Penneys Math 7212, Banach Algebras Spring 2026

1 Banach algebras

1.1 Basics

Definition 1.1.1. A Banach algebra is a complete normed complex algebra, i.e., (A, |-]) is
a Banach space with a multiplication - : A2 — A such that

labl < [a] - [b] Va,be A
We say A is unital if there is an element 1 € A such that 1-a=a=a-1 for all a € A.
We will typically only consider unital Banach algebras.

Remark 1.1.2. If A is a Banach algebra and J C A is a closed 2-sided ideal, then J is also
a Banach algebra, as is A/J with norm

J|| := inf il
la + J] ;gJHaﬂLJH

Examples 1.1.3. Here are some examples of Banach algebras.

1. Let X be any Banach space and define x -y = 0 for all z,y € X.
2. M, (C) is a Banach algebra for all n € N with the operator norm.

n

3. If X is compact Hausdorff, then C'(X) is a Banach algebra algebra with norm
[floo := max|f(2)

4. If X is locally compact Hausdorff (LCH), then Cy(X), the space of continuous functions
which vanish at oo, is a Banach algebra with the norm

[flloo == sup [ f(z)].
zeX

5. If X is LCH, the space Cy(X) of continuous bounded functions is a Banach algebra
with norm

[ flloe == sup [ f(z)].
reX

6. Let U C C be an simply connected open domain with simply connected compact
closure K. (For example, U = D, the unit disk works.) We will see in [[|] below that

A(K) :={f € C(K)|f|y is holomorphic}
is a Banach subalgebra of C'(K).



7. C™[0,1], the n-times continuously differentiable functions is a Banach algebra with

norm
“.1
HEDI- R

8. ¢1(Z) with convolution multiplication

o0

(@xy)(n) = Y w(n—kyk)

k=—o0

is a unital Banach algebra with unit 6,(n) :=§,,_,
9. (*(Z,) with convolution

(o, @]
(x*y)( Z:B

k=0

is also a Banach algebra.

10. LY(R™) with convolution

(Fx9)@) = [ = )gty

is a non-unital Banach algebra.
11. If (X, p) is a measure space, L (X, u) is a Banach algebra.

12. B(X), the space of all bounded linear maps on a Banach space X, is a unital Banach
algebra.

13. K(X), the compact operators is a Banach subalgebra, which is unital if and only if X
is finite dimensional.

14. The Calkin algebra is the Banach algebra B(X)/K(X).

Facts 1.1.4. Here are some basic facts about Banach algebras.

(B1) We may always adjoin a unit to any Banach algebra by setting A, := A & C1 with
multiplication
(a,w) - (b, z) := (ab+ wb + za,wz)

and norm |(a, 2)|; = |af 4 + |2|.

However, there are other choices of norms on A; which may appear more natural, e.g.,

bt b
l(a,2)] = sup 122120
2o 0]

Thus without loss of generality, we may assume A is unital.
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(B2) Given a Banach algebra A, the left reqular representation is given by A : A — B(A) by
A b := ab. Then A is a norm-decreasing (continuous) homomorphism (exercise!) from
A to B(A) with the operator norm, and if A is unital,

lall = 1Al < IAGN - 111 < llall - 2]

This implies that || - || g 4) on AA is strongly equivalent to || 4, and thus gives the same
topology. Moreover, clearly 1] g )] = 1.

Thus without loss of generality, we may assume ||1]| 4 = 1.

Exercise 1.1.5. Determine the correct norm on the unitization of Cj(X) so that it is isomet-
rically isomorphic to C'(X U {oc}), continuous functions on the one-point compactification.

Definition 1.1.6. An approximate unit for a Banach algebra A is a net (ey) C A with
ley] <1 for all A such that

limeya = a = limae, Vae A
Exercise 1.1.7. Find approximate units in Cy(X), L'(R™), and K (H), the compact oper-
ators on a Hilbert space H.

Exercise 1.1.8. Show that if A has an approximate unit, then the left regular representation
A: A — B(A) is isometric whenever ||1] 4 = 1.

We will construct approximate units for certain Banach algebras using functional calculus
later on.

1.2 Spectrum

For this section, A is a unital Banach algebra. We identify C C A by A — A1 ,. We denote
by A* the set of (multiplicatively) invertible elements in A, i.e.,

A* :={a € Althere is a b € A such that ab=1=ba}.

Exercise 1.2.1. Show that if a,b,c € A such that ab = 1 = be, then a = ¢. Deduce that
the inverse of b is unique if it exists, and can unambiguously be denoted b~!.

Facts 1.2.2. Here are some facts about the set of invertible elements A*.

(x1) If |a| < 1, then 1 —a € A* since

(1—a)t= Z a”
n=0

where the partial sums converge in norm.
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(x2) Observe that if ||a| < 1, then we get the following norm bound:

Z Jal™ = ~
||a||

(x3) If a € A*, then whenever ||a — b|| < [la=!| !, since

oo

[(1—a) 1||—

b=a—(a—b)=(1—(a—b)a)a,

and ||(a — b)a™!| < 1, we see that

bl=qat i ((a—b)at

where the partial sums converge in norm. Thus A* is open in A.

(x4) Inversion is continuous on A*. Indeed,

oo

Z ((a—b)a

=1

0o n
< Ja - | la—=b) - o
(x3) I\
= ||a—1|| ) la — 0] - ”a_l” a—b
1—la—=0b]la=?|

o~ —a™t] =

> 0.

Definition 1.2.3. The spectrum of a € A is
spy(a) ={A€Cl]A—a¢g A*}.
If A is non-unital, we define sp ,(a) :==sp , ((a,0¢)).

Remark 1.2.4. The spectrum depends on the algebra (see §1.7). Observe that if we have
a unital inclusion of Banach algebras A C B, then invertibility in A implies invertibility in
B, or in other words,

sppla) Csp,(a). (1.2.5)
More generally, if ¢ : A — B is a unital algebra map between Banach algebras and a € A*,
then ¢(a) € B*, so spy(¢(a)) C sp ,(a).
Examples 1.2.6.

1. For X compact Hausdorff and f € C(X) sp(f) = f(X). This is also true in C"[0, 1]
and A(K).

2. For X LCH and f € Cy(X), sp(f) = f(X). This is also true in Cp(X).
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3. For f € L>=(X), sp(f) is the essential range, i.e.,

ess range(f) := {)\ € Clz = ﬁ is in LOO(X)}

={AeC|Ve >0, u(f 1 (B.(N) > 0}.

4. For £1(Z), 1*(Z-,) and L*(R"™), one uses Fourier analysis methods.

We now return to the setting where A is unital.

Facts 1.2.7. Here are some basic facts about the spectrum.

(spl) If a|| < |2|, then z —a € A* with ||(z —a)7}| < m by applying (x1) and (x2) to
a/z. Hence sp ,(a) C By (0).

(sp2) Suppose zy & sp ,(a). If |z — 2| < [(z —a)~'|7", then z ¢ sp,(a) by (x3). Hence
sp 4 (a) is compact for every a € A.

(sp3) (First resolvent formula) For a € A and w, z ¢ sp ,(a),
(w—a)t—(z—a)'=Gz—w(w—a)t(z—a)t=z—-w)(z—a) H(w—a)!
Indeed, we can multiply both sides by (z — a)(w — a), which is invertible.
(sp4) For every o € A*, the function z - ¢((z —a)™!) is holomorphic on sp ,(a)¢. Indeed,

-1 -1 R OV |
py B o) (oo o0y
w—z w—z w—z w—z
= —p|(lim w—a‘lz—a_1>
= e (imw—a)7G—a
= —p((z—a)™?).
= -0
(sp5) sp , (@) is always nonempty.
Proof. For ¢ € A* and |z| > |al,
1 |2l =00

le((z=a) ™D < el - [(z = a)7H| < el -
” ” (sp1) 2| = la

Suppose for contradiction that sp ,(a) = 0. For every ¢ € A*, z = ¢((z—a)™")
would be bounded and entire, hence constant (see Liouville’s Theorem (CAD5)
below). Since A* separates points of A, we would be forced to conclude that
2+ (2 —a)~! and thus z = 2z — a were both constant, which is absurd. O

\.

Theorem 1.2.8 (Gelfand-Mazur). The only normed division algebra over C is C itself.



Proof. Suppose A is such an algebra. Its completion A is a unital Banach algebra. If
a € A, then

0 # spgla) C sp,la)
(spb) A (1.2.5) A
If A € sp,(a), then a — X is not invertible, so a — A =0 and a € C. ]

1.3 Spectral radius
Let A be a unital Banach algebra.

Lemma 1.3.1. For a € A, the sequence ||a™|"/" converges to inf,, |a™||*/™.

Proof. Fix m € N. For n € N, write n = gm + r with ¢,r € Z., and r < m via the
Euclian Algorithm. Then

n—oo

la™ < fla™ - |lal” = Ja™ [V < a9 - o)™ —— Jla™ /™.

Thus
lim sup [|a™|V/™ < inf[a™ /™ < lim inf |a™|*/". 0

Definition 1.3.2. For a € A, we define its spectral radius as

r(a) = lim_Ja"[/",

which exists by the previous lemma.

Proposition 1.3.3. For a € A, sp,(a) C B,(0¢), and there is a z € sp,(a) with
2| = r(a).

Proof. First, we prove that if |2| > r(a), then 2z & sp,(a). If |z| > r(a), then
lim [|a”||'/™ < |z|. Thus there is an N > 0 such that for all n > N, ||a™||'/™ < |2|. This

means y
ot _
|2
so there is an 0 < r < 1 such that that
n||1l/n n
”“|”| <r<l — |:a|n” < Vn > N.
z %




Hence the formula | o
a”
PR
converges in norm, and one verifies directly that its limit is (z — a)
Second, it is enough to show that if sp ,(a) C {|2| < r}, then r > r(a). Fix such an

r > 0. By (sp4), for ¢ € A*, the function f, ,(2) := ¢((z —a)~") is holomorphic on
sp ,(a)¢. For |z| > |al|, we have

o
fao = 2" 0(a
n=0

converges uniformly, so it must be the Laurent series of the holomorphic function
fa,- But since f, , is holomorphic on sp ,(a)¢ C {|z| > r}, this Laurent series must
converge whenever |z| > 7. This implies that

-1

1 a\n
sup [r~" " tp(a™)| = . Sup ‘90 ((;) )’ <00 Vo € A*.

Now considering { |n € N} as a collection of operators on A*, by the Uniform
Boundedness Pr1n<31ple we have that this set is norm bounded, i.e., there isan M >0
such that

n

sup < M < o0.

n

It immediately follows that |a™|*/™ < rM/™ for all n, and thus 7(a) < r. O

7,

1.4 Some complex analysis

In this section, we review some basic complex analysis that we will use for the Holomorphic
Functional Calculus. For U C C open, let H(U) denote the algebra of holomorphic functions
on U. For a compact set K C C, define

O(K) :={(U, f)|K C U is an open neighborhood and f € H(U)} / ~

where (Uy, f1) ~ (U, fy) if fi = fo on Uy NU,. (Exercise: verify ~ is an equivalence
relation.)

Remark 1.4.1. If K is connected and has an accumulation point, then
OK)={fe€C(K)3U D K open and g € H(U) such that g|, = f},
but in general, these sets are not equal.

Definition 1.4.2. A simple closed contour v in C is a non-intersecting finite family of
injective piecewise C!' maps S! — U. We identify v with its image, which inherits an
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orientation from the counter-clockwise orientation of St. Given z ¢ ~, the index/winding
number of v about z is given by

1 1
d 1
n W(Z) 271 w—2

dw.

It takes values zero and one for a simple closed contour; the inside of ~ is

ins(v) := {z € C| ind,(2) = 1}.

Facts 1.4.3. Here are some basic facts from Complex Analysis.

(CA1) (Jordan Curve Theorem) For every open set U C C and every nonempty compact
K C C, there is a simple closed contour v C U such that

1 ifzeK =y
ind. (z) = 1 € ! @O i
K 0 ifz¢U. k v

(CA2) (Cauchy-Goursat) If v is a simple closed contour in U with ins(y) C Uand f € H(U),
then
/ f(z)dz = 0.
Y

(CA3) For any two homotopic paths v;, 7, in U and holomorphic f € H(U),

/f(z)dz:/f(z)dz.

(CA4) (Cauchy integral formula) For every contour as in (CA1), forall f € H(U) and z € K,

f(z) = %M/Mdz

w—z

(CA5) A bounded entire function is constant.



Proof. If | f(z)| < M for all z € C, use (CA4) to see that for R sufficiently large,
_ |2 flw) — f(w)
|f(2) — f(0)] = i | L
|lw|=R
1
— _/ _zf(w) dw
270 Jopir (w— 2)w
27 Joyi—r B |lw — 2|
- [ SE—
<e
< Me.
Since e can be made arbitrarily small, f(z) = f(0). O

(CA6) (Morera) If f: U — C is continuous and for every simple closed contour v C U

then f € H(U), i.e., fis holomorphic.

(CAT) (Identity Theorem) Suppose U is open and connected and f € H(U). If (z,) is a
convergent sequence in U whose limit lies in U and f(z,,) = 0 for all n, then f = 0.

(CA8) (Maximum Modulus Principle) Suppose U C C is open and z, € U. If f € H(U) and
there is a € > 0 such that B.(z,) C U and

[f(z0)| = | f(2)] vz € B.(%),
then f is constant.

Example 1.4.4. Generalize the proof of (CA5) to show that if f is entire and there is an
0 <r<1and a,b> 0 such that |f(z)| < a|z|" + b for all z € C, then fis constant.

Lemma 1.4.5. If (f,)) C H(U) is uniformly Cauchy on each compact K C U, then there is
an f € H(U) such that f,, — f locally uniformly, i.e., uniformly on every compact K C U.

Proof. Since points are compact, we can define f to be the pointwise limit of the f,,.
Since U is open and locally compact, clearly f is continuous on U and f,, — f locally
uniformly. Then for every simple closed contour v C U,

/f(Z)dZZ/limfn(z)dz:lim/fn(z)dz =

5 (CA2)




l By Morera’s Theorem (CAG), f € H(U). O J

Proposition 1.4.6. The topology of local uniform convergence is a first countable Frechet
topological vector space structure on C(U), the continuous functions on an open subset

UcCC, and HU) C C(U) is a closed subspace.

Proof. Pick nested compact sets (K,,) such that K,, C K, ; and [JK,, = U. Observe
that we also have U = | J K, so every compact subset of U is contained in some K, .
On C(U), consider the separating family of seminorms

my,(f) = |flex,) = sup [f(2)],

zeK,,

and let T be the locally convex vector space topology on C'(U) generated by the m,,.
Observe that 7 is metrizable via the translation invariant metric

and is thus a first countable Frechet TVS structure. Since f;, — fif and only if m,, (f—
fi) — 0 for all n, we see that convergence in T is exactly local uniform convergence
(and independent of the choice of (K,,)). Finally, H(U) is a closed subspace of C(U)
by Lemma 1.4.5. [

Definition 1.4.7. Recall that a subset S C C is simply connected if both S and S¢ are
connected.

Lemma 1.4.8 (Runge). Suppose w € C, { € C:=CU {0}, and U is an open connected
subset of C which contains a path from w to (. For any compact subset K C U€, the function

fu(z) = ﬁ can be uniformly approximated by rational functions whose only poles lie at (.

Remarks 1.4.9.
1. If ( = oo, then such rational functions are exactly polynomials.

2. Without loss of generality, we may assume that both U and K are simply connected.
Indeed, U need only contain a path from w to (, so we may take U to be an e-
neighborhood of such a path. In this case, we can always find a simply connected
compact set L C U® with K C L, so it suffices to uniformly approximate f,, on L.

Proof. Before we begin the general proof, observe that if |w — (| is very small, more
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precisely,
— < inf —
€ —wl < inf ¢ — 2,
then the convergence

—r -9 —C—w) C—2z ;(C_Z) (1.4.10)

=0

is uniform, as C_—f < 1 for such w on K. Hence we can uniformly approximate f, on

K close to ¢ by rational functions whose only pole is at (.
(The above argument is also valid if ( = oo; indeed, for |w| sufficiently large, the

convergence
1 I X 2"
=—) — V |w| > sup || (1.4.11)

w—z wi=w" 2eK

is uniform, as |z/w| < 1 for such w on K. Hence we can uniformly approximate f,, on
K close to ¢ = oo by polynomials.)

We now use some functional analysis to finish the proof. Let A C C'(K) be the Banach
subalgebra of uniform limits of rational functions whose only poles lie at . By the
Hahn-Banach Theorem, it suffices to show that ¢(f,,) = 0 for every ¢ € C'(K)* such
that ¢[, = 0. To show this, we need only prove that each function g,(w) := ¢(f,,)
is holomorphic on K¢ Indeed, g,(w) = 0 is zero for w sufficiently close to ¢ by
(1.4.10,1.4.11), and since K¢ is connected, g, = 0 on K¢ by the Identity Theorem
(CAT).

Now we show g, is holomorphic on K in two steps. First, as w € K¢, as a function
of z € K, h'(fsn — f.) converges uniformly to z ﬁ as h — 0. Second, we
consider the difference quotient:

- gowth)—g,(w) o f—f, —1
Jig = — ﬂ"(#ﬂ%%)ﬂ”(mm)-

Hence g;,(w) exists for all w € K¢, and thus g,, is holomorphic. ]

\. .

Theorem 1.4.12 (Runge). Suppose K C C is compact and S C C contains an element from
each connected component of K¢. Fach f € O(K) can be uniformly approximated on K by
rational functions whose only poles lie in S.

Proof. Let U C C be an open subset containing K on which f is holomorphic. Pick a
simple closed contour v C U \ K as in (CAl). By (CA4),

_ 1 [ fw)
f(Z)_Q_m'/ww—zdw Vz e K.
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This is a Riemann integral, which can be approximated uniformly on K (see Remark
1.4.13 below) by a finite sum which is a linear combination of functions of the form
fu(2) == ﬁ for w e v C U\ K. By Lemma 1.4.8, each of these f,, can be uniformly
approximated by rational functions whose only poles lie in S. The result follows. [

Remark 1.4.13. The above uniform approximation of the Riemann integral on K follows
from the following analysis. Suppose K is compact and g : K x [0,1] — C is continuous.
Since K x [ is compact, g is uniformly continuous, so there is a § > 0 such that

[(w,8) = (2,8) o <0 = l9(w,s) —g(z,t)] <e.

Pick a partition P{0 =t, <t; <--<t, =1} where A, :=t;, —t,_; <6 for all i. Then for
each fixed z € K and 7 = 1, ... n, setting

M . 1= max {g(z,t”tz_l g t S t’L} and m

2,1

= min {g(z,t)|tl_1 <t< tz} )

2,1

we have that

U(g(Z,t),P) - L(g(z,t),P) = Z(Mz,z - mz,z‘) ’ Ai <E.

i—1
This immediately implies that for every z € K, the Riemann integral is uniformly approxi-
mated by the right endpoint Riemann sum,

1 n
/ g(z,t)dt—Zg(z,ti)Ai <e Vze K,
0 =1

as both lie between the upper and lower sum.

Remark 1.4.14. If K is compact and K€ is connected, then choosing S = {oo}, each
f € O(K) can be uniformly approximated on K by polynomials.

Example 1.4.15. The Hardy space H*(U) is the space of holomorphic functions f : U — C
which are uniformly bounded, which is a Banach algebra under the sup norm.

Sub-Example 1.4.16. The disk algebra A(D) is H>*(D) N C(D), i.e., the continuous func-
tions on the closed unit disk which are holomorphic on the interior. It is exactly the uniform
limit of the polynomials in C'(D). Indeed, each such uniform limit of polynomials is clearly
holomorphic on the interior by Morera’s Theorem (CAG). Conversely, each f € A(D) has
a Taylor series which converges locally uniformly on D. Since f is uniformly continuous on
D, for every e > 0, there is a § > 0 so that |w — 2| < § implies |f(w) — f(2)| < e. Fix
l-5d<r<1lsothatl—r < dand |z—7rz] = (1 —7)-|z] < forall z€ D. Then
|f(2) — f(rz)| < e for all z € D. Moreover, z — f(rz) can be uniformly approximated by
polynomials on D, and thus f can be as well.

Lemma 1.4.17. The map A(D) > f = flgn C C(S1) is an isometric isomorphism onto the
uniform closure of the polynomials in C(S*).
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Proof.

Isometric: It suffices to prove that every f € A(D) achieves its norm on S*. To do so,
we need only prove that if | f| achieves its maximum on D, then f is constant;
this is immediate by the Maximum Modulus Principle (CAS).

Injective: Isometric maps between normed spaces are always injective.

Surjective: Suppose (p,,) is a sequence of polynomials on S! with p,, — f uniformly.

By the Maximum Modulus Principle (CAS8), (p,,) is uniformly Cauchy on D, and
thus f € A(D) by Morera’s Theorem (CAG). O

1.5 Banach-valued differentiation and integration

We now discuss the notion of a Banach-valued holomorphic function, and the Riemann
integral for curves in a Banach space. For this section, X is a Banach space.

Definition 1.5.1. For an open set U C C, we call f: U — X:
o weakly holomorphic if for every ¢ € X*, po f: U — C is holomorphic, and

o strongly holomorphic if for every z € U,

LS =) ) = ()

h—0 h w—z w—z

exists, where the limit is taken in norm in X.

Example 1.5.2. The First Resolvent Formula (sp3) implies that the resolvent function
R,(z) == (z —a)~" is strongly holomorphic on sp , (a)®. Indeed,

B e et N o) ) Bl et
w—z w—z w—z w—z '

Clearly strong holomorphicity implies weak holomorphicity by linearity and continuity of
v € X*. We immediately obtain the following generalization of Liouville’s Theorem (CAS5).

Corollary 1.5.3. If f : C — X s a Banach-valued strongly entire function which is norm
bounded, then f is constant.

Proof. Since f is norm bounded, ¢ o f is norm-bounded and entire for every ¢ € X*,
and thus constant by (CA5). So ¢(f(2)) = ¢(f(0)) for all ¢ € X* and since X*
separates points, f(z) = f(0). ]
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We are interested in proving the other direction, i.e., weakly holomorphic implies strongly
holomorphic. The trick will be to define a version of the Cauchy Integral Formula (CA4) for
functions f : U — X. To do this, we would like to be able to integrate along curves valued
in X, i.e., we want to define ,

/ y(t) dt
a

for [a,b] C R and continuous 7 : [a,b] — X. Since X* separates points of X, observe that
there is at most one z € X such that

b
o(z) :/ (pon)(t)dt Vo e X, (1.5.4)

a

Exercise 1.5.5 (Homework). Define

where

where P = {a = t; < t; < <t, = b} is a partition, |P| = max; A;, and t;, ; <u; <t
for each 1 < j < n. Then show the limit satisfies:

(V) ¢ ([ () dt) = [*(gor)(t)dt, and
(J2) fab : C([a,b], X) — X is a bounded linear map.

Theorem 1.5.6. Suppose X is a Banach space, U C C is open, and f : U — X is weakly
holomorphic.

1. fis norm-continuous, i.e., if z,, — z in U, then f(z,) — f(z) in norm.

2. The Cauchy-Goursat and Cauchy Integral Formula hold. That is, if v C U is a simple
closed contour with ind. (2) = 0 for all z ¢ U, then

/f(z) dz=0 and f(z) = —/ f(w) dw YV z € ins(7).

3. f is strongly holomorphic.
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Proof. Without loss of generality, we may assume 0 € U, and we need only prove (1)
and (3) at 0.

Proof of 1: Let » > 0 so that B,,.(0) C U. For ¢ € X*, since ¢ o f is holomorphic, for
all 0 < |z| < 2r,

o(f(2) —o(f(0) _ 1 / p(f(w)  e(f(w)) ,
z (CA4) 2Tz jmgr W2 w
1 p(f(w) o
2mi L—% (w—z)wd '

Set M, := max |p o f| on B,,.(0). By the above formula, for 0 < |2| <,

‘@(f(Z))—w(f(O))’ g 2i/ (@(f(w))) ‘ p
z ™ lw|=2r w— z2)w

1 M‘P M‘P

Sor 22T

Hence the set

{M‘O< E gr}

is weakly bounded, and is thus bounded in norm by the Uniform Bound-
edness Principle” Thus there is an R > 0 such that whenever 0 < |z| < r,
If(z)— f(0)] <|z|-R— 0as z— 0.

Proof of 2: For v C U a simple closed contour and ¢ € X*,

® ([f(z’)dz) i [y@(f(z))dzzo

since f is weakly holomorphic. Thus [y f(2)dz = 0 as X* separates points
by the Hahn-Banach Theorem. Similarly, for all z € ins(7),

P 3, g | et =g [ (522 @

Y

(L,
(‘[_1)('0(27T w—zd>

i
¥

Again as X* separates points, we conclude that f(z) = 5= J; FW) gy,
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Proof of 3: Choose r as in part (1) so that B,,.(0) C U. By parts (1) and (2), we have

f(2) = £(0) _L/ _f) Y0 < |2| < 2r.
|w|=2r

z 2mi (w—2)w

Now for 0 < |z| < r, note that the functions w { Ji’))w converge uni-

formly to w %ﬁ’) in C([0,1],X) as z — 0. Hence

OO _y L[ S0,

lim = lim —
20 z =027 J o (w—2)w

(J2) 278 o, =0 (w— z)w
L,
21t w|=2 w?
exists in X as w > fgg) is norm-continuous. OJ

2Consider the elements M as bounded linear operators X* — C.

Just as (CA3) is a corollary of (CA2), we have the following corollary.

Corollary 1.5.7. Suppose U C C is open and f : U — X is Banach-valued holomorphic.
For any two homotopic paths vy, 7, in U,

/ (=) dz = / F(2) d=.

1.6 Holomorphic functional calculus

Let A be a unital Banach algebra.

Exercise 1.6.1. Show that if a,b € A with b invertible, then [a,b] = 0 if and only if
[a,b7t] = 0.

Construction 1.6.2 (Rational functional calculus). If a € A and
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is a rational function whose poles z; ¢ sp(a). (In other words, ¢ € O(sp 4(a)) N C(z).) We
can unambiguously define

k
g(a) = [J(a = =z)™
=1
as all the terms pairwise commute by Exercise 1.6.1.

Exercise 1.6.3. Show that the map O(sp ,(a)) N C(2) — A given by ¢ - g(a) is a unital
algebra homomorphism.

We now want to extend the map O(sp ,(a)) N C(z) — A to all of O(sp ,(a)).

Construction 1.6.4 (Holomorphic functional calculus). For a € A and f € O(sp ,(a)),
let U be an open neighborhood of sp A(a) on which f is holomorphic. Pick a simple closed
contour v C U as in (CAl) for K = sp ,(a), i.e.,

ind () = {1 if 2 € sp,(a)

0 ifz¢U.
Define g £2)
fla) = o Wz_adZ,
i.e., the unique element of A satisfying
AN = 57 [elle=a)1(e) 8z Ve A

Note that f(a) is independent of the choice of open set U and contour by (CA3) or Corollary
1.5.7.

Example 1.6.5. Suppose f(z) := > o,z is a power series with radius of convergence
R > |a| for a € A. Then for any z € C with |z] > |a,




n—k+1
Koo 271 )= ?
:5n:k
00
:E akzak
k=0

In particular, the constant function 1(z) = 1 applied to a is always 1 € A, and the identity
function z + z applied to a is always a € A.

Exercise 1.6.6. Suppose a € A and K C C is compact such that sp ,(a) C K°. Show
there is an My > 0 such that for any f € H(K"°) which has a continuous extension to K,

| f (@)l < Myl flo

Theorem 1.6.7. The HFC map O(sp ,(a)) > f — f(a) € A satisfies:

(HFC1) The map f + f(a) is a unital algebra homomorphism such that (z = 2z) — a.
(HFC2) Ifsp 4(a) C U and (f,,) C H(U) with f,, — f locally uniformly, then f,(a) — f(a)

i norm in A.

Proof. After Example 1.6.5, to finish the proof of (HFC1), it remains to prove f
f(a) is an algebra homomorphism. Additivity is immediate from ([2). To show
multiplicativaty, if f,g € O(sp ,(a)), choose an open set U D sp ,(a) on which f,g
are both holomorphic. Then choose simple closed contours «,c in U \ K such that
sp ,(a) C ins(7y) and v U ins(y) C ins(o). We then calculate

f(a)g(a) = 1) , / )

47r2 L Zz—a w—a

~ 42 //f ) (z—a) L (w—a)™! dwdz

==l —lwmal L by (sp3)

w—z

:;;V;f; ([2 a0) ast f [ S ( [ 1) ) a

—27rz'g( ) by (CA4) =0 by (CA2)

27rz /fz —a
= (f9)(a

To prove (HFC2), suppose f,, — fin H(U) (locally uniformly) where sp ,(a) C U.
By normality, there is a compact K C U such that sp ,(a) C K°. By Exercise 1.6.6,
since f and each f, are holomorphic on K° and continuous on K, there is a constant
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My > 0 such that

n—oo

If(a) = fr(@)l = I(f = fu)(@)] < Mgl f = fullog) — 0. -

Corollary 1.6.8. The HFC extends the ‘rational functional calculus’ from Construction
1.6.2.

~

Proof. By Example 1.6.5, for any polynomial ¢(z) = =" gzt q(z) = > o aga®.
Moreover, if g(2) # 0 for all z € sp ,(a), then %1 € O(sp ,(a)), and by (HFC1),

1= (4 ¢) @ =4@- () @,

This means we can write the inverse of ¢(a) in two ways: (1) using Construction 1.6.2
negating all the multiplicities, and (2) as (%) (a). Since inverses are unique, these two

definitions must be equal. Again using (HFC1), for any rational function p/q where ¢
is a polynomial which does not vanish on sp A(a), we see that

(-5

qla

(
agrees with the definition from Construction 1.6.2. [

Theorem 1.6.9. Properties (HFC1) and (HFC2) uniquely characterize the HFC. That is,
if ®:O(sp,(a)) — A is another unital algebra homomorphism such that

(®1) ®(2+ 2z) = a, and

(®2) Ifsp,(a) C U and (f,,) C H(U) with f,, — f locally uniformly, then ®(f,) — ®(f) in
norm in A,

then ®(f) = f(a) for all f € O(sp 4(a)).

Proof. An argument similar to Corollary 1.6.8 shows that (®1) implies that ® (75’) =

(%) (a) for every rational function with poles off of sp,(a). For arbitrary f €

O(sp 4 (a)), pick an open set U such that f € H(U). By normality, there is an open set

V with compact closure such that sp ,(a) C V C V c U. By Runge’s Theorem 1.7.4,
there is a sequence of rational functions (f,) C H(U) with f,, — f locally uniformly
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on V. We conclude that

Theorem 1.6.10 (Spectral mapping). If a € A and f € O(sp,(a)), then sp,(f(a)) =
f(sp 4(a)).

7~

C: Proof. If A ¢ f(sp ,(a)), then g(z) :== (f(z) —A)~" € O(sp 4 (a)). Then
g(a) - (f = A)(a) = g(a)(f(a) = A) =1,

so A ¢ sp, (f(a)).
2: If A €sp,(a), then thereis a g € O(sp , (a)) such that f(2)—f(A) = (z—N)g(2).
If f(A) € sp,(f(a)), then

1=(z—A)g(z) - T —FN = 1=(a—A)g(a)-

a contradiction. O]

Corollary 1.6.11. Ifa € A, f € O(sp,(a)), and g € O(f(sp ,(a))), then (go f)(a) =
9(f(a)).

Proof. The map f*: O(sp,(f(a))) — O(sp(a)) given by g + go fis a unital algebra
homomophism such that

e (id:z2) (f: 2 f(2)), and

o if g, — g locally uniformly on U DO sp,(f(a)), then g, o f — g o f locally
uniformly on f~*(U) D sp ,(a).

Thus the composite ® : O(sp ,(f(a))) = O(sp(a)) — A given by g = go f = (go f)(a).
satisfies both (®1) and (®2) for f(a) € A. By Theorem 1.6.9, we conclude (go f)(a) =
9(f(a)). 0

We end this section with some applications of the HFC.

Proposition 1.6.12. If Oc is in the unbounded component of C \ spA(a), then a has a
logarithm in A.
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Proof. Take a simple curve v € C\sp , (a) connecting Og and co. Then C\ vy is simply
connected and open, and does not contain Og. Hence there is an f € H(C \ 7) such

that exp(f(z)) = 2. Then f(a) € A and exp(f(a)) = a. O

Construction 1.6.13. Suppose spA(a) is a disjoint union K I K, of non-empty compact
sets K, Ky. Since C is normal, there are disjoint open sets U;,U, with K, C U;. Then

sp,(a) CU :=U,; 1U,, and
1 if z € Ul
Z) =
xu, (2) {o if 2 € U,
is holomorphic on U. Then e := xy; (a) is a nontrivial idempotent, i.e., 0 # e # 1 and e? =e.

Moreover, [a, €] = 0, as 2xy, (2) = xp, (2)z for all z € U. By the Spectral Mapping Theorem
1.6.10, sp , (ae) = K; U{0}.

Remark 1.6.14. If X is a Banach space and T' € B(X) with spB(X)(T) = K, I K, as

in Construction 1.6.13, setting ¥ := eX and Z := (1 — €)X, we have that (Y,Z) are
complementary subspaces of X i.e., X = Y@®Z. Moreover, since [e,T] = 0 and [1—e, T] = 0,
both Y, Z are T-invariant.

Question 1.6.15. Does every operator in B(H) for a Hilbert space H have a non-trivial
invariant subspace? (This fails for Banach spaces due to an example of Enflo.)

1.7 Dependence of the spectrum on the algebra

Example 1.7.1. Consider the inclusion of the disk algebra A(D) into C'(S'). The identity
function id : z + z is invertible in C'(S1), but not in A(D). In fact,

Spc(51)<id> - Sl = 0D C E = SpA([D) (1d)

Indeed, if A € D, then id—\ is not invertible as it vanishes on D, so D C sp A(@)(id).

Conversely, since [ id | 4p) = 1, we know spA(D)(id) c D.
Definition 1.7.2. For K C C compact, the polynomially convex hull of K is defined as
conv,,, (K) := {z € C|[p(2)| < |pllx for all polynomials p} .

poly (K ) .
(K) can be quite different from K.

We say K is polynomially convex if K = conv

Clearly K C conv, . (K). But conv

poly poly

(S1) = D by the Maximum Modulus Principle (CAS).

For the next proposition, for a bounded set S C C, we will say that a hole of B is a
bounded connected component of S€.

Example 1.7.3. Observe that conv,,,,

Proposition 1.7.4. For K C C compact, coanOly(K)C 1s the unbounded component of K°.
Thus K is polynomially convex if and only if K¢ is connected, i.e., K has no holes.
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Proof. Enumerate 7y (K¢) = {U,, },,~o where Uy is the unbounded component, and set

L:=Kul]JU,.

n>1

Note that for n > 1, each U,, is a bounded open set and 0U,, C K. By the Maximum
Modulus Principle (CA8), U,, C conv,,,(K), so L C conv,q, (K).

Conversely, if A € U, then f,(z) := (A —2)7! lies in O(L). Since U, is connected,
by Runge’s Theorem and Remark 1.4.14, we can uniformly approximate f, on L by
a sequence of polynomials (p,,). Then the sequence of polynomials g, :=p,, - (z — \)
converges uniformly on L to 1. If N > 0 such that |¢, — 1| < 1/2 for all n > N, then
since K C L and

gy = DN =1 > llgy — 1,

we have A & conv,,, (K). O

Proposition 1.7.5. Suppose 1 € A C B is a unital inclusion of Banach algebras and a € A.
(spl) spz(a) C 9sp,(a),
(sp2) 9sp ,(a) C Ispy(a), and

(5P3) conVyeyy (sp 4 (@) = convye, (sp,(a)).

Proof. The first statement (spl) is (1.2.5).

To prove (sp2), suppose for contradiction that A € 9sp , (a) Nspy(a)®. Pick a sequence
(A,) C sp,(a)® such that A\, — A, soa—A, = a— A Then a— X, € A%, so
a— A, € B*, and thus A\, ¢ sp,(a) for all n. Since we assumed A ¢ sp(a) and
inversion is continuous on B*, we have (a — \,))™' — (a — X\)7! € B. But A is
complete, so (a — \)~! € A, a contradiction.

For (sp3), for any polynomial p, (spl) implies that ||p||SpB(a> < ||p||SpA(a). But (sp2)
together with the Maximum Modulus Principle (CAS8) imply that

||p||spA(a) < ||p||spB(a)'

Hence z € conv,,,(sp ,(a)) if and only if 2 € conv ., (sp 4 (a)). O

Corollary 1.7.6. Suppose 1 € A C B is a unital inclusion of Banach algebras and a € A.
For each hole H C sp ,(a), either H C sp ,(a) or H Nsp ,(a) = 0.

Proof. Set Hy := H Nsp,(a) and Hy := H \'sp,(a) so that H = H; U H, and
HyNHy = (). Clearly H, is open. Since dsp ,(a) C sp(a) by (sp2) and HNsp 4(a) =
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0, we must have H; = H Nsp ,(a)°, which is also open. But H is connected, so one of
H, or H, must be empty. O

The previous corollary tells us that sp , (a) is obtained from sp ,(a) by filling in some of
the holes. This leads to the following obvious question: how do we fill in some holes and
perhaps not others? Can we fill in all the holes? We will answer the second question and
leave the first an an exercise.

Example 1.7.7. Suppose B is a unital Banach algebra and a € B. Letting A C B be the
norm-closure of the space of polynomials in a,

SpA (a) = COnvpoly (SpB(CL))'

To see this, we already know that

SpB(a> (1%5) SpA (a> - Convpoly(SpA<a>> (b?d) Convpoly(SpB<a)>'

Suppose for contradiction that A € conv,, (spg(a)), but A & sp,(a). Then f,(z) :=
(A = 2)7" lies in O(sp 4(a)), so fy(a) € A € B. By definition, there is a sequence of
polynomials (p,,) such that p,(a) — f,(a) in norm in B. As in the proof of Proposition
1.7.4, defining ¢,,(2) := (z — A)p,,(2), we have ¢,, —1 — 0. But then

lg, (a) — 1] > r(g,(a) — 1)
= sup {|z — 1||z € spz(g,(a))}
= sup {|qn(z) — 1||z € spB(qn(a))} (Spectral Mapping Thm. 1.6.10)
= ”qn o 1”C’(spB(a))

> g () — 1] (A € peonv(sp,,(a)))
=1,

a contradiction.

1.8 Gelfand theory

Given a unital commutative Banach algebra A, we will construct a canonical compact Haus-
dorff space A together with a continuous unital algebra homomorphism = : A — C(A).
Without loss of generality, we assume |1 4] = 1.

Definition 1.8.1. A multiplicative linear functional or (algebra) character on A is a non-zero
linear map ¢ : A — C such that p(ab) = ¢(a)p(b) for all a,b € A. The set of characters is
denoted A.
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Example 1.8.2. If X is compact Hausdorff and x € X, then ev, : C(X) — C given by

—

ev,(f) := f(z) is a character. Thus X C C'(X).

Remark 1.8.3. Suppose ¢ € A. Observe that for all a € A, pla) =p(a-1)=p(a) - e(1).
Since ¢ # 0, we must have that ¢(1) = 1.

We can also discuss characters on A in terms of maximal 2-sided ideals of A. If A is a
unital Banach algebra and J C A is a proper ideal, then for all a € J, |a — 1| > 1. Indeed,
If |[1 —a| <1, then a € A* by (x3). It immediately follows that:

« JC Ais also a proper ideal, and

o all maximal ideals are closed.

Moreover, for every maximal ideal M C A, M /A is again a Banach algebra which is also a
division ring, and thus A/M = C by the Gelfand-Mazur Theorem 1.2.8. Summarizing, we
have the following immediate proposition.

Proposition 1.8.4. The map ¢ > ker(p) gives a bijection
A —s {mazimal ideals of A}
with inverse M+ (a+>a+ M € A/M = C).

Lemma 1.8.5. If o € A, then ol = 1.

Proof. By Proposition 1.8.4, ker(y) is closed, so ¢ € A*. More constructively, if
o(a) # 0, then 1 — p(a)~ta € ker(p), and thus by (x3),

_ lal
1<1=(1—gp(a) )| = = |p(a)] <.
|o(a)]
This implies |¢|| < 1, and since ¢(1,4) =1 = |1 4], we conclude |¢| = 1. O

Lemma 1.8.6. A C A* is compact in the relative weak™ topology.

Proof. By the Banach-Alaoglu Theorem, it suffices to prove A is closed. If (p;) C A
with ¢, — ¢ weak™, then for all a,b € A,

p(ab) = limp;(ab) = lim p;(a)p;(b) = p(a)p(b). O

. J

Exercise 1.8.7. Suppose A is commutative Banach algebra which might be non-untial and
A =AaCl.
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1. Prove that for all ¢ € ;1, the non-zero multiplicative linear functionals, there is a
unique ¢; € A; such that ¢4 = ¢.

2. Observe that if ¢ € Ay, then either wla=0o0r ¢, € A
3. Deduce that the map ¢ : A— 1/4: by ¢ + ¢, hits all but one element of ;1: .

4. Prove that ;1\1 is the one point compactification of Z, i.e., the relative topology on L(Z)
in A, is the relative weak™ topology.

Lemma 1.8.8. For a unital commutative Banach algebra A and a € A, the following are
equivalent.

1. a¢ AX,
2. there is a mazimal ideal M C A such that a € M, and

3. there is a ¢ € A such that p(a) = 0.

(1)=(2): Proof. If a ¢ A*, then Aa C A is a non-trivial ideal which is contained in a
maximal ideal by Zorn’s Lemma.

(2)=(3): The map A — A/M = C given by x — = + M works.

—(1)= —(3): If a € A%, then for all p € 4, 1 = p(a) - p(a~t), so ¢(a) + 0. O

Corollary 1.8.9. For alla € A, sp ,(a) = {gp(a)‘gp € ;1}

Proof. By the previous proposition, A € sp ,(a) if and only if A —a ¢ A* if and only
if there is a ¢ € A such that A = o(a). O

Construction 1.8.10 (Gelfand transform). Suppose A is a unital commutative Banach
algebra. The map a := ev, : A — C given by a(y) := ®(a) is continuous as A has the
relative weak™® topology. We thus get a unital algebra homomorphism by

—~

Tt A— C(A) by ar—a
called the Gelfand transform which is norm-continuous as

fal = s {le(@lle € A} = sw{Nres @}, = () <l

We thus see that the kernel of the Gelfand transform is exactly the ideal of quasi-nilpotent
elements, i.e., the a € A such that sp , (a) = {0}.
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Remark 1.8.11. The relative weak™ topology on A is the weakest topology such that each
a: A — C is continuous. Indeed, the weak™ topology on A is determined by ¢, — ¢ if and
only if a(p;) = ¢;(a) = ¢(a) = a(p) for each a € A.

Theorem 1.8.12 (Gelfand). Suppose X is compact Hausdorff.
1. For each ¢ € C/'(_)?), o(f) = o(f).
2. The map X — C”’(}) given by x + (evy : f+ f(x)) is a homeomorphism.

3. The Gelfand transform f }” is an isometric isomorphism.

Proof. To prove (1), we observe that if f € C'(X) is real-valued, then sp(f) C R, and
thus p(f) € R. Writing f = R(f) +i3(f), we see that

o(f) = eR(f)) +i(3(f)) = ©(R(f)) —ie(I(f)) = eR(f) —iI(f)) = (/).
eR eR

To prove (2), since X is compact and CT(_)? ) is Hausdorff, it suffices to prove the map
x > ev, is a continuous bijection. For continuity, observe that if ; — x in X, then
for all f € C(X), f(z;) — f(x), and thus ev, — ev, weak™. Injectivity follows by

Urysohn’s Lemma. For surjectivity, if ¢ € CT(Y ), then ker(¢) C C(X) is a complex
subalgebra closed under complex conjugation by (1). Moreover, it separates points by
Urysohn’s Lemma, so it must be all of C'(X) by the Stone-Weierstrass Theorem.

To prove (3), the map

\ /

clearly commutes, establishing the isomorphism. To see it is isometric, observe that

|7l = sup_ lp(H)] = sup [ f(z)] = [£]- 0

peC(X)

Exercise 1.8.13. Use Exercise 1.8.7 to prove that Theorem 1.8.12 holds for LCH spaces X
replacing C(X) with Cy(X).
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