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1 Banach algebras

1.1 Basics
Definition 1.1.1. A Banach algebra is a complete normed complex algebra, i.e., (𝐴, ‖ ⋅ ‖) is 
a Banach space with a multiplication ⋅ ∶ 𝐴2 → 𝐴 such that

‖𝑎𝑏‖ ≤ ‖𝑎‖ ⋅ ‖𝑏‖ ∀ 𝑎, 𝑏 ∈ 𝐴.

We say 𝐴 is unital if there is an element 1 ∈ 𝐴 such that 1 ⋅ 𝑎 = 𝑎 = 𝑎 ⋅ 1 for all 𝑎 ∈ 𝐴.

We will typically only consider unital Banach algebras.

Remark 1.1.2. If 𝐴 is a Banach algebra and 𝐽 ⊆ 𝐴 is a closed 2-sided ideal, then 𝐽 is also 
a Banach algebra, as is 𝐴/𝐽 with norm

‖𝑎 + 𝐽‖ ∶= inf
𝑗∈𝐽

‖𝑎 + 𝑗‖.

Examples 1.1.3. Here are some examples of Banach algebras.

1. Let 𝑋 be any Banach space and define 𝑥 ⋅ 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑋.

2. 𝑀𝑛(ℂ) is a Banach algebra for all 𝑛 ∈ ℕ with the operator norm.

3. If 𝑋 is compact Hausdorff, then 𝐶(𝑋) is a Banach algebra algebra with norm

‖𝑓‖∞ ∶= max
𝑥∈𝑋

|𝑓(𝑥)|.

4. If 𝑋 is locally compact Hausdorff (LCH), then 𝐶0(𝑋), the space of continuous functions 
which vanish at ∞, is a Banach algebra with the norm

‖𝑓‖∞ ∶= sup
𝑥∈𝑋

|𝑓(𝑥)|.

5. If 𝑋 is LCH, the space 𝐶𝑏(𝑋) of continuous bounded functions is a Banach algebra 
with norm

‖𝑓‖∞ ∶= sup
𝑥∈𝑋

|𝑓(𝑥)|.

6. Let 𝑈 ⊂ ℂ be an simply connected open domain with simply connected compact 
closure 𝐾. (For example, 𝑈 = 𝔻, the unit disk works.) We will see in [[]] below that

𝐴(𝐾) ∶= {𝑓 ∈ 𝐶(𝐾)|𝑓|𝑈 is holomorphic}

is a Banach subalgebra of 𝐶(𝐾).
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7. 𝐶𝑛[0, 1], the 𝑛-times continuously differentiable functions is a Banach algebra with 
norm

‖𝑓‖ ∶=
𝑛

∑
𝑘=0

1
𝑘!

⋅ ‖𝑓 (𝑘)‖∞.

8. ℓ1(ℤ) with convolution multiplication

(𝑥 ∗ 𝑦)(𝑛) ∶=
∞

∑
𝑘=−∞

𝑥(𝑛 − 𝑘)𝑦(𝑘)

is a unital Banach algebra with unit 𝛿0(𝑛) ∶= 𝛿𝑛=0.

9. ℓ1(ℤ≥0) with convolution

(𝑥 ∗ 𝑦)(𝑛) ∶=
∞

∑
𝑘=0

𝑥(𝑛 − 𝑘)𝑦(𝑘)

is also a Banach algebra.

10. 𝐿1(ℝ𝑛) with convolution

(𝑓 ∗ 𝑔)(𝑥) ∶= ∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦) 𝑑𝑦

is a non-unital Banach algebra.

11. If (𝑋, 𝜇) is a measure space, 𝐿∞(𝑋, 𝜇) is a Banach algebra.

12. 𝐵(𝑋), the space of all bounded linear maps on a Banach space 𝑋, is a unital Banach 
algebra.

13. 𝐾(𝑋), the compact operators is a Banach subalgebra, which is unital if and only if 𝑋
is finite dimensional.

14. The Calkin algebra is the Banach algebra 𝐵(𝑋)/𝐾(𝑋).

Facts 1.1.4. Here are some basic facts about Banach algebras. 

(B1) We may always adjoin a unit to any Banach algebra by setting 𝐴1 ∶= 𝐴 ⊕ ℂ1 with 
multiplication

(𝑎, 𝑤) ⋅ (𝑏, 𝑧) ∶= (𝑎𝑏 + 𝑤𝑏 + 𝑧𝑎, 𝑤𝑧)
and norm ‖(𝑎, 𝑧)‖1 ∶= ‖𝑎‖𝐴 + |𝑧|.
However, there are other choices of norms on 𝐴1 which may appear more natural, e.g.,

‖(𝑎, 𝑧)‖ ∶= sup
‖𝑏‖≠0

‖𝑎𝑏 + 𝑧𝑏‖
‖𝑏‖

.

Thus without loss of generality, we may assume 𝐴 is unital.
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(B2) Given a Banach algebra 𝐴, the left regular representation is given by 𝜆 ∶ 𝐴 → 𝐵(𝐴) by 
𝜆𝑎𝑏 ∶= 𝑎𝑏. Then 𝜆 is a norm-decreasing (continuous) homomorphism (exercise!) from 
𝐴 to 𝐵(𝐴) with the operator norm, and if 𝐴 is unital,

‖𝑎‖ = ‖𝜆𝑎1‖ ≤ ‖𝜆𝑎‖ ⋅ ‖1‖ ≤ ‖𝑎‖ ⋅ ‖1‖.

This implies that ‖ ⋅ ‖𝐵(𝐴) on 𝜆𝐴 is strongly equivalent to ‖ ⋅ ‖𝐴, and thus gives the same 
topology. Moreover, clearly ‖1‖𝐵(𝐴)‖ = 1.
Thus without loss of generality, we may assume ‖1‖𝐴 = 1.

Exercise 1.1.5. Determine the correct norm on the unitization of 𝐶0(𝑋) so that it is isomet­
rically isomorphic to 𝐶(𝑋 ∪ {∞}), continuous functions on the one-point compactification.

Definition 1.1.6. An approximate unit for a Banach algebra 𝐴 is a net (𝑒𝜆) ⊂ 𝐴 with 
‖𝑒𝜆‖ ≤ 1 for all 𝜆 such that

lim 𝑒𝜆𝑎 = 𝑎 = lim 𝑎𝑒𝜆 ∀ 𝑎 ∈ 𝐴.

Exercise 1.1.7. Find approximate units in 𝐶0(𝑋), 𝐿1(ℝ𝑛), and 𝐾(𝐻), the compact oper­
ators on a Hilbert space 𝐻.

Exercise 1.1.8. Show that if 𝐴 has an approximate unit, then the left regular representation 
𝜆 ∶ 𝐴 → 𝐵(𝐴) is isometric whenever ‖1‖𝐴 = 1.

We will construct approximate units for certain Banach algebras using functional calculus 
later on.

1.2 Spectrum
For this section, 𝐴 is a unital Banach algebra. We identify ℂ ⊂ 𝐴 by 𝜆 ↦ 𝜆1𝐴. We denote 
by 𝐴× the set of (multiplicatively) invertible elements in 𝐴, i.e.,

𝐴× ∶= {𝑎 ∈ 𝐴|there is a 𝑏 ∈ 𝐴 such that 𝑎𝑏 = 1 = 𝑏𝑎} .

Exercise 1.2.1. Show that if 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎𝑏 = 1 = 𝑏𝑐, then 𝑎 = 𝑐. Deduce that 
the inverse of 𝑏 is unique if it exists, and can unambiguously be denoted 𝑏−1.

Facts 1.2.2. Here are some facts about the set of invertible elements 𝐴×.

(×1) If ‖𝑎‖ < 1, then 1 − 𝑎 ∈ 𝐴× since

(1 − 𝑎)−1 =
∞

∑
𝑛=0

𝑎𝑛

where the partial sums converge in norm.
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(×2) Observe that if ‖𝑎‖ < 1, then we get the following norm bound:

‖(1 − 𝑎)−1‖ = ‖
∞

∑
𝑛=0

𝑎𝑛‖ ≤
∞

∑
𝑛=0

‖𝑎‖𝑛 = 1
1 − ‖𝑎‖

.

(×3) If 𝑎 ∈ 𝐴×, then whenever ‖𝑎 − 𝑏‖ < ‖𝑎−1‖−1, since

𝑏 = 𝑎 − (𝑎 − 𝑏) = (1 − (𝑎 − 𝑏)𝑎−1) 𝑎,

and ‖(𝑎 − 𝑏)𝑎−1‖ < 1, we see that

𝑏−1 = 𝑎−1
∞

∑
𝑛=0

((𝑎 − 𝑏)𝑎−1)𝑛

where the partial sums converge in norm. Thus 𝐴× is open in 𝐴.

(×4) Inversion is continuous on 𝐴×. Indeed,

‖𝑏−1 − 𝑎−1‖ = ‖𝑎−1
∞

∑
𝑛=1

((𝑎 − 𝑏)𝑎−1)𝑛‖

≤
(×3)

‖𝑎−1‖ ⋅
∞

∑
𝑛=1

(‖𝑎 − 𝑏‖ ⋅ ‖𝑎−1‖⏟⏟⏟⏟⏟⏟⏟
<1

)
𝑛

= ‖𝑎−1‖ ⋅ ‖𝑎 − 𝑏‖ ⋅ ‖𝑎−1‖
1 − ‖𝑎 − 𝑏‖ ⋅ ‖𝑎−1‖

𝑎→𝑏
−−→ 0.

Definition 1.2.3. The spectrum of 𝑎 ∈ 𝐴 is

sp𝐴(𝑎) ∶= {𝜆 ∈ ℂ|𝜆 − 𝑎 ∉ 𝐴×} .

If 𝐴 is non-unital, we define sp𝐴(𝑎) ∶= sp𝐴1
((𝑎, 0ℂ)).

Remark 1.2.4. The spectrum depends on the algebra (see §1.7). Observe that if we have 
a unital inclusion of Banach algebras 𝐴 ⊂ 𝐵, then invertibility in 𝐴 implies invertibility in 
𝐵, or in other words,

sp𝐵(𝑎) ⊆ sp𝐴(𝑎). (1.2.5)

More generally, if 𝜙 ∶ 𝐴 → 𝐵 is a unital algebra map between Banach algebras and 𝑎 ∈ 𝐴×, 
then 𝜙(𝑎) ∈ 𝐵×, so sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎).

Examples 1.2.6. 

1. For 𝑋 compact Hausdorff and 𝑓 ∈ 𝐶(𝑋) sp(𝑓) = 𝑓(𝑋). This is also true in 𝐶𝑛[0, 1]
and 𝐴(𝐾).

2. For 𝑋 LCH and 𝑓 ∈ 𝐶0(𝑋), sp(𝑓) = 𝑓(𝑋). This is also true in 𝐶𝑏(𝑋).
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3. For 𝑓 ∈ 𝐿∞(𝑋), sp(𝑓) is the essential range, i.e.,

ess range(𝑓) ∶= {𝜆 ∈ ℂ|𝑧 ↦ 1
𝑓(𝑧) − 𝜆

 is in 𝐿∞(𝑋)}

= {𝜆 ∈ ℂ|∀ 𝜀 > 0, 𝜇(𝑓−1(𝐵𝜀(𝜆)) > 0} .

4. For ℓ1(ℤ), ℓ1(ℤ≥0) and 𝐿2(ℝ𝑛), one uses Fourier analysis methods.

We now return to the setting where 𝐴 is unital.

Facts 1.2.7. Here are some basic facts about the spectrum.

(sp1) If ‖𝑎‖ < |𝑧|, then 𝑧 − 𝑎 ∈ 𝐴× with ‖(𝑧 − 𝑎)−1‖ ≤ 1
|𝑧|−‖𝑎‖  by applying (×1) and (×2) to 

𝑎/𝑧. Hence sp𝐴(𝑎) ⊂ 𝐵‖𝑎‖(0).

(sp2) Suppose 𝑧0 ∉ sp𝐴(𝑎). If |𝑧 − 𝑧0| < ‖(𝑧 − 𝑎)−1‖−1, then 𝑧 ∉ sp𝐴(𝑎) by (×3). Hence 
sp𝐴(𝑎) is compact for every 𝑎 ∈ 𝐴.

(sp3) (First resolvent formula) For 𝑎 ∈ 𝐴 and 𝑤, 𝑧 ∉ sp𝐴(𝑎),

(𝑤 − 𝑎)−1 − (𝑧 − 𝑎)−1 = (𝑧 − 𝑤)(𝑤 − 𝑎)−1(𝑧 − 𝑎)−1 = (𝑧 − 𝑤)(𝑧 − 𝑎)−1(𝑤 − 𝑎)−1.

Indeed, we can multiply both sides by (𝑧 − 𝑎)(𝑤 − 𝑎), which is invertible.

(sp4) For every 𝜑 ∈ 𝐴∗, the function 𝑧 ↦ 𝜑((𝑧 − 𝑎)−1) is holomorphic on sp𝐴(𝑎)𝑐. Indeed,

lim
𝑤→𝑧

𝜑((𝑤 − 𝑎)−1) − 𝜑((𝑧 − 𝑎)−1)
𝑤 − 𝑧

= 𝜑 ( lim
𝑤→𝑧

(𝑤 − 𝑎)−1 − (𝑧 − 𝑎)−1

𝑤 − 𝑧
)

=
(sp3)

−𝜑 ( lim
𝑤→𝑧

(𝑤 − 𝑎)−1(𝑧 − 𝑎)−1)

=
(×4)

−𝜑((𝑧 − 𝑎)−2).

(sp5) sp𝐴(𝑎) is always nonempty. 

Proof. For 𝜑 ∈ 𝐴∗ and |𝑧| > ‖𝑎‖,

|𝜑((𝑧 − 𝑎)−1)| ≤ ‖𝜑‖ ⋅ ‖(𝑧 − 𝑎)−1‖ ≤
(sp1)

‖𝜑‖ ⋅ 1
|𝑧| − ‖𝑎‖

|𝑧|→∞
−−−−→ 0.

Suppose for contradiction that sp𝐴(𝑎) = ∅. For every 𝜑 ∈ 𝐴∗, 𝑧 ↦ 𝜑((𝑧 − 𝑎)−1)
would be bounded and entire, hence constant (see Liouville’s Theorem (CA5) 
below). Since 𝐴∗ separates points of 𝐴, we would be forced to conclude that 
𝑧 ↦ (𝑧 − 𝑎)−1 and thus 𝑧 ↦ 𝑧 − 𝑎 were both constant, which is absurd. ∎

Theorem 1.2.8  (Gelfand-Mazur). The only normed division algebra over ℂ is ℂ itself. 
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Proof. Suppose 𝐴 is such an algebra. Its completion 𝐴 is a unital Banach algebra. If 
𝑎 ∈ 𝐴, then

∅ ≠
(sp5)

sp𝐴(𝑎) ⊆
(1.2.5)

sp𝐴(𝑎).

If 𝜆 ∈ sp𝐴(𝑎), then 𝑎 − 𝜆 is not invertible, so 𝑎 − 𝜆 = 0 and 𝑎 ∈ ℂ. ∎

1.3 Spectral radius
Let 𝐴 be a unital Banach algebra.

Lemma 1.3.1. For 𝑎 ∈ 𝐴, the sequence ‖𝑎𝑛‖1/𝑛 converges to inf𝑛 ‖𝑎𝑛‖1/𝑛. 

Proof. Fix 𝑚 ∈ ℕ. For 𝑛 ∈ ℕ, write 𝑛 = 𝑞𝑚 + 𝑟 with 𝑞, 𝑟 ∈ ℤ≥0 and 𝑟 < 𝑚 via the 
Euclian Algorithm. Then

‖𝑎𝑛‖ ≤ ‖𝑎𝑚‖𝑞 ⋅ ‖𝑎‖𝑟 ⟹ ‖𝑎𝑛‖1/𝑛 ≤ ‖𝑎𝑚‖𝑞/𝑛 ⋅ ‖𝑎‖𝑟/𝑛 𝑛→∞
−−−→ ‖𝑎𝑚‖1/𝑚.

Thus
lim sup ‖𝑎𝑛‖1/𝑛 ≤ inf

𝑚
‖𝑎𝑚‖1/𝑚 ≤ lim inf ‖𝑎𝑛‖1/𝑛. ∎

Definition 1.3.2. For 𝑎 ∈ 𝐴, we define its spectral radius as

𝑟(𝑎) ∶= lim
𝑛→∞

‖𝑎𝑛‖1/𝑛,

which exists by the previous lemma.

Proposition 1.3.3. For 𝑎 ∈ 𝐴, sp𝐴(𝑎) ⊂ 𝐵𝑟(𝑎)(0ℂ), and there is a 𝑧 ∈ sp𝐴(𝑎) with 
|𝑧| = 𝑟(𝑎). 

Proof. First, we prove that if |𝑧| > 𝑟(𝑎), then 𝑧 ∉ sp𝐴(𝑎). If |𝑧| > 𝑟(𝑎), then 
lim ‖𝑎𝑛‖1/𝑛 < |𝑧|. Thus there is an 𝑁 > 0 such that for all 𝑛 > 𝑁, ‖𝑎𝑛‖1/𝑛 < |𝑧|. This 
means

‖𝑎𝑛‖1/𝑛

|𝑧|
< 1,

so there is an 0 < 𝑟 < 1 such that that

‖𝑎𝑛‖1/𝑛

|𝑧|
≤ 𝑟 < 1 ⟺ ‖𝑎𝑛‖

|𝑧|𝑛
≤ 𝑟𝑛 ∀ 𝑛 > 𝑁.
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Hence the formula
1
𝑧

⋅
∞

∑
𝑛=0

𝑎𝑛

𝑧𝑛

converges in norm, and one verifies directly that its limit is (𝑧 − 𝑎)−1.
Second, it is enough to show that if sp𝐴(𝑎) ⊂ {|𝑧| < 𝑟}, then 𝑟 ≥ 𝑟(𝑎). Fix such an 
𝑟 > 0. By (sp4), for 𝜑 ∈ 𝐴∗, the function 𝑓𝑎,𝜑(𝑧) ∶= 𝜑((𝑧 − 𝑎)−1) is holomorphic on 
sp𝐴(𝑎)𝑐. For |𝑧| > ‖𝑎‖, we have

𝑓𝑎,𝜑 =
∞

∑
𝑛=0

𝑧−𝑛−1𝜑(𝑎𝑛)

converges uniformly, so it must be the Laurent series of the holomorphic function 
𝑓𝑎,𝜑. But since 𝑓𝑎,𝜑 is holomorphic on sp𝐴(𝑎)𝑐 ⊂ {|𝑧| ≥ 𝑟}, this Laurent series must 
converge whenever |𝑧| ≥ 𝑟. This implies that

sup
𝑛

|𝑟−𝑛−1𝜑(𝑎𝑛)| = 1
𝑟

sup
𝑛

|𝜑 ((𝑎
𝑟

)
𝑛
)| < ∞ ∀𝜑 ∈ 𝐴∗.

Now considering {(𝑎
𝑟 )𝑛|𝑛 ∈ ℕ} as a collection of operators on 𝐴∗, by the Uniform 

Boundedness Principle, we have that this set is norm bounded, i.e., there is an 𝑀 > 0
such that

sup
𝑛

‖𝑎𝑛

𝑟𝑛 ‖ < 𝑀 < ∞.

It immediately follows that ‖𝑎𝑛‖1/𝑛 ≤ 𝑟𝑀1/𝑛 for all 𝑛, and thus 𝑟(𝑎) ≤ 𝑟. ∎

1.4 Some complex analysis
In this section, we review some basic complex analysis that we will use for the Holomorphic 
Functional Calculus. For 𝑈 ⊂ ℂ open, let 𝐻(𝑈) denote the algebra of holomorphic functions 
on 𝑈. For a compact set 𝐾 ⊂ ℂ, define

𝒪(𝐾) ∶= {(𝑈, 𝑓)|𝐾 ⊂ 𝑈 is an open neighborhood and 𝑓 ∈ 𝐻(𝑈)} / ∼

where (𝑈1, 𝑓1) ∼ (𝑈2, 𝑓2) if 𝑓1 = 𝑓2 on 𝑈1 ∩ 𝑈2. (Exercise: verify ∼ is an equivalence 
relation.)

Remark 1.4.1. If 𝐾 is connected and has an accumulation point, then

𝒪(𝐾) = {𝑓 ∈ 𝐶(𝐾)|∃ 𝑈 ⊃ 𝐾 open and 𝑔 ∈ 𝐻(𝑈) such that 𝑔|𝐾 = 𝑓} ,

but in general, these sets are not equal.

Definition 1.4.2. A simple closed contour 𝛾 in ℂ is a non-intersecting finite family of 
injective piecewise 𝐶1 maps 𝑆1 → 𝑈. We identify 𝛾 with its image, which inherits an 
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orientation from the counter-clockwise orientation of 𝑆1. Given 𝑧 ∉ 𝛾, the index/winding 
number of 𝛾 about 𝑧 is given by

ind𝛾(𝑧) ∶= 1
2𝜋𝑖

∫
𝛾

1
𝑤 − 𝑧

𝑑𝑤.

It takes values zero and one for a simple closed contour; the inside of 𝛾 is

ins(𝛾) ∶= {𝑧 ∈ ℂ| ind𝛾(𝑧) = 1} .

Facts 1.4.3. Here are some basic facts from Complex Analysis.

(CA1) (Jordan Curve Theorem) For every open set 𝑈 ⊂ ℂ and every nonempty compact 
𝐾 ⊂ ℂ, there is a simple closed contour 𝛾 ⊂ 𝑈 such that

ind𝛾(𝑧) = {
1 if 𝑧 ∈ 𝐾
0 if 𝑧 ∉ 𝑈.

𝑈
𝐾

𝛾

(CA2) (Cauchy-Goursat) If 𝛾 is a simple closed contour in 𝑈 with ins(𝛾) ⊂ 𝑈 and 𝑓 ∈ 𝐻(𝑈), 
then

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = 0.

(CA3) For any two homotopic paths 𝛾1, 𝛾2 in 𝑈 and holomorphic 𝑓 ∈ 𝐻(𝑈),

∫
𝛾1

𝑓(𝑧) 𝑑𝑧 = ∫
𝛾2

𝑓(𝑧) 𝑑𝑧.

(CA4) (Cauchy integral formula) For every contour as in (CA1), for all 𝑓 ∈ 𝐻(𝑈) and 𝑧 ∈ 𝐾,

𝑓(𝑧) = 1
2𝜋𝑖

∫
𝛾

𝑓(𝑤)
𝑤 − 𝑧

𝑑𝑧.

(CA5) A bounded entire function is constant. 
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Proof. If |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ ℂ, use (CA4) to see that for 𝑅 sufficiently large,

|𝑓(𝑧) − 𝑓(0)| = | 1
2𝜋𝑖

∫
|𝑤|=𝑅

𝑓(𝑤)
𝑤 − 𝑧

− 𝑓(𝑤)
𝑤

𝑑𝑤|

= | 1
2𝜋𝑖

∫
|𝑤|=𝑅

𝑧𝑓(𝑤)
(𝑤 − 𝑧)𝑤

𝑑𝑤|

≤ 1
2𝜋

∫
|𝑤|=𝑅

𝑀
𝑅

⋅ |𝑧|
|𝑤 − 𝑧|⏟

<𝜀

𝑑𝑤

< 𝑀𝜀.

Since 𝜀 can be made arbitrarily small, 𝑓(𝑧) = 𝑓(0). ∎

(CA6) (Morera) If 𝑓 ∶ 𝑈 → ℂ is continuous and for every simple closed contour 𝛾 ⊂ 𝑈

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = 0,

then 𝑓 ∈ 𝐻(𝑈), i.e., 𝑓 is holomorphic.

(CA7) (Identity Theorem) Suppose 𝑈 is open and connected and 𝑓 ∈ 𝐻(𝑈). If (𝑧𝑛) is a 
convergent sequence in 𝑈 whose limit lies in 𝑈 and 𝑓(𝑧𝑛) = 0 for all 𝑛, then 𝑓 = 0.

(CA8) (Maximum Modulus Principle) Suppose 𝑈 ⊂ ℂ is open and 𝑧0 ∈ 𝑈. If 𝑓 ∈ 𝐻(𝑈) and 
there is a 𝜀 > 0 such that 𝐵𝜀(𝑧0) ⊂ 𝑈 and

|𝑓(𝑧0)| ≥ |𝑓(𝑧)| ∀ 𝑧 ∈ 𝐵𝜀(𝑧0),

then 𝑓 is constant.

Example 1.4.4. Generalize the proof of (CA5) to show that if 𝑓 is entire and there is an 
0 < 𝑟 < 1 and 𝑎, 𝑏 ≥ 0 such that |𝑓(𝑧)| ≤ 𝑎|𝑧|𝑟 + 𝑏 for all 𝑧 ∈ ℂ, then 𝑓 is constant.

Lemma 1.4.5. If (𝑓𝑛) ⊂ 𝐻(𝑈) is uniformly Cauchy on each compact 𝐾 ⊂ 𝑈, then there is 
an 𝑓 ∈ 𝐻(𝑈) such that 𝑓𝑛 → 𝑓 locally uniformly, i.e., uniformly on every compact 𝐾 ⊂ 𝑈. 

Proof. Since points are compact, we can define 𝑓 to be the pointwise limit of the 𝑓𝑛. 
Since 𝑈 is open and locally compact, clearly 𝑓 is continuous on 𝑈 and 𝑓𝑛 → 𝑓 locally 
uniformly. Then for every simple closed contour 𝛾 ⊂ 𝑈,

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = ∫
𝛾
lim 𝑓𝑛(𝑧) 𝑑𝑧 = lim ∫

𝛾
𝑓𝑛(𝑧) 𝑑𝑧 =

(CA2)
0.
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By Morera’s Theorem (CA6), 𝑓 ∈ 𝐻(𝑈). ∎

Proposition 1.4.6. The topology of local uniform convergence is a first countable Frechet 
topological vector space structure on 𝐶(𝑈), the continuous functions on an open subset 
𝑈 ⊂ ℂ, and 𝐻(𝑈) ⊂ 𝐶(𝑈) is a closed subspace. 

Proof. Pick nested compact sets (𝐾𝑛) such that 𝐾𝑛 ⊂ 𝐾∘
𝑛+1 and ⋃ 𝐾𝑛 = 𝑈. Observe 

that we also have 𝑈 = ⋃ 𝐾∘
𝑛, so every compact subset of 𝑈 is contained in some 𝐾𝑛. 

On 𝐶(𝑈), consider the separating family of seminorms

𝑚𝑛(𝑓) ∶= ‖𝑓‖𝐶(𝐾𝑛) = sup
𝑥∈𝐾𝑛

|𝑓(𝑥)|,

and let 𝒯 be the locally convex vector space topology on 𝐶(𝑈) generated by the 𝑚𝑛. 
Observe that 𝒯 is metrizable via the translation invariant metric

𝑑(𝑓, 𝑔) ∶= ∑ 2−𝑛 𝑚𝑛(𝑓 − 𝑔)
1 + 𝑚𝑛(𝑓 − 𝑔)

,

and is thus a first countable Frechet TVS structure. Since 𝑓𝑘 → 𝑓 if and only if 𝑚𝑛(𝑓 −
𝑓𝑘) → 0 for all 𝑛, we see that convergence in 𝒯 is exactly local uniform convergence 
(and independent of the choice of (𝐾𝑛)). Finally, 𝐻(𝑈) is a closed subspace of 𝐶(𝑈)
by Lemma 1.4.5. ∎

Definition 1.4.7. Recall that a subset 𝑆 ⊂ ℂ is simply connected if both 𝑆 and 𝑆𝑐 are 
connected.

Lemma 1.4.8  (Runge). Suppose 𝑤 ∈ ℂ, 𝜁 ∈ ℂ̂ ∶= ℂ ∪ {∞}, and 𝑈 is an open connected 
subset of ℂ̂ which contains a path from 𝑤 to 𝜁. For any compact subset 𝐾 ⊂ 𝑈𝑐, the function 
𝑓𝑤(𝑧) ∶= 1

𝑤−𝑧 can be uniformly approximated by rational functions whose only poles lie at 𝜁.

Remarks 1.4.9.

1. If 𝜁 = ∞, then such rational functions are exactly polynomials.

2. Without loss of generality, we may assume that both 𝑈 and 𝐾 are simply connected. 
Indeed, 𝑈 need only contain a path from 𝑤 to 𝜁, so we may take 𝑈 to be an 𝜀-
neighborhood of such a path. In this case, we can always find a simply connected 
compact set 𝐿 ⊂ 𝑈𝑐 with 𝐾 ⊂ 𝐿, so it suffices to uniformly approximate 𝑓𝑤 on 𝐿.

Proof. Before we begin the general proof, observe that if |𝑤 − 𝜁| is very small, more 
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precisely,
|𝜁 − 𝑤| < inf

𝑧∈𝐾
|𝜁 − 𝑧|,

then the convergence

1
𝑤 − 𝑧

= 1
(𝜁 − 𝑧) − (𝜁 − 𝑤)

= 1
𝜁 − 𝑧

⋅
∞

∑
𝑛=0

(𝜁 − 𝑤
𝜁 − 𝑧

)
𝑛

(1.4.10)

is uniform, as 𝜁−𝑤
𝜁−𝑧 < 1 for such 𝑤 on 𝐾. Hence we can uniformly approximate 𝑓𝑤 on 

𝐾 close to 𝜁 by rational functions whose only pole is at 𝜁.
(The above argument is also valid if 𝜁 = ∞; indeed, for |𝑤| sufficiently large, the 
convergence

1
𝑤 − 𝑧

= 1
𝑤

∞
∑
𝑛=0

𝑧𝑛

𝑤𝑛 ∀ |𝑤| > sup
𝑧∈𝐾

|𝑧| (1.4.11)

is uniform, as |𝑧/𝑤| < 1 for such 𝑤 on 𝐾. Hence we can uniformly approximate 𝑓𝑤 on 
𝐾 close to 𝜁 = ∞ by polynomials.)
We now use some functional analysis to finish the proof. Let 𝐴 ⊂ 𝐶(𝐾) be the Banach 
subalgebra of uniform limits of rational functions whose only poles lie at 𝜁. By the 
Hahn-Banach Theorem, it suffices to show that 𝜑(𝑓𝑤) = 0 for every 𝜑 ∈ 𝐶(𝐾)∗ such 
that 𝜑|𝐴 = 0. To show this, we need only prove that each function 𝑔𝜑(𝑤) ∶= 𝜑(𝑓𝑤)
is holomorphic on 𝐾𝑐. Indeed, 𝑔𝜑(𝑤) = 0 is zero for 𝑤 sufficiently close to 𝜁 by 
(1.4.10,1.4.11), and since 𝐾𝑐 is connected, 𝑔𝜑 = 0 on 𝐾𝑐 by the Identity Theorem 
(CA7).
Now we show 𝑔𝜑 is holomorphic on 𝐾𝑐 in two steps. First, as 𝑤 ∈ 𝐾𝑐, as a function 
of 𝑧 ∈ 𝐾, ℎ−1(𝑓𝑤+ℎ − 𝑓𝑤) converges uniformly to 𝑧 ↦ −1

(𝑤−𝑧)2  as ℎ → 0. Second, we 
consider the difference quotient:

lim
ℎ→0

𝑔𝜑(𝑤 + ℎ) − 𝑔𝜑(𝑤)
ℎ

= 𝜑 ( lim
ℎ→0

𝑓𝑤+ℎ − 𝑓𝑤
ℎ

) = 𝜑 (𝑧 ↦ −1
(𝑤 − 𝑧)2 ) .

Hence 𝑔′
𝜑(𝑤) exists for all 𝑤 ∈ 𝐾𝑐, and thus 𝑔𝜑 is holomorphic. ∎

Theorem 1.4.12  (Runge). Suppose 𝐾 ⊂ ℂ is compact and 𝑆 ⊂ ℂ̂ contains an element from 
each connected component of 𝐾𝑐. Each 𝑓 ∈ 𝒪(𝐾) can be uniformly approximated on 𝐾 by 
rational functions whose only poles lie in 𝑆. 

Proof. Let 𝑈 ⊂ ℂ be an open subset containing 𝐾 on which 𝑓 is holomorphic. Pick a 
simple closed contour 𝛾 ⊂ 𝑈 ∖ 𝐾 as in (CA1). By (CA4),

𝑓(𝑧) = 1
2𝜋𝑖

∫
𝛾

𝑓(𝑤)
𝑤 − 𝑧

𝑑𝑤 ∀𝑧 ∈ 𝐾.
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This is a Riemann integral, which can be approximated uniformly on 𝐾 (see Remark 
1.4.13 below) by a finite sum which is a linear combination of functions of the form 
𝑓𝑤(𝑧) ∶= 1

𝑤−𝑧  for 𝑤 ∈ 𝛾 ⊂ 𝑈 ∖ 𝐾. By Lemma 1.4.8, each of these 𝑓𝑤 can be uniformly 
approximated by rational functions whose only poles lie in 𝑆. The result follows. ∎

Remark 1.4.13. The above uniform approximation of the Riemann integral on 𝐾 follows 
from the following analysis. Suppose 𝐾 is compact and 𝑔 ∶ 𝐾 × [0, 1] → ℂ is continuous. 
Since 𝐾 × 𝐼 is compact, 𝑔 is uniformly continuous, so there is a 𝛿 > 0 such that

‖(𝑤, 𝑠) − (𝑧, 𝑡)‖∞ < 𝛿 ⟹ |𝑔(𝑤, 𝑠) − 𝑔(𝑧, 𝑡)| < 𝜀.

Pick a partition 𝑃 {0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1} where Δ𝑖 ∶= 𝑡𝑖 − 𝑡𝑖−1 < 𝛿 for all 𝑖. Then for 
each fixed 𝑧 ∈ 𝐾 and 𝑖 = 1, … 𝑛, setting

𝑀𝑧,𝑖 ∶= max {𝑔(𝑧, 𝑡)|𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖} and 𝑚𝑧,𝑖 ∶= min {𝑔(𝑧, 𝑡)|𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖} ,

we have that

𝑈(𝑔(𝑧, 𝑡), 𝑃 ) − 𝐿(𝑔(𝑧, 𝑡), 𝑃 ) =
𝑛

∑
𝑖=1

(𝑀𝑧,𝑖 − 𝑚𝑧,𝑖) ⋅ Δ𝑖 < 𝜀.

This immediately implies that for every 𝑧 ∈ 𝐾, the Riemann integral is uniformly approxi­
mated by the right endpoint Riemann sum,

|∫
1

0
𝑔(𝑧, 𝑡) 𝑑𝑡 −

𝑛
∑
𝑖=1

𝑔(𝑧, 𝑡𝑖)Δ𝑖| < 𝜀 ∀ 𝑧 ∈ 𝐾,

as both lie between the upper and lower sum.

Remark 1.4.14. If 𝐾 is compact and 𝐾𝑐 is connected, then choosing 𝑆 = {∞}, each 
𝑓 ∈ 𝒪(𝐾) can be uniformly approximated on 𝐾 by polynomials.

Example 1.4.15. The Hardy space 𝐻∞(𝑈) is the space of holomorphic functions 𝑓 ∶ 𝑈 → ℂ
which are uniformly bounded, which is a Banach algebra under the sup norm.

Sub-Example 1.4.16. The disk algebra 𝐴(𝔻) is 𝐻∞(𝔻) ∩ 𝐶(𝔻), i.e., the continuous func­
tions on the closed unit disk which are holomorphic on the interior. It is exactly the uniform 
limit of the polynomials in 𝐶(𝔻). Indeed, each such uniform limit of polynomials is clearly 
holomorphic on the interior by Morera’s Theorem (CA6). Conversely, each 𝑓 ∈ 𝐴(𝔻) has 
a Taylor series which converges locally uniformly on 𝔻. Since 𝑓 is uniformly continuous on 
𝔻, for every 𝜀 > 0, there is a 𝛿 > 0 so that |𝑤 − 𝑧| < 𝛿 implies |𝑓(𝑤) − 𝑓(𝑧)| < 𝜀. Fix 
1 − 𝛿 < 𝑟 < 1 so that 1 − 𝑟 < 𝛿 and |𝑧 − 𝑟𝑧| = (1 − 𝑟) ⋅ |𝑧| < 𝛿 for all 𝑧 ∈ 𝔻. Then 
|𝑓(𝑧) − 𝑓(𝑟𝑧)| < 𝜀 for all 𝑧 ∈ 𝔻. Moreover, 𝑧 ↦ 𝑓(𝑟𝑧) can be uniformly approximated by 
polynomials on 𝔻, and thus 𝑓 can be as well.

Lemma 1.4.17. The map 𝐴(𝔻) ∋ 𝑓 ↦ 𝑓|𝑆1 ⊂ 𝐶(𝑆1) is an isometric isomorphism onto the 
uniform closure of the polynomials in 𝐶(𝑆1). 
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Proof. 

Isometric: It suffices to prove that every 𝑓 ∈ 𝐴(𝔻) achieves its norm on 𝑆1. To do so, 
we need only prove that if |𝑓| achieves its maximum on 𝔻, then 𝑓 is constant; 
this is immediate by the Maximum Modulus Principle (CA8).

Injective: Isometric maps between normed spaces are always injective.

Surjective: Suppose (𝑝𝑛) is a sequence of polynomials on 𝑆1 with 𝑝𝑛 → 𝑓 uniformly. 
By the Maximum Modulus Principle (CA8), (𝑝𝑛) is uniformly Cauchy on 𝔻, and 
thus 𝑓 ∈ 𝐴(𝔻) by Morera’s Theorem (CA6). ∎

1.5 Banach-valued differentiation and integration
We now discuss the notion of a Banach-valued holomorphic function, and the Riemann 
integral for curves in a Banach space. For this section, 𝑋 is a Banach space.

Definition 1.5.1. For an open set 𝑈 ⊂ ℂ, we call 𝑓 ∶ 𝑈 → 𝑋:

• weakly holomorphic if for every 𝜑 ∈ 𝑋∗, 𝜑 ∘ 𝑓 ∶ 𝑈 → ℂ is holomorphic, and

• strongly holomorphic if for every 𝑧 ∈ 𝑈,

lim
ℎ→0

𝑓(𝑧 + ℎ) − 𝑓(𝑧)
ℎ

= lim
𝑤→𝑧

𝑓(𝑤) − 𝑓(𝑧)
𝑤 − 𝑧

exists, where the limit is taken in norm in 𝑋.

Example 1.5.2. The First Resolvent Formula (sp3) implies that the resolvent function 
𝑅𝑎(𝑧) ∶= (𝑧 − 𝑎)−1 is strongly holomorphic on sp𝐴(𝑎)𝑐. Indeed,

lim
𝑤→𝑧

(𝑤 − 𝑎)−1 − (𝑧 − 𝑎)−1

𝑤 − 𝑧
= lim

𝑤→𝑧

(𝑧 − 𝑤)(𝑤 − 𝑎)−1(𝑧 − 𝑎)−1

𝑤 − 𝑧
= −(𝑧 − 𝑎)−2.

Clearly strong holomorphicity implies weak holomorphicity by linearity and continuity of 
𝜑 ∈ 𝑋∗. We immediately obtain the following generalization of Liouville’s Theorem (CA5).

Corollary 1.5.3. If 𝑓 ∶ ℂ → 𝑋 is a Banach-valued strongly entire function which is norm 
bounded, then 𝑓 is constant. 

Proof. Since 𝑓 is norm bounded, 𝜑 ∘ 𝑓 is norm-bounded and entire for every 𝜑 ∈ 𝑋∗, 
and thus constant by (CA5). So 𝜑(𝑓(𝑧)) = 𝜑(𝑓(0)) for all 𝜑 ∈ 𝑋∗, and since 𝑋∗

separates points, 𝑓(𝑧) = 𝑓(0). ∎
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We are interested in proving the other direction, i.e., weakly holomorphic implies strongly 
holomorphic. The trick will be to define a version of the Cauchy Integral Formula (CA4) for 
functions 𝑓 ∶ 𝑈 → 𝑋. To do this, we would like to be able to integrate along curves valued 
in 𝑋, i.e., we want to define

∫
𝑏

𝑎
𝛾(𝑡) 𝑑𝑡

for [𝑎, 𝑏] ⊂ ℝ and continuous 𝛾 ∶ [𝑎, 𝑏] → 𝑋. Since 𝑋∗ separates points of 𝑋, observe that 
there is at most one 𝑥 ∈ 𝑋 such that

𝜑(𝑥) = ∫
𝑏

𝑎
(𝜑 ∘ 𝛾)(𝑡) 𝑑𝑡 ∀ 𝜑 ∈ 𝑋∗. (1.5.4)

Exercise 1.5.5  (Homework). Define

∫
𝑏

𝑎
𝛾(𝑡) 𝑑𝑡 = lim

‖𝑃‖→0
𝑥𝑃,𝑢

where
𝑥𝑃,𝑢 ∶=

𝑛
∑
𝑗=1

(𝑡𝑗 − 𝑡𝑗−1)⏟⏟⏟⏟⏟
=Δ𝑗

𝛾(𝑢𝑗)

where 𝑃 = {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏} is a partition, ‖𝑃 ‖ = max𝑗 Δ𝑗, and 𝑡𝑗−1 ≤ 𝑢𝑗 ≤ 𝑡𝑗
for each 1 ≤ 𝑗 ≤ 𝑛. Then show the limit satisfies:

(∫1) 𝜑 (∫𝑏
𝑎

𝛾(𝑡) 𝑑𝑡) = ∫𝑏
𝑎

(𝜑 ∘ 𝛾)(𝑡) 𝑑𝑡, and

(∫2) ∫𝑏
𝑎

∶ 𝐶([𝑎, 𝑏], 𝑋) → 𝑋 is a bounded linear map.

Theorem 1.5.6. Suppose 𝑋 is a Banach space, 𝑈 ⊂ ℂ is open, and 𝑓 ∶ 𝑈 → 𝑋 is weakly 
holomorphic.

1. 𝑓 is norm-continuous, i.e., if 𝑧𝑛 → 𝑧 in 𝑈, then 𝑓(𝑧𝑛) → 𝑓(𝑧) in norm.

2. The Cauchy-Goursat and Cauchy Integral Formula hold. That is, if 𝛾 ⊂ 𝑈 is a simple 
closed contour with ind𝛾(𝑧) = 0 for all 𝑧 ∉ 𝑈, then

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = 0 and 𝑓(𝑧) = 1
2𝜋𝑖

∫
𝛾

𝑓(𝑤)
𝑤 − 𝑧

𝑑𝑤 ∀ 𝑧 ∈ ins(𝛾).

3. 𝑓 is strongly holomorphic.

14



Proof. Without loss of generality, we may assume 0 ∈ 𝑈, and we need only prove (1) 
and (3) at 0.

Proof of 1: Let 𝑟 > 0 so that 𝐵2𝑟(0) ⊂ 𝑈. For 𝜑 ∈ 𝑋∗, since 𝜑 ∘ 𝑓 is holomorphic, for 
all 0 < |𝑧| < 2𝑟,

𝜑(𝑓(𝑧)) − 𝜑(𝑓(0))
𝑧

=
(CA4)

1
2𝜋𝑖𝑧

∫
|𝑤|=2𝑟

𝜑(𝑓(𝑤))
𝑤 − 𝑧

− 𝜑(𝑓(𝑤))
𝑤

𝑑𝑤

= 1
2𝜋𝑖

∫
|𝑤|=2𝑟

𝜑(𝑓(𝑤))
(𝑤 − 𝑧)𝑤

𝑑𝑤.

Set 𝑀𝜑 ∶= max |𝜑 ∘ 𝑓| on 𝐵2𝑟(0). By the above formula, for 0 < |𝑧| ≤ 𝑟,

|𝜑(𝑓(𝑧)) − 𝜑(𝑓(0))
𝑧

| ≤ 1
2𝜋

∫
|𝑤|=2𝑟

| 𝜑(𝑓(𝑤))
(𝑤 − 𝑧)𝑤

| 𝑑𝑤

≤ 1
2𝜋

∫
|𝑤|=2𝑟

𝑀𝜑

2𝑟2 𝑑𝑤 =
𝑀𝜑

𝑟

Hence the set
{𝑓(𝑧) − 𝑓(0)

𝑧
|0 < |𝑧| ≤ 𝑟}

is weakly bounded, and is thus bounded in norm by the Uniform Bound­
edness Principlea Thus there is an 𝑅 > 0 such that whenever 0 ≤ |𝑧| ≤ 𝑟, 
‖𝑓(𝑧) − 𝑓(0)‖ ≤ |𝑧| ⋅ 𝑅 → 0 as 𝑧 → 0.

Proof of 2: For 𝛾 ⊂ 𝑈 a simple closed contour and 𝜑 ∈ 𝑋∗,

𝜑 (∫
𝛾

𝑓(𝑧) 𝑑𝑧) =
(∫1)

∫
𝛾

𝜑(𝑓(𝑧)) 𝑑𝑧 = 0

since 𝑓 is weakly holomorphic. Thus ∫
𝛾

𝑓(𝑧) 𝑑𝑧 = 0 as 𝑋∗ separates points 
by the Hahn-Banach Theorem. Similarly, for all 𝑧 ∈ ins(𝛾),

𝜑(𝑓(𝑧)) =
(CA4)

1
2𝜋𝑖

∫
𝛾

𝜑(𝑓(𝑤))
𝑤 − 𝑧

𝑑𝑤 = 1
2𝜋𝑖

∫
𝛾

𝜑 (𝑓(𝑤))
𝑤 − 𝑧

) 𝑑𝑤

=
(∫1)

𝜑 ( 1
2𝜋𝑖

∫
𝛾

𝑓(𝑤))
𝑤 − 𝑧

𝑑𝑤)

Again as 𝑋∗ separates points, we conclude that 𝑓(𝑧) = 1
2𝜋𝑖 ∫

𝛾
𝑓(𝑤))
𝑤−𝑧 𝑑𝑤.
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Proof of 3: Choose 𝑟 as in part (1) so that 𝐵2𝑟(0) ⊆ 𝑈. By parts (1) and (2), we have

𝑓(𝑧) − 𝑓(0)
𝑧

= 1
2𝜋𝑖

∫
|𝑤|=2𝑟

𝑓(𝑤)
(𝑤 − 𝑧)𝑤

𝑑𝑤 ∀0 < |𝑧| < 2𝑟.

Now for 0 < |𝑧| ≤ 𝑟, note that the functions 𝑤 ↦ 𝑓(𝑤)
(𝑤−𝑧)𝑤  converge uni­

formly to 𝑤 ↦ 𝑓(𝑤)
𝑤2  in 𝐶([0, 1], 𝑋) as 𝑧 → 0. Hence

lim
𝑧→0

𝑓(𝑧) − 𝑓(0)
𝑧

= lim
𝑧→0

1
2𝜋𝑖

∫
|𝑤|=2𝑟

𝑓(𝑤)
(𝑤 − 𝑧)𝑤

𝑑𝑤

=
(∫2)

1
2𝜋𝑖

∫
|𝑤|=2𝑟

lim
𝑧→0

𝑓(𝑤)
(𝑤 − 𝑧)𝑤

𝑑𝑤

= 1
2𝜋𝑖

∫
|𝑤|=2𝑟

𝑓(𝑤)
𝑤2 𝑑𝑤

exists in 𝑋 as 𝑤 ↦ 𝑓(𝑤)
𝑤2  is norm-continuous. ∎

aConsider the elements 𝑓(𝑧)−𝑓(0)
𝑧  as bounded linear operators 𝑋∗ → ℂ.

Just as (CA3) is a corollary of (CA2), we have the following corollary.

Corollary 1.5.7. Suppose 𝑈 ⊂ ℂ is open and 𝑓 ∶ 𝑈 → 𝑋 is Banach-valued holomorphic. 
For any two homotopic paths 𝛾1, 𝛾2 in 𝑈,

∫
𝛾1

𝑓(𝑧) 𝑑𝑧 = ∫
𝛾2

𝑓(𝑧) 𝑑𝑧.

1.6 Holomorphic functional calculus
Let 𝐴 be a unital Banach algebra.

Exercise 1.6.1. Show that if 𝑎, 𝑏 ∈ 𝐴 with 𝑏 invertible, then [𝑎, 𝑏] = 0 if and only if 
[𝑎, 𝑏−1] = 0.

Construction 1.6.2  (Rational functional calculus). If 𝑎 ∈ 𝐴 and

𝑞(𝑧) =
𝑘

∏
𝑗=1

(𝑧 − 𝑧𝑗)𝑚𝑗
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is a rational function whose poles 𝑧𝑗 ∉ sp(𝑎). (In other words, 𝑞 ∈ 𝒪(sp𝐴(𝑎)) ∩ ℂ(𝑧).) We 
can unambiguously define

𝑞(𝑎) ∶=
𝑘

∏
𝑗=1

(𝑎 − 𝑧𝑗)𝑚𝑗

as all the terms pairwise commute by Exercise 1.6.1.

Exercise 1.6.3. Show that the map 𝒪(sp𝐴(𝑎)) ∩ ℂ(𝑧) ⟶ 𝐴 given by 𝑞 ↦ 𝑞(𝑎) is a unital 
algebra homomorphism.

We now want to extend the map 𝒪(sp𝐴(𝑎)) ∩ ℂ(𝑧) ⟶ 𝐴 to all of 𝒪(sp𝐴(𝑎)).

Construction 1.6.4  (Holomorphic functional calculus). For 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝒪(sp𝐴(𝑎)), 
let 𝑈 be an open neighborhood of sp𝐴(𝑎) on which 𝑓 is holomorphic. Pick a simple closed 
contour 𝛾 ⊂ 𝑈 as in (CA1) for 𝐾 = sp𝐴(𝑎), i.e.,

ind𝛾(𝑧) = {
1 if 𝑧 ∈ sp𝐴(𝑎)
0 if 𝑧 ∉ 𝑈.

Define
𝑓(𝑎) ∶= 1

2𝜋𝑖
∫

𝛾

𝑓(𝑧)
𝑧 − 𝑎

𝑑𝑧,

i.e., the unique element of 𝐴 satisfying

𝜑(𝑓(𝑎)) =
(∫1)

1
2𝜋𝑖

∫
𝛾

𝜑((𝑧 − 𝑎)−1)𝑓(𝑧) 𝑑𝑧 ∀ 𝜑 ∈ 𝐴∗.

Note that 𝑓(𝑎) is independent of the choice of open set 𝑈 and contour 𝛾 by (CA3) or Corollary 
1.5.7.

Example 1.6.5. Suppose 𝑓(𝑧) ∶= ∑𝑘 𝛼𝑘𝑧𝑘 is a power series with radius of convergence 
𝑅 > ‖𝑎‖ for 𝑎 ∈ 𝐴. Then for any 𝑧 ∈ ℂ with |𝑧| > ‖𝑎‖,

(𝑧 − 𝑎)−1 = 1
𝑧

⋅
∞

∑
𝑛=0

(𝑎
𝑧

)
𝑛

.

Thus fixing ‖𝑎‖ < 𝑟 < 𝑅, we have

𝑓(𝑎) = 1
2𝜋𝑖

∫
|𝑧|=𝑟

𝑓(𝑧)
𝑧 − 𝑎

𝑑𝑧

= 1
2𝜋𝑖

∫
|𝑧|=𝑟

∞
∑
𝑘=0

𝛼𝑘𝑧𝑘 𝑑𝑧
𝑧 − 𝑎

= 1
2𝜋𝑖

∞
∑
𝑘=0

∫
|𝑧|=𝑟

𝑧𝑘−1
∞

∑
𝑛=0

(𝑎
𝑧

)
𝑛

𝑑𝑧
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=
∞

∑
𝑘,𝑛=0

𝛼𝑘𝑎𝑛 1
2𝜋𝑖

∫
|𝑧|=𝑟

1
𝑧𝑛−𝑘+1 𝑑𝑧

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝛿𝑛=𝑘

=
∞

∑
𝑘=0

𝛼𝑘𝑎𝑘.

In particular, the constant function 1(𝑧) = 1 applied to 𝑎 is always 1 ∈ 𝐴, and the identity 
function 𝑧 ↦ 𝑧 applied to 𝑎 is always 𝑎 ∈ 𝐴.

Exercise 1.6.6. Suppose 𝑎 ∈ 𝐴 and 𝐾 ⊂ ℂ is compact such that sp𝐴(𝑎) ⊂ 𝐾∘. Show 
there is an 𝑀𝐾 > 0 such that for any 𝑓 ∈ 𝐻(𝐾∘) which has a continuous extension to 𝐾, 
‖𝑓(𝑎)‖ ≤ 𝑀𝐾‖𝑓‖𝐶(𝐾).

Theorem 1.6.7. The HFC map 𝒪(sp𝐴(𝑎)) ∋ 𝑓 ⟼ 𝑓(𝑎) ∈ 𝐴 satisfies:

(HFC1) The map 𝑓 ↦ 𝑓(𝑎) is a unital algebra homomorphism such that (𝑧 ↦ 𝑧) ↦ 𝑎.

(HFC2) If sp𝐴(𝑎) ⊂ 𝑈 and (𝑓𝑛) ⊂ 𝐻(𝑈) with 𝑓𝑛 → 𝑓 locally uniformly, then 𝑓𝑛(𝑎) → 𝑓(𝑎)
in norm in 𝐴.

Proof. After Example 1.6.5, to finish the proof of (HFC1), it remains to prove 𝑓 ↦
𝑓(𝑎) is an algebra homomorphism. Additivity is immediate from (∫2). To show 
multiplicativaty, if 𝑓, 𝑔 ∈ 𝒪(sp𝐴(𝑎)), choose an open set 𝑈 ⊃ sp𝐴(𝑎) on which 𝑓, 𝑔
are both holomorphic. Then choose simple closed contours 𝛾, 𝜎 in 𝑈 ∖ 𝐾 such that 
sp𝐴(𝑎) ⊂ ins(𝛾) and 𝛾 ∪ ins(𝛾) ⊂ ins(𝜎). We then calculate

𝑓(𝑎)𝑔(𝑎) = −1
4𝜋2 ∫

𝛾

𝑓(𝑧)
𝑧 − 𝑎

𝑑𝑧 ∫
𝜎

𝑔(𝑤)
𝑤 − 𝑎

𝑑𝑤

= −1
4𝜋2 ∫

𝛾
∫

𝜎
𝑓(𝑧)𝑔(𝑤) (𝑧 − 𝑎)−1(𝑤 − 𝑎)−1⏟⏟⏟⏟⏟⏟⏟⏟⏟

= (𝑧−𝑎)−1−(𝑤−𝑎)−1
𝑤−𝑧  by (sp3)

𝑑𝑤 𝑑𝑧

= −1
4𝜋2 ∫

𝛾

𝑓(𝑧)
𝑧 − 𝑎

(∫
𝜎

𝑔(𝑤)
𝑤 − 𝑧

𝑑𝑤)
⏟⏟⏟⏟⏟⏟⏟
=2𝜋𝑖𝑔(𝑧) by (CA4)

𝑑𝑧 + 1
4𝜋2 ∫

𝜎

𝑔(𝑤)
𝑤 − 𝑎

(∫
𝛾

𝑓(𝑧)
𝑤 − 𝑧

𝑑𝑧)
⏟⏟⏟⏟⏟⏟⏟

=0 by (CA2)

𝑑𝑤

= 1
2𝜋𝑖

∫
𝛾

𝑓(𝑧)𝑔(𝑧)
𝑧 − 𝑎

𝑑𝑧

= (𝑓𝑔)(𝑎).

To prove (HFC2), suppose 𝑓𝑛 → 𝑓 in 𝐻(𝑈) (locally uniformly) where sp𝐴(𝑎) ⊂ 𝑈. 
By normality, there is a compact 𝐾 ⊂ 𝑈 such that sp𝐴(𝑎) ⊂ 𝐾∘. By Exercise 1.6.6, 
since 𝑓 and each 𝑓𝑛 are holomorphic on 𝐾∘ and continuous on 𝐾, there is a constant 
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𝑀𝐾 > 0 such that

‖𝑓(𝑎) − 𝑓𝑛(𝑎)‖ = ‖(𝑓 − 𝑓𝑛)(𝑎)‖ ≤ 𝑀𝐾‖𝑓 − 𝑓𝑛‖𝐶(𝐾)
𝑛→∞
−−−→ 0. ∎

Corollary 1.6.8. The HFC extends the ‘rational functional calculus’ from Construction 
1.6.2. 

Proof. By Example 1.6.5, for any polynomial 𝑞(𝑧) = ∑𝑛
𝑘=0 𝛼𝑘𝑧𝑘, 𝑞(𝑧) = ∑𝑛

𝑘=0 𝛼𝑘𝑎𝑘. 
Moreover, if 𝑞(𝑧) ≠ 0 for all 𝑧 ∈ sp𝐴(𝑎), then 1

𝑞 ∈ 𝒪(sp𝐴(𝑎)), and by (HFC1),

1 = (𝑞 ⋅ 1
𝑞

) (𝑎) = 𝑞(𝑎) ⋅ (1
𝑞

) (𝑎).

This means we can write the inverse of 𝑞(𝑎) in two ways: (1) using Construction 1.6.2 
negating all the multiplicities, and (2) as (1

𝑞) (𝑎). Since inverses are unique, these two 
definitions must be equal. Again using (HFC1), for any rational function 𝑝/𝑞 where 𝑞
is a polynomial which does not vanish on sp𝐴(𝑎), we see that

(𝑝
𝑞

) (𝑎) = 𝑝(𝑎)
𝑞(𝑎)

agrees with the definition from Construction 1.6.2. ∎

Theorem 1.6.9. Properties (HFC1) and (HFC2) uniquely characterize the HFC. That is, 
if Φ ∶ 𝒪(sp𝐴(𝑎)) → 𝐴 is another unital algebra homomorphism such that

(Φ1) Φ(𝑧 ↦ 𝑧) = 𝑎, and

(Φ2) If sp𝐴(𝑎) ⊂ 𝑈 and (𝑓𝑛) ⊂ 𝐻(𝑈) with 𝑓𝑛 → 𝑓 locally uniformly, then Φ(𝑓𝑛) → Φ(𝑓) in 
norm in 𝐴,

then Φ(𝑓) = 𝑓(𝑎) for all 𝑓 ∈ 𝒪(sp𝐴(𝑎)). 

Proof. An argument similar to Corollary 1.6.8 shows that (Φ1) implies that Φ (𝑝
𝑞 ) =

(𝑝
𝑞 ) (𝑎) for every rational function with poles off of sp𝐴(𝑎). For arbitrary 𝑓 ∈

𝒪(sp𝐴(𝑎)), pick an open set 𝑈 such that 𝑓 ∈ 𝐻(𝑈). By normality, there is an open set 
𝑉 with compact closure such that sp𝐴(𝑎) ⊂ 𝑉 ⊂ 𝑉 ⊂ 𝑈. By Runge’s Theorem 1.7.4, 
there is a sequence of rational functions (𝑓𝑛) ⊂ 𝐻(𝑈) with 𝑓𝑛 → 𝑓 locally uniformly 
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on 𝑉. We conclude that

Φ(𝑓) =
(Φ2)

lim Φ(𝑓𝑛) = lim 𝑓𝑛(𝑎) =
(HFC2)

𝑓(𝑎). ∎

Theorem 1.6.10  (Spectral mapping). If 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝒪(sp𝐴(𝑎)), then sp𝐴(𝑓(𝑎)) =
𝑓(sp𝐴(𝑎)). 

⊆: Proof.  If 𝜆 ∉ 𝑓(sp𝐴(𝑎)), then 𝑔(𝑧) ∶= (𝑓(𝑧) − 𝜆)−1 ∈ 𝒪(sp𝐴(𝑎)). Then

𝑔(𝑎) ⋅ (𝑓 − 𝜆)(𝑎) = 𝑔(𝑎)(𝑓(𝑎) − 𝜆) = 1,

so 𝜆 ∉ sp𝐴(𝑓(𝑎)).

⊇: If 𝜆 ∈ sp𝐴(𝑎), then there is a 𝑔 ∈ 𝒪(sp𝐴(𝑎)) such that 𝑓(𝑧)−𝑓(𝜆) = (𝑧−𝜆)𝑔(𝑧). 
If 𝑓(𝜆) ∉ sp𝐴(𝑓(𝑎)), then

1 = (𝑧 − 𝜆)𝑔(𝑧) ⋅ 1
𝑓(𝑧) − 𝑓(𝜆)

⟹ 1 = (𝑎 − 𝜆)𝑔(𝑎) ⋅ 1
𝑓(𝑎) − 𝑓(𝜆)

,

a contradiction. ∎

Corollary 1.6.11. If 𝑎 ∈ 𝐴, 𝑓 ∈ 𝒪(sp𝐴(𝑎)), and 𝑔 ∈ 𝒪(𝑓(sp𝐴(𝑎))), then (𝑔 ∘ 𝑓)(𝑎) =
𝑔(𝑓(𝑎)). 

Proof. The map 𝑓∗ ∶ 𝒪(sp𝐴(𝑓(𝑎))) → 𝒪(sp(𝑎)) given by 𝑔 ↦ 𝑔 ∘ 𝑓 is a unital algebra 
homomophism such that

• (id ∶ 𝑧 ↦ 𝑧) ↦ (𝑓 ∶ 𝑧 ↦ 𝑓(𝑧)), and

• if 𝑔𝑛 → 𝑔 locally uniformly on 𝑈 ⊃ sp𝐴(𝑓(𝑎)), then 𝑔𝑛 ∘ 𝑓 → 𝑔 ∘ 𝑓 locally 
uniformly on 𝑓−1(𝑈) ⊃ sp𝐴(𝑎).

Thus the composite Φ ∶ 𝒪(sp𝐴(𝑓(𝑎))) → 𝒪(sp(𝑎)) → 𝐴 given by 𝑔 ↦ 𝑔∘𝑓 ↦ (𝑔∘𝑓)(𝑎). 
satisfies both (Φ1) and (Φ2) for 𝑓(𝑎) ∈ 𝐴. By Theorem 1.6.9, we conclude (𝑔 ∘𝑓)(𝑎) =
𝑔(𝑓(𝑎)). ∎

We end this section with some applications of the HFC.

Proposition 1.6.12. If 0ℂ is in the unbounded component of ℂ ∖ sp𝐴(𝑎), then 𝑎 has a 
logarithm in 𝐴. 
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Proof. Take a simple curve 𝛾 ∈ ℂ∖ sp𝐴(𝑎) connecting 0ℂ and ∞. Then ℂ∖𝛾 is simply 
connected and open, and does not contain 0ℂ. Hence there is an 𝑓 ∈ 𝐻(ℂ ∖ 𝛾) such 
that exp(𝑓(𝑧)) = 𝑧. Then 𝑓(𝑎) ∈ 𝐴 and exp(𝑓(𝑎)) = 𝑎. ∎

Construction 1.6.13. Suppose sp𝐴(𝑎) is a disjoint union 𝐾1 ⨿ 𝐾2 of non-empty compact 
sets 𝐾1, 𝐾2. Since ℂ is normal, there are disjoint open sets 𝑈1, 𝑈2 with 𝐾𝑖 ⊂ 𝑈𝑖. Then 
sp𝐴(𝑎) ⊂ 𝑈 ∶= 𝑈1 ⨿ 𝑈2, and

𝜒𝑈1
(𝑧) = {

1 if 𝑧 ∈ 𝑈1

0 if 𝑧 ∈ 𝑈2

is holomorphic on 𝑈. Then 𝑒 ∶= 𝜒𝑈1
(𝑎) is a nontrivial idempotent, i.e., 0 ≠ 𝑒 ≠ 1 and 𝑒2 = 𝑒. 

Moreover, [𝑎, 𝑒] = 0, as 𝑧𝜒𝑈1
(𝑧) = 𝜒𝑈1

(𝑧)𝑧 for all 𝑧 ∈ 𝑈. By the Spectral Mapping Theorem 
1.6.10, sp𝐴(𝑎𝑒) = 𝐾1 ∪ {0}.

Remark 1.6.14. If 𝑋 is a Banach space and 𝑇 ∈ 𝐵(𝑋) with sp𝐵(𝑋)(𝑇 ) = 𝐾1 ⨿ 𝐾2 as 
in Construction 1.6.13, setting 𝑌 ∶= 𝑒𝑋 and 𝑍 ∶= (1 − 𝑒)𝑋, we have that (𝑌 , 𝑍) are 
complementary subspaces of 𝑋, i.e., 𝑋 = 𝑌 ⊕𝑍. Moreover, since [𝑒, 𝑇 ] = 0 and [1−𝑒, 𝑇 ] = 0, 
both 𝑌 , 𝑍 are 𝑇-invariant.

Question 1.6.15. Does every operator in 𝐵(𝐻) for a Hilbert space 𝐻 have a non-trivial 
invariant subspace? (This fails for Banach spaces due to an example of Enflo.)

1.7 Dependence of the spectrum on the algebra
Example 1.7.1. Consider the inclusion of the disk algebra 𝐴(𝔻) into 𝐶(𝑆1). The identity 
function id ∶ 𝑧 ↦ 𝑧 is invertible in 𝐶(𝑆1), but not in 𝐴(𝔻). In fact,

sp𝐶(𝑆1)(id) = 𝑆1 = 𝜕𝔻 ⊂ 𝔻 = sp𝐴(𝔻)(id).

Indeed, if 𝜆 ∈ 𝔻, then id −𝜆 is not invertible as it vanishes on 𝔻, so 𝔻 ⊆ sp𝐴(𝔻)(id). 
Conversely, since ‖ id ‖𝐴(𝔻) = 1, we know sp𝐴(𝔻)(id) ⊂ 𝔻.

Definition 1.7.2. For 𝐾 ⊂ ℂ compact, the polynomially convex hull of 𝐾 is defined as

convpoly(𝐾) ∶= {𝑧 ∈ ℂ||𝑝(𝑧)| ≤ ‖𝑝‖𝐾 for all polynomials 𝑝} .

We say 𝐾 is polynomially convex if 𝐾 = convpoly(𝐾).
Clearly 𝐾 ⊆ convpoly(𝐾). But convpoly(𝐾) can be quite different from 𝐾.

Example 1.7.3. Observe that convpoly(𝑆1) = 𝔻 by the Maximum Modulus Principle (CA8).
For the next proposition, for a bounded set 𝑆 ⊂ ℂ, we will say that a hole of 𝐵 is a 

bounded connected component of 𝑆𝑐.

Proposition 1.7.4. For 𝐾 ⊂ ℂ compact, convpoly(𝐾)𝑐 is the unbounded component of 𝐾𝑐. 
Thus 𝐾 is polynomially convex if and only if 𝐾𝑐 is connected, i.e., 𝐾 has no holes. 
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Proof. Enumerate 𝜋0(𝐾𝑐) = {𝑈𝑛}𝑛≥0 where 𝑈0 is the unbounded component, and set

𝐿 ∶= 𝐾 ∪ ⋃
𝑛≥1

𝑈𝑛.

Note that for 𝑛 ≥ 1, each 𝑈𝑛 is a bounded open set and 𝜕𝑈𝑛 ⊆ 𝐾. By the Maximum 
Modulus Principle (CA8), 𝑈𝑛 ⊆ convpoly(𝐾), so 𝐿 ⊂ convpoly(𝐾).
Conversely, if 𝜆 ∈ 𝑈0, then 𝑓𝜆(𝑧) ∶= (𝜆 − 𝑧)−1 lies in 𝒪(𝐿). Since 𝑈0 is connected, 
by Runge’s Theorem and Remark 1.4.14, we can uniformly approximate 𝑓𝜆 on 𝐿 by 
a sequence of polynomials (𝑝𝑛). Then the sequence of polynomials 𝑞𝑛 ∶= 𝑝𝑛 ⋅ (𝑧 − 𝜆)
converges uniformly on 𝐿 to 1. If 𝑁 > 0 such that ‖𝑞𝑛 − 1‖ < 1/2 for all 𝑛 ≥ 𝑁, then 
since 𝐾 ⊆ 𝐿 and

|(𝑞𝑁 − 1)(𝜆)| = 1 > ‖𝑞𝑁 − 1‖𝐾,

we have 𝜆 ∉ convpoly(𝐾). ∎

Proposition 1.7.5. Suppose 1 ∈ 𝐴 ⊂ 𝐵 is a unital inclusion of Banach algebras and 𝑎 ∈ 𝐴.

(sp1) sp𝐵(𝑎) ⊆ 𝜕 sp𝐴(𝑎),

(sp2) 𝜕 sp𝐴(𝑎) ⊆ 𝜕 sp𝐵(𝑎), and

(sp3) convpoly(sp𝐴(𝑎)) = convpoly(sp𝐵(𝑎)).

Proof. The first statement (sp1) is (1.2.5).
To prove (sp2), suppose for contradiction that 𝜆 ∈ 𝜕 sp𝐴(𝑎)∩sp𝐵(𝑎)𝑐. Pick a sequence 
(𝜆𝑛) ⊂ sp𝐴(𝑎)𝑐 such that 𝜆𝑛 → 𝜆, so 𝑎 − 𝜆𝑛 → 𝑎 − 𝜆. Then 𝑎 − 𝜆𝑛 ∈ 𝐴×, so 
𝑎 − 𝜆𝑛 ∈ 𝐵×, and thus 𝜆𝑛 ∉ sp𝐵(𝑎) for all 𝑛. Since we assumed 𝜆 ∉ sp𝐵(𝑎) and 
inversion is continuous on 𝐵×, we have (𝑎 − 𝜆𝑛)−1 → (𝑎 − 𝜆)−1 ∈ 𝐵. But 𝐴 is 
complete, so (𝑎 − 𝜆)−1 ∈ 𝐴, a contradiction.
For (sp3), for any polynomial 𝑝, (sp1) implies that ‖𝑝‖sp𝐵(𝑎) ≤ ‖𝑝‖sp𝐴(𝑎). But (sp2) 
together with the Maximum Modulus Principle (CA8) imply that

‖𝑝‖sp𝐴(𝑎) ≤ ‖𝑝‖sp𝐵(𝑎).

Hence 𝑧 ∈ convpoly(sp𝐴(𝑎)) if and only if 𝑧 ∈ convpoly(sp𝐴(𝑎)). ∎

Corollary 1.7.6. Suppose 1 ∈ 𝐴 ⊂ 𝐵 is a unital inclusion of Banach algebras and 𝑎 ∈ 𝐴. 
For each hole 𝐻 ⊂ sp𝐵(𝑎)𝑐, either 𝐻 ⊂ sp𝐴(𝑎) or 𝐻 ∩ sp𝐴(𝑎) = ∅. 

Proof. Set 𝐻1 ∶= 𝐻 ∩ sp𝐴(𝑎) and 𝐻2 ∶= 𝐻 ∖ sp𝐴(𝑎) so that 𝐻 = 𝐻1 ∪ 𝐻2 and 
𝐻1 ∩𝐻2 = ∅. Clearly 𝐻2 is open. Since 𝜕 sp𝐴(𝑎) ⊆ sp𝐵(𝑎) by (sp2) and 𝐻 ∩ sp𝐵(𝑎) =
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∅, we must have 𝐻1 = 𝐻 ∩ sp𝐴(𝑎)∘, which is also open. But 𝐻 is connected, so one of 
𝐻1 or 𝐻2 must be empty. ∎

The previous corollary tells us that sp𝐴(𝑎) is obtained from sp𝐵(𝑎) by filling in some of 
the holes. This leads to the following obvious question: how do we fill in some holes and 
perhaps not others? Can we fill in all the holes? We will answer the second question and 
leave the first an an exercise.

Example 1.7.7. Suppose 𝐵 is a unital Banach algebra and 𝑎 ∈ 𝐵. Letting 𝐴 ⊆ 𝐵 be the 
norm-closure of the space of polynomials in 𝑎,

sp𝐴(𝑎) = convpoly(sp𝐵(𝑎)).

To see this, we already know that

sp𝐵(𝑎) ⊆
(1.2.5)

sp𝐴(𝑎) ⊆ convpoly(sp𝐴(𝑎)) =
(sp3)

convpoly(sp𝐵(𝑎)).

Suppose for contradiction that 𝜆 ∈ convpoly(sp𝐵(𝑎)), but 𝜆 ∉ sp𝐴(𝑎). Then 𝑓𝜆(𝑧) ∶=
(𝜆 − 𝑧)−1 lies in 𝒪(sp𝐴(𝑎)), so 𝑓𝜆(𝑎) ∈ 𝐴 ⊆ 𝐵. By definition, there is a sequence of 
polynomials (𝑝𝑛) such that 𝑝𝑛(𝑎) → 𝑓𝜆(𝑎) in norm in 𝐵. As in the proof of Proposition 
1.7.4, defining 𝑞𝑛(𝑧) ∶= (𝑧 − 𝜆)𝑝𝑛(𝑧), we have 𝑞𝑛 − 1 → 0. But then

‖𝑞𝑛(𝑎) − 1‖ ≥ 𝑟(𝑞𝑛(𝑎) − 1)
= sup {|𝑧 − 1||𝑧 ∈ sp𝐵(𝑞𝑛(𝑎))}
= sup {|𝑞𝑛(𝑧) − 1||𝑧 ∈ sp𝐵(𝑞𝑛(𝑎))} (Spectral Mapping Thm. 1.6.10)
= ‖𝑞𝑛 − 1‖𝐶(sp𝐵(𝑎))

≥ |𝑞𝑛(𝜆) − 1| (𝜆 ∈ 𝑝 conv(sp𝐵(𝑎)))
= 1,

a contradiction.

1.8 Gelfand theory
Given a unital commutative Banach algebra 𝐴, we will construct a canonical compact Haus­
dorff space 𝐴̂ together with a continuous unital algebra homomorphism ̂⋅ ∶ 𝐴 → 𝐶(𝐴̂). 
Without loss of generality, we assume ‖1𝐴‖ = 1.

Definition 1.8.1. A multiplicative linear functional or (algebra) character on 𝐴 is a non-zero 
linear map 𝜑 ∶ 𝐴 → ℂ such that 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) for all 𝑎, 𝑏 ∈ 𝐴. The set of characters is 
denoted 𝐴̂.
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Example 1.8.2. If 𝑋 is compact Hausdorff and 𝑥 ∈ 𝑋, then ev𝑥 ∶ 𝐶(𝑋) → ℂ given by 
ev𝑥(𝑓) ∶= 𝑓(𝑥) is a character. Thus 𝑋 ⊆ 𝐶(𝑋).

Remark 1.8.3. Suppose 𝜑 ∈ 𝐴̂. Observe that for all 𝑎 ∈ 𝐴, 𝜑(𝑎) = 𝜑(𝑎 ⋅ 1) = 𝜑(𝑎) ⋅ 𝜑(1). 
Since 𝜑 ≠ 0, we must have that 𝜑(1) = 1.

We can also discuss characters on 𝐴 in terms of maximal 2-sided ideals of 𝐴. If 𝐴 is a 
unital Banach algebra and 𝐽 ⊂ 𝐴 is a proper ideal, then for all 𝑎 ∈ 𝐽, ‖𝑎 − 1‖ ≥ 1. Indeed, 
If ‖1 − 𝑎‖ < 1, then 𝑎 ∈ 𝐴× by (×3). It immediately follows that:

• 𝐽 ⊂ 𝐴 is also a proper ideal, and

• all maximal ideals are closed.

Moreover, for every maximal ideal 𝑀 ⊂ 𝐴, 𝑀/𝐴 is again a Banach algebra which is also a 
division ring, and thus 𝐴/𝑀 ≅ ℂ by the Gelfand-Mazur Theorem 1.2.8. Summarizing, we 
have the following immediate proposition.

Proposition 1.8.4. The map 𝜑 ↦ ker(𝜑) gives a bijection

𝐴̂ ⟶ {maximal ideals of 𝐴}

with inverse 𝑀 ⟼ (𝑎 ↦ 𝑎 + 𝑀 ∈ 𝐴/𝑀 ≅ ℂ).

Lemma 1.8.5. If 𝜑 ∈ 𝐴̂, then ‖𝜑‖ = 1. 

Proof. By Proposition 1.8.4, ker(𝜑) is closed, so 𝜑 ∈ 𝐴∗. More constructively, if 
𝜑(𝑎) ≠ 0, then 1 − 𝜑(𝑎)−1𝑎 ∈ ker(𝜑), and thus by (×3),

1 ≤ ‖1 − (1 − 𝜑(𝑎)−1𝑎)‖ = ‖𝑎‖
|𝜑(𝑎)|

⟹ |𝜑(𝑎)| ≤ ‖𝑎‖.

This implies ‖𝜑‖ ≤ 1, and since 𝜑(1𝐴) = 1 = ‖1𝐴‖, we conclude ‖𝜑‖ = 1. ∎

Lemma 1.8.6. 𝐴̂ ⊂ 𝐴∗ is compact in the relative weak* topology. 

Proof. By the Banach-Alaoglu Theorem, it suffices to prove 𝐴̂ is closed. If (𝜑𝑖) ⊂ 𝐴̂
with 𝜑𝑖 → 𝜑 weak*, then for all 𝑎, 𝑏 ∈ 𝐴,

𝜑(𝑎𝑏) = lim
𝑖

𝜑𝑖(𝑎𝑏) = lim
𝑖

𝜑𝑖(𝑎)𝜑𝑖(𝑏) = 𝜑(𝑎)𝜑(𝑏). ∎

Exercise 1.8.7. Suppose 𝐴 is commutative Banach algebra which might be non-untial and 
𝐴1 = 𝐴 ⊕ ℂ1.
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1. Prove that for all 𝜑 ∈ 𝐴̂, the non-zero multiplicative linear functionals, there is a 
unique 𝜑1 ∈ 𝐴1 such that 𝜑1|𝐴 = 𝜑.

2. Observe that if 𝜑 ∈ 𝐴1, then either 𝜑|𝐴 = 0 or 𝜑|𝐴 ∈ 𝐴̂.

3. Deduce that the map 𝜄 ∶ 𝐴̂ → 𝐴1 by 𝜑 ↦ 𝜑1 hits all but one element of 𝐴1.

4. Prove that 𝐴1 is the one point compactification of 𝐴̂, i.e., the relative topology on 𝜄(𝐴̂)
in 𝐴1 is the relative weak* topology.

Lemma 1.8.8. For a unital commutative Banach algebra 𝐴 and 𝑎 ∈ 𝐴, the following are 
equivalent.

1. 𝑎 ∉ 𝐴×,

2. there is a maximal ideal 𝑀 ⊂ 𝐴 such that 𝑎 ∈ 𝑀, and

3. there is a 𝜑 ∈ 𝐴̂ such that 𝜑(𝑎) = 0.

(1)⇒(2): Proof.  If 𝑎 ∉ 𝐴×, then 𝐴𝑎 ⊂ 𝐴 is a non-trivial ideal which is contained in a 
maximal ideal by Zorn’s Lemma.

(2)⇒(3): The map 𝐴 → 𝐴/𝑀 ≅ ℂ given by 𝑥 ↦ 𝑥 + 𝑀 works.

¬(1)⇒ ¬(3): If 𝑎 ∈ 𝐴×, then for all 𝜑 ∈ 𝐴̂, 1 = 𝜑(𝑎) ⋅ 𝜑(𝑎−1), so 𝜑(𝑎) ≠ 0. ∎

Corollary 1.8.9. For all 𝑎 ∈ 𝐴, sp𝐴(𝑎) = {𝜑(𝑎)|𝜑 ∈ 𝐴̂}. 

Proof. By the previous proposition, 𝜆 ∈ sp𝐴(𝑎) if and only if 𝜆 − 𝑎 ∉ 𝐴× if and only 
if there is a 𝜑 ∈ 𝐴̂ such that 𝜆 = 𝜑(𝑎). ∎

Construction 1.8.10  (Gelfand transform). Suppose 𝐴 is a unital commutative Banach 
algebra. The map 𝑎̂ ∶= ev𝑎 ∶ 𝐴̂ → ℂ given by 𝑎̂(𝜑) ∶= 𝜑(𝑎) is continuous as 𝐴̂ has the 
relative weak* topology. We thus get a unital algebra homomorphism by

̂⋅ ∶ 𝐴 ⟶ 𝐶(𝐴̂) by 𝑎 ⟼ 𝑎̂

called the Gelfand transform which is norm-continuous as

‖𝑎̂‖ = sup {|𝜑(𝑎)||𝜑 ∈ 𝐴̂} =
(Cor. 1.8.9)

sup {|𝜆||𝜆 ∈ sp𝐴(𝑎)} =
(Prop. 1.3.3)

𝑟(𝑎) ≤ ‖𝑎‖.

We thus see that the kernel of the Gelfand transform is exactly the ideal of quasi-nilpotent 
elements, i.e., the 𝑎 ∈ 𝐴 such that sp𝐴(𝑎) = {0}.
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Remark 1.8.11. The relative weak* topology on 𝐴̂ is the weakest topology such that each 
𝑎̂ ∶ 𝐴̂ → ℂ is continuous. Indeed, the weak* topology on 𝐴̂ is determined by 𝜑𝑖 → 𝜑 if and 
only if 𝑎̂(𝜑𝑖) = 𝜑𝑖(𝑎) → 𝜑(𝑎) = 𝑎̂(𝜑) for each 𝑎 ∈ 𝐴.

Theorem 1.8.12  (Gelfand). Suppose 𝑋 is compact Hausdorff.

1. For each 𝜑 ∈ 𝐶(𝑋), 𝜑(𝑓) = 𝜑(𝑓).

2. The map 𝑋 → 𝐶(𝑋) given by 𝑥 ↦ (ev𝑋 ∶ 𝑓 ↦ 𝑓(𝑥)) is a homeomorphism.

3. The Gelfand transform 𝑓 ↦ ̂𝑓 is an isometric isomorphism.

Proof. To prove (1), we observe that if 𝑓 ∈ 𝐶(𝑋) is real-valued, then sp(𝑓) ⊂ ℝ, and 
thus 𝜑(𝑓) ∈ ℝ. Writing 𝑓 = ℜ(𝑓) + 𝑖ℑ(𝑓), we see that

𝜑(𝑓) = 𝜑(ℜ(𝑓))⏟
∈ℝ

+𝑖 𝜑(ℑ(𝑓))⏟
∈ℝ

= 𝜑(ℜ(𝑓)) − 𝑖𝜑(ℑ(𝑓)) = 𝜑(ℜ(𝑓) − 𝑖ℑ(𝑓)) = 𝜑(𝑓).

To prove (2), since 𝑋 is compact and 𝐶(𝑋) is Hausdorff, it suffices to prove the map 
𝑥 ↦ ev𝑥 is a continuous bijection. For continuity, observe that if 𝑥𝑖 → 𝑥 in 𝑋, then 
for all 𝑓 ∈ 𝐶(𝑋), 𝑓(𝑥𝑖) → 𝑓(𝑥), and thus ev𝑥𝑖

→ ev𝑥 weak*. Injectivity follows by 
Urysohn’s Lemma. For surjectivity, if 𝜑 ∈ 𝐶(𝑋), then ker(𝜑) ⊂ 𝐶(𝑋) is a complex 
subalgebra closed under complex conjugation by (1). Moreover, it separates points by 
Urysohn’s Lemma, so it must be all of 𝐶(𝑋) by the Stone-Weierstrass Theorem.
To prove (3), the map

𝑋 ℂ

𝐶(𝑋)

𝑓

𝑥↦ev𝑥 𝑓̂

clearly commutes, establishing the isomorphism. To see it is isometric, observe that

‖ ̂𝑓‖ = sup
𝜑∈𝐶(𝑋)

|𝜑(𝑓)| = sup
𝑥∈𝑋

|𝑓(𝑥)| = ‖𝑓‖. ∎

Exercise 1.8.13. Use Exercise 1.8.7 to prove that Theorem 1.8.12 holds for LCH spaces 𝑋
replacing 𝐶(𝑋) with 𝐶0(𝑋).
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