Penneys Math 7212, Operators on Hilbert spaces Spring 2026

The notes in this section are compiled from:
» Notes from a graduate course I took at Berkeley from Don Sarason in 2006,

o Pedersen’s Analysis Now, and

2 Hilbert space basics

For this section, H is a Hilbert space. Recall the polarization identity, which holds for any
sesquilinear form:

1 3
(n,€) = 7D "0+ %, n + i*) V.6 € H. (20.1)
k=0

Exercise 2.0.2. Prove that a positive sesquilinear form is self adjoint.

The adjoint is defined via the Riesz-Representation Theorem, i.e., if x € B(H — K), for
all £ € K, nt> (xzn,§) ; is a bounded linear functional on H, so there is a unique x*¢§ € H
such that

(@1, &) e = (M, 2" ) VneH VEcK.
The assignment £ + x*¢ is linear and bounded, so z* € B(H).

Exercise 2.0.3. Explain the relationship between z, z*, 7, ' where z: H — K is the con-
jugate operator given by Z(7) := 77, and x! is the transpose, given by the Banach adjoint
K* — H* by (¢ - (€] o .

2.1 Operators in B(H)

We have various types of operators as in the C*-algebra notes. We call z € B(H):
o self-adjoint if x = x*,
« positive if there is a y € B(H) such that z = y*y,

normal if zx* = z*z,

a projection if x = x* = 22,

an isometry if x*x = 1,

a unitary if z*x = 1 = zz* (equivalently, an invertible isometry),

a partial isometry if z*x is a projection.
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Here are some elementary properties about B(H):

(B1) ker(z*) = (zH)* .

Proof. Since (zn,&) = (n,2*¢), we have £ L zH if and only if ¢ L H if and
only if x*¢ = 0. ]

(B2) z = y if and only if (x€, &) = (y&, &) for all £ € H.

Proof. Replacing x with z — y, we may assume y = 0. The forward direction is
trivial. Suppose (z£,&) = 0 for all £ € H. Polarization (2.0.1) applied to the
form (x -, -) implies (zn, &) = 0 for all n,& € H. Thus zn L H for all n € H, so
x=0. [

(B3) x is normal if and only if |x&|| = |z*¢| for all £ € H.

7

Proof. By (B2), x*x = xx* if and only if (z*x, &) = (xx*€, &) for all £ € H. But
this holds if and only if ||z€]|? = |z*¢||* for all £ € H. O

\.

(B4) = € B(H) is self-adjoint if and only if (z£,£) € R for all £ € H.

r

Proof. Homework. O

2.2 Normal operators

We now prove some elementary properties about normal operators. For the following prop-
erties, x € B(H) is normal.

(N1) z€ = X if and only if 2*¢ = A&

Proof. Immediate from (B3) applied to = — A. O

(N2) zn = Ap and x€ = p& with X # p implies n L &.

(N3) Every A € sp(x) is an approximate eigenvalue of x, i.e., there is a sequence of unit
vectors (,,) such that (z — A)§,, — 0.

Proof. Suppose \ is not an approximate eigenvalue of x. Then there is a ¢ > 0
such that |(z — M| > ¢|¢]| for all £ € H. Then z — X is injective with closed
range, and by (B3), so is * — X. But 0 = ker(z* — \) = ((z — A\)H)* by (B1).
Thus x— A is surjective, and thus x — A is bijective and bounded, hence invertible.

Thus A ¢ sp(x). O




(N4) [z} = sup {|(z€, OII€] = 1}

Proof. Since r(x) = |x|, there is a A € sp(z) such that |A| = |z|. Then since
A is an approximate eigenvalue by (N3), there is a sequence (§,,) of unit vectors
such that (z — A)¢,, — 0. Thus

|<x€n7 fn) T )"

|<x€n7£n> - )‘<£n’£n>|
= |<(‘7j - )‘)fna §n>|
2y =26l -6, 0. O

——

<
(CS o

(N5) If x = a¥,

sup {(z€, )[[¢]l = 1} = max {A[A € sp(z)}  and
inf {{z&, )|[€] = 1} = min {A[A € sp(x)}

\

Proof. Set M := max {\|\ € sp(z)}. By the Spectral Mapping Theorem, sp(x +
|z|) = sp(z) + || C [0,00), and thus x + |z| is (spectrally) positive. Then

M|z o, max A €sple+ fal)} = supi{(z +[=])8 Sl = 1}

= sup {(z¢, O)[[€] = 1} + [l|.

The proof for the second is similar swapping min and inf for max and sup, and
subtracting |z O

Remark 2.2.1. The set

R(x) = {(z€, &)< = 1}

is called the numerical range of x € B(H). It is always convex subset of C; this is easy to
show when x is self-adjoint. Indeed, since £ > (x€,&) is continuous and the unit sphere is
connected, R(T') is then a connected subset of R, i.e., an interval.

Proposition 2.2.2. The following are equivalent for x € B(H).

1. (x€,£) >0 for all € € H.

2. x is normal and sp(x) C [0, 00).

3. x 18 positive.



Proof.

(1) = (2): Assuming (1), we have

(2, 8) = (26, €) = (€, x€) = (27¢,§) vEe o,
so z = z* by (B2). By (N4),

sp(z) C R(z) C [0, 00).

(2) = (3): Since x is normal and sp(x) C [0, 00), we can use the continuous functional
calculus to get a self-adjoint operator /z € B(H) such that \/52 = 1.

(3) = (1): If z = y*y for some y € B(H), then

(z8,€) = (y"y&, &) = (&, y&) = ly&l? vEe H. O

Theorem 2.2.3 (Fuglede). Suppose z,y € B(H) such that xy = yx. If x is normal, then
¥y = yx*.

Proof due to Rosenblum. Since zy = yx, ye'* = e’y so x = e Tye N

A € C. We define f: C — B(H) by

for all

f()\) o ei)\x*yefi/\:r* _ ei/\x*eimeefiXxefi)\m* — ei()xx*JrXa:)yefi()\m“rXx)

Since Az* + Az is self-adjoint, e!A*"+A%) ig unitary. Hence f: C — B(H) is a bounded
B(H)-valued entire function, and thus constant by Liouville. Thus

d
0=—¢-— A) =z*y —yx*.
FaL fQ) =zy —yx
(Take the power series expansion to first order.) O

Exercise 2.2.4. Where is normality of 2 used in the proof of Fuglede’s Theorem 2.2.37

Corollary 2.2.5. If x € B(H) is normal and xy = yz, then yf(z) = f(x)y for all f €
C(sp(x)).

Proof. By Fuglede’s Theorem 2.2.3, the result holds for all polynomials in x and

*

x*. The result now follows by density of these polynomials in C(sp(z)) by Stone-
Weierstrass. ]




Remark 2.2.6. The results in this section also hold for operators in a unital C*-algebra,
not just B(H).

2.3 Projections and partial isometries

Example 2.3.1. Let x € B(H). The support projection of z is supp(z) := 1 — Pyey(s) =
Pker(z)- Lhe range projection of x is Range(z) = pz.

Observe that x = Range(x) - x - supp(x). By (B1), Range(z) = supp(z*). If x is normal,
then since ker(z) = ker(z*x) = ker(zx*) = ker(z*), supp(z) = Range(x).

Lemma 2.3.2. The map p +— pH is a bijective correspondence between projections and
closed subspaces of H.

Proof. 1t is clear that pH C H is a closed subspace as p is continuous and p = p?.
Moreover, since p = p*, pH+ = ker(p*) = ker(p) = (1 — p)H.

Conversely, every closed subspace K C H has an orthogonal complement K+, H =
K @ K*, and projection py onto K is an idempotent. We claim it is self-adjoint.
Indeed, ker(p}) = pH+ = K+ = ker(pg), which implies p} (1 — px) = 0, and thus
PP = D But pipy is self-adjoint, and thus pyx = pj.

One checks these two constructions are mutually inverse. [

Lemma 2.3.3. Forp,q € P(M), the following are equivalent.

1.p<q(qg—p=>0),

2. pH C qH, and

3. p=pgq.

Proof.

(1) = (2): We show (1—¢q)H C (1—p)H, and the result follows by taking orthogonal
complements. Suppose £ € (1 —q)H so g€ = 0. Then since 0 < ¢ — p,

0 < ((g—p)&, &) = (a6, &) —(p, &) = —(v€, &) = —|pe|°.

———
=0

Thus p£ =0,s0 € (1 —p)H.

(2) = (3): If pH C qH, then projecting to ¢H and then to pH is the same as just
projecting to pH.

(3) = (1): If p=pgq, then p=p* =qp. Thusq—p=qg—qpg=q(1—p)g>0. O




Exercise 2.3.4. We say projections p, ¢ are mutually orthogonal, denoted p L ¢, if pH 1 qH.
Show that p L ¢ if and only if pg = 0.

Exercise 2.3.5. For projections p, q, we define p A q to be the projection onto pH N gH and
p V q to be the projection onto pH + qH. Prove that pVg=1—(1—p) A (1 —q).

Exercise 2.3.6. Prove the following statements about projections and invariant subspaces.
1. K C H is x-invariant if and only if prapi = xpg-
2. K C H is z-invariant if and only if K L is z*-invariant.
3. K C His z and x*-invariant if and only if xp, = pyx.
Exercise 2.3.7. The following are equivalent for a u € B(H — K).
1. u is a partial isometry.
2. u=uu*u.
3. u* is a partial isometry.
4. u* = uruu.
Hint: Use the C*-identity.

Remark 2.3.8. By the exercise, a partial isometry v € B(H — K) is a unitary from u*uH
onto uu* K.

Exercise 2.3.9. Suppose u,v € B(H) are partial isometries with uu* L vo* and v*u L v*v.
Show that uw + v is again a partial isometry.

Proposition 2.3.10 (Polar decomposition). For each x € B(H — K), there is a unique
positive |z| € B(H) such that |z|* = z*x and ||z€|| = ||z|&| for all ¢ € H. Moreover, there is
a unique partial isometry w € B(H — K) such that u|z| = x and ker(u) = ker(z) = ker(|z|).
In particular, u*x = |z|.

- )

Proof. 1f y > 0 such that ||[y&|| = ||z¢]| for all £ € H, then

(@@, &) = |z€]* = |y&l* = (¥%¢,¢)

so z*r = y? by (B2), and thus y = v/z*r by the uniqueness of the positive square
root. Now define u: |z|H — K by u|z|{ := &, and note

Julzlé] = =] = [[[€] VEEH.

So w is an isometry on |z|H, and is thus well-defined. We can extend u to |z|H by
continuity, and define u = 0 on (|x|H)* = ker(|x|) by (B1), and ker(|z|) = ker(z) by




construction. We will call this extension u again by a slight abuse of notation. Then
w is a partial isometry and u|z| = z.

If v € B(H) is another partial isometry with ker(v) = ker(z) = ker(u) and v|z| = =,
then u|z|¢ = v|z|€ for all € € H, sou = von |z|H. But wu = v = 0 on (|z|H)*, so
u=v.

Finally, u*u is the projection onto |z|H, so u*zé = u*u|z| = |z|{ for all € € H. [

Exercise 2.3.11. Suppose & = u|z| is the polar decomposition. Prove that = |z*|u and
the polar decomposition of z* is given by u*|z*|.

Corollary 2.3.12. If © = ulz| is the polar decomposition, then u*u = supp(x) and uu* =
Range(x).

Proof. Since ker(u) = ker(z), supp(Z) = Prer(z)t = Prer(u)t = U*u. Since z* = u*|z”|
is the polar decomposition of z*, we have Range(z) = supp(z*) = uu®. ]

Remark 2.3.13. If x is invertible, then so are x* and x*x, and by the CFC for z*x, so is
|z|. If x = u|z| is the polar decomposition, then u = z|z|~! € C*(z) is a unitary. Hence if
A is a unital C*-algebra and a € A is invertible, then a has a unique polar decomposition in

A.

2.4 Compact operators

Recall x € B(H — K) is called compact if it maps bounded subsets of H to precompact
subsets (subset with compact closure) of K. We write K(H — K) for the subset of compact
operators in B(H — K), and we write K(H) for the compact operators in B(H). Recall
that K (H) is a closed 2-sided ideal in B(H).

Fact 2.4.1 (Spectra of compact operators). Suppose x € K(H). The non-zero points of
sp(zx) are isolated eigenvalues, and all correspondonding eigenspaces are finite dimensional.
There are only countably many of them, and zero is the only possible accumulation point.

Exercise 2.4.2. An operator x € B(H) is called finite rank if 2 H is finite dimensional.

1. Show that every finite rank operator is compact.
2. Show that the finite rank operators form a *-closed 2-sided ideal in B(H).

Fact 2.4.3. Every x-closed 2-sided ideal J C B(H) is spanned by its positive operators.
First, note that every self-adjoint x € J can be written as x = z, —x_ with z, > 0 and
zyx_ = 0 by setting z, = X9 o0) (%) and x_ = X(_ o (2)z. Clearly . € J, so every
self-adjoint in J is in the span of the positives of J. Second, every x = R(zx) + iJ(z) with
R(z) = (x+2%)/2 and I(z) = (x — x*)/(2i). Since J is *-closed, R(x) and J(z) are in J.
Thus R(x),,T(x), € J, and z is a linear combination of these 4 positives.
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Lemma 2.4.4. There is a net (p;) of finite rank projections such that p,§ — £ for all
€ € H. In other words, p;, — 1 in the strong operator topology (the topology of pointwise
convergence).

Proof. Let (e;);c; be an ONB of H. Let F be the subset of finite subsets of I, ordered
by inclusion. For F' € F, define pr to be the projection onto the finite dimensional

(and thus closed) subspace span {e;|i € F}. By Parseval’s identity, |pz& — &|| — 0 for
all € € H. 0

Theorem 2.4.5. The following are equivalent for x € B(H). Below, B denotes the norm-
closed unit ball in H.

(K1) = is compact.

(K2) x is in the norm closure of the finite rank operators in B(H).
(K3) z|g is weak-norm continuous B — H

(K4) B is compact in H.

Proof.

(1) = (2): Let z € K(H) and let (p;) be a net as in Lemma 2.4.4. We claim that p,z — x
in norm. Otherwise, there is a ¢ > 0 such that (passing to a subnet if necessary) for
all 4, there is a §, € H with ||§;]| = 1 and ¢ < |(1 — p;)z&;| and &, — n in H (by
compactness of x). Then

e <1 =p)xg| < (1 —p;) (@& — )| + [(1 —p)nl < [z& —nl + (L —p;)n| = 0,
a contradiction.

(2) = (3): Suppose z is a norm limit of finite rank operators and (&) is a net of vectors in
B converging weakly to & € B. Let ¢ > 0. Choose a finite rank y € B(H) such that
|z —y| < e. We claim that y¢§;, — y€. Indeed, choosing an ONB {ey, ..., e, } for the
finite dimensional Hilbert space yH,

ly(& =€) = ZI ZI & ye) |2 — 0.

.y n

Now pick j so that i > j implies |y§; — y¢&| < e. For all i > j,
|z&; — €| < |x& — &l + |y — vél + llo€ — y&]| < 3e.
The result follows.

(3) = (4): Since B is weakly compact by Banach-Alaoglu, B is the continuous image of a
compact set which is thus compact.



(4) = (1): If S C H is bounded, then S C B, = B,.(0g) for some r > 0. Then xB, = rzB
is compact, so the closure of xS is compact. ]

Exercise 2.4.6. Prove that if x € B(H) is finite rank, then so is *. Deduce that K(H) is
*-closed.

Notation 2.4.7. We write (n|€) := (£, n), which is linear on the right, and conjugate linear
on the left. For n € H, we write (n| € H* for £ - (n|¢), and we can also denote £ € H by
|€). This allows us to define the rank one operator |n)(¢| € B(H) by ¢ +— |n)(£[¢) = (¢, E)n.

Exercise 2.4.8. Prove the following statements about rank one operators.

L &l = 1§l

2. ) (2l - [€0) (&l = (m2l&1) - [m) (&
3. If ||¢]| = 1, then |£)(£] is the rank one projection onto C&.

Definition 2.4.9. An operator x € B(H) is orthogonally diagonalizable if there is an ONB
(e,;) of eigenvectors for .

Exercise 2.4.10. Show that if z € B(H ) is orthogonally diagonalizable, then the eigenvalues
(\;) for (e;) are in £°°(I), where [ is given counting measure.

Lemma 2.4.11. An orthogonally diagonalizable operator x € B(H) is compact if and only
if the eigenvalues (N;) for (e;) is in cq(I), where I has the discrete topology, and x =

i
M lee:|, where the sum converges in norm.
> Ailea) (el g

Proof. By Fact 2.4.1, since sp(z) C {);|i € I} U {0}, we must have ();) € ¢o(I).
Conversely, if (A;) € ¢y(I), then > A, |e;){e;| converges in operator norm to x. Indeed,
if we define zpp:= 37 A;[e;)(e;| for each finite F' C I, then picking F' C I so that
|A;| < e for all i € F¢, we have

2

|(@ —2p)€]* = =D INPIE e <

it F

Z)\i|€i><€i|§>

it F

SO T'p — X In norm. O

Theorem 2.4.12 (Spectral theorem for compact normal operators). Compact normal op-
erators are diagonalizable.

Proof. Suppose z € K(H) is normal. It suffices to prove H is the orthogonal direct
sum of eigenspaces of . We may assume dim(H ) = co. Using Fact 2.4.1, let (),,) be



the non-zero eigenvalues of z, which is either a finite list or A,, \, 0. Let E, be the
corresponding eigenspaces. Then E,, is an eigenspace for x* with eigenvalue A by (N1),
and F, 1L E, for all 1 <k < n. Since each E,, is x and z*-invariant, so is @n>1 E,.

Setting E, := (@ _. E, ), we have E, is « and z*-invariant by Exercise 2.3.6. Then

n>1"""N
x| g, is compact and has no non-zero eigenvalues, and so x| g, = 0. We conclude that
H= @n> 0 E, is the desired direct sum decomposition into eigenspaces. [

Remark 2.4.13. Using the Borel functional calculus and Theorem 2.4.12, one can show that
a positive operator x € B(H) is compact if and only if for all € > 0, the spectral projection
X(e,00) (@) is finite rank.

Corollary 2.4.14. If x € B(H — K) such that x*x is compact, then x is compact.

Proof. Writing z*z = > A, |e,) (e, | with A,, N\, 0 by Theorem 2.4.12, we have |z| =
SV AL len) (e, | with /A, N\, 0. Thus |z| is compact by Lemma 2.4.11, and so is
x = ulz| using polar decomposition 2.3.10. O

Definition 2.4.15. Suppose z € K(H), so |z| = (2*z)Y/? is compact. Enumerate the
eigenvalues of |z| by
Ao = A > Ay > e

with multiplicity as necessary. Note that \j = |z].

We define s, (x) := A,,, called the n-th singular value of x.

Now pick orthonormal vectors (f,,) such that |x|f,, = A, f, and |z| = DA, fu){(fnl;
which converges in operator norm. Set e,, := uf,, where x = u|z| is the polar decomposition
2.3.10. Then (e,,) is an orthonormal set, and = ulx| = u ) A\, |f.)(f.] = DA len) (ful,
where the sum converges in operator norm. This is called a Schmidt representation of x.

Warning 2.4.16. We warn the reader that a Schmidt decomposition of z € K(H) is not
unique, but the singular values are well-defined. The usefulness of a Schmidt decomposition
is that x is realized as an explicit norm-limit of finite rank operators.

For a unique representation, we can define p, = pg to be the (finite rank) orthogo-
nal projection with range E, , the eigenspace of |z| corresponding to s, (x). Then |z| =

2 Sp(@)p, and @ =3 s, (x)up,,.
Here are some elementary properties about singular values.

(SV1) s,,(z) = s, (z*) for all n.

Proof. Let x = > s, (z)le,){f,| be a Schmidt decomposition for z. Using
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Exercise 2.3.11, one can see that

x—Zs )N fon) e|—qu

is a Schmidt decomposition for z*, and thus s, (z*) = s,,(x). Alternatively, we
see that zz* = Y s,,(7)?le,, ) (e,,| converges in norm, so |z*| = > s,,(x)e,, ) (e,
which also implies s, (z*) = s,,(z). O

(SV2) (Minimax) Suppose z € K (H) is positive and non-zero. Then for all n > 0 such that
n < dim(H),

sy (x) = min r?eaé((xg ,€). (2.4.17)
codim(E)=n ||¢|=1

Proof. First, we prove that max {(z,&)|€ € F and ¢ = 1} exists. By (K4),
x is weak-norm continuous on Bp. Second, (-,-) : H x H — C is jointly
continuous on norm bounded sets in the product topology where the first factor
has the norm topology and the second factor has the weak topology. Indeed, if
n; — n in norm and & — & weakly, we can find j in our index set so that ¢ > j
implies |n; —n| < /M where M is a bound for the norm of all £, and &. Then

|7, &) — M, O < [{m; =0, E) 1 +1(n, & — &) -

<[n;—nl-1€:l<e —0

Hence the map & — (z&€,§) > (x€,€) is continuous on Bj equipped with the
weak topology. Since By, is weakly compact by Banach-Alaoglu, the max exists.
Now denote the right hand side of (2.4.17) by m,,. We know the case n = 0
holds. Assume n > 0 and let (f,) be an orthonormal subset such that z =
S s (2)| fi) (fu] with A, \, 0. For E = span{f,,..., f, 1}+, we have f, € E
and (zf,,, f) = 5,(x), s0 m,, <A,

Conversely, if codim(E) = n, then there is a & € E N span{fy, ..., f,} with
€] = 1. Then writing £ = Z?:o o, f; with a; = (£, f;) and Y |, |? = 1, we

have .
<ZL‘€7§> = Zsi(x)|ai|2 > Sn(‘/I:)'
=0
Hence s, () < m,,. O
(SV3) If z € K(H), then
sn(@) = min  maxxg]. (2.4.18)

codim(E)=n |¢|=1
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Proof. Observe that s, (z) = /s, (z*z) and (z*x&, £) = ||z£€]?. Apply Minimax
(SV2) for z*x and take square roots. O

(SV4) If x € K(H) and y € B(H), then both s, (xy), s, (yx) < |ylls, (z).

Proof. Using Minimax (2.4.18), we have®

= 1 < i ° = * o
So(yz) = min  max|yof] < min - max|y| - z5] = |y| - sn ()
codim(E)=n |¢|=1 codim(E)=n ||¢|=1
Observe now that
sn(@y) = sp(y'z") < |y*| - s, (") = [yl - 5, (2)- O

“Starting with |yz€| < |y|| - [|=£€], add max on the right then the left, and then add min
on the left then the right.

(SV5) For x € K(H), s, (x) = dist(x, F,, := {rank < n operators}).

Proof. Write = > A;e;)(f;| in Schmidt representation. The operator y :=
ZZ:Ol Ailea)(fil is in F, and z —y = 37 A;le;)(f;| has norm A,. Hence
dist(x, F,) < \,,. Now for all y € F,, dimspan{f,,..., f,} = n + 1, so there is

aeF, with || =1 and y§ = 0. Then

|z =yl = ll(z —y)&]l = [=€] = A, H

(SV6) If v,y € K(H), then s, ,, (v +y) < 5,,(x) + 5,(v).

Proof. Let ¢ > 0. Using (SV5), take z; € F,, such that |z — z;| < s,,(z) + ¢
and take z, € F), such that ||y — 25| < s,(y) + €. Then 2, + 2z, € F,,,,,, and
thus

Smin (T +y) =dist(@ +y, Fpn) < o +y— (21 + 2)|
<z =21l + lly = 22/ < s (@) + 5,(y) + 2¢.

Since € > 0 was arbitrary, the result follows. [
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2.5 The trace and the Schatten p-classes

Let (e;) be an orthonormal basis of H. Define Tr: B(H), — [0, 00] by Tr(z) := 3_ (ze;, €;).
Here are some basic properties about the trace.

(Trl) Tr is positive-linear, i.e., Tr(Ax+y) = A Tr(z)+Tr(y) forall A > 0 and z,y € B(H),.

(Tr2) Tr is lower semicontinuous on B(H ).

Proof. This follows immediately from the fact that each functional z - (xe;, €;)
is continuous and [0, co)-valued together with the following exercise.

Exercise 2.5.1. Let X be a topological space and (f,,) a sequence of lower
semicontinuous [0, co)-valued functions. Prove that ) f,, : X — [0, 00) defined
by (O f,)(x) =>_ f,.(z) is again lower semicontinuous. O

(Tr3) Tr(z*x) = Tr(xx*) for all z € B(H).

~

Proof. Since the sum of positive numbers is independent of ordering,

Z(w*xei,ei> = Z(mei,xei) = Z((xei,ej>ej,xei) = Z(xei,ej><ej,wei>

i i 1,5 1,J
= Z(I*‘?j» e;) (e Te;) = Z<m*€j7 CHICREACH
4,J J»t
= Z((x*ej,ei>ei,m*ej> = Z(w*ej,x*ej> = Z(mﬁ*ej: e;). O
Ji J J

(Trd) Tr(xz) = Tr(u*zu) for all unitaries w € B(H) and z > 0. Hence if (f;) is another
orthonormal basis of H, then Tr(z) =>_ (xf,, f,).

7

Proof. Write & = /" so that by (Tr3),

Tr(u'au) = Tr((v/au) (vaw) = Te((Vau) (Vau)') = Tr(va") = Tr(a).

Now if (f;) is another ONB, then define a unitary v € B(H) by e; + f;,. Then

Tr(z) = Tr(u*zu) = Z(u*xuei, e;) = Z(wuei,ueﬁ = Z(xfi, fo). O

A i i

(Tr5) If > 0, then Tr(x) > |z|.

13



Proof. If © > 0, then by (N5), there is a unit vector £ € H such that (z, &) =
max {A|A € sp(z)} = ||z|. Extend {£} to an ONB {¢} II (f;), and observe that

Tr(z) = (26,6) + ) (@i, fi) > (€, €) = |a. O

. J

Lemma 2.5.2.
1. If v € K(H), then Tr(|z|P) = s, (x)P.

2. If Tr(Jz|P) < oo for some p > 0, then x is compact.

Proof.

(1) Write |z| = > A, le,){(e,| with A, ~\, 0 by Theorem 2.4.12 so that |z|P =
> APle,,) (e, |- Extending (e,,) to an ONB (e;), we see

Tr(x) = Z xe;, e;) Z)\p = Z x)P.

(2) Let (e;) be an ONB and suppose € > 0. There is a finite subset F' C I such
that ZZ¢F(|90| i»€;) < €. Let pp denote the projection onto span {e;|i € F}, and
observe that

llz[P/2(1 —pp)|* = (1 —pF)lep(l —pF)II < Tr((1 = pp)lzlP(1 = pp))

—Z|l’| z’ z

i¢EF

Thus we may approximate |z|P/2 by finite rank operators, so |z|P/? is compact, and
thus so is |z|P. Using the Spectral Theorem for compact normal operators 2.4.12,

we can write |z|P = > A, e, )(e,| with A, N\, 0. But then |z| = Z)\,lﬂ/p\en)(ed

and A\./” N\ 0, so |z| is compact by Lemma 2.4.11. Hence x = ulx| is compact. [

Definition 2.5.3. The Schatten p-class/p-ideal is the set

LP(H) := {xEB ‘Tr |z|P) = Zs p<oo}
We call £'(H) the trace class operators and £2(H) the Hilbert-Schmidt operators. Observe
that £P(H) C K(H) by Lemma 2.5.2.

Remark 2.5.4. Recall that when 1 < g < p, £¢ C 7 with || - |, > | - [,. Since Tr(|z|") =
[Csp(@)lew, £1(H) € LP(H) with |- ][, = -,

Lemma 2.5.5. The Schatten p-class LP(H) is a *-closed 2-sided ideal of B(H) which is
algebraically spanned by its positive operators.

14



Proof.
x-closed: s, (x) = s, (x*) for all n > 0.

d=closed: 3, (2+y) < 5,,(2) +5,(y), 50 (5,(2)), (8,(y)) € £ implies (s, (+y)) € £7.
Similarly, 82n+1('x + y) < Sn('j") + 8n+1(y)7 S0 (sn(x)>7(sn(y)) S iInphes
(Sopi1(z+y)) € £P. Thus (s, (x +y)) € ¢P.

ideal: For all z € B(H) and y € LP(H), s,,(zy), s, (yz) < sy(x)s, (y) = ||z|s, (y) , so
xy,yr € LP(H).

positive spanning: Immediate by Fact 2.4.3. O

Corollary 2.5.6. £'(H) = span {z > 0| Tr(z) < co}.
Proposition 2.5.7. Tr extends to a linear map £*(H) — C satisfying:

o x <y implies Tr(z) < Tr(y) (when z,y are self-adjoint) and
o [Tr(z)| < Tr(|z]).

Proof. For x € £*(H), we can write z = Ei:o i*x, with each ), € £'(H), . Define

Tr(x) = Zizo i* Tr(z,). This formula is clearly linear as long as it is well-defined.
First, suppose z is self-adjoint. Since R(z) = zy — x4 and J(z) = x; — x5 = 0, we
must have x; = x5, S0 & = Ty — Ty. If T =y — Y for yy, yo € £ (H),, then

To—Tg =T =Yy~ Ya ~ Ty + Yy = Yo + Zo.

Thus Tr(zy) + Tr(y,) = Tr(yy) + Tr(z,), and since these numbers are finite,
Tr(xzy) — Tr (x ) = Tr(yy) — Tr(yy). Now when z is arbitrary, if we can also write
5 = 22:0 i*y,, with each y, € £'(H),, then R(z) = y, — y, and I(z) = y; — y3.
Hence Zizo i* Tr(y,) = Tr(R(z)) — i Tr(J(x)) which is independent of the y, > 0.
Now suppose z < y in £'(H). Then y —z >0, so 0 < Tr(y — ) = Tr(y) — Tr(z).
To prove the last relation, take a Schmidt decomposition z =} s, (z)|e,){f,| with
(e,,) and (f,,) orthonormal. Then

<Z S@len) Ifz,f> S s () ems £)

n n

ngn(ﬂc |—Zs = Tr(|z|). O

| Tr(z)| =

15



Proposition 2.5.8. For z,y € £*(H), x*y € £'(H). The space £*>(H) is a Hilbert space
with inner product (x,y) .2 = Tr(y*x).

Proof. First, if x € £*(H) if and only if z*z € £'(H) as Tr(|z|?) = Tr(z*z). By

polarization,
3

1 ) . .
y'w =2 i (1 +iky)* (z +iky).
4 k=0
- eL%(H)
eL (H)

It is clear that (-, -) c2(m) IS a positive sesquilinear form. Definiteness follows from
the estimate

|z]3 = Tr(z*z) > [z =]
Tr5
This also shows every | - |,-Cauchy sequence is | - [-Cauchy. To see £2(H) is complete
with respect to | - |, it suffices to prove that if (z,,) is || - [|;-Cauchy with z,, — = in

| - |, then ,, — = in | - |,. First, x € K(H) as K(H) is closed. Next, for all finite
rank projections p,

Iz — 2,)pl3 = Te(p(z — 2,)* (z — 2,)p) = lim Tx(p(z,, — 7,)* (0 — ,)P)

= limsup Tr((z,, — x,)*(x,, — x,,)) = limsup |z,,, — z,, 3.
m m

In the equality marked (!) above, we are using the fact that there is only one trace
on B(pH) = M, (C), where pH is a finite dimensional Hilbert space with dimension
k. Thus x,, — x in norm implies p(z,, — z, )" (z,, — x,,)p = p(z —x,,))*(x — z,)p in
norm, and we know the trace on B(pH) is continuous.

Since p was arbitrary, we conclude that

m

which implies both z € £*(H) and x,, — x in || - |,. O

Exercise 2.5.9. Suppose H is a Hilbert space (which you may assume is separable) with
ONBs (e;) and (f;).

1. Show that for every z € £2(H), 3. Nzey, f? =2

2¥)

|5 ()7 =32, e, [

2. Show that for each a = (a;;) € ¢%2(N?), there is an a € £%(H) such that a;; = (ae;, f;).

n

3. Construct a unitary isomorphism £2(H) — £2(N?).

16



4. Construct a canonical isomorphism £?(H) =~ H @ H*.

Corollary 2.5.10. For all z € £'(H) and y € B(H), | Tr(zy)|, | Tr(yz)| < |y| - Tr(|z|).

Proof. Since zy € £*(H), | Tr(zy)| < Tr(|zy|). Since s, (|zy]) < ||ly|-s,,(z) by (SV4),

Tr(lzyl) = Y sulley) < Y Ilsa(@) = Iyl ) sn(2) = Iyl Tr(lz)).
Similarly, Tr(|yz|) < |ly| Tr(|z]). O

Lemma 2.5.11. For z,y € £*(H), Tr(zy) = Tr(yx). The conclusion also holds for
x€ LY(H) and y € B(H).

Proof. As (z,y) — Tr(z*y) and (y,z) + Tr(yz*) are both sesquilinear forms on
£L%(H), by polarization, they agree if and only if they agree on the diagonal. But
Tr(z*z) = Tr(zz*), so Tr(z*y) = Tr(yz*) for all z,y € £L*(H).

For the second part, by linearity in 2, we may assume z € &' (H), so that y/z €
L?(H).. We then calculate

Tr(zy) = Tr(va(Vay)) = Tr(Vay)Va) = Tr(va(ye)) = Te(Wa)Ve) = Tr(yz).
L]

. J

Proposition 2.5.12. £*(H) is a Banach x-algebra with |z|, = Tr(|z]) = 3 s, ().

Proof. We show | - ||; has the required properties.
Homogeneous: [Az]; = Tr(|Az[) = Tr([A[ - [z[) = [A| Tr(|z]) = |A] - ],

Definite: |z]; = Tr(]z|) = 0 implies |z| = 0, so z = 0.
Subadditive: Let z+y = u|z+y| be the polar decomposition so that |z+y| = u*z+u*y.
Since u*z, u*y € £'(H),
|z +yly = Tr(lz +y)) = Tr(v'z + u'y) = Tr(u"z) + Tr(u"y)
< | Tr(wz)| + [ Tr(uy)| < |u*| Tr(l2]) + [u] Tr(yl)
< Tr(|lz)) + Tr(lyl) = Izl + lyl:-

Submultiplicative: Let zy = u|xy| be the polar decomposition so that |zy| = u*zy.
Then

Tr(lzy|) = Tr(u'zy) < Juz|Tr(lyl) < Tr(lz]) Tr(ly)) = lzl; - |yl
(Cor. 2.5.10) m (Tr5)
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-isometric: [z, = Tr(|z]) = 328, (2) = 228, (27) = Tr(je*]) = *];.

Complete: Suppose (z,,) is | - [|;-Cauchy. By (Tr5),

= 1= Tr(|z, —2,]) 2 (|20 — 2, = 2, = 2.,

so (z,,) is || - ||-Cauchy. Since K(H) is closed, there is an z € K(H) with z,, — =
in norm. Consider the polar decomposition z — z,, = u,,|x — x,,|. For all finite
rank projections p,

nl-

Tr(p|z — z,|) = Tr(puy,(z — z,,)p) = | Tr(puy,(z — ,,)p)|

m (Cor. 2.5.10) m

This implies = € £'(H) and z,, — 2 in || - ;. O

Proposition 2.5.13. For all 1 < p < oo, L¥(H) is a Banach space with x|} = Tr(|z[?) =

[Cs (@) e

We omit the proof which is similar to those for £*(H) and £'(H). O

Theorem 2.5.14. Suppose 1 < q,p < oo with 1/p+1/q = 1. For all x € LP(H) and
y € LUH), zy € £'(H) and | Tr(zy)| < ], - |yl

Proof. Without loss of generality, 2 < p. We proceed via the following steps.
Step 1. If x € £P(H), with p > 2 and £ € H with |¢] = 1, then (22¢,&)P/2 < (2P€, €).

Proof. Let (e,,) be an ONB with = = > A le,)(e,|. For all £ €
span{ey, ..., e},

k
<I‘2f,f>= _ <<§7 Z>£C €; <§7 J> >

1,7=1
k k
= Z(S, (€ e (@es,e) =D |(6 e)PAL.
7,7=1 =1

Since the function r - /2 is convex and > (& e;)|? = |€]? = 1, we have

k

p/2
(a2€,E)P/2 = (ZM,ZPA?) < STE €)PAL = (a7, €).

o=l

Hence the desired inequality holds on the algebraic span of the e;, which

18



is dense in H. Since the continuous function & - (zP&, &) — (x2€,€)P/? is
non-negative on a dense subspace, the result follows. O

Step 2: If z € £P(H), with p > 2 and y € £%(H), with 1/p+1/q =1, then 2y € £'(H)
and Tr(Jzy|) < [z, - [y,

Proof. Pick an ONB (f,,) such that y = > u,|f,.)(f,|- For every n € N,
[lzy| fs F)? - lleyl full® - 1fnll = K2yl fn, £ = Ky"a* 2y fy, £2)]
-1

= {z*zyfn, yFudl = wal{l2? £, fo)-

Hence by Step 1, we have

(|2l frs Fo) < pin {1212 frs )/ = )un<|x|pfn,fn>1/p-

tep 1
Now setting a,, = (|z|Pf,,, f,)'/?, (a,) € /P as x € LP(H):

l(@)IB =D (|2 fo, fo) = Tr(|z[P) < oo.
Also, (p,,) € €% as 3  pl = Tr(|y|?) < oo since y € LY(H). By Holder’s
Inequality,
Tr(layl) = D @yl fu: £ <D sl Fu, £)1/7

n

< @)y - ICa)lg = N2l - Iyl B

Step 3: For arbitrary € LP(H) with p > 2 and y € L9(H) with 1/p+1/q =1, zy €
£ (H) and | Tr(zy)| < |z, - [yl

~

Proof. Consider the polar decompositions = u|z| and y* = v|y*| and note
that |z|, |y*| > 0, |z| = v*z € LP(H), and |y*| = v*y* € LY(H). By Step 2,
we have |z| - |y*| € £'(H) and

T (| 12| - [y*]]) < el - Iyl

It follows immediately that

vy = z(y)" = ulz|(vly*])* = ulz|ly*|v* € £'(H).
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and

(Cor. 2.5.1 )

< x| - ly*Il, = x|, - . L]
= e, - ly*lly = 1=, - 1yl

| Tr(zy)| = | Tr(ulzllyom)] < ) el - o™ - T (] - ")

Exercise 2.5.15. Show that the pairing (x,y) — Tr(zy) implements a duality exhibiting
an isometric isomorphisms K (H)* =~ £'(H) and £'(H)* =~ B(H). Explain how one can
view this as an analogy of the facts that ¢ = ¢! and (¢1)* = ¢,

Theorem 2.5.16. Suppose 1 < p,q < oo with 1/p+ 1/q = 1. The bilinear form (x,y) :=
Tr(zy) implements a duality exhibiting LY (H) and L(H) as isometrically isomorphic to
each other’s dual spaces.

Proof. First, note that if (x,) € £9, then (|z,,|71) € £P and

loallg =D 17 =D |z, P = (|2, |27 and
1/p+1/q _ 1/p 1/q _

22 = (D l2,17) = (Dl ) T (D7) T = 1zl - @)l

We now proceed via the following steps.

Step 1: The map y + Tr(-y) is an isometry L H) — LP(H)*.

Proof. First, note that the map £9(H) — £P(H)* given by y = Tr( - y) is well-
defined and norm-decreasing by Theorem 2.5.14. We use polar decomposition
to write y = u|y| and note |y| = u*y € LI(H).

We claim that

Claim. For everyr > 0, s, (ly)" = s, (Iy]") = s, (ulyl") = s,,(ly|"u*).

Proof of claim. If |y| = YA, |f.)(f,| is the Schmidt decomposition, then
s, (ly)" = Al = s, (ly|"). Moreover, if e, = uf, for all n, then

ulyl =D Anlen)(ful = ulyl” =D Anlen){ful:

Then since (uly|”)*uly|” = [y["w uly|" = D N2 ) (fal,

sn(ulyl”) = sy Iyl uuly")!/? = X,

Since for any z, s,(2*2)Y/2 = s,(2), we have s,(uly|”) = A. Finally,
s, (uly|") = s, (ly|"u*) as the n-th singular value of adjoints agree, finishing
the claim. [
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Now using the claim above, we have a,, := s, (|y|9™!) = s,,(|]y[)? !, so (a,,) € ¢P
and |y|9~! € £LP(H). For z := |y|? tu* € LP(H), setting u,, = s,,(y),

Tr(zy) = Tr(ly|”  u*y) = Tr(|y|?) = |y
= ()2 = 1(& D, - 1)l = I, - Ty, O

Step 2: The map y + Tr(-y) from Step 4 is surjective.

Proof. Since 1 < p, £'(H) C £P(H) with | - | > | - |,. Thus if ¢ € £P(H)*,
eleora € LY (H)* = B(H), so thereis ay € B(H) such that @l o1z = Tr(-y)
by Exercise 2.5.15. It remains to prove y € £L9(H) and ¢ = Tr(-y) on LP(H).

Claim. y € K(H).

Proof of Claim. By polar decomposition y = uly|, we may assume y > 0 as
ye K(H) iff ly| € K(H), and

| Tr(zly])| = | Tr(zuy)| < o - llzu*], < ol - [=],-
(SV4)

Ify ¢ K(H), then by Remark 2.4.13, there is a € > 0 such that p := x(. o) (¥)
has infinite dimensional image. Pick an orthonormal sequence (f,,) C pH, and
note that y > ¢ on pH, i.e., (yf,, f,) > ¢ for all n. Pick (u,) € P \ £} (we
may assume p,, > 0 for all n) and set z;, = ZZ:O ol fr) (fn| and z = limx,, €

£LP(H). Then z, € £'(H) for all k, and

k—oo

€Y tn < Y iy (W, ) = Tr(zy) = o(m,) — ().

But (u,) ¢ %, so € ZZ:O i, — 00, a contradiction. O

Since y € K(H), we can take a Schmidt decomposition |y| = >\, |f,.) (f.],
and let y = wuly| be the polar decomposition with uf, = e, so that
y = Y.\, le,){(f,]. For each k, let r, be the orthogonal projection onto
span{ fo, f1,-.-» [}, and observe that r, commutes with |y|® for all s > 0.
For each k, z;, := |y|9 'r,u* is finite rank and thus in £*(H) C £P(H).
Observe now that

k

I;;{L‘k = u|y|q_1rk|y|q_lu* = Urg (Z >\72’Lq_2|fn><fn|> ut = Z A?Lq_2|en><en|

n=0
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which implies that

k

n=0

But note that also

This means

which implies that
Tr(|y| %) = Tr(Jy|%r) =7 < el

Hence Tr(|y|?r) < ||¢[? for all k, and so y € £L1(H).

then z;, := Zn _o Mnlfp) (fn] is finite rank, and

DI

n>k

|z =zl =

n>k

Thus £2(H) is dense in £P(H), and so ¢ = Tr(-y) on £P(H).

Tr(lyl*r) = le(@e)| < lel - lzil, = Il - Tr(lylr,,) P

lelh = Tr((@hz)P?) = Y (2P = ZX’ = Tr(ly|?ry).

o(zy,) = Tr(z,y) = Tr(ly|9 ruty) = Tr(ly|9 ey lyl) = Tr(ly|9ry,).

Finally, the finite rank operators are contained in £?(H) and also dense in
LP(H). Indeed, if x € LP(H)™ has Schmidt decomposition z = >\, | f,.)(f,.],

Since our proof above did not distinguish p and ¢, we also conclude £F(H) =

22

LI(H) .
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