Penneys Math 7212, Analytic properties Spring 2026

6 Analytic and approximation properties

We discuss various analytic and approximation properties for countable discrete groups. In
this section, I' always denotes a countable discrete group.

6.1 Positive definite functions and cp multipliers

This section follows a mini-course I took from Narutaka Ozawa at IMSc in February 2009.
Let " be a discrete countable group.

Definition 6.1.1. A function f : I' — C is called positive definite if for every g, ..., g, €T,
[f(gi 'g;)] is positive in M, (C).

Lemma 6.1.2. Suppose a € M, (C) is positive and constant along the diagonal. Then
|aij| <ay, foralll <i,5,k <n.

Proof. Let b € M, (C) such that a = b*b. Then for all i, j,
B __ 2 _ 2 2 2 _ _
|az’j| = |<€z“a€j>| = ‘<bez”bej>| (Cﬁs) be; | ”bGjH = (e;ae;) - <ej|aej> = @ Q5.

Since a;; = a;;, we have |a;;| < a;;. O

Proposition 6.1.3. If f: I' — C is positive definite, then f € £°T with ||f] . = f(e).

Proof. For g € T, |f(9)| = |ass| < ayy = f(e) for a = (f](‘“;el) ;Eg;) > 0. O

Definition 6.1.4. Given f: I' = C, we get a multiplier My : CI' — CI' by

MY 9= fl9)z,g.

Theorem 6.1.5. For f: ' — C, the following are equivalent:
1. f is positive definite.
2. The sesquilinear form (3 x,g, thh>f := Y f(h'g)x,g, on CT is positive.

3. fis a coefficient of a unitary representation, i.e., there is a Hilbert space H and group
homomorphism 7 : I' — U(H) and n € H such that f(g) = (m,n,n).

4. My extends to a normal cp map LI" — LT



Proof.

(1) < (2): Observe that [f(g; 'g;] € M, (C) is positive if and only if for all z € C",
2*[f(g; *g;)]z > 0. This condition is equivalent to (-, -); > 0.

(2) = (3): Let £3T denote the completion of the quotient of CT' under the length
zero vectors under (-, -)y We get a [-action 7 : ' — U(Z?F) as usual by
(m,&)(h) :== &(g~"h). Indeed, m,;* = 7,1, and 7, is isometric:

Img€l3 =D F(ET h)E(g  h)E(g k) = Zf g rh)E(gh)E(gk) = |§
h,k

Finally, note f(g) = (7,0,.,d,) for all g € T.

g-er e

(3) = (4): We will use Fell’s Absorption Principle, which you proved on homework,
which states that if (H, ) is any unitary representation of I' and A : I' — U (¢°T")

is the left regular representation, then (/°T' ® H,\ ® ) is unitarily equivalent
to (TR H,A®1).

The LT-representation 7 : LT' — B({*T'® H) given by
g A1 A, ®m,

is normal as it is a composite of normal unitary s-homomorpisms. Define v :
Pl - PTRHby £ = £€® H—Z”, which is an isometry. Observe that for all
g,hel,

U L F@)A8n.

o 1
v 7T(>‘g)v(5h ()‘ >6h® gm = W<7rg77777>5gh = W

v QT
Il — "

Thus by linearity, for all z € CI', Mz = |n|*v*7(x)v, which is manifestly
normal and cp.

(4) = (1): Let g4,...,9,, € . Then

*

)\91
[Agi_lgj]: [ 3 ] P‘gl Agn] =0

Ag.
in M,,(LT"). Now since M is cp, [Mf)\gi—lgj] >0 in M, (LT), so

)\91 )\91
[f(g:t9,)] = { ] [MyAg1g ] ! ] >0
Ay A,

in M,,(LT"), and thus also in M,,(C).

b
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Example 6.1.6. Suppose ¢ : LI' — LI is cp. Define f(g) := tr(¢(A,)A;). We claim that
My is cp as it is the composite of the following cp maps:

IT -2, IT® LT %% T Il 24, 11
A, —— A, ® A, YR P pu— Y

Ty ——— zQ¢(y)
where v, := 0, ® d,. The above composite applied to A/ is
Ag P Ay ® A, = v (A, ® p(Ag))v.

If (A\,)0, = > Y0y, then applying the above operator to the separating vector ¢,, we
obtain

v (Ag ® p(Ag))vd, = V" (A, ® (Ay))(0, ® 0.) = v* ;y;ﬁg ® 0, = Yg0y = YgAg0e-

Finally we know that y, = tr(A\j¢(),)), verifying the claim.

Example 6.1.7. If A <T is a subgroup, then the characterisic function x, (g) := (7,04, )
is positive definite, where 7 : I' — U (£2T'/A). In this case, M, = Ep, the canonical trace-
preserving conditional expectation.

Recall that the reduced group C*-algebra CT" is the norm closure of span A\I' C B(¢2T").

Definition 6.1.8. The universal group C*-algebra C*T" is the closure of the group algebra
CT" under the uniform norm

|z|,, :=sup{|~(z)||(H, ) a unitary representation of I'}.

Observe | - ||,, is well-defined as |7(g)||, = 1 for all g € T".

lu

Remark 6.1.9. The proof of (3) = (4) in Theorem 6.1.5 also shows that if f : I' — C is
positive definite, we also get a cp multiplier on C;I" and C*'T'. Moreover, we have || M| <
[ flloo as a cp multiplier on either of C;I', C*T".

6.2 Amenability for discrete groups

The following is the main result of this section.

Theorem 6.2.1. The following are equivalent for a countable discrete group I'. If any/all
are satisfied, we call I' amenable.

(A1) There is a state m € (£°°T)* such that m(g- f) = m(f) for allg € T, where (g- f)(h) :=
flg~'h).



(A2) T has a left invariant mean, i.e., there is a finitely additive (left) I'-invariant probability
measure on 2', the power set of T.

(A3) T has an approximate invariant mean, i.e., for every finite F C T' and € > 0, there is a

p>0and »  plg) = 1}

such that maxgeplg - p— pl < e, where (g- p)(A) == u(g~'A).

w € Prob(T) := {,u e /'r

(A4) (Fplner sequence) there is a sequence of finite subsets ) #+ F,, C T' with T = J F,, such

that
|9F, AF,|

||

Here, /\ denotes the symmetric difference of sets.

— 0 Vgel.

(A5) The left reqular representation X : T' — U(£?T) has almost invariant vectors, i.e., for
every finite F C T and ¢ > 0, there is a & € (*T such that |\ ,§ — €| < ||| for all
g € F.

(AG) The trivial representation is weakly contained in the left reqular representation, i.e.,
there is sequence of unit vectors (€,)) C €°T such that |\ €, —&,| — 0 for all g € T.

(A7) There is a sequence (f,)) of finitely supported positive definite functions on T' such that
fn — 1 pointwise.

(A8) C;I' = C'T
(A9) There is a 1-dimensional representation of C,T.

(A10)(Kesten Criterion) For all finite F C T,

1
mz)‘g

geF

= 1.

B(£2T)

(A11)(LT amenable) There is a conditional expectation E : B(£*T') — LI .
(A12)(Hypertrace) There is a state ¢ € B(£?T)* such that

e p(z),) = o(\,x) for all g € T and x € B((’T), and

o ol p =tryp (recall that trpp = ws, = (-6,,0,)).

er-e

Non-Example 6.2.2. The free group [,, for n > 2 is not amenable. For n = 2, suppose
Fy = (a,b). For x € {a,b,a,b71), let W, be the set of reduced words starting with x, so
that [, can be written as a disjoint union

I]'_2 = {6} LJ Wa L Wb L Wa—l LJ Wb—l.



But since W, UW, .« UW,1w CaW, 1 and W, UW, . U Wy CbW,-1, we also have
W,UaW, . =F, =W, UbWy

so that [, has no invariant mean.

Example 6.2.3. Finite groups are amenable.

Example 6.2.4. The sets F,, := [—n, n| give a Fglner sequence for Z. Indeed, for all m € Z,
eventually n > m, for which

((m+ F,)AF,|  2m  nooo e m
- 0. L L ] |
|F,] 2+ 1 moe————=

Example 6.2.5. A discrete countable group I is called locally finite if I' = @Fn where
each I, is finite, i.e., every finite subset /' C I' is contained in a finite subgroup. Let m,, be
the uniform measure on I',, and let w be a non-principal /free ultrafilter on N, i.e., w € SN\N.
For f € £°°T", we define

m(f) o= lmm, (flr, )
and one checks m(g - f) = m(f) for all g € .

Example 6.2.6. The class of amenable groups is closed under products, extensions, sub-
groups, quotients, and direct limits.

Example 6.2.7. Combining Examples 6.2.3, 6.2.4, and 6.2.6, all abelian groups are amenable.
Indeed, every group is the direct limit of its finitely generated subgroups.

We now prove the following implications:

(A12) < (A11) (A10)
ﬂ \ \ ﬂ
II \ ﬂ

A9) <= (A8) ——= (A7)

(A1)=(A2). If m € (£°T)* is a left T-invariant state, define p : 2U' — [0,1] by
1(A) :==m(xa). O



(A2)=(A1). If p: 2 — [0, 1] is a left I-invariant mean, define m(f) := [ fdp, which

is a left I-invariant state on £*°T". Here, [ fdu is defined in the usual way, first for
positive functions as a sup over simple 0 < ¢ < f, and then extending to all bounded
functions. L

Exercise 6.2.8. Prove (Al)=-(A3) (originally due to Day) and (A3)=-(A4) (originally due
to Namioka).

Exercise 6.2.9. Show (A5)<(A6).

(A4)=(A6). Suppose (F,) is a Fglner sequence for I'.  Consider the unit vectors

n

&, = |F,|"2xp €£’T. Forallg €T,

[Agén — &nll3 = Zlf (g7 h) = & (R)P?

= |Fn| ; Xk, (972h) — g ()2

o anAFn T—00

> 0. ]
| F,,|

.

(A6)=(AT7). Let (§,) C £°T be a sequence of unit vectors such that ||, —&,] — 0
for all g € T'. For n € N, define ¢,,(g) := (\,&,,§,), which is positive definite by
Theorem 6.1.5. Moreover, for all g € T',

n—oo

|(pn(g) - 1| = |<)‘g§n’£n> — <£n?§n>| = |<)‘g§n _gn’€n>| < ”)‘gg 5 ” — 0.

We can inductively construct finite subsets £, C I' with E, C E, ., and | JE, =T
such that |, — &, < 27", where n,, :=&,|g . Setting f,,(g) := (Ayn,,7,), we have
f,, is positive definite, finitely supported, and for all g € T,

S2||§ 77,7,||—21"—>0 =

Definition 6.2.10 (Banach limits in B(H)).

Let Lim denote any positive extension of lim from ¢ to £°° obtained from Hahn-

n—oo

Banach. If (z,) C B(H) is a norm-bounded sequence, define Limz,, by (Limz,n,§) =
Lim(z,n, &). Observe Lim z,, lies in the WOT-closure of Conv{z,, }, so if (z,,) C M C B(H)
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for some von Neumann algebra, then Limx, € M. Moreover, if z, > 0 for all n, then
Limz, > 0 also.

Now suppose ®,, : M — M is a sequence of ucp maps. Then map (Lim®,)(x) :=
Lim @, (x) is manifestly ucp. Indeed, if (z,;) € M, (M), then for all £, ...,§,, € H,

&1 [& STRES!
<[(Lim<1>n)(a:ij)] [] , { : D = Lim <[q>n(xij>] [] , {D > 0.
f’l’L fn é-’n, £n

(Ad)=(A11). Given a Folner sequence (F,), define @, |F | deF pyTp, Where
p : I' — B({T) is the right regular representation. Settlng E := Lim®,, we see
E(z) € RT" = LT as
|hF |A|E, | n—o0
gEF gEF n
Since each ®,, is cp and preserves LI', F is cp and preserves LI [
(A11)=(A12). Immediate from the more general Theorem 6.2.11 below. O

Theorem 6.2.11. Suppose M C B(H) is a von Neumann algebra with normal faithful
tracial state tr. The following are equivalent:

o There is a conditional expectation E : B(H) — M, i.e., a unital completely positive
map B(H) — M which is M-bimodular.

o There is a hypertrace for M, i.e., there is a state ¢ € B(H)* such that p(zm) = ¢(mx)
for allx € B(H) and m € M and |y, = try,.

Proof.

=: Set ¢ :=try;0E. Then for all z € B(H) and m € M,
plam) = try(E(zm)) = try (E(x)m) = try (mE(z)) = try(E(mz)) = (mz).
Since E(1) = 1, it also follows that ¢(m) = tr,,(m).

«<: For z € B(H), define ¢, on M by v, (m) := ¢(mx).

Claim. Whenx > 0, ¢, is a state on M such that 0 < ¢, < |z|-trp, = |z]-wq -




Proof of claim. For m € M_, observe that

Py (m) = p(m!2zm!/?)
= |<xm1/29,m1/29>¢|

< |<mm1/297$m1/29>¢|1/2 . |<m1/29’m1/29>s@|1/2
(Cs)

= o(m222m/2) /2 p(m)1/?
< ] - ¢(m).

Since |y = trys, ¥, (m) < ||lzf tr(m) for all x € B(H), and m € M. O

Claim. When x > 0, 1, is normal.

Proof of claim. If (m;) C M, such that m; / m, then

Y, (m—m;) < |z| - tr(m —m,;) \, 0. u

Claim. For each x € B(H),, there is a unique E(x) € M, such that 1,(m) =
try (mE(z)) for allm € M.

Proof of claim.
Uniqueness: If y, z € M such that tr,;(my) = try,;(mz) for all m € M, then
(Y@, m* Q) 20 = (2Q, M* Q) 2 vm e M.

It follows that y€2 = 22, which implies y = 2 as 2 is separating.

Existence: First, suppose z > 0. Since 0 < ¢, < [|lzf trp, = [lzfwg, ,, there is a
unique " € M’ with 0 < 2z’ < ||z| such that

VY (m) = (max’Qpp, Qpp) p2ar VYme M.

Since M’ = JMJ, there is a unique E(x) € M, such that 2’ = JE(x)J,
and thus

Y (m) = (mJE(2)JQpp, Qpp) p2pr = (ME@)Qpp, Q) 20y = try(mE(x))
]

Claim. The right action of M on L*(B(H),) given by zQ, — xm, is
bounded.

Vme M.



Proof. For all x € B(H),

lzmQ|2 = p(m*z*zm) = p(mm*z*x) = try(mm*E(z*z))
= try, (E(z*2) Y 2mm*E(z*z)Y?) < |mm*| - try(E(z*z))

= [mm*| - p(z*z) = |m|? - |z O

We now mimic the proof of Stinespring’s Theorem. Observe that the map v :
LM — L*(B(H), ) given by mQ,, = m€, is an M — M bilinear isometry.
It follows immediately that E(x) := v*zv € B(L>?M) commutes with the right
M-action and thus lies in M, thus giving our M — M bimodular ucp map. It
remains to prove that our new definition of F(z) agrees with our old definition,
ie., try,(mv*zv) = p(ma) for all m € M:

trp (muzv) = (V'mzvQy, Qo) 20 = (MrQ,, Q) , = p(mz). O

(A12)=(A1). Recall £>°T < B(£2T) by (£¢)(g) := f(g)&(g). Observe that if f € £°°T
and g € I', then

(AgfAGE)(R) = (fAg1€) (g7 h) = flg~ h)(Ag18) (g7 h) = flg~ R)E(R) = ((9-£)E)(h).

Restricting the LI'-hypertrace ¢ to £>°T' C LI', we have

(g f) = e fAy) = (f),

so ¢ yields a I'-invariant state on £>°T". ]

(A7)=>(A8). First, note that |A,| < ||z, for all z € CIT", and thus )\ : CI'T — B(£T)

extends to a surjective unital *-homomorphism X : C*T' — C:I' C B(¢2T'). We must

show A is injective.
Suppose (f,) is a sequence of finitely supported positive definite functions on T’
which converges to 1 pointwise. By Remark 6.1.9, we get cp multipliers M,,, M,, ,.

on C'T, C T respectively. To prove ) is injective, we will use the following two facts.

(1) Ao M, = Mn’TS\ on C'T, since both are continuous with respect to | - ||,, and they
agree on the dense subspace CI'.

(2) Since f,, — 1 pointwise, M, x — x for x € CI'". Since | f,, |, are uniformly bounded
by sup f,,(e) as f,(e) = 1, M, x — x for all x € C'T by density of CI' in C'T by




a standard €/3 argument.

Suppose & € C*T" such that K(:v) = 0. Then by (1) above,
ANM,z) = M, ,A\(z) =0 VneN.

But since f,, is finitely supported, M, x € CI" for all n, and thus S\(Mn:c) = 0 implies
M,z =0. Thus = lim M,x = 0 by (2). O

(A8)=(A9). Note that C*T" has a 1-dimensional representation as the trivial repre-
sentation CI' — C by >z g+ > x, on C is subordinate to | - ,,. O

Lemma 6.2.12. Let A be a unital C*-algebra. Suppose o € A* is a state and a € A such
that p(a*a) = |p(a)|?>. Then for allb € A, p(a)p(b) = p(ba).

Proof. Let (H,7,,,) be the cyclic GNS representation of A with respect to . Note
that
I7, ()7 = v(a*a) = |¢(a)|* = |<W¢(a)%,%)Iz(clls)%(a)%IP,
and thus the Cauchy-Schwarz inequality above is an equality. Thus there is an o € C
such that
m,(a)Q, = aQ,.
It follows immediately that

p(ba) = (1, (b)m,(a),,Q,) = al{r,(b)Q,,Q,) = p(a)p(b). O

(A9)=(Al). Let ¢ : C;I' — C be a 1-dimensional representation. Then ¢ is a state,
and we can extend ¢ to a state ¢ € B(¢?T")* by Hahn-Banach. Note that for every
gerl,

P(AgA5) = p(X5Ag) = p(1) = 1 = |p(A))*.
Then for all f € £>°T', g- f = A, fAy, and thus by Lemma 6.2.12,

(g f) = fA5) = p(A)e(fle(Ay) = o(f)

and thus ¢ restricts to a I'-invariant state on £*°T". [l
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(A6)=(A10). Let (&,) C T be a sequence of almost invariant vectors. Then for
every finite F' C T,

1
7 > A&
2

(A10)=>(A5). Let F C T be finite such that F = F71. Then x = 5>, A is
A A k) |F| £~gcF "9

self-adjoint and has operator norm equal to 1. Let ¢ > 0. There is a £ € T such
that [(x&,&)| > 1 —¢&’, where &’ > 0 is to be determined in terms of € and |F|. Let

€] € £°T be the pointwise absolute value of & [£](g) := |£(g)|. We calculate

1—¢ < [(2£,6)] =D _(2£)(9)é(9)
< Yl - @) < Y lEh() - [€l(a)
= (alél, I D (A,lél e

Thus for all g € F, (A €], [§]) > 1 —[Fe’, and we have

IXGIET = [EI7 = [AgIENZ + NEN? — (AglEL 1E]) — (Ag-r1€]5 1€])
=1—(AglEl, [€) + 1 = (Ag[&l, I€])
< 2|F|e’ < &2

’ o e? 1
whenever " < mm{m, m} O

6.3 Amenability for von Neumann algebras

TODO:

6.4 The Haagerup property for discrete groups and tracial von
Neumann algebras

For this section, I' is a discrete countable group.

Definition 6.4.1. We say I' has the Haagerup property if

11



HP| there is a sequence of positive definite ¢, functions on I' such that — 1
q Son p 0 (pn

pointwise.

Example 6.4.2.

1.
2.

8.

All amenable grops have [HP], as finitely supported implies c¢;.

Free groups F,, with n > 2 have [HP|. We will prove this once we have a second
equivalent characterization of [HP].

SL(2,Z) = Z[4 %55 £/6 D F, as an index 12 subgroup.
PSL(2,72)=7/2x17/3
Groups which act on trees (e.g. [, acting on its Cayley graph)

Coxeter groups (gy, ..., g,[(9;9;)73 where m;; = 1, m;; > 2i # j). Here, m;; = o0 is
ok, which means there is no relation of this form.

The class of groups with [HP] is closed under taking subgroups, direct products, free
products.

If H has [HP| and H < G with finite index, then G has [HP].

Definition 6.4.3. A cocycle of I' is a triple (H, 7, ) where (H, ) is a unitary representation
and : ' — H such that

B(hg) = B(h) + m,8(g) Vg, herl.

A cocycle is called dnner if there is a £ € H such that 8(g) = § —m,€ for all g € T'.

Facts 6.4.4. We have the following facts about cocycles.

(B1) Ble) = B(e?) = Ble) + 7 .Ble) = 2B(e), so Ble) = 0.

(82) 0=p(e) = B(g~'g) = Blg™") +7,18(g), s0 Blg™") = —7,18(g).

(83) 1B(g W =18(g™") + mya B(R)| = || = my1 B(g) + 7wy BR)| = [B(g) — B(R)]-

The motivation for these cocycles is as follows. Let

Aff(H) : = {affine invertible transformations of H}
={{—ul+nneH, ueU(H)}

Observe that Aff(H) is a group under composition:

£ Ul + 1y = up (Upd +1y) + 1y = Uy usd + (Uugny +1y).

Thus we may identify Aff(H) = H x U(H) with multiplication (uq,n;) - (N, uy) = (19, +
Uy Ty, Uy Us).
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Definition 6.4.5. An affine isometric action of I' on H is a group homomorphism « : I' —

Aff(H).

Example 6.4.6. Given a cocycle (H,m, 3), we get an affine isometric action by
a & =75+ B(g).

The cocycle condition implies o), = gy

agapg = oy (m €+ B(h) = 7, (m,& + B(h)) + B(g) = mgn€ + 7, 6(h) + B(g) = agyé.

N —— e’

B(hg)

Conversely, observe that an affine isometric action a : I' — Aff(H) gives a unitary
representation 7 : I' — U(H) by the quotient map:

m:T 5 Aff(H) = HxU(H) —» U(H)

Observe that there is a unique 3(g) € H such that o, = (8(g),7,) € Aff(H), ie., a,& =
m,&+ B(g) for all £ € H and g € I'. This 3 is a cocycle:

B(h) + m,B(g) = 7Th<ag£) - ah<ag€> + ﬂ-h(ﬂ-gg - agf) = 7Thgf - Oéhgf = B(hg).

Exercise 6.4.7. Let X be a uniformly convex Banach space and B C X a bounded set.
Then
inf s —b
Jnf sup > —b]
is attained at a unique x € X.

Lemma 6.4.8. A cocycle (H,m,3) is inner if and only if it is bounded.
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Proof.

=: If (H,m,B) is inner with 3(g) = § — 7§, then

18(9) = 1€ — m &l < 20€] Vgerl.

<: Consider the affine action of I' on H associated to (m, 5). If 8 is bounded, then
the orbit I' - 0f is bounded as

agoH = 7TgOH +B(g) = /B(g>

By Exercise 6.4.7, there is a unique £ € H minimizing Sup 18(g) — &||. We
claim that 8(g) = § — m,€ for all g € I'. Indeed, for every n € I'- 0 and g € T,

o = agn | = Imy(€ —m)l = ll€ =,
er-0y

so by uniqueness in Exercise 6.4.7, a,§ = § for all g € T'. Hence
Ezaggzﬂ-gg—i_ﬁ(g) — 5(9)26_7‘-516
forall g e T'. [

Definition 6.4.9. A function f : X — Y between topological spaces is called proper if
whenever K C Yis compact, f~!K C X is compact. An affine action o : I' — Aff(H) is
called proper if the map I' x H — H x H given by (g,&) > (g§, &) is proper.

A cocycle 8 : T' — H is called proper if g +— ||B(g)| is proper, i.e., for all N € N,
{g € T[|8(g)ll < N} is finite.

Exercise 6.4.10. Show that an affine action « = (H,m, ) is proper if and only if g is
proper.

Exercise 6.4.11. Suppose a,b € M, (C) > 0. Prove that the Schur product a xb € M, (C)

is also positive, where (a * b);; := a;;b; .
Deduce that if @ > 0, then the pointwise exponential [exp(a;;)] > 0.

Proposition 6.4.12 (Schoenberg). If : I' = H is a cocycle, then for all v > 0, f,.(g) :=
exp(—r||B(g)||?) is positive definite, and f, — 1 pointwise as r \, 0. Moreover,

o f.€col' if and only if B is proper, and

o f.— 1 uniformly as r ™\, 0 if and only if 5 is bounded.
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Proof. By scaling ( linearly, we may assume r = 1, and we wrte f = f;. Note that

flg™*h) & exp(—[B(g) — B(R)I?)

= exp(—[B(9)I?) - exp(—[B(R)[?) - exp(2R(B(g), B(R)))-

Fix gy, ..., g, € T. First, note that [exp(—||8(g;)|?) - exp(—[B(g;)|?)] > 0 as it equals
[eXp(—lﬂ(gl)P)

exp(—|8(gn)11%)
Second, we show that [exp(293(5(g;), B(g,)))] > 0 by the following steps.

} - [exp(—[I1B(g)I?) -+ exp(—[B8(g,)I?)] -

Step 1: [(B(g;), 8(g;))] > 0. Indeed, each £ € H can be viewed as a bounded linear
map |{) : C— H by 1 ¢, and for all x = (z;), € C",

Zx Bley)rz; = (Zx 15(g5) ) (ixilﬁ(gi») >0

Step 2: If a € M,(C)_, then

(@&, &en) = az‘jfj_z‘ = az’j_jfi = <agv E)C"> = 0,
,j=1 1,j=1
and thus R(a) = a —; a > 0.

Step 3: Since exp(2R(5(g), B(h))) = Z (

2%(B(g:),B(g;))]1 =0 = [exp(2R(B(g;), B(g;)))] = 0.

Finally, we see that the matrix in question is exactly the Schur product of two
positive matrices, which is again positive by Exercise 6.4.11.

, by Exercise 6.4.11,

The final claims about the f, are immediate. [

Theorem 6.4.13. For a countable discrete group I', the following are equivalent:
1. T has [HP].
2. T admits a proper cocycle.

3. T' admits a proper affine isometric action on a Hilbert space.

15



Proof.
(1) = (2): Omitted.
(2) < (3): Immediate from Exercise 6.4.10 above.

(2) = (1): Suppose 8 : I' — H is a proper cocycle. Schoenberg’s result 6.4.12 gives

¢o positive definite functions f,,,(g) = exp(—[B(g)|*/n) such that f, — 1
pointwise as n — oo.

[

. J

Theorem 6.4.14. If ' acts faithfully on a tree T preserving the distance of vertices, then T’
has [HP].

Proof. Let H denote £2(oriented edges of T'), so that each edge appears twice with
opposite orientations. For vertices u,v € T, define:

e d(u,v) := the length of the geodescic [u,v] from u to v in T, and

o the signed characteristic function X[u,v] € H by

0 ifed [u,v]
X[u,v] (€> =41 ife e [u7 U]
—1 ife € [v,u]

We observe the following two important relations:

Xu,o] T X[o,u] = Xju,u] V vertices u,v,w € T (6.4.15)
X s, 0 I? = 2d(u,v) V vertices u,v € T. (6.4.16)

The T' action on T gives a unitary representation 7 : I' — B(H) by left translation
such that

T o X(u,o] = X[gu,gv] V vertices u,v € T (6.4.17)
Now fix a vertex t, € T, and define §: I' — H by B(g) = X[gto,to)- For all g,h €T,

B(hg) = X[hgty,to)

= Xlhgto.gto] T X[hto,t,] (6.4.15)

= ThXgto,to] T Xihto,to] (6.4.17)

= B,B(g) + B(h),
so B is a cocycle. By (6.4.16), |8(g)|> = 2d(gty,t,) — 00 as g — 0o, so 3 is proper.
Hence T has [HP] by Theorem 6.4.13. 0
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Example 6.4.18. The free group [, acts on its Cayley graph, which is a tree.

Definition 6.4.19. Let (M, tr) be a tracial von Neumann algebra. We say (M, tr) has the
Haagerup property if there is a sequence (p,, : M — M) of normal trace-preserving cp maps
such that:

e ¢, — id pointwise-| - |5, and
o on L?2M, p, (mfQ) := ¢, (m)§ is compact as an operator in B(L>M).
This second condition is analogous to the ¢, condition for I'.

Remark 6.4.20. Suppose (¢,,) is a sequence of trace-preserving ucp maps on LI'. If ¢, —
id,r pointwise-| |5, then the positive definite functions f,, (g) := tr(,,(A,)A;) from Example
6.1.6 converge to 1 pointwise. Indeed,

1£a(9) = 11 = (o) Agd 2ty — (Mg Agd L2z
= (@, = D0y, 8 e < 15, — 1 1), lear —— 0.

g’-g

Lemma 6.4.21. Ifz € K(H) and (e;) is an ONB for H, then |w, (z)| = |(ze;,e;)| — 0 as
1 — 00.

Proof. Since every x € K(H) is a linear combination of 4 positive compact operators,
we may assume x > 0. Let x = Y s, |f,)(f,| be a Schmidt decomposition of = with
S, \¢ 0 asn — oco. Let € > 0 and pick N > 0 such that n > N implies s,, < €/2.

Since |{e;, f,)]?> — 0 as i — oo, there is an i, such that ¢ > 7, implies

N—-1

> sullen £)IP < 2.

n=0

We now calculate that whenever ¢ > 4,

N-1
)= 3 ullew < 3 sullenull +on O e P < 5+ == ©
n=0

n>N

(we;,

Theorem 6.4.22. A countable discrete group ' has [HP] if and only if LT has [HP].

Proof.

=: Let (f,,) be a sequence of ¢, positive definite functions I' — C which converges
to 1 pointwise. Without loss of generality, we may assume f, (e) = 1 for all n;
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otherwise replace f,, with f,,/f, (e). The cp multipliers M, : LI' — LT' witness

that LT has [HP]. Indeed, Y\an € B(¢?T) is clearly compact as it is diagonal
with eigenvalues going to 0, and

n—oo

||(an(x) - m>5e”g = ||<an - 1)m56”3 = Z |fn<g) _ 1|2|xg|2 —0
g

as each f, € coI' with || f,,| = f,.(e) = 1 for all n. Explicitly, |f,,(g) —1|?> < 4 for
all n, so we may choose h € I' large in some ordering so that Zg>h |z, |? < €2/8,

and we may then choose N so that n > N implies

Y 1fulg) = 1PJagl? < €2/2.

g<h

i

: Suppose (,,) witness that LI" has [HP]. Then f,, (g) := trpp (@, (A,)Ay) is posi-
tive definite by Example 6.1.6. To see that f,, € ¢yI', we have that

£2(9)] = 1802000 A AD] = [0n (), Ag) 2oy | = lon, (B,)] S 0

by Lemma 6.4.21. Since ¢,, — id; pointwise-|-||y, f,, = 1 pointwise by Remark
6.4.20 ]

6.5 Kazhdan’s Property (T) for discrete groups
For this section, I' is a countable discrete group, and A < T' is a subgroup.

Definition 6.5.1. We say I has property (T) relative to A whenever (f,,) is a sequence of
positive definite functions I' — C such that f,, — 1 pointwise, then f, |, — 1 uniformly on
A. We say I' has property (T) if I" has property (T) relative to I'. In other words:

(T) whenever (f,) is a sequence of positive definite functions I' — C such that f, — 1
pointwise, then f,, — 1 uniformly.

Example 6.5.2.
1. All finite groups have (T).

2. SL(2,7) has [HP] as [, < SL(2,7) with index 12, but SL(n,Z) has (T) for n > 3.
3. 7* < 7? X SL(2,7) has relative (T).

(3L 3

Observe that neither of these groups has (T).
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Facts 6.5.3.

1. If T has (T) relative to A and T" has [HP], then A is finite. In particular, I" has [HP]
and (T) if and only if I is finite.

2. If T has relative (T) with respect to an infinite subgroup A, then I' does not have [HP].
Thus [HP] is not preserved under extensions.

Theorem 6.5.4. The following are equivalent.

(T1) T has (T), i.e., for all sequences (f,) of positive deifnite functions with f, — 1
pointwise, f, — 1 uniformly.

(T2) Every cocycle 5: T'— H is inner (equivalently bounded).
(T3) Every affine I'-action has a fized point.

(T4) If (H, ) is a unitary representation of T' with a sequence of unit vectors (§,,) such that
17,6 —&nll = 0 for all g € T, then there is a non-zero § € H such that 7,§ = £ for all
gel.

(T5) There is a § > 0 and a finite F' C T' such that for every unitary representation (H, )
and § € (H); with |7,§ —&| < 0 for all g € F, there is an §, € (H); with m,&, = &
forall g eT.

(T6) For all € > 0, there is a § > 0 and a finite F C T such that for every unitary
representation (H, ) and § € (H); with |m,& —¢&| < & for all g € F, there is an
§o € (H)y with |§ — &ll < e and m,€y =&, for all g € T.

(T7) For all € > 0, there is a § > 0 and a finite F C T' such that for all positive definite
f:T' = C with |f(g) — 1| <& on F, we have |f(g) —1| < e forallg €.

We prove the following implications:

(T1) <= (T7) «—— (T6)

l !

(T3) «— (1T2) == (T4) —= (TH)

(T1)=(T2). Let 8 : ' — H be a cocycle. By Schoenberg’s result 6.4.12, for all » > 0,

f-(g) :== exp(—r||B(g)|?) is positive definite, and f,.(g) — 1 pointwise as r — 0*. By
(T1), fi/n — O uniformly, which implies 8 is bounded. Thus $ is inner by Lemma
6.4.8. -
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(T2)<(T3). Observe that for all o € Aff(H),

§=a,f =78+ B(g) = Blg) =& —my¢ Vgerl.

Hence a has a fixed point if and only if 3 is inner. O

—(Th)= —(T4). LetT" = {g;, g5, ... } be an enumeration and set F,, = {¢g;,...,9,} CT
and 0,, = 1/n. Then for each n, there is a unitary representation (H,,,,,&,) such
that ||€,]| = 1, |7,(9)&, — &, < 1/n for all g € F,,, but the I'-invariant subspace
Hp* = 0. Set (H,w) := @(H,,,m,). Then (£,) where &, lives in only the n-th
component is a sequence of almost invariant vectors, but there is no I'-invariant vector
in (H,m) as every projection map (H,w) — (H,,,m,) is [-equivariant. O

(T6)=(T5). Trivial - just take an arbitrary ¢ > 0. O

(T5)=(T6). Let e > 0. Pick ¢’ > 0 and a finite set F’" C T satisfying (T5). We set
0 = ¢’¢’ for a to-be-determined ¢’ > 0 in terms of € and set F' = F’. Suppose (H, )
is a unitary [-representation with & € H a (6, F')-almost invariant vector as in (T6).
Consider the I'-fixed points

H”::{nEH‘Wgn:n VgeI‘}.

If £ € H™, then we are finished. If not, our strategy will be to project & to H™ and
show that this vector is non-zero and close to £ after renormalizing.
To this end, let p be the orthogonal projection onto H™ so that

lmyn —nll = |7,(1 = p)n+ 7o —n| = |71 —p)n+ (1 —p)n| VneH.

Note that (H™)* = (1 — p)H does not contain any non-zero invariant vectors. Since
T|(1_pym 18 & unitary I-representation, by (T5), for all unit vectors n € (1 —p)H,
|lmw,n —mnll > " for some g € F. This means

Iy (1 —=p)€ — (1 =p)¢] = 0"[|(1 = p)é|.

We now calculate that

&8 =02 |rt—€l = Im(1-p)i—(1-p)¢| 2 'I(1-p)¢| = (1-p)g| <<"

As £ is a unit vector, this means that if & < 1, then p # 0, and we may set
& = p&/|p€| € H™. It remains to show &, is close to & when ¢’ is small enough.
Indeed,

e 1—|pé

S0 = PE= g TP T g

pé
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which implies

160 — €l <1 —lpgll = lI€] = Ipell < (1 = p)El < &

by the reverse triangle inequality. Finally, we calculate

160 = &Il < €0 — P&l + [p€ = &l = 1§80 — €]l + I(1 = p)E] < 2" <e

as long as ¢’ < min{e/2,1}. O

(T6)=(T7). Let € > 0, and choose (F’,4") as in (T6) for &’ > 0 a function of ¢ to
be determined. Set F' = F’ U (F’)~' U {e} and let § be a function of ¢ and §" to
be determined. Suppose f : I' — C is positive definite such that |f(g) — 1] < § for

all g € F. By Theorem 6.1.5, there is a unitary I-representation (H,m,n) such that
f(g) = (myn,m) for all g € T. Since e € F,

Inl* —1] = |f(e) — 1| < 6.
Set £ :=n/|n|, and we record the estimate

1= (m& ) < [L— f(g)|+ [{mgn, m) — (me€, €)| < 20 Vger.
<« <lIml2=1}-{ry.€) <61

Then for all g € F,

Img€ — €17 =1 — (my€,6) + 1 — (71, &) <1 — (me€, &) + |1 — (mg1§,6)] < 40 < 67

if § < 6"2/4. By (T6), there is a unit vector &, € H such that 7§, = &, forall g e T
and [|€ —&,| < &’. Then for all g € T,

11— f(9)] = [{mg&o, &0) — (mgm, M)
= [(my(§o — €)5 o) + (48, (S0 — &) + (7€, &) — (mgm, m)]
< (g (& =€), &) + K7, (S — ENN + ({48, &) — (mgm, )]
<2’ +6<e
provided we chose ¢’ < £/3 and § < min{e/3,6"%/4}. O
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(T7)=(T1). Suppose (f,,) is a sequence of positive definite functions such that f,, — 1
pointwise on I'. Let € > 0, and choose (F,9) as in (T7). Since F'is finite and f,, — 1
pointwise, eventually |f, (¢) — 1| < 6 for all g € F. Then |f,(g9) — 1| <eforallgeT
by (T7). O

Exercise 6.5.5. Prove (T2)=(T4).

Exercise 6.5.6. Modify all the statements in Theorem 6.5.4 for a countable discrete group
I' to be relative to a subgroup A < T'. Then prove all the equivalences.

6.6 Property (T) for tracial von Neumann algebras
For this section, (M, tr) is a tracial von Neumann algebra with separable predual.

Definition 6.6.1. We say (M, tr) has property (T) if for every sequence (¢,, : M — M) of
normal trace-preserving ucp maps with ¢, — id;; pointwise-|| - |5, ¢,, — id,,; uniformly in
| <o on (M), the unit ball of M.

The main goal of this section is to prove that a countable discrete group I' has (T) if and
only if LT" with its canonical trace has (T).

Definition 6.6.2. Suppose (A4, tr,), (B, trg) are tracial von Neumann algebras. An A—B bi-
module 4, H g is a Hilbert space H equipped with commuting normal unital *-homomorphisms
A:A— B(H)and p: B°® — B(H) (with [\,, p,] =0 for all a € A, b € B°?). We typically
suppress A, p and simply write anb = A, ppn-

A pointing on a bimodule 4 Hp is a distinguished vector £ € H such that A¢B is dense
in H. A pointing is called tracial if in addition

(a&, &) = try(a) Vae A and (€b, &) = trg(b) Vb e B.

Construction 6.6.3. Suppose (A,tr,), (B,trg) are tracial von Neumann algebras and
(4Hp,n) is a tracially pointed bimodule. We can construct a trace-preserving normal ucp
map ¢ : A — B as follows.

First, since 7 is a tracial pointing, the map L, : L?B — H given by bQ) = nb extends to
a unique isometry. Define ¢ : A — B by ¢(a) := L} A, L, € B(L*B). Since L, and X, are

ntatn
right B-linear, so is ¢(a), i.e., ¢(a) € JBJ' = B. Finally, we verify

trp(¢(a)) = (@(a), Q) = (LyA, L, Q, Q) = (bn,n) = trp(a).

Remark 6.6.4. Given two tracially pointed bimodules (4, Hp,n) and (4 Kp, &), there is at
most one A — B bimodular map T : H — K mapping 7 to £&. This map will be unitary if and
only if T* : K — H also preserves the pointing. Indeed, T*¢ = n if and only if T* = T 1.
This shows that the 2-category of tracial von Neumann algebras, tracially pointed bimodules,
and A — B bimodular unitaries preserving the pointing is 1-truncated, i.e., equivalent to a
1-category.
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Construction 6.6.5. Suppose (A,try,), (B,trg) are tracial von Neumann algebras and ¢ :
A — B is a trace-preserving normal ucp map. We can build a tracially pointed bimodule as
follows.

Let H, be the Hilbert space obtained from taking the algebraic tensor product A® B with
sesquilinear form (a; ® by, ay ® by), = trp(b3¢(asa;)by), quotienting out the length zero
vectors, and completing in | - |5; this is the Hilbert space from the proof of the Stinespring
Dilation Theorem. We calculate the left A-action descends to a bounded action:

G‘Z%’@’yi Z%’@Z/z’

where the inequality comes from the fact [¢p(2}a"az;)] < |a*a| - [¢(x}z;)] in M,,(B). Bound-
edness of the right B-action is easier and omitted. These actions are normal since ¢ is normal
(exercise).

2

2
= (glaa az,)y, Q0 y; 0 2p < a*al -
¢ i,

¢

Remark 6.6.6. Consider the case of N C M an inclusion of finite von Neumann algebras
where M is equipped with a faithful normal tracial state tr. Let £ : M — N be the unique
trace-preserving conditional expectation. We claim that the map m ® n — mn descends
to an M — N bimodular unitary isomorphism Hp 2 ,,L?My; this is the unique map from
Remark 6.6.4. Indeed, M — N bimodularity is obvious, and we calculate

(my @ ny,my ®@ny)p = tr(nsE(mimy)n;) = (troE)(nimsmyn, )

= tr(nymymyn,) = (myn,Q, myny Q) pony.

Hence this map descends to a well-defined isometry with dense range, and thus uniquely
extends to a unitary.

Exercise 6.6.7. Prove that Constructions 6.6.5 and 6.6.3 are mutually inverse. In more
detail:

1. Starting with a trace-preserving normal ucp map ¢ : A — B, show that applying
Construction 6.6.5 and then Construction 6.6.3 produces exactly ¢ again.

2. Starting with a tracially pointed bimodule (4 H,n), show that applying Construction
6.6.3 and then Construction 6.6.5 gives another tracially pointed bimodule (4K, &)
which is canonically unitarily equivalent to (4 Hp,n) via Remark 6.6.4.

Remark 6.6.8. Exercise 6.6.7 above shows that the 1-truncated 2-category from Remark
6.6.4 is equivalent to the 1-category of tracial von Neumann algebras with trace-preserving
normal ucp maps.

Lemma 6.6.9. Suppose ¢ : M — M is trace-preserving ucp map, and let (H,&) be the
associated tracially pointed M — M bimodule. Then for all x € M, (&, x) = try,(p(z)z*)
and

lo(2)Q — 2 p2py < 26 — &l < [oo(2)2 — 28 p2ps - ],
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Proof. First, note that

(2, €x) = (@ L1 @ x), = (p(x)Q, 2) 2 ) = try(p(x)2”).

We then calculate

[0 (2)Q = 2Q7 25 = [0 (2) Q7 20 + 2R 72, — 2R tr ) (0, (2)27)
= trp(pn ()70, () + trpg(272) — 2R try (@, (2)27)
< trp (9, (272)) + trp(272) — 2R try (@, (2)27)

= 2try(a"x) — 2R(2E,, €, ).

We now see that

and

2try (v 2) — 202, €, x) = 2R t1 (0, () — @) )

< 2[((pn () — 2)82, 1)
< 2@y, (2)2 — 205 - |29, N
(CS)

Theorem 6.6.10. For a tracial von Neumann algebra (M, tr), the following are equivalent.
1. (M, tr) has (T).

2. For alle > 0, there is a 6 > 0 and a finite F' C M such that for every tracially pointed
M — M bimodule (3,H ;&) satisfying

max ||x€ — x| < 0,
xeF

there is an M-central vector §, € H such that |§ — & < e.

Proof.
(1) = (2): Omitted. TODO: Check this!

(2) = (1): Suppose (p,,) is sequence of normal trace-preserving ucp maps such that
¢,, — id,; pointwise | - |5. Let € > 0 and pick (F”,0") for a to-be-determined
e’ > 0 as a function of . Let (H,,,&,,) be the tracially pointed M — M bimodule
associated to ¢,,. Since ¢, — id,; pointwise | - |, there is an N > 0 such that
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n > N implies
H(Pn(x)Q _1{2”2 <9 Ve F/a

where 0 > 0 is to be determined in terms of ¢’,4’, F’. Then by Lemma 6.6.9,
for all n > N and = € F,

|26, — €nzll3 < 20, (2)Q — 2, - |2, < 20K

where K := max, p|29],. Now if § < §"?/2K, then for every n > N, there
is an M-central vector §, , € H, such that [, —&,| < €’. Then again by
Lemma 6.6.9, for all n > N and z € (M),

||90n(x)9 _ wQ”Q < ||$€n - gnw” < ||m£n — mS'I’L,O“ + ”577,,01. _ gnx” < 2’ <e

whenever &’ < g/2. O

Corollary 6.6.11. A countable discrete group I' has (T) if and only if LT with its canonical
trace has (T).

Proof. Suppose I" has (T). Let ¢ > 0, and choose (F,d) as in (T6). Let (H,&) be a
tracially pointed LI' — LI" bimodule such that max ¢ |A,€ — A [ls < 6. We have a
unitary representation 7 : I' — B(H) by m,n := A;n\;. Since { € (H); and

by (T6) there is a T-invariant vector &, € (H); with [|§ —&|| < & such that 7§, = &,
for all g € I'. But then A §, = §pA, for all g € ', and thus &, is LI'-central as desired.
We conclude LI has (T).

Conversely, suppose LI" has (T). Let (f,,) be a sequence of positive definite functions
on I' which converge to 1 pointwise. Without loss of generality, we may assume
f.(e) =1 for all n. Then (M fn) is a sequence of trace-preserving ucp maps such that
M; — idy, pointwise | - |,. Since LI' has (T), M; — idy, uniformly in | - [, on
(LT');. In particular, for every € > 0, there is an N > 0 such that for all n > N and
gel,

Fa(8) = 11 = 1a(0)3, = 8, lor = My, (A2 = AR o < e

Hence f,, — 1 uniformly, and I" has (T). O
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