝜉0 − 𝜉)⟩ + ⟨𝜋𝑔𝜉, 𝜉⟩ − ⟨𝜋𝑔𝜂, 𝜂⟩|
≤ |⟨𝜋𝑔(𝜉0 − 𝜉), 𝜉⟩| + |⟨𝜋𝑔𝜉, (𝜉0 − 𝜉)⟩| + |⟨𝜋𝑔𝜉, 𝜉⟩ − ⟨𝜋𝑔𝜂, 𝜂⟩|
< 2𝜀′ + 𝛿 < 𝜀

provided we chose 𝜀′ < 𝜀/3 and 𝛿 < min{𝜀/3, 𝛿′2/4}. ∎
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(T7)⇒(T1). Suppose (𝑓𝑛) is a sequence of positive definite functions such that 𝑓𝑛 → 1
pointwise on Γ. Let 𝜀 > 0, and choose (𝐹 , 𝛿) as in (T7). Since 𝐹 is finite and 𝑓𝑛 → 1
pointwise, eventually |𝑓𝑛(𝑔) − 1| < 𝛿 for all 𝑔 ∈ 𝐹. Then |𝑓𝑛(𝑔) − 1| < 𝜀 for all 𝑔 ∈ Γ
by (T7). ∎

Exercise 6.5.5. Prove (T2)⇒(T4).

Exercise 6.5.6. Modify all the statements in Theorem 6.5.4 for a countable discrete group 
Γ to be relative to a subgroup Λ ≤ Γ. Then prove all the equivalences.

6.6 Property (T) for tracial von Neumann algebras
For this section, (𝑀, tr) is a tracial von Neumann algebra with separable predual.

Definition 6.6.1. We say (𝑀, tr) has property (T) if for every sequence (𝜑𝑛 ∶ 𝑀 → 𝑀) of 
normal trace-preserving ucp maps with 𝜑𝑛 → id𝑀 pointwise-‖ ⋅ ‖2, 𝜑𝑛 → id𝑀 uniformly in 
‖ ⋅ ‖2 on (𝑀)1, the unit ball of 𝑀.

The main goal of this section is to prove that a countable discrete group Γ has (T) if and 
only if 𝐿Γ with its canonical trace has (T).

Definition 6.6.2. Suppose (𝐴, tr𝐴), (𝐵, tr𝐵) are tracial von Neumann algebras. An 𝐴−𝐵 bi­
module 𝐴𝐻𝐵 is a Hilbert space 𝐻 equipped with commuting normal unital ∗-homomorphisms 
𝜆 ∶ 𝐴 → 𝐵(𝐻) and 𝜌 ∶ 𝐵op → 𝐵(𝐻) (with [𝜆𝑎, 𝜌𝑏] = 0 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵op). We typically 
suppress 𝜆, 𝜌 and simply write 𝑎𝜂𝑏 = 𝜆𝑎𝜌𝑏𝜂.

A pointing on a bimodule 𝐴𝐻𝐵 is a distinguished vector 𝜉 ∈ 𝐻 such that 𝐴𝜉𝐵 is dense 
in 𝐻. A pointing is called tracial if in addition

⟨𝑎𝜉, 𝜉⟩ = tr𝐴(𝑎) ∀ 𝑎 ∈ 𝐴 and ⟨𝜉𝑏, 𝜉⟩ = tr𝐵(𝑏) ∀ 𝑏 ∈ 𝐵.

Construction 6.6.3. Suppose (𝐴, tr𝐴), (𝐵, tr𝐵) are tracial von Neumann algebras and 
(𝐴𝐻𝐵, 𝜂) is a tracially pointed bimodule. We can construct a trace-preserving normal ucp 
map 𝜙 ∶ 𝐴 → 𝐵 as follows.

First, since 𝜂 is a tracial pointing, the map 𝐿𝜂 ∶ 𝐿2𝐵 → 𝐻 given by 𝑏Ω ↦ 𝜂𝑏 extends to 
a unique isometry. Define 𝜙 ∶ 𝐴 → 𝐵 by 𝜙(𝑎) ∶= 𝐿∗

𝜂𝜆𝑎𝐿𝜂 ∈ 𝐵(𝐿2𝐵). Since 𝐿𝜂 and 𝜆𝑎 are 
right 𝐵-linear, so is 𝜙(𝑎), i.e., 𝜙(𝑎) ∈ 𝐽𝐵𝐽 ′ = 𝐵. Finally, we verify

tr𝐵(𝜙(𝑎)) = ⟨𝜙(𝑎)Ω, Ω⟩ = ⟨𝐿∗
𝜂𝜆𝑎𝐿𝜂Ω, Ω⟩ = ⟨𝑏𝜂, 𝜂⟩ = tr𝐵(𝑎).

Remark 6.6.4. Given two tracially pointed bimodules (𝐴𝐻𝐵, 𝜂) and (𝐴𝐾𝐵, 𝜉), there is at 
most one 𝐴−𝐵 bimodular map 𝑇 ∶ 𝐻 → 𝐾 mapping 𝜂 to 𝜉. This map will be unitary if and 
only if 𝑇 ∗ ∶ 𝐾 → 𝐻 also preserves the pointing. Indeed, 𝑇 ∗𝜉 = 𝜂 if and only if 𝑇 ∗ = 𝑇 −1. 
This shows that the 2-category of tracial von Neumann algebras, tracially pointed bimodules, 
and 𝐴 − 𝐵 bimodular unitaries preserving the pointing is 1-truncated, i.e., equivalent to a 
1-category.
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Construction 6.6.5. Suppose (𝐴, tr𝐴), (𝐵, tr𝐵) are tracial von Neumann algebras and 𝜙 ∶
𝐴 → 𝐵 is a trace-preserving normal ucp map. We can build a tracially pointed bimodule as 
follows.

Let 𝐻𝜙 be the Hilbert space obtained from taking the algebraic tensor product 𝐴⊗𝐵 with 
sesquilinear form ⟨𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2⟩𝜙 ∶= tr𝐵(𝑏∗

2𝜙(𝑎∗
2𝑎1)𝑏1), quotienting out the length zero 

vectors, and completing in ‖ ⋅ ‖2; this is the Hilbert space from the proof of the Stinespring 
Dilation Theorem. We calculate the left 𝐴-action descends to a bounded action:

‖𝑎 ⋅ ∑
𝑖

𝑥𝑖 ⊗ 𝑦𝑖‖
2

𝜙

= ∑
𝑖,𝑗

⟨𝜙(𝑥∗
𝑗𝑎∗𝑎𝑥𝑖)𝑦𝑖Ω, 𝑦𝑗Ω⟩𝐿2𝐵 ≤ ‖𝑎∗𝑎‖ ⋅ ‖∑

𝑖
𝑥𝑖 ⊗ 𝑦𝑖‖

2

𝜙

.

where the inequality comes from the fact [𝜙(𝑥∗
𝑗𝑎∗𝑎𝑥𝑖)] ≤ ‖𝑎∗𝑎‖ ⋅ [𝜙(𝑥∗

𝑗𝑥𝑖)] in 𝑀𝑛(𝐵). Bound­
edness of the right 𝐵-action is easier and omitted. These actions are normal since 𝜙 is normal 
(exercise).

Remark 6.6.6. Consider the case of 𝑁 ⊂ 𝑀 an inclusion of finite von Neumann algebras 
where 𝑀 is equipped with a faithful normal tracial state tr. Let 𝐸 ∶ 𝑀 → 𝑁 be the unique 
trace-preserving conditional expectation. We claim that the map 𝑚 ⊗ 𝑛 ↦ 𝑚𝑛 descends 
to an 𝑀 − 𝑁 bimodular unitary isomorphism 𝐻𝐸 ≅ 𝑀𝐿2𝑀𝑁; this is the unique map from 
Remark 6.6.4. Indeed, 𝑀 − 𝑁 bimodularity is obvious, and we calculate

⟨𝑚1 ⊗ 𝑛1, 𝑚2 ⊗ 𝑛2⟩𝐸 = tr(𝑛∗
2𝐸(𝑚∗

2𝑚1)𝑛1) = (tr ∘𝐸)(𝑛∗
2𝑚∗

2𝑚1𝑛1)
= tr(𝑛∗

2𝑚∗
2𝑚1𝑛1) = ⟨𝑚1𝑛1Ω, 𝑚2𝑛2Ω⟩𝐿2𝑀.

Hence this map descends to a well-defined isometry with dense range, and thus uniquely 
extends to a unitary.

Exercise 6.6.7. Prove that Constructions 6.6.5 and 6.6.3 are mutually inverse. In more 
detail:

1. Starting with a trace-preserving normal ucp map 𝜙 ∶ 𝐴 → 𝐵, show that applying 
Construction 6.6.5 and then Construction 6.6.3 produces exactly 𝜙 again.

2. Starting with a tracially pointed bimodule (𝐴𝐻𝐵, 𝜂), show that applying Construction 
6.6.3 and then Construction 6.6.5 gives another tracially pointed bimodule (𝐴𝐾𝐵, 𝜉)
which is canonically unitarily equivalent to (𝐴𝐻𝐵, 𝜂) via Remark 6.6.4.

Remark 6.6.8. Exercise 6.6.7 above shows that the 1-truncated 2-category from Remark 
6.6.4 is equivalent to the 1-category of tracial von Neumann algebras with trace-preserving 
normal ucp maps.

Lemma 6.6.9. Suppose 𝜑 ∶ 𝑀 → 𝑀 is trace-preserving ucp map, and let (𝐻, 𝜉) be the 
associated tracially pointed 𝑀 − 𝑀 bimodule. Then for all 𝑥 ∈ 𝑀, ⟨𝑥𝜉, 𝜉𝑥⟩ = tr𝑀(𝜑(𝑥)𝑥∗)
and

‖𝜑(𝑥)Ω − 𝑥Ω‖𝐿2𝑀 ≤ ‖𝑥𝜉 − 𝜉𝑥‖𝐻 ≤ ‖𝜑(𝑥)Ω − 𝑥Ω‖𝐿2𝑀 ⋅ ‖𝑥‖2.
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Proof. First, note that

⟨𝑥𝜉, 𝜉𝑥⟩ = ⟨𝑥 ⊗ 1, 1 ⊗ 𝑥⟩𝜑 = ⟨𝜑(𝑥)Ω, 𝑥Ω⟩𝐿2𝑀 = tr𝑀(𝜑(𝑥)𝑥∗).

We then calculate

‖𝜑𝑛(𝑥)Ω − 𝑥Ω‖2
𝐿2𝑀 = ‖𝜑𝑛(𝑥)Ω‖2

𝐿2𝑀 + ‖𝑥Ω‖2
𝐿2𝑀 − 2ℜ tr𝑀(𝜑𝑛(𝑥)𝑥∗)

= tr𝑀(𝜑𝑛(𝑥)∗𝜑𝑛(𝑥)) + tr𝑀(𝑥∗𝑥) − 2ℜ tr𝑀(𝜑𝑛(𝑥)𝑥∗)
≤ tr𝑀(𝜑𝑛(𝑥∗𝑥)) + tr𝑀(𝑥∗𝑥) − 2ℜ tr𝑀(𝜑𝑛(𝑥)𝑥∗)
= 2 tr𝑀(𝑥∗𝑥) − 2ℜ⟨𝑥𝜉𝑛, 𝜉𝑛𝑥⟩.

We now see that

2 tr𝑀(𝑥∗𝑥) − 2ℜ⟨𝑥𝜉𝑛, 𝜉𝑛𝑥⟩ = ‖𝑥𝜉𝑛‖2
2 + ‖𝜉𝑛𝑥‖2

2 − 2ℜ⟨𝑥𝜉𝑛, 𝜉𝑛𝑥⟩ = ‖𝑥𝜉𝑛 − 𝜉𝑛𝑥‖2
𝐿2𝑀

and

2 tr𝑀(𝑥∗𝑥) − 2ℜ⟨𝑥𝜉𝑛, 𝜉𝑛𝑥⟩ = 2ℜ tr𝑀((𝜑𝑚(𝑥) − 𝑥)𝑥∗)
≤ 2|⟨(𝜑𝑚(𝑥) − 𝑥)Ω, 𝑥Ω⟩|
≤

(CS)
2‖𝜑𝑚(𝑥)Ω − 𝑥Ω‖2 ⋅ ‖𝑥Ω‖2. ∎

Theorem 6.6.10. For a tracial von Neumann algebra (𝑀, tr), the following are equivalent.

1. (𝑀, tr) has (T).

2. For all 𝜀 > 0, there is a 𝛿 > 0 and a finite 𝐹 ⊂ 𝑀 such that for every tracially pointed 
𝑀 − 𝑀 bimodule (𝑀𝐻𝑀, 𝜉) satisfying

max
𝑥∈𝐹

‖𝑥𝜉 − 𝜉𝑥‖ < 𝛿,

there is an 𝑀-central vector 𝜉0 ∈ 𝐻 such that ‖𝜉 − 𝜉0‖ < 𝜀.

Proof. 

(1) ⇒ (2): Omitted. TODO: Check this!

(2) ⇒ (1): Suppose (𝜑𝑛) is sequence of normal trace-preserving ucp maps such that 
𝜑𝑛 → id𝑀 pointwise ‖ ⋅ ‖2. Let 𝜀 > 0 and pick (𝐹 ′, 𝛿′) for a to-be-determined 
𝜀′ > 0 as a function of 𝜀. Let (𝐻𝑛, 𝜉𝑛) be the tracially pointed 𝑀 −𝑀 bimodule 
associated to 𝜑𝑛. Since 𝜑𝑛 → id𝑀 pointwise ‖ ⋅ ‖2, there is an 𝑁 > 0 such that 
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𝑛 > 𝑁 implies
‖𝜑𝑛(𝑥)Ω − 𝑥Ω‖2 < 𝛿 ∀ 𝑥 ∈ 𝐹 ′,

where 𝛿 > 0 is to be determined in terms of 𝜀′, 𝛿′, 𝐹 ′. Then by Lemma 6.6.9, 
for all 𝑛 > 𝑁 and 𝑥 ∈ 𝐹,

‖𝑥𝜉𝑛 − 𝜉𝑛𝑥‖2
2 ≤ 2‖𝜑𝑚(𝑥)Ω − 𝑥Ω‖2 ⋅ ‖𝑥Ω‖2 < 2𝛿𝐾

where 𝐾 ∶= max𝑥∈𝐹 ‖𝑥Ω‖2. Now if 𝛿 < 𝛿′2/2𝐾, then for every 𝑛 > 𝑁, there 
is an 𝑀-central vector 𝜉𝑛,0 ∈ 𝐻𝑛 such that ‖𝜉𝑛,0 − 𝜉𝑛‖ < 𝜀′. Then again by 
Lemma 6.6.9, for all 𝑛 > 𝑁 and 𝑥 ∈ (𝑀)1,

‖𝜑𝑛(𝑥)Ω − 𝑥Ω‖2 ≤ ‖𝑥𝜉𝑛 − 𝜉𝑛𝑥‖ ≤ ‖𝑥𝜉𝑛 − 𝑥𝜉𝑛,0‖ + ‖𝜉𝑛,0𝑥 − 𝜉𝑛𝑥‖ ≤ 2𝜀′ < 𝜀

whenever 𝜀′ < 𝜀/2. ∎

Corollary 6.6.11. A countable discrete group Γ has (T) if and only if 𝐿Γ with its canonical 
trace has (T).

Proof. Suppose Γ has (T). Let 𝜀 > 0, and choose (𝐹 , 𝛿) as in (T6). Let (𝐻, 𝜉) be a 
tracially pointed 𝐿Γ − 𝐿Γ bimodule such that max𝑔∈𝐹 ‖𝜆𝑔𝜉 − 𝜉𝜆𝑔‖2 < 𝛿. We have a 
unitary representation 𝜋 ∶ Γ → 𝐵(𝐻) by 𝜋𝑔𝜂 ∶= 𝜆𝑔𝜂𝜆∗

𝑔. Since 𝜉 ∈ (𝐻)1 and

‖𝜋𝑔𝜉 − 𝜉‖ = ‖𝜆𝑔𝜉𝜆∗
𝑔 − 𝜉‖ = ‖𝜆𝑔𝜉 − 𝜉𝜆𝑔‖ < 𝛿 ∀ 𝑔 ∈ Γ,

by (T6) there is a Γ-invariant vector 𝜉0 ∈ (𝐻)1 with ‖𝜉 − 𝜉0‖ < 𝜀 such that 𝜋𝑔𝜉0 = 𝜉0
for all 𝑔 ∈ Γ. But then 𝜆𝑔𝜉0 = 𝜉0𝜆𝑔 for all 𝑔 ∈ Γ, and thus 𝜉0 is 𝐿Γ-central as desired. 
We conclude 𝐿Γ has (T).
Conversely, suppose 𝐿Γ has (T). Let (𝑓𝑛) be a sequence of positive definite functions 
on Γ which converge to 1 pointwise. Without loss of generality, we may assume 
𝑓𝑛(𝑒) = 1 for all 𝑛. Then (𝑀𝑓𝑛

) is a sequence of trace-preserving ucp maps such that 
𝑀𝑓𝑛

→ id𝑀 pointwise ‖ ⋅ ‖2. Since 𝐿Γ has (T), 𝑀𝑓𝑛
→ id𝑀 uniformly in ‖ ⋅ ‖2 on 

(𝐿Γ)1. In particular, for every 𝜀 > 0, there is an 𝑁 > 0 such that for all 𝑛 > 𝑁 and 
𝑔 ∈ Γ,

|𝑓𝑛(𝑔) − 1| = ‖𝑓𝑛(𝑔)𝛿𝑔 − 𝛿𝑔‖ℓ2Γ = ‖𝑀𝑓𝑛
(𝜆𝑔)Ω − 𝜆𝑔Ω‖𝐿2𝐿Γ < 𝜀.

Hence 𝑓𝑛 → 1 uniformly, and Γ has (T). ∎
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