
Penneys Math 7212, Operators on Hilbert spaces Spring 2026

The notes in this section are compiled from:

• Notes from a graduate course I took at Berkeley from Don Sarason in 2006,

• Pedersen’s Analysis Now, and

2 Hilbert space basics
For this section, 𝐻 is a Hilbert space. Recall the polarization identity, which holds for any 
sesquilinear form:

⟨𝜂, 𝜉⟩ = 1
4

3
∑
𝑘=0

𝑖𝑘⟨𝜂 + 𝑖𝑘𝜉, 𝜂 + 𝑖𝑘𝜉⟩ ∀ 𝜂, 𝜉 ∈ 𝐻. (2.0.1)

Exercise 2.0.2. Prove that a positive sesquilinear form is self adjoint.

The adjoint is defined via the Riesz-Representation Theorem, i.e., if 𝑥 ∈ 𝐵(𝐻 → 𝐾), for 
all 𝜉 ∈ 𝐾, 𝜂 ↦ ⟨𝑥𝜂, 𝜉⟩𝐾 is a bounded linear functional on 𝐻, so there is a unique 𝑥∗𝜉 ∈ 𝐻
such that

⟨𝑥𝜂, 𝜉⟩𝐾 = ⟨𝜂, 𝑥∗𝜉⟩𝐻 ∀ 𝜂 ∈ 𝐻, ∀ 𝜉 ∈ 𝐾.
The assignment 𝜉 ↦ 𝑥∗𝜉 is linear and bounded, so 𝑥∗ ∈ 𝐵(𝐻).

Exercise 2.0.3. Explain the relationship between 𝑥, 𝑥∗, 𝑥, 𝑥𝑡 where 𝑥∶ 𝐻 → 𝐾 is the con­
jugate operator given by 𝑥(𝜂) ≔ 𝑥𝜂, and 𝑥𝑡 is the transpose, given by the Banach adjoint 
𝐾∗ → 𝐻∗ by ⟨𝜉| ↦ ⟨𝜉| ∘ 𝑥.

2.1 Operators in 𝐵(𝐻)
We have various types of operators as in the C∗-algebra notes. We call 𝑥 ∈ 𝐵(𝐻):

• self-adjoint if 𝑥 = 𝑥∗,

• positive if there is a 𝑦 ∈ 𝐵(𝐻) such that 𝑥 = 𝑦∗𝑦,

• normal if 𝑥𝑥∗ = 𝑥∗𝑥,

• a projection if 𝑥 = 𝑥∗ = 𝑥2,

• an isometry if 𝑥∗𝑥 = 1,

• a unitary if 𝑥∗𝑥 = 1 = 𝑥𝑥∗ (equivalently, an invertible isometry),

• a partial isometry if 𝑥∗𝑥 is a projection.
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Here are some elementary properties about 𝐵(𝐻):

(B1) ker(𝑥∗) = (𝑥𝐻)⟂.

Proof. Since ⟨𝑥𝜂, 𝜉⟩ = ⟨𝜂, 𝑥∗𝜉⟩, we have 𝜉 ⟂ 𝑥𝐻 if and only if 𝑥∗𝜉 ⟂ 𝐻 if and 
only if 𝑥∗𝜉 = 0. ∎

(B2) 𝑥 = 𝑦 if and only if ⟨𝑥𝜉, 𝜉⟩ = ⟨𝑦𝜉, 𝜉⟩ for all 𝜉 ∈ 𝐻.

Proof. Replacing 𝑥 with 𝑥 − 𝑦, we may assume 𝑦 = 0. The forward direction is 
trivial. Suppose ⟨𝑥𝜉, 𝜉⟩ = 0 for all 𝜉 ∈ 𝐻. Polarization (2.0.1) applied to the 
form ⟨𝑥 ⋅ , ⋅ ⟩ implies ⟨𝑥𝜂, 𝜉⟩ = 0 for all 𝜂, 𝜉 ∈ 𝐻. Thus 𝑥𝜂 ⟂ 𝐻 for all 𝜂 ∈ 𝐻, so 
𝑥 = 0. ∎

(B3) 𝑥 is normal if and only if ‖𝑥𝜉‖ = ‖𝑥∗𝜉‖ for all 𝜉 ∈ 𝐻.

Proof. By (B2), 𝑥∗𝑥 = 𝑥𝑥∗ if and only if ⟨𝑥∗𝑥𝜉, 𝜉⟩ = ⟨𝑥𝑥∗𝜉, 𝜉⟩ for all 𝜉 ∈ 𝐻. But 
this holds if and only if ‖𝑥𝜉‖2 = ‖𝑥∗𝜉‖2 for all 𝜉 ∈ 𝐻. ∎

(B4) 𝑥 ∈ 𝐵(𝐻) is self-adjoint if and only if ⟨𝑥𝜉, 𝜉⟩ ∈ ℝ for all 𝜉 ∈ 𝐻.

Proof. Homework. ∎

2.2 Normal operators
We now prove some elementary properties about normal operators. For the following prop­
erties, 𝑥 ∈ 𝐵(𝐻) is normal.

(N1) 𝑥𝜉 = 𝜆𝜉 if and only if 𝑥∗𝜉 = 𝜆𝜉.

Proof. Immediate from (B3) applied to 𝑥 − 𝜆. ∎

(N2) 𝑥𝜂 = 𝜆𝜂 and 𝑥𝜉 = 𝜇𝜉 with 𝜆 ≠ 𝜇 implies 𝜂 ⟂ 𝜉.

(N3) Every 𝜆 ∈ sp(𝑥) is an approximate eigenvalue of 𝑥, i.e., there is a sequence of unit 
vectors (𝜉𝑛) such that (𝑥 − 𝜆)𝜉𝑛 → 0.

Proof. Suppose 𝜆 is not an approximate eigenvalue of 𝑥. Then there is a 𝜀 > 0
such that ‖(𝑥 − 𝜆)𝜉‖ ≥ 𝜀‖𝜉‖ for all 𝜉 ∈ 𝐻. Then 𝑥 − 𝜆 is injective with closed 
range, and by (B3), so is 𝑥∗ − 𝜆. But 0 = ker(𝑥∗ − 𝜆) = ((𝑥 − 𝜆)𝐻)⟂ by (B1). 
Thus 𝑥−𝜆 is surjective, and thus 𝑥−𝜆 is bijective and bounded, hence invertible. 
Thus 𝜆 ∉ sp(𝑥). ∎
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(N4) ‖𝑥‖ = sup {|⟨𝑥𝜉, 𝜉⟩||‖𝜉‖ = 1}

Proof. Since 𝑟(𝑥) = ‖𝑥‖, there is a 𝜆 ∈ sp(𝑥) such that |𝜆| = ‖𝑥‖. Then since 
𝜆 is an approximate eigenvalue by (N3), there is a sequence (𝜉𝑛) of unit vectors 
such that (𝑥 − 𝜆)𝜉𝑛 → 0. Thus

|⟨𝑥𝜉𝑛, 𝜉𝑛⟩ − 𝜆| = |⟨𝑥𝜉𝑛, 𝜉𝑛⟩ − 𝜆⟨𝜉𝑛, 𝜉𝑛⟩|
= |⟨(𝑥 − 𝜆)𝜉𝑛, 𝜉𝑛⟩|

≤
(CS)

‖𝑥𝜉𝑛 − 𝜆𝜉𝑛‖ ⋅ ‖𝜉𝑛‖⏟
=1

𝑛→∞
−−−→ 0. ∎

(N5) If 𝑥 = 𝑥∗,

sup {⟨𝑥𝜉, 𝜉⟩|‖𝜉‖ = 1} = max {𝜆|𝜆 ∈ sp(𝑥)} and
inf {⟨𝑥𝜉, 𝜉⟩|‖𝜉‖ = 1} = min {𝜆|𝜆 ∈ sp(𝑥)}

Proof. Set 𝑀 ≔ max {𝜆|𝜆 ∈ sp(𝑥)}. By the Spectral Mapping Theorem, sp(𝑥 +
‖𝑥‖) = sp(𝑥) + ‖𝑥‖ ⊂ [0, ∞), and thus 𝑥 + ‖𝑥‖ is (spectrally) positive. Then

𝑀 + ‖𝑥‖ =
(SMT)

max {𝜆|𝜆 ∈ sp(𝑥 + ‖𝑥‖)} =
(N4)

sup {⟨(𝑥 + ‖𝑥‖)𝜉, 𝜉⟩|‖𝜉‖ = 1}

= sup {⟨𝑥𝜉, 𝜉⟩|‖𝜉‖ = 1} + ‖𝑥‖.

The proof for the second is similar swapping min and inf for max and sup, and 
subtracting ‖𝑥‖. ∎

Remark 2.2.1. The set
𝑅(𝑥) ≔ {⟨𝑥𝜉, 𝜉⟩|‖𝜉‖ = 1}

is called the numerical range of 𝑥 ∈ 𝐵(𝐻). It is always convex subset of ℂ; this is easy to 
show when 𝑥 is self-adjoint. Indeed, since 𝜉 ↦ ⟨𝑥𝜉, 𝜉⟩ is continuous and the unit sphere is 
connected, 𝑅(𝑇 ) is then a connected subset of ℝ, i.e., an interval.

Proposition 2.2.2. The following are equivalent for 𝑥 ∈ 𝐵(𝐻).

1. ⟨𝑥𝜉, 𝜉⟩ ≥ 0 for all 𝜉 ∈ 𝐻.

2. 𝑥 is normal and sp(𝑥) ⊂ [0, ∞).

3. 𝑥 is positive.
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Proof. 

(1) ⇒ (2): Assuming (1), we have

⟨𝑥𝜉, 𝜉⟩ = ⟨𝑥𝜉, 𝜉⟩ = ⟨𝜉, 𝑥𝜉⟩ = ⟨𝑥∗𝜉, 𝜉⟩ ∀𝜉 ∈ 𝐻,

so 𝑥 = 𝑥∗ by (B2). By (N4),

sp(𝑥) ⊂ 𝑅(𝑥) ⊂ [0, ∞).

(2) ⇒ (3): Since 𝑥 is normal and sp(𝑥) ⊂ [0, ∞), we can use the continuous functional 
calculus to get a self-adjoint operator 

√
𝑥 ∈ 𝐵(𝐻) such that 

√
𝑥2 = 𝑥.

(3) ⇒ (1): If 𝑥 = 𝑦∗𝑦 for some 𝑦 ∈ 𝐵(𝐻), then

⟨𝑥𝜉, 𝜉⟩ = ⟨𝑦∗𝑦𝜉, 𝜉⟩ = ⟨𝑦𝜉, 𝑦𝜉⟩ = ‖𝑦𝜉‖2 ∀𝜉 ∈ 𝐻. ∎

Theorem 2.2.3  (Fuglede). Suppose 𝑥, 𝑦 ∈ 𝐵(𝐻) such that 𝑥𝑦 = 𝑦𝑥. If 𝑥 is normal, then 
𝑥∗𝑦 = 𝑦𝑥∗.

Proof due to Rosenblum. Since 𝑥𝑦 = 𝑦𝑥, 𝑦𝑒𝑖𝜆𝑥 = 𝑒𝑖𝜆𝑥𝑦, so 𝑥 = 𝑒𝑖𝜆𝑥𝑦𝑒−𝑖𝜆𝑥 for all 
𝜆 ∈ ℂ. We define 𝑓∶ ℂ → 𝐵(𝐻) by

𝑓(𝜆) ≔ 𝑒𝑖𝜆𝑥∗𝑦𝑒−𝑖𝜆𝑥∗ = 𝑒𝑖𝜆𝑥∗𝑒𝑖𝜆𝑥𝑦𝑒−𝑖𝜆𝑥𝑒−𝑖𝜆𝑥∗ = 𝑒𝑖(𝜆𝑥∗+𝜆𝑥)𝑦𝑒−𝑖(𝜆𝑥∗+𝜆𝑥).

Since 𝜆𝑥∗ + 𝜆𝑥 is self-adjoint, 𝑒𝑖(𝜆𝑥∗+𝜆𝑥) is unitary. Hence 𝑓∶ ℂ → 𝐵(𝐻) is a bounded 
𝐵(𝐻)-valued entire function, and thus constant by Liouville. Thus

0 = −𝑖 ⋅ 𝑑
𝑑𝜆

|
𝜆=0

𝑓(𝜆) = 𝑥∗𝑦 − 𝑦𝑥∗.

(Take the power series expansion to first order.) ∎

Exercise 2.2.4. Where is normality of 𝑥 used in the proof of Fuglede’s Theorem 2.2.3?

Corollary 2.2.5. If 𝑥 ∈ 𝐵(𝐻) is normal and 𝑥𝑦 = 𝑦𝑥, then 𝑦𝑓(𝑥) = 𝑓(𝑥)𝑦 for all 𝑓 ∈
𝐶(sp(𝑥)).

Proof. By Fuglede’s Theorem 2.2.3, the result holds for all polynomials in 𝑥 and 
𝑥∗. The result now follows by density of these polynomials in 𝐶(sp(𝑥)) by Stone-
Weierstrass. ∎
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Remark 2.2.6. The results in this section also hold for operators in a unital C∗-algebra, 
not just 𝐵(𝐻).

2.3 Projections and partial isometries
Example 2.3.1. Let 𝑥 ∈ 𝐵(𝐻). The support projection of 𝑥 is supp(𝑥) ∶= 1 − 𝑝ker(𝑥) =
𝑝ker(𝑥)⟂ . The range projection of 𝑥 is Range(𝑥) ∶= 𝑝𝑥𝐻.

Observe that 𝑥 = Range(𝑥) ⋅ 𝑥 ⋅ supp(𝑥). By (B1), Range(𝑥) = supp(𝑥∗). If 𝑥 is normal, 
then since ker(𝑥) = ker(𝑥∗𝑥) = ker(𝑥𝑥∗) = ker(𝑥∗), supp(𝑥) = Range(𝑥).

Lemma 2.3.2. The map 𝑝 ↦ 𝑝𝐻 is a bijective correspondence between projections and 
closed subspaces of 𝐻.

Proof. It is clear that 𝑝𝐻 ⊆ 𝐻 is a closed subspace as 𝑝 is continuous and 𝑝 = 𝑝2. 
Moreover, since 𝑝 = 𝑝∗, 𝑝𝐻⟂ = ker(𝑝∗) = ker(𝑝) = (1 − 𝑝)𝐻.
Conversely, every closed subspace 𝐾 ⊆ 𝐻 has an orthogonal complement 𝐾⟂, 𝐻 =
𝐾 ⊕ 𝐾⟂, and projection 𝑝𝐾 onto 𝐾 is an idempotent. We claim it is self-adjoint. 
Indeed, ker(𝑝∗

𝐾) = 𝑝𝐾𝐻⟂ = 𝐾⟂ = ker(𝑝𝐾), which implies 𝑝∗
𝐾(1 − 𝑝𝐾) = 0, and thus 

𝑝∗
𝐾𝑝𝐾 = 𝑝∗

𝐾. But 𝑝∗
𝐾𝑝𝐾 is self-adjoint, and thus 𝑝𝐾 = 𝑝∗

𝐾.
One checks these two constructions are mutually inverse. ∎

Lemma 2.3.3. For 𝑝, 𝑞 ∈ 𝑃 (𝑀), the following are equivalent.

1. 𝑝 ≤ 𝑞 (𝑞 − 𝑝 ≥ 0),

2. 𝑝𝐻 ⊆ 𝑞𝐻, and

3. 𝑝 = 𝑝𝑞.

Proof. 

(1) ⇒ (2): We show (1 − 𝑞)𝐻 ⊆ (1 − 𝑝)𝐻, and the result follows by taking orthogonal 
complements. Suppose 𝜉 ∈ (1 − 𝑞)𝐻 so 𝑞𝜉 = 0. Then since 0 ≤ 𝑞 − 𝑝,

0 ≤ ⟨(𝑞 − 𝑝)𝜉, 𝜉⟩ = ⟨𝑞𝜉, 𝜉⟩⏟
=0

−⟨𝑝𝜉, 𝜉⟩ = −⟨𝑝𝜉, 𝜉⟩ = −‖𝑝𝜉‖2.

Thus 𝑝𝜉 = 0, so 𝜉 ∈ (1 − 𝑝)𝐻.

(2) ⇒ (3): If 𝑝𝐻 ⊆ 𝑞𝐻, then projecting to 𝑞𝐻 and then to 𝑝𝐻 is the same as just 
projecting to 𝑝𝐻.

(3) ⇒ (1): If 𝑝 = 𝑝𝑞, then 𝑝 = 𝑝∗ = 𝑞𝑝. Thus 𝑞 − 𝑝 = 𝑞 − 𝑞𝑝𝑞 = 𝑞(1 − 𝑝)𝑞 ≥ 0. ∎
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Exercise 2.3.4. We say projections 𝑝, 𝑞 are mutually orthogonal, denoted 𝑝 ⟂ 𝑞, if 𝑝𝐻 ⟂ 𝑞𝐻. 
Show that 𝑝 ⟂ 𝑞 if and only if 𝑝𝑞 = 0.

Exercise 2.3.5. For projections 𝑝, 𝑞, we define 𝑝 ∧ 𝑞 to be the projection onto 𝑝𝐻 ∩ 𝑞𝐻 and 
𝑝 ∨ 𝑞 to be the projection onto 𝑝𝐻 + 𝑞𝐻. Prove that 𝑝 ∨ 𝑞 = 1 − (1 − 𝑝) ∧ (1 − 𝑞).

Exercise 2.3.6. Prove the following statements about projections and invariant subspaces.

1. 𝐾 ⊆ 𝐻 is 𝑥-invariant if and only if 𝑝𝐾𝑥𝑝𝐾 = 𝑥𝑝𝐾.

2. 𝐾 ⊆ 𝐻 is 𝑥-invariant if and only if 𝐾⟂ is 𝑥∗-invariant.

3. 𝐾 ⊆ 𝐻 is 𝑥 and 𝑥∗-invariant if and only if 𝑥𝑝𝐾 = 𝑝𝐾𝑥.

Exercise 2.3.7. The following are equivalent for a 𝑢 ∈ 𝐵(𝐻 → 𝐾).

1. 𝑢 is a partial isometry.

2. 𝑢 = 𝑢𝑢∗𝑢.

3. 𝑢∗ is a partial isometry.

4. 𝑢∗ = 𝑢∗𝑢𝑢∗.

Hint: Use the C∗-identity.

Remark 2.3.8. By the exercise, a partial isometry 𝑢 ∈ 𝐵(𝐻 → 𝐾) is a unitary from 𝑢∗𝑢𝐻
onto 𝑢𝑢∗𝐾.

Exercise 2.3.9. Suppose 𝑢, 𝑣 ∈ 𝐵(𝐻) are partial isometries with 𝑢𝑢∗ ⟂ 𝑣𝑣∗ and 𝑢∗𝑢 ⟂ 𝑣∗𝑣. 
Show that 𝑢 + 𝑣 is again a partial isometry.

Proposition 2.3.10  (Polar decomposition). For each 𝑥 ∈ 𝐵(𝐻 → 𝐾), there is a unique 
positive |𝑥| ∈ 𝐵(𝐻) such that |𝑥|2 = 𝑥∗𝑥 and ‖𝑥𝜉‖ = ‖|𝑥|𝜉‖ for all 𝜉 ∈ 𝐻. Moreover, there is 
a unique partial isometry 𝑢 ∈ 𝐵(𝐻 → 𝐾) such that 𝑢|𝑥| = 𝑥 and ker(𝑢) = ker(𝑥) = ker(|𝑥|). 
In particular, 𝑢∗𝑥 = |𝑥|.

Proof. If 𝑦 ≥ 0 such that ‖𝑦𝜉‖ = ‖𝑥𝜉‖ for all 𝜉 ∈ 𝐻, then

⟨𝑥∗𝑥𝜉, 𝜉⟩ = ‖𝑥𝜉‖2 = ‖𝑦𝜉‖2 = ⟨𝑦2𝜉, 𝜉⟩

so 𝑥∗𝑥 = 𝑦2 by (B2), and thus 𝑦 =
√

𝑥∗𝑥 by the uniqueness of the positive square 
root. Now define 𝑢∶ |𝑥|𝐻 → 𝐾 by 𝑢|𝑥|𝜉 ≔ 𝑥𝜉, and note

‖𝑢|𝑥|𝜉‖ = ‖𝑥𝜉‖ = ‖|𝑥|𝜉‖ ∀ 𝜉 ∈ 𝐻.

So 𝑢 is an isometry on |𝑥|𝐻, and is thus well-defined. We can extend 𝑢 to |𝑥|𝐻 by 
continuity, and define 𝑢 = 0 on (|𝑥|𝐻)⟂ = ker(|𝑥|) by (B1), and ker(|𝑥|) = ker(𝑥) by 
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construction. We will call this extension 𝑢 again by a slight abuse of notation. Then 
𝑢 is a partial isometry and 𝑢|𝑥| = 𝑥.
If 𝑣 ∈ 𝐵(𝐻) is another partial isometry with ker(𝑣) = ker(𝑥) = ker(𝑢) and 𝑣|𝑥| = 𝑥, 
then 𝑢|𝑥|𝜉 = 𝑣|𝑥|𝜉 for all 𝜉 ∈ 𝐻, so 𝑢 = 𝑣 on |𝑥|𝐻. But 𝑢 = 𝑣 = 0 on (|𝑥|𝐻)⟂, so 
𝑢 = 𝑣.
Finally, 𝑢∗𝑢 is the projection onto |𝑥|𝐻, so 𝑢∗𝑥𝜉 = 𝑢∗𝑢|𝑥|𝜉 = |𝑥|𝜉 for all 𝜉 ∈ 𝐻. ∎

Exercise 2.3.11. Suppose 𝑥 = 𝑢|𝑥| is the polar decomposition. Prove that 𝑥 = |𝑥∗|𝑢 and 
the polar decomposition of 𝑥∗ is given by 𝑢∗|𝑥∗|.

Corollary 2.3.12. If 𝑥 = 𝑢|𝑥| is the polar decomposition, then 𝑢∗𝑢 = supp(𝑥) and 𝑢𝑢∗ =
Range(𝑥).

Proof. Since ker(𝑢) = ker(𝑥), supp(𝑥) = 𝑝ker(𝑥)⟂ = 𝑝ker(𝑢)⟂ = 𝑢∗𝑢. Since 𝑥∗ = 𝑢∗|𝑥∗|
is the polar decomposition of 𝑥∗, we have Range(𝑥) = supp(𝑥∗) = 𝑢𝑢∗. ∎

Remark 2.3.13. If 𝑥 is invertible, then so are 𝑥∗ and 𝑥∗𝑥, and by the CFC for 𝑥∗𝑥, so is 
|𝑥|. If 𝑥 = 𝑢|𝑥| is the polar decomposition, then 𝑢 = 𝑥|𝑥|−1 ∈ C∗(𝑥) is a unitary. Hence if 
𝐴 is a unital C∗-algebra and 𝑎 ∈ 𝐴 is invertible, then 𝑎 has a unique polar decomposition in 
𝐴.

2.4 Compact operators
Recall 𝑥 ∈ 𝐵(𝐻 → 𝐾) is called compact if it maps bounded subsets of 𝐻 to precompact 
subsets (subset with compact closure) of 𝐾. We write 𝐾(𝐻 → 𝐾) for the subset of compact 
operators in 𝐵(𝐻 → 𝐾), and we write 𝐾(𝐻) for the compact operators in 𝐵(𝐻). Recall 
that 𝐾(𝐻) is a closed 2-sided ideal in 𝐵(𝐻).

Fact 2.4.1  (Spectra of compact operators). Suppose 𝑥 ∈ 𝐾(𝐻). The non-zero points of 
sp(𝑥) are isolated eigenvalues, and all correspondonding eigenspaces are finite dimensional. 
There are only countably many of them, and zero is the only possible accumulation point.

Exercise 2.4.2. An operator 𝑥 ∈ 𝐵(𝐻) is called finite rank if 𝑥𝐻 is finite dimensional.

1. Show that every finite rank operator is compact.

2. Show that the finite rank operators form a ∗-closed 2-sided ideal in 𝐵(𝐻).

Fact 2.4.3. Every ∗-closed 2-sided ideal 𝐽 ⊆ 𝐵(𝐻) is spanned by its positive operators. 
First, note that every self-adjoint 𝑥 ∈ 𝐽 can be written as 𝑥 = 𝑥+ − 𝑥− with 𝑥± ≥ 0 and 
𝑥+𝑥− = 0 by setting 𝑥+ ∶= 𝜒[0,∞)(𝑥)𝑥 and 𝑥− ∶= 𝜒(−∞,0](𝑥)𝑥. Clearly 𝑥± ∈ 𝐽, so every 
self-adjoint in 𝐽 is in the span of the positives of 𝐽. Second, every 𝑥 = ℜ(𝑥) + 𝑖ℑ(𝑥) with 
ℜ(𝑥) = (𝑥 + 𝑥∗)/2 and ℑ(𝑥) = (𝑥 − 𝑥∗)/(2𝑖). Since 𝐽 is ∗-closed, ℜ(𝑥) and ℑ(𝑥) are in 𝐽. 
Thus ℜ(𝑥)±, ℑ(𝑥)± ∈ 𝐽, and 𝑥 is a linear combination of these 4 positives.
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Lemma 2.4.4. There is a net (𝑝𝑖) of finite rank projections such that 𝑝𝑖𝜉 → 𝜉 for all 
𝜉 ∈ 𝐻. In other words, 𝑝𝑖 → 1 in the strong operator topology (the topology of pointwise 
convergence).

Proof. Let (𝑒𝑖)𝑖∈𝐼 be an ONB of 𝐻. Let ℱ be the subset of finite subsets of 𝐼, ordered 
by inclusion. For 𝐹 ∈ ℱ, define 𝑝𝐹 to be the projection onto the finite dimensional 
(and thus closed) subspace span {𝑒𝑖|𝑖 ∈ 𝐹}. By Parseval’s identity, ‖𝑝𝐹𝜉 − 𝜉‖ → 0 for 
all 𝜉 ∈ 𝐻. ∎

Theorem 2.4.5. The following are equivalent for 𝑥 ∈ 𝐵(𝐻). Below, 𝐵 denotes the norm-
closed unit ball in 𝐻.

(K1) 𝑥 is compact.

(K2) 𝑥 is in the norm closure of the finite rank operators in 𝐵(𝐻).

(K3) 𝑥|𝐵 is weak-norm continuous 𝐵 → 𝐻

(K4) 𝑥𝐵 is compact in 𝐻.

Proof. 

(1) ⇒ (2): Let 𝑥 ∈ 𝐾(𝐻) and let (𝑝𝑖) be a net as in Lemma 2.4.4. We claim that 𝑝𝑖𝑥 → 𝑥
in norm. Otherwise, there is a 𝜀 > 0 such that (passing to a subnet if necessary) for 
all 𝑖, there is a 𝜉𝑖 ∈ 𝐻 with ‖𝜉𝑖‖ = 1 and 𝜀 ≤ ‖(1 − 𝑝𝑖)𝑥𝜉𝑖‖ and 𝑥𝜉𝑖 → 𝜂 in 𝐻 (by 
compactness of 𝑥). Then

𝜀 ≤ ‖(1 − 𝑝𝑖)𝑥𝜉𝑖‖ ≤ ‖(1 − 𝑝𝑖)(𝑥𝜉𝑖 − 𝜂)‖ + ‖(1 − 𝑝𝑖)𝜂‖ ≤ ‖𝑥𝜉𝑖 − 𝜂‖ + ‖(1 − 𝑝𝑖)𝜂‖ −→ 0,

a contradiction.

(2) ⇒ (3): Suppose 𝑥 is a norm limit of finite rank operators and (𝜉𝑖) is a net of vectors in 
𝐵 converging weakly to 𝜉 ∈ 𝐵. Let 𝜀 > 0. Choose a finite rank 𝑦 ∈ 𝐵(𝐻) such that 
‖𝑥 − 𝑦‖ < 𝜀. We claim that 𝑦𝜉𝑖 → 𝑦𝜉. Indeed, choosing an ONB {𝑒1, … , 𝑒𝑛} for the 
finite dimensional Hilbert space 𝑦𝐻,

‖𝑦(𝜉𝑖 − 𝜉)‖2 =
𝑛

∑
𝑘=1

|⟨𝑦(𝜉𝑖 − 𝜉), 𝑒𝑘⟩|2 =
𝑛

∑
𝑘=1

|⟨𝜉𝑖 − 𝜉, 𝑦∗𝑒𝑘⟩|2 ⟶ 0.

Now pick 𝑗 so that 𝑖 > 𝑗 implies ‖𝑦𝜉𝑖 − 𝑦𝜉‖ < 𝜀. For all 𝑖 > 𝑗,

‖𝑥𝜉𝑖 − 𝑥𝜉‖ ≤ ‖𝑥𝜉𝑖 − 𝑦𝜉𝑖‖ + ‖𝑦𝜉𝑖 − 𝑦𝜉‖ + ‖𝑥𝜉 − 𝑦𝜉‖ < 3𝜀.

The result follows.

(3) ⇒ (4): Since 𝐵 is weakly compact by Banach-Alaoglu, 𝑥𝐵 is the continuous image of a 
compact set which is thus compact.
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(4) ⇒ (1): If 𝑆 ⊂ 𝐻 is bounded, then 𝑆 ⊂ 𝐵𝑟 = 𝐵𝑟(0𝐻) for some 𝑟 > 0. Then 𝑥𝐵𝑟 = 𝑟𝑥𝐵
is compact, so the closure of 𝑥𝑆 is compact. ∎

Exercise 2.4.6. Prove that if 𝑥 ∈ 𝐵(𝐻) is finite rank, then so is 𝑥∗. Deduce that 𝐾(𝐻) is 
∗-closed.

Notation 2.4.7. We write ⟨𝜂|𝜉⟩ ≔ ⟨𝜉, 𝜂⟩, which is linear on the right, and conjugate linear 
on the left. For 𝜂 ∈ 𝐻, we write ⟨𝜂| ∈ 𝐻∗ for 𝜉 ↦ ⟨𝜂|𝜉⟩, and we can also denote 𝜉 ∈ 𝐻 by 
|𝜉⟩. This allows us to define the rank one operator |𝜂⟩⟨𝜉| ∈ 𝐵(𝐻) by 𝜁 ↦ |𝜂⟩⟨𝜉|𝜁⟩ = ⟨𝜁, 𝜉⟩𝜂.

Exercise 2.4.8. Prove the following statements about rank one operators.

1. |𝜂⟩⟨𝜉|∗ = |𝜉⟩⟨𝜂|

2. |𝜂1⟩⟨𝜂2| ⋅ |𝜉1⟩⟨𝜉2| = ⟨𝜂2|𝜉1⟩ ⋅ |𝜂1⟩⟨𝜉2|

3. If ‖𝜉‖ = 1, then |𝜉⟩⟨𝜉| is the rank one projection onto ℂ𝜉.

Definition 2.4.9. An operator 𝑥 ∈ 𝐵(𝐻) is orthogonally diagonalizable if there is an ONB 
(𝑒𝑖) of eigenvectors for 𝑥.

Exercise 2.4.10. Show that if 𝑥 ∈ 𝐵(𝐻) is orthogonally diagonalizable, then the eigenvalues 
(𝜆𝑖) for (𝑒𝑖) are in ℓ∞(𝐼), where 𝐼 is given counting measure.

Lemma 2.4.11. An orthogonally diagonalizable operator 𝑥 ∈ 𝐵(𝐻) is compact if and only 
if the eigenvalues (𝜆𝑖) for (𝑒𝑖) is in 𝑐0(𝐼), where 𝐼 has the discrete topology, and 𝑥 =
∑𝑖 𝜆𝑖|𝑒𝑖⟩⟨𝑒𝑖|, where the sum converges in norm.

Proof. By Fact 2.4.1, since sp(𝑥) ⊆ {𝜆𝑖|𝑖 ∈ 𝐼} ∪ {0}, we must have (𝜆𝑖) ∈ 𝑐0(𝐼).
Conversely, if (𝜆𝑖) ∈ 𝑐0(𝐼), then ∑ 𝜆𝑖|𝑒𝑖⟩⟨𝑒𝑖| converges in operator norm to 𝑥. Indeed, 
if we define 𝑥𝐹 ≔ ∑𝑖∈𝐹 𝜆𝑖|𝑒𝑖⟩⟨𝑒𝑖| for each finite 𝐹 ⊂ 𝐼, then picking 𝐹 ⊂ 𝐼 so that 
|𝜆𝑖| < 𝜀 for all 𝑖 ∈ 𝐹 𝑐, we have

‖(𝑥 − 𝑥𝐹)𝜉‖2 = ‖∑
𝑖∉𝐹

𝜆𝑖|𝑒𝑖⟩⟨𝑒𝑖|𝜉⟩‖
2

= ∑
𝑖∉𝐹

|𝜆𝑖|2|⟨𝜉, 𝑒𝑖⟩|2 < 𝜀2‖𝜉‖2,

so 𝑥𝐹 → 𝑥 in norm. ∎

Theorem 2.4.12  (Spectral theorem for compact normal operators). Compact normal op­
erators are diagonalizable.

Proof. Suppose 𝑥 ∈ 𝐾(𝐻) is normal. It suffices to prove 𝐻 is the orthogonal direct 
sum of eigenspaces of 𝑥. We may assume dim(𝐻) = ∞. Using Fact 2.4.1, let (𝜆𝑛) be 
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the non-zero eigenvalues of 𝑥, which is either a finite list or 𝜆𝑛 ↘ 0. Let 𝐸𝑛 be the 
corresponding eigenspaces. Then 𝐸𝑛 is an eigenspace for 𝑥∗ with eigenvalue 𝜆 by (N1), 
and 𝐸𝑛 ⟂ 𝐸𝑘 for all 1 ≤ 𝑘 < 𝑛. Since each 𝐸𝑛 is 𝑥 and 𝑥∗-invariant, so is ⨁𝑛≥1 𝐸𝑛. 
Setting 𝐸0 ≔ (⨁𝑛≥1 𝐸𝑛)⟂, we have 𝐸0 is 𝑥 and 𝑥∗-invariant by Exercise 2.3.6. Then 
𝑥|𝐸0

 is compact and has no non-zero eigenvalues, and so 𝑥|𝐸0
= 0. We conclude that 

𝐻 = ⨁𝑛≥0 𝐸𝑛 is the desired direct sum decomposition into eigenspaces. ∎

Remark 2.4.13. Using the Borel functional calculus and Theorem 2.4.12, one can show that 
a positive operator 𝑥 ∈ 𝐵(𝐻) is compact if and only if for all 𝜀 > 0, the spectral projection 
𝜒(𝜀,∞)(𝑥) is finite rank.

Corollary 2.4.14. If 𝑥 ∈ 𝐵(𝐻 → 𝐾) such that 𝑥∗𝑥 is compact, then 𝑥 is compact.

Proof. Writing 𝑥∗𝑥 = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| with 𝜆𝑛 ↘ 0 by Theorem 2.4.12, we have |𝑥| =
∑ √𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| with √𝜆𝑛 ↘ 0. Thus |𝑥| is compact by Lemma 2.4.11, and so is 
𝑥 = 𝑢|𝑥| using polar decomposition 2.3.10. ∎

Definition 2.4.15. Suppose 𝑥 ∈ 𝐾(𝐻), so |𝑥| = (𝑥∗𝑥)1/2 is compact. Enumerate the 
eigenvalues of |𝑥| by

𝜆0 ≥ 𝜆1 ≥ 𝜆2 ≥ ⋯

with multiplicity as necessary. Note that 𝜆0 = ‖𝑥‖.
We define 𝑠𝑛(𝑥) ≔ 𝜆𝑛, called the 𝑛-th singular value of 𝑥.
Now pick orthonormal vectors (𝑓𝑛) such that |𝑥|𝑓𝑛 = 𝜆𝑛𝑓𝑛 and |𝑥| = ∑ 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛|, 

which converges in operator norm. Set 𝑒𝑛 ≔ 𝑢𝑓𝑛 where 𝑥 = 𝑢|𝑥| is the polar decomposition 
2.3.10. Then (𝑒𝑛) is an orthonormal set, and 𝑥 = 𝑢|𝑥| = 𝑢 ∑ 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛| = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑓𝑛|, 
where the sum converges in operator norm. This is called a Schmidt representation of 𝑥.

Warning 2.4.16. We warn the reader that a Schmidt decomposition of 𝑥 ∈ 𝐾(𝐻) is not 
unique, but the singular values are well-defined. The usefulness of a Schmidt decomposition 
is that 𝑥 is realized as an explicit norm-limit of finite rank operators.

For a unique representation, we can define 𝑝𝑛 = 𝑝𝐸𝑛
 to be the (finite rank) orthogo­

nal projection with range 𝐸𝑛, the eigenspace of |𝑥| corresponding to 𝑠𝑛(𝑥). Then |𝑥| =
∑ 𝑠𝑛(𝑥)𝑝𝑛 and 𝑥 = ∑ 𝑠𝑛(𝑥)𝑢𝑝𝑛.

Here are some elementary properties about singular values.

(SV1) 𝑠𝑛(𝑥) = 𝑠𝑛(𝑥∗) for all 𝑛.

Proof. Let 𝑥 = ∑ 𝑠𝑛(𝑥)|𝑒𝑛⟩⟨𝑓𝑛| be a Schmidt decomposition for 𝑥. Using 
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Exercise 2.3.11, one can see that

𝑥∗ = ∑ 𝑠𝑛(𝑥)|𝑓𝑛⟩⟨𝑒𝑛| = 𝑢∗ ∑ 𝑠𝑛(𝑥)|𝑒𝑛⟩⟨𝑒𝑛|

is a Schmidt decomposition for 𝑥∗, and thus 𝑠𝑛(𝑥∗) = 𝑠𝑛(𝑥). Alternatively, we 
see that 𝑥𝑥∗ = ∑ 𝑠𝑛(𝑥)2|𝑒𝑛⟩⟨𝑒𝑛| converges in norm, so |𝑥∗| = ∑ 𝑠𝑛(𝑥)|𝑒𝑛⟩⟨𝑒𝑛|, 
which also implies 𝑠𝑛(𝑥∗) = 𝑠𝑛(𝑥). ∎

(SV2) (Minimax) Suppose 𝑥 ∈ 𝐾(𝐻) is positive and non-zero. Then for all 𝑛 ≥ 0 such that 
𝑛 ≤ dim(𝐻),

𝑠𝑛(𝑥) = min
𝐸⊆𝐻

codim(𝐸)=𝑛

max
𝜉∈𝐸

‖𝜉‖=1

⟨𝑥𝜉, 𝜉⟩. (2.4.17)

Proof. First, we prove that max {⟨𝑥𝜉, 𝜉⟩|𝜉 ∈ 𝐸 and ‖𝜉‖ = 1} exists. By (K4), 
𝑥 is weak-norm continuous on 𝐵𝐸. Second, ⟨ ⋅ , ⋅ ⟩ ∶ 𝐻 × 𝐻 → ℂ is jointly 
continuous on norm bounded sets in the product topology where the first factor 
has the norm topology and the second factor has the weak topology. Indeed, if 
𝜂𝑖 → 𝜂 in norm and 𝜉𝑖 → 𝜉 weakly, we can find 𝑗 in our index set so that 𝑖 > 𝑗
implies ‖𝜂𝑖 − 𝜂‖ < 𝜀/𝑀 where 𝑀 is a bound for the norm of all 𝜉𝑖 and 𝜉. Then

|⟨𝜂𝑖, 𝜉𝑖⟩ − ⟨𝜂, 𝜉⟩| ≤ |⟨𝜂𝑖 − 𝜂, 𝜉𝑖⟩|⏟⏟⏟⏟⏟
≤‖𝜂𝑖−𝜂‖⋅‖𝜉𝑖‖<𝜀

+ |⟨𝜂, 𝜉𝑖 − 𝜉⟩|⏟⏟⏟⏟⏟
→0

.

Hence the map 𝜉 ↦ (𝑥𝜉, 𝜉) ↦ ⟨𝑥𝜉, 𝜉⟩ is continuous on 𝐵𝐸 equipped with the 
weak topology. Since 𝐵𝐸 is weakly compact by Banach-Alaoglu, the max exists.
Now denote the right hand side of (2.4.17) by 𝑚𝑛. We know the case 𝑛 = 0
holds. Assume 𝑛 > 0 and let (𝑓𝑘) be an orthonormal subset such that 𝑥 =
∑ 𝑠𝑘(𝑥)|𝑓𝑘⟩⟨𝑓𝑘| with 𝜆𝑘 ↘ 0. For 𝐸 = span{𝑓0, … , 𝑓𝑛−1}⟂, we have 𝑓𝑛 ∈ 𝐸
and ⟨𝑥𝑓𝑛, 𝑓𝑛⟩ = 𝑠𝑛(𝑥), so 𝑚𝑛 ≤ 𝜆𝑛.
Conversely, if codim(𝐸) = 𝑛, then there is a 𝜉 ∈ 𝐸 ∩ span{𝑓0, … , 𝑓𝑛} with 
‖𝜉‖ = 1. Then writing 𝜉 = ∑𝑛

𝑖=0 𝛼𝑖𝑓𝑖 with 𝛼𝑖 = ⟨𝜉, 𝑓𝑖⟩ and ∑ |𝛼𝑖|2 = 1, we 
have

⟨𝑥𝜉, 𝜉⟩ =
𝑛

∑
𝑖=0

𝑠𝑖(𝑥)|𝛼𝑖|2 ≥ 𝑠𝑛(𝑥).

Hence 𝑠𝑛(𝑥) ≤ 𝑚𝑛. ∎

(SV3) If 𝑥 ∈ 𝐾(𝐻), then
𝑠𝑛(𝑥) = min

𝐸⊆𝐻
codim(𝐸)=𝑛

max
𝜉∈𝐸

‖𝜉‖=1

‖𝑥𝜉‖. (2.4.18)
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Proof. Observe that 𝑠𝑛(𝑥) = √𝑠𝑛(𝑥∗𝑥) and ⟨𝑥∗𝑥𝜉, 𝜉⟩ = ‖𝑥𝜉‖2. Apply Minimax 
(SV2) for 𝑥∗𝑥 and take square roots. ∎

(SV4) If 𝑥 ∈ 𝐾(𝐻) and 𝑦 ∈ 𝐵(𝐻), then both 𝑠𝑛(𝑥𝑦), 𝑠𝑛(𝑦𝑥) ≤ ‖𝑦‖𝑠𝑛(𝑥).

Proof. Using Minimax (2.4.18), we havea

𝑠𝑛(𝑦𝑥) = min
𝐸⊆𝐻

codim(𝐸)=𝑛

max
𝜉∈𝐸

‖𝜉‖=1

‖𝑦𝑥𝜉‖ ≤ min
𝐸⊆𝐻

codim(𝐸)=𝑛

max
𝜉∈𝐸

‖𝜉‖=1

‖𝑦‖ ⋅ ‖𝑥𝜉‖ = ‖𝑦‖ ⋅ 𝑠𝑛(𝑥).

Observe now that

𝑠𝑛(𝑥𝑦) = 𝑠𝑛(𝑦∗𝑥∗) ≤ ‖𝑦∗‖ ⋅ 𝑠𝑛(𝑥∗) = ‖𝑦‖ ⋅ 𝑠𝑛(𝑥). ∎

aStarting with ‖𝑦𝑥𝜉‖ ≤ ‖𝑦‖ ⋅ ‖𝑥𝜉‖, add max on the right then the left, and then add min 
on the left then the right.

(SV5) For 𝑥 ∈ 𝐾(𝐻), 𝑠𝑛(𝑥) = dist(𝑥, 𝐹𝑛 ≔ {rank ≤ 𝑛 operators}).

Proof. Write 𝑥 = ∑𝑖 𝜆𝑖|𝑒𝑖⟩⟨𝑓𝑖| in Schmidt representation. The operator 𝑦 ≔
∑𝑛−1

𝑖=0 𝜆𝑖|𝑒𝑖⟩⟨𝑓𝑖| is in 𝐹𝑛 and 𝑥 − 𝑦 = ∑𝑖≥𝑛 𝜆𝑖|𝑒𝑖⟩⟨𝑓𝑖| has norm 𝜆𝑛. Hence 
dist(𝑥, 𝐹𝑛) ≤ 𝜆𝑛. Now for all 𝑦 ∈ 𝐹𝑛, dim span{𝑓0, … , 𝑓𝑛} = 𝑛 + 1, so there is 
a 𝜉 ∈ 𝐹𝑛 with ‖𝜉‖ = 1 and 𝑦𝜉 = 0. Then

‖𝑥 − 𝑦‖ ≥ ‖(𝑥 − 𝑦)𝜉‖ = ‖𝑥𝜉‖ ≥ 𝜆𝑛. ∎

(SV6) If 𝑥, 𝑦 ∈ 𝐾(𝐻), then 𝑠𝑚+𝑛(𝑥 + 𝑦) ≤ 𝑠𝑚(𝑥) + 𝑠𝑛(𝑦).

Proof. Let 𝜀 > 0. Using (SV5), take 𝑧1 ∈ 𝐹𝑚 such that ‖𝑥 − 𝑧1‖ < 𝑠𝑚(𝑥) + 𝜀
and take 𝑧2 ∈ 𝐹𝑛 such that ‖𝑦 − 𝑧2‖ < 𝑠𝑛(𝑦) + 𝜀. Then 𝑧1 + 𝑧2 ∈ 𝐹𝑚+𝑛 and 
thus

𝑠𝑚+𝑛(𝑥 + 𝑦) = dist(𝑥 + 𝑦, 𝐹𝑚+𝑛) ≤ ‖𝑥 + 𝑦 − (𝑧1 + 𝑧2)‖
≤ ‖𝑥 − 𝑧1‖ + ‖𝑦 − 𝑧2‖ < 𝑠𝑚(𝑥) + 𝑠𝑛(𝑦) + 2𝜀.

Since 𝜀 > 0 was arbitrary, the result follows. ∎
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2.5 The trace and the Schatten 𝑝-classes
Let (𝑒𝑖) be an orthonormal basis of 𝐻. Define Tr ∶ 𝐵(𝐻)+ → [0, ∞] by Tr(𝑥) ≔ ∑𝑖⟨𝑥𝑒𝑖, 𝑒𝑖⟩.

Here are some basic properties about the trace.

(Tr1) Tr is positive-linear, i.e., Tr(𝜆𝑥+𝑦) = 𝜆 Tr(𝑥)+Tr(𝑦) for all 𝜆 > 0 and 𝑥, 𝑦 ∈ 𝐵(𝐻)+.

(Tr2) Tr is lower semicontinuous on 𝐵(𝐻)+.

Proof. This follows immediately from the fact that each functional 𝑥 ↦ ⟨𝑥𝑒𝑖, 𝑒𝑖⟩
is continuous and [0, ∞)-valued together with the following exercise.

Exercise 2.5.1. Let 𝑋 be a topological space and (𝑓𝑛) a sequence of lower 
semicontinuous [0, ∞)-valued functions. Prove that ∑ 𝑓𝑛 ∶ 𝑋 → [0, ∞) defined 
by (∑ 𝑓𝑛)(𝑥) = ∑ 𝑓𝑛(𝑥) is again lower semicontinuous. ∎

(Tr3) Tr(𝑥∗𝑥) = Tr(𝑥𝑥∗) for all 𝑥 ∈ 𝐵(𝐻).

Proof. Since the sum of positive numbers is independent of ordering,

∑
𝑖

⟨𝑥∗𝑥𝑒𝑖, 𝑒𝑖⟩ = ∑
𝑖

⟨𝑥𝑒𝑖, 𝑥𝑒𝑖⟩ = ∑
𝑖,𝑗

⟨⟨𝑥𝑒𝑖, 𝑒𝑗⟩𝑒𝑗, 𝑥𝑒𝑖⟩ = ∑
𝑖,𝑗

⟨𝑥𝑒𝑖, 𝑒𝑗⟩⟨𝑒𝑗, 𝑥𝑒𝑖⟩

= ∑
𝑖,𝑗

⟨𝑥∗𝑒𝑗, 𝑒𝑖⟩⟨𝑒𝑖, 𝑥∗𝑒𝑗⟩ = ∑
𝑗,𝑖

⟨𝑥∗𝑒𝑗, 𝑒𝑖⟩⟨𝑒𝑖, 𝑥∗𝑒𝑗⟩

= ∑
𝑗,𝑖

⟨⟨𝑥∗𝑒𝑗, 𝑒𝑖⟩𝑒𝑖, 𝑥∗𝑒𝑗⟩ = ∑
𝑗

⟨𝑥∗𝑒𝑗, 𝑥∗𝑒𝑗⟩ = ∑
𝑗

⟨𝑥𝑥∗𝑒𝑗, 𝑒𝑗⟩. ∎

(Tr4) Tr(𝑥) = Tr(𝑢∗𝑥𝑢) for all unitaries 𝑢 ∈ 𝐵(𝐻) and 𝑥 ≥ 0. Hence if (𝑓𝑖) is another 
orthonormal basis of 𝐻, then Tr(𝑥) = ∑𝑖⟨𝑥𝑓𝑖, 𝑓𝑖⟩.

Proof. Write 𝑥 =
√

𝑥2 so that by (Tr3),

Tr(𝑢∗𝑥𝑢) = Tr((
√

𝑥𝑢)∗(
√

𝑥𝑢)) = Tr((
√

𝑥𝑢)(
√

𝑥𝑢)∗) = Tr(
√

𝑥2) = Tr(𝑥).

Now if (𝑓𝑖) is another ONB, then define a unitary 𝑣 ∈ 𝐵(𝐻) by 𝑒𝑖 ↦ 𝑓𝑖. Then

Tr(𝑥) = Tr(𝑢∗𝑥𝑢) = ∑
𝑖

⟨𝑢∗𝑥𝑢𝑒𝑖, 𝑒𝑖⟩ = ∑
𝑖

⟨𝑥𝑢𝑒𝑖, 𝑢𝑒𝑖⟩ = ∑
𝑖

⟨𝑥𝑓𝑖, 𝑓𝑖⟩. ∎

(Tr5) If 𝑥 ≥ 0, then Tr(𝑥) ≥ ‖𝑥‖.
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Proof. If 𝑥 ≥ 0, then by (N5), there is a unit vector 𝜉 ∈ 𝐻 such that ⟨𝑥𝜉, 𝜉⟩ =
max {𝜆|𝜆 ∈ sp(𝑥)} = ‖𝑥‖. Extend {𝜉} to an ONB {𝜉} ⨿ (𝑓𝑖), and observe that

Tr(𝑥) = ⟨𝑥𝜉, 𝜉⟩ + ∑
𝑖

⟨𝑥𝑓𝑖, 𝑓𝑖⟩ ≥ ⟨𝑥𝜉, 𝜉⟩ = ‖𝑥‖. ∎

Lemma 2.5.2. 
1. If 𝑥 ∈ 𝐾(𝐻), then Tr(|𝑥|𝑝) = ∑ 𝑠𝑛(𝑥)𝑝.

2. If Tr(|𝑥|𝑝) < ∞ for some 𝑝 > 0, then 𝑥 is compact.

Proof. 

(1) Write |𝑥| = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| with 𝜆𝑛 ↘ 0 by Theorem 2.4.12 so that |𝑥|𝑝 =
∑ 𝜆𝑝

𝑛|𝑒𝑛⟩⟨𝑒𝑛|. Extending (𝑒𝑛) to an ONB (𝑒𝑖), we see

Tr(𝑥) = ∑
𝑖

⟨𝑥𝑒𝑖, 𝑒𝑖⟩ = ∑
𝑛

𝜆𝑝
𝑛 = ∑

𝑛
𝑠𝑛(𝑥)𝑝.

(2) Let (𝑒𝑖) be an ONB and suppose 𝜀 > 0. There is a finite subset 𝐹 ⊂ 𝐼 such 
that ∑𝑖∉𝐹⟨|𝑥|𝑝𝑒𝑖, 𝑒𝑖⟩ < 𝜀. Let 𝑝𝐹 denote the projection onto span {𝑒𝑖|𝑖 ∈ 𝐹}, and 
observe that

‖|𝑥|𝑝/2(1 − 𝑝𝐹)‖2 = ‖(1 − 𝑝𝐹)|𝑥|𝑝(1 − 𝑝𝐹)‖ ≤ Tr((1 − 𝑝𝐹)|𝑥|𝑝(1 − 𝑝𝐹))
= ∑

𝑖∉𝐹
⟨|𝑥|𝑝𝑒𝑖, 𝑒𝑖⟩ < 𝜀.

Thus we may approximate |𝑥|𝑝/2 by finite rank operators, so |𝑥|𝑝/2 is compact, and 
thus so is |𝑥|𝑝. Using the Spectral Theorem for compact normal operators 2.4.12, 
we can write |𝑥|𝑝 = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| with 𝜆𝑛 ↘ 0. But then |𝑥| = ∑ 𝜆1/𝑝

𝑛 |𝑒𝑛⟩⟨𝑒𝑛|
and 𝜆1/𝑝

𝑛 ↘ 0, so |𝑥| is compact by Lemma 2.4.11. Hence 𝑥 = 𝑢|𝑥| is compact. ∎

Definition 2.5.3. The Schatten 𝑝-class/𝑝-ideal is the set

ℒ𝑝(𝐻) ≔ {𝑥 ∈ 𝐵(𝐻)| Tr(|𝑥|𝑝) = ∑ 𝑠𝑛(𝑥)𝑝 < ∞} .

We call ℒ1(𝐻) the trace class operators and ℒ2(𝐻) the Hilbert-Schmidt operators. Observe 
that ℒ𝑝(𝐻) ⊂ 𝐾(𝐻) by Lemma 2.5.2.
Remark 2.5.4. Recall that when 1 ≤ 𝑞 ≤ 𝑝, ℓ𝑞 ⊆ ℓ𝑝 with ‖ ⋅ ‖𝑞 ≥ ‖ ⋅ ‖𝑝. Since Tr(|𝑥|𝑝) =
‖(𝑠𝑛(𝑥))‖ℓ𝑝 , ℒ𝑞(𝐻) ⊆ ℒ𝑝(𝐻) with ‖ ⋅ ‖𝑞 ≥ ‖ ⋅ ‖𝑝.
Lemma 2.5.5. The Schatten 𝑝-class ℒ𝑝(𝐻) is a ∗-closed 2-sided ideal of 𝐵(𝐻) which is 
algebraically spanned by its positive operators.
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Proof. 

∗-closed: 𝑠𝑛(𝑥) = 𝑠𝑛(𝑥∗) for all 𝑛 ≥ 0.

+-closed: 𝑠2𝑛(𝑥+𝑦) ≤ 𝑠𝑛(𝑥)+𝑠𝑛(𝑦), so (𝑠𝑛(𝑥)), (𝑠𝑛(𝑦)) ∈ ℓ𝑝 implies (𝑠2𝑛(𝑥+𝑦)) ∈ ℓ𝑝. 
Similarly, 𝑠2𝑛+1(𝑥 + 𝑦) ≤ 𝑠𝑛(𝑥) + 𝑠𝑛+1(𝑦), so (𝑠𝑛(𝑥)), (𝑠𝑛(𝑦)) ∈ ℓ𝑝 implies 
(𝑠2𝑛+1(𝑥 + 𝑦)) ∈ ℓ𝑝. Thus (𝑠𝑛(𝑥 + 𝑦)) ∈ ℓ𝑝.

ideal: For all 𝑥 ∈ 𝐵(𝐻) and 𝑦 ∈ ℒ𝑝(𝐻), 𝑠𝑛(𝑥𝑦), 𝑠𝑛(𝑦𝑥) ≤ 𝑠0(𝑥)𝑠𝑛(𝑦) = ‖𝑥‖𝑠𝑛(𝑦) , so 
𝑥𝑦, 𝑦𝑥 ∈ ℒ𝑝(𝐻).

positive spanning: Immediate by Fact 2.4.3. ∎

Corollary 2.5.6. ℒ1(𝐻) = span {𝑥 ≥ 0| Tr(𝑥) < ∞}.

Proposition 2.5.7. Tr extends to a linear map ℒ1(𝐻) → ℂ satisfying:

• 𝑥 ≤ 𝑦 implies Tr(𝑥) ≤ Tr(𝑦) (when 𝑥, 𝑦 are self-adjoint) and

• | Tr(𝑥)| ≤ Tr(|𝑥|).

Proof. For 𝑥 ∈ ℒ1(𝐻), we can write 𝑥 = ∑3
𝑘=0 𝑖𝑘𝑥𝑘 with each 𝑥𝑘 ∈ ℒ1(𝐻)+. Define 

Tr(𝑥) = ∑3
𝑘=0 𝑖𝑘 Tr(𝑥𝑘). This formula is clearly linear as long as it is well-defined. 

First, suppose 𝑥 is self-adjoint. Since ℜ(𝑥) = 𝑥0 − 𝑥2 and ℑ(𝑥) = 𝑥1 − 𝑥3 = 0, we 
must have 𝑥1 = 𝑥3, so 𝑥 = 𝑥0 − 𝑥2. If 𝑥 = 𝑦0 − 𝑦2 for 𝑦0, 𝑦2 ∈ ℒ1(𝐻)+, then

𝑥0 − 𝑥2 = 𝑥 = 𝑦0 − 𝑦2 ⟺ 𝑥0 + 𝑦2 = 𝑦0 + 𝑥2.

Thus Tr(𝑥0) + Tr(𝑦2) = Tr(𝑦0) + Tr(𝑥2), and since these numbers are finite, 
Tr(𝑥0) − Tr(𝑥2) = Tr(𝑦0) − Tr(𝑦2). Now when 𝑥 is arbitrary, if we can also write 
𝑥 = ∑3

𝑘=0 𝑖𝑘𝑦𝑘 with each 𝑦𝑘 ∈ ℒ1(𝐻)+, then ℜ(𝑥) = 𝑦0 − 𝑦2 and ℑ(𝑥) = 𝑦1 − 𝑦3. 
Hence ∑3

𝑘=0 𝑖𝑘 Tr(𝑦𝑘) = Tr(ℜ(𝑥)) − 𝑖 Tr(ℑ(𝑥)) which is independent of the 𝑦𝑘 ≥ 0.
Now suppose 𝑥 ≤ 𝑦 in ℒ1(𝐻). Then 𝑦 − 𝑥 ≥ 0, so 0 ≤ Tr(𝑦 − 𝑥) = Tr(𝑦) − Tr(𝑥).
To prove the last relation, take a Schmidt decomposition 𝑥 = ∑𝑛 𝑠𝑛(𝑥)|𝑒𝑛⟩⟨𝑓𝑛| with 
(𝑒𝑛) and (𝑓𝑛) orthonormal. Then

| Tr(𝑥)| = |∑
𝑖

⟨∑
𝑛

𝑠𝑛(𝑥)|𝑒𝑛⟩⟨𝑓𝑛|𝑓𝑖, 𝑓𝑖⟩| = |∑
𝑛

𝑠𝑛(𝑥)⟨𝑒𝑛, 𝑓𝑛⟩|

≤ ∑
𝑛

𝑠𝑛(𝑥)|⟨𝑒𝑛, 𝑓𝑛⟩| = ∑
𝑛

𝑠𝑛(𝑥) = Tr(|𝑥|). ∎
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Proposition 2.5.8. For 𝑥, 𝑦 ∈ ℒ2(𝐻), 𝑥∗𝑦 ∈ ℒ1(𝐻). The space ℒ2(𝐻) is a Hilbert space 
with inner product ⟨𝑥, 𝑦⟩ℒ2 ∶= Tr(𝑦∗𝑥).

Proof. First, if 𝑥 ∈ ℒ2(𝐻) if and only if 𝑥∗𝑥 ∈ ℒ1(𝐻) as Tr(|𝑥|2) = Tr(𝑥∗𝑥). By 
polarization,

𝑦∗𝑥 = 1
4

3
∑
𝑘=0

𝑖𝑘 (𝑥 + 𝑖𝑘𝑦)∗ (𝑥 + 𝑖𝑘𝑦)⏟
∈ℒ2(𝐻)⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈ℒ1(𝐻)

.

It is clear that ⟨ ⋅ , ⋅ ⟩ℒ2(𝐻) is a positive sesquilinear form. Definiteness follows from 
the estimate

‖𝑥‖2
2 ∶= Tr(𝑥∗𝑥) ≥

(Tr5)
‖𝑥∗𝑥‖ = ‖𝑥‖2.

This also shows every ‖ ⋅ ‖2-Cauchy sequence is ‖ ⋅ ‖-Cauchy. To see ℒ2(𝐻) is complete 
with respect to ‖ ⋅ ‖2, it suffices to prove that if (𝑥𝑛) is ‖ ⋅ ‖2-Cauchy with 𝑥𝑛 → 𝑥 in 
‖ ⋅ ‖, then 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖2. First, 𝑥 ∈ 𝐾(𝐻) as 𝐾(𝐻) is closed. Next, for all finite 
rank projections 𝑝,

‖(𝑥 − 𝑥𝑛)𝑝‖2
2 = Tr(𝑝(𝑥 − 𝑥𝑛)∗(𝑥 − 𝑥𝑛)𝑝)

(!)
= lim

𝑚
Tr(𝑝(𝑥𝑚 − 𝑥𝑛)∗(𝑥𝑚 − 𝑥𝑛)𝑝)

= lim
𝑚

Tr((𝑥𝑚 − 𝑥𝑛)𝑝(𝑥𝑚 − 𝑥𝑛)∗) ≤ lim sup
𝑚

Tr((𝑥𝑚 − 𝑥𝑛)(𝑥𝑚 − 𝑥𝑛)∗)

= lim sup
𝑚

Tr((𝑥𝑚 − 𝑥𝑛)∗(𝑥𝑚 − 𝑥𝑛)) = lim sup
𝑚

‖𝑥𝑚 − 𝑥𝑛‖2
2.

In the equality marked (!) above, we are using the fact that there is only one trace 
on 𝐵(𝑝𝐻) ≅ 𝑀𝑘(ℂ), where 𝑝𝐻 is a finite dimensional Hilbert space with dimension 
𝑘. Thus 𝑥𝑚 → 𝑥 in norm implies 𝑝(𝑥𝑚 − 𝑥𝑛)∗(𝑥𝑚 − 𝑥𝑛)𝑝 → 𝑝(𝑥 − 𝑥𝑛)∗(𝑥 − 𝑥𝑛)𝑝 in 
norm, and we know the trace on 𝐵(𝑝𝐻) is continuous.
Since 𝑝 was arbitrary, we conclude that

‖𝑥 − 𝑥𝑛‖2
2 ≤ lim sup

𝑚
‖𝑥𝑚 − 𝑥𝑛‖2

2,

which implies both 𝑥 ∈ ℒ2(𝐻) and 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖2. ∎

Exercise 2.5.9. Suppose 𝐻 is a Hilbert space (which you may assume is separable) with 
ONBs (𝑒𝑖) and (𝑓𝑖).

1. Show that for every 𝑥 ∈ ℒ2(𝐻), ∑𝑖,𝑗 |⟨𝑥𝑒𝑗, 𝑓𝑖⟩|2 = ∑𝑛 |𝑠𝑛(𝑥)|2 = ∑𝑛 ‖𝑥𝑒𝑛‖2.

2. Show that for each 𝑎 = (𝑎𝑖𝑗) ∈ ℓ2(ℕ2), there is an 𝑎 ∈ ℒ2(𝐻) such that 𝑎𝑖𝑗 = ⟨𝑎𝑒𝑗, 𝑓𝑖⟩.

3. Construct a unitary isomorphism ℒ2(𝐻) → ℓ2(ℕ2).
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4. Construct a canonical isomorphism ℒ2(𝐻) ≅ 𝐻 ⊗ 𝐻∗.

Corollary 2.5.10. For all 𝑥 ∈ ℒ1(𝐻) and 𝑦 ∈ ℬ(𝐻), | Tr(𝑥𝑦)|, | Tr(𝑦𝑥)| ≤ ‖𝑦‖ ⋅ Tr(|𝑥|).

Proof. Since 𝑥𝑦 ∈ ℒ1(𝐻), | Tr(𝑥𝑦)| ≤ Tr(|𝑥𝑦|). Since 𝑠𝑛(|𝑥𝑦|) ≤ ‖𝑦‖ ⋅ 𝑠𝑛(𝑥) by (SV4),

Tr(|𝑥𝑦|) = ∑ 𝑠𝑛(|𝑥𝑦|) ≤ ∑ ‖𝑦‖𝑠𝑛(𝑥) = ‖𝑦‖ ∑ 𝑠𝑛(𝑥) = ‖𝑦‖ Tr(|𝑥|).

Similarly, Tr(|𝑦𝑥|) ≤ ‖𝑦‖ Tr(|𝑥|). ∎

Lemma 2.5.11. For 𝑥, 𝑦 ∈ ℒ2(𝐻), Tr(𝑥𝑦) = Tr(𝑦𝑥). The conclusion also holds for 
𝑥 ∈ ℒ1(𝐻) and 𝑦 ∈ ℬ(𝐻).

Proof. As (𝑥, 𝑦) ↦ Tr(𝑥∗𝑦) and (𝑦, 𝑥) ↦ Tr(𝑦𝑥∗) are both sesquilinear forms on 
ℒ2(𝐻), by polarization, they agree if and only if they agree on the diagonal. But 
Tr(𝑥∗𝑥) = Tr(𝑥𝑥∗), so Tr(𝑥∗𝑦) = Tr(𝑦𝑥∗) for all 𝑥, 𝑦 ∈ ℒ2(𝐻).
For the second part, by linearity in 𝑥, we may assume 𝑥 ∈ ℒ1(𝐻)+ so that 

√
𝑥 ∈

ℒ2(𝐻)+. We then calculate

Tr(𝑥𝑦) = Tr(
√

𝑥(
√

𝑥𝑦)) = Tr((
√

𝑥𝑦)
√

𝑥) = Tr(
√

𝑥(𝑦
√

𝑥)) = Tr((𝑦
√

𝑥)
√

𝑥) = Tr(𝑦𝑥).
∎

Proposition 2.5.12. ℒ1(𝐻) is a Banach ∗-algebra with ‖𝑥‖1 ∶= Tr(|𝑥|) = ∑ 𝑠𝑛(𝑥).

Proof. We show ‖ ⋅ ‖1 has the required properties.

Homogeneous: ‖𝜆𝑥‖1 = Tr(|𝜆𝑥|) = Tr(|𝜆| ⋅ |𝑥|) = |𝜆| Tr(|𝑥|) = |𝜆| ⋅ ‖𝑥‖1

Definite: ‖𝑥‖1 = Tr(|𝑥|) = 0 implies |𝑥| = 0, so 𝑥 = 0.

Subadditive: Let 𝑥+𝑦 = 𝑢|𝑥+𝑦| be the polar decomposition so that |𝑥+𝑦| = 𝑢∗𝑥+𝑢∗𝑦. 
Since 𝑢∗𝑥, 𝑢∗𝑦 ∈ ℒ1(𝐻),

‖𝑥 + 𝑦‖1 = Tr(|𝑥 + 𝑦|) = Tr(𝑢∗𝑥 + 𝑢∗𝑦) = Tr(𝑢∗𝑥) + Tr(𝑢∗𝑦)
≤ | Tr(𝑢∗𝑥)| + | Tr(𝑢∗𝑦)| ≤ ‖𝑢∗‖ Tr(|𝑥|) + ‖𝑢∗‖ Tr(|𝑦|)
≤ Tr(|𝑥|) + Tr(|𝑦|) = ‖𝑥‖1 + ‖𝑦‖1.

Submultiplicative: Let 𝑥𝑦 = 𝑢|𝑥𝑦| be the polar decomposition so that |𝑥𝑦| = 𝑢∗𝑥𝑦. 
Then

Tr(|𝑥𝑦|) = Tr(𝑢∗𝑥𝑦) ≤
(Cor. 2.5.10)

‖𝑢∗𝑥‖⏟
=‖|𝑥|‖

Tr(|𝑦|) ≤
(Tr5)

Tr(|𝑥|) Tr(|𝑦|) = ‖𝑥‖1 ⋅ ‖𝑦‖1.
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∗-isometric: ‖𝑥‖1 = Tr(|𝑥|) = ∑ 𝑠𝑛(𝑥) = ∑ 𝑠𝑛(𝑥∗) = Tr(|𝑥∗|) = ‖𝑥∗‖1.

Complete: Suppose (𝑥𝑛) is ‖ ⋅ ‖1-Cauchy. By (Tr5),

‖𝑥𝑚 − 𝑥𝑛‖1 = Tr(|𝑥𝑚 − 𝑥𝑛|) ≥ ‖|𝑥𝑚 − 𝑥𝑛|‖ = ‖𝑥𝑚 − 𝑥𝑛‖,

so (𝑥𝑛) is ‖ ⋅ ‖-Cauchy. Since 𝐾(𝐻) is closed, there is an 𝑥 ∈ 𝐾(𝐻) with 𝑥𝑛 → 𝑥
in norm. Consider the polar decomposition 𝑥 − 𝑥𝑛 = 𝑢𝑛|𝑥 − 𝑥𝑛|. For all finite 
rank projections 𝑝,

Tr(𝑝|𝑥 − 𝑥𝑛|) = Tr(𝑝𝑢∗
𝑛(𝑥 − 𝑥𝑛)𝑝) = | Tr(𝑝𝑢∗

𝑛(𝑥 − 𝑥𝑛)𝑝)|
= lim

𝑚
| Tr(𝑝𝑢∗

𝑛(𝑥𝑚 − 𝑥𝑛)𝑝)| ≤
(Cor. 2.5.10)

lim sup
𝑚

‖𝑥𝑚 − 𝑥𝑛‖1.

This implies 𝑥 ∈ ℒ1(𝐻) and 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖1. ∎

Proposition 2.5.13. For all 1 < 𝑝 < ∞, ℒ𝑝(𝐻) is a Banach space with ‖𝑥‖𝑝
𝑝 ∶= Tr(|𝑥|𝑝) =

‖(𝑠𝑛(𝑥))‖ℓ𝑝 .

We omit the proof which is similar to those for ℒ2(𝐻) and ℒ1(𝐻). ∎

Theorem 2.5.14. Suppose 1 < 𝑞, 𝑝 < ∞ with 1/𝑝 + 1/𝑞 = 1. For all 𝑥 ∈ ℒ𝑝(𝐻) and 
𝑦 ∈ ℒ𝑞(𝐻), 𝑥𝑦 ∈ ℒ1(𝐻) and | Tr(𝑥𝑦)| ≤ ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞.

Proof. Without loss of generality, 2 ≤ 𝑝. We proceed via the following steps.

Step 1: If 𝑥 ∈ ℒ𝑝(𝐻)+ with 𝑝 ≥ 2 and 𝜉 ∈ 𝐻 with ‖𝜉‖ = 1, then ⟨𝑥2𝜉, 𝜉⟩𝑝/2 ≤ ⟨𝑥𝑝𝜉, 𝜉⟩.

Proof. Let (𝑒𝑛) be an ONB with 𝑥 = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛|. For all 𝜉 ∈
span{𝑒1, … , 𝑒𝑘},

⟨𝑥2𝜉, 𝜉⟩ =
𝑘

∑
𝑖,𝑗=1

⟨⟨𝜉, 𝑒𝑖⟩𝑥2𝑒𝑖, ⟨𝜉, 𝑒𝑗⟩𝑒𝑗⟩

=
𝑘

∑
𝑖,𝑗=1

⟨𝜉, 𝑒𝑖⟩⟨𝜉, 𝑒𝑗⟩⟨𝑥2𝑒𝑖, 𝑒𝑗⟩ =
𝑘

∑
𝑖=1

|⟨𝜉, 𝑒𝑖⟩|2𝜆2
𝑖 .

Since the function 𝑟 ↦ 𝑟𝑝/2 is convex and ∑𝑘
𝑖=1 |⟨𝜉, 𝑒𝑖⟩|2 = ‖𝜉‖2 = 1, we have

⟨𝑥2𝜉, 𝜉⟩𝑝/2 = (
𝑘

∑
𝑖=1

|⟨𝜉, 𝑒𝑖⟩|2𝜆2
𝑖 )

𝑝/2

≤
𝑘

∑
𝑖=1

|⟨𝜉, 𝑒𝑖⟩|2𝜆𝑝
𝑖 = ⟨𝑥𝑝𝜉, 𝜉⟩.

Hence the desired inequality holds on the algebraic span of the 𝑒𝑖, which 
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is dense in 𝐻. Since the continuous function 𝜉 ↦ ⟨𝑥𝑝𝜉, 𝜉⟩ − ⟨𝑥2𝜉, 𝜉⟩𝑝/2 is 
non-negative on a dense subspace, the result follows. ∎

Step 2: If 𝑥 ∈ ℒ𝑝(𝐻)+ with 𝑝 ≥ 2 and 𝑦 ∈ ℒ𝑞(𝐻)+ with 1/𝑝 + 1/𝑞 = 1, then 𝑥𝑦 ∈ ℒ1(𝐻)
and Tr(|𝑥𝑦|) ≤ ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞.

Proof. Pick an ONB (𝑓𝑛) such that 𝑦 = ∑ 𝜇𝑛|𝑓𝑛⟩⟨𝑓𝑛|. For every 𝑛 ∈ ℕ,

|⟨|𝑥𝑦|𝑓𝑛, 𝑓𝑛⟩|2 ≤
(CS)

‖|𝑥𝑦|𝑓𝑛‖2 ⋅ ‖𝑓𝑛‖⏟
=1

= |⟨|𝑥𝑦|2𝑓𝑛, 𝑓𝑛⟩| = |⟨𝑦∗𝑥∗𝑥𝑦𝑓𝑛, 𝑓𝑛⟩|

= |⟨𝑥∗𝑥𝑦𝑓𝑛, 𝑦𝑓𝑛⟩| = 𝜇2
𝑛|⟨|𝑥|2𝑓𝑛, 𝑓𝑛⟩|.

Hence by Step 1, we have

⟨|𝑥𝑦|𝑓𝑛, 𝑓𝑛⟩ ≤ 𝜇𝑛⟨|𝑥|2𝑓𝑛, 𝑓𝑛⟩1/2 ≤
(Step 1)

𝜇𝑛⟨|𝑥|𝑝𝑓𝑛, 𝑓𝑛⟩1/𝑝.

Now setting 𝑎𝑛 = ⟨|𝑥|𝑝𝑓𝑛, 𝑓𝑛⟩1/𝑝, (𝑎𝑛) ∈ ℓ𝑝 as 𝑥 ∈ ℒ𝑝(𝐻):

‖(𝑎𝑛)‖𝑝
𝑝 = ∑

𝑛
⟨|𝑥|𝑝𝑓𝑛, 𝑓𝑛⟩ = Tr(|𝑥|𝑝) < ∞.

Also, (𝜇𝑛) ∈ ℓ𝑞 as ∑𝑛 𝜇𝑞
𝑛 = Tr(|𝑦|𝑞) < ∞ since 𝑦 ∈ ℒ𝑞(𝐻). By Hölder’s 

Inequality,

Tr(|𝑥𝑦|) = ∑
𝑛

⟨|𝑥𝑦|𝑓𝑛, 𝑓𝑛⟩ ≤ ∑
𝑛

𝜇𝑛⟨|𝑥|𝑝𝑓𝑛, 𝑓𝑛⟩1/𝑝

≤ ‖(𝑎𝑛)‖𝑝 ⋅ ‖(𝜇𝑛)‖𝑞 = ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞. ∎

Step 3: For arbitrary 𝑥 ∈ ℒ𝑝(𝐻) with 𝑝 ≥ 2 and 𝑦 ∈ ℒ𝑞(𝐻) with 1/𝑝 + 1/𝑞 = 1, 𝑥𝑦 ∈
ℒ1(𝐻) and | Tr(𝑥𝑦)| ≤ ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞.

Proof. Consider the polar decompositions 𝑥 = 𝑢|𝑥| and 𝑦∗ = 𝑣|𝑦∗| and note 
that |𝑥|, |𝑦∗| ≥ 0, |𝑥| = 𝑢∗𝑥 ∈ ℒ𝑝(𝐻), and |𝑦∗| = 𝑣∗𝑦∗ ∈ ℒ𝑞(𝐻). By Step 2, 
we have |𝑥| ⋅ |𝑦∗| ∈ ℒ1(𝐻) and

Tr (| |𝑥| ⋅ |𝑦∗| |) ≤ ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞.

It follows immediately that

𝑥𝑦 = 𝑥(𝑦∗)∗ = 𝑢|𝑥|(𝑣|𝑦∗|)∗ = 𝑢|𝑥||𝑦∗|𝑣∗ ∈ ℒ1(𝐻).

19



and

| Tr(𝑥𝑦)| = | Tr(𝑢|𝑥||𝑦∗|𝑣∗)| ≤
(Cor. 2.5.10)

‖𝑢‖ ⋅ ‖𝑣∗‖ ⋅ Tr (| |𝑥| ⋅ |𝑦∗| |)

≤
(Step 2)

‖|𝑥|‖𝑝 ⋅ ‖|𝑦∗|‖𝑞 = ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞. ∎

Exercise 2.5.15. Show that the pairing (𝑥, 𝑦) ↦ Tr(𝑥𝑦) implements a duality exhibiting 
an isometric isomorphisms 𝐾(𝐻)∗ ≅ ℒ1(𝐻) and ℒ1(𝐻)∗ ≅ 𝐵(𝐻). Explain how one can 
view this as an analogy of the facts that 𝑐∗

0 ≅ ℓ1 and (ℓ1)∗ ≅ ℓ∞.

Theorem 2.5.16. Suppose 1 < 𝑝, 𝑞 < ∞ with 1/𝑝 + 1/𝑞 = 1. The bilinear form (𝑥, 𝑦) ∶=
Tr(𝑥𝑦) implements a duality exhibiting ℒ𝑝(𝐻) and ℒ𝑞(𝐻) as isometrically isomorphic to 
each other’s dual spaces.

Proof. First, note that if (𝑥𝑛) ∈ ℓ𝑞, then (|𝑥𝑛|𝑞−1) ∈ ℓ𝑝 and

‖𝑥𝑛‖𝑞
𝑞 = ∑ |𝑥𝑛|𝑞 = ∑ |𝑥𝑛|(𝑞−1)𝑝 = ‖(|𝑥𝑛|𝑞−1)‖𝑝

𝑝 and

‖𝑥𝑛‖𝑞
𝑞 = (∑ |𝑥𝑛|𝑞)

1/𝑝+1/𝑞
= (∑ |𝑥𝑛|(𝑞−1)𝑝)

1/𝑝
(∑ |𝑥𝑛|𝑞)

1/𝑞
= ‖(|𝑥𝑛|𝑞−1)‖𝑝 ⋅ ‖(𝑥𝑛)‖𝑞.

We now proceed via the following steps.

Step 1: The map 𝑦 ↦ Tr( ⋅ 𝑦) is an isometry ℒ𝑞(𝐻) → ℒ𝑝(𝐻)∗.

Proof. First, note that the map ℒ𝑞(𝐻) → ℒ𝑝(𝐻)∗ given by 𝑦 ↦ Tr( ⋅ 𝑦) is well-
defined and norm-decreasing by Theorem 2.5.14. We use polar decomposition 
to write 𝑦 = 𝑢|𝑦| and note |𝑦| = 𝑢∗𝑦 ∈ ℒ𝑞(𝐻).
We claim that

Claim. For every 𝑟 > 0, 𝑠𝑛(|𝑦|)𝑟 = 𝑠𝑛(|𝑦|𝑟) = 𝑠𝑛(𝑢|𝑦|𝑟) = 𝑠𝑛(|𝑦|𝑟𝑢∗).

Proof of claim. If |𝑦| = ∑ 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛| is the Schmidt decomposition, then 
𝑠𝑛(|𝑦|)𝑟 = 𝜆𝑟

𝑛 = 𝑠𝑛(|𝑦|𝑟). Moreover, if 𝑒𝑛 = 𝑢𝑓𝑛 for all 𝑛, then

𝑢|𝑦| = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑓𝑛| ⟹ 𝑢|𝑦|𝑟 = ∑ 𝜆𝑟
𝑛|𝑒𝑛⟩⟨𝑓𝑛|.

Then since (𝑢|𝑦|𝑟)∗𝑢|𝑦|𝑟 = |𝑦|𝑟𝑢∗𝑢|𝑦|𝑟 = ∑ 𝜆2𝑛
𝑛 |𝑓𝑛⟩⟨𝑓𝑛|,

𝑠𝑛(𝑢|𝑦|𝑟) = 𝑠𝑛(|𝑦|𝑟𝑢∗𝑢|𝑦|𝑟)1/2 = 𝜆𝑟
𝑛.

Since for any 𝑧, 𝑠𝑛(𝑧∗𝑧)1/2 = 𝑠𝑛(𝑧), we have 𝑠𝑛(𝑢|𝑦|𝑟) = 𝜆𝑟
𝑛. Finally, 

𝑠𝑛(𝑢|𝑦|𝑟) = 𝑠𝑛(|𝑦|𝑟𝑢∗) as the 𝑛-th singular value of adjoints agree, finishing 
the claim. ∎
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Now using the claim above, we have 𝑎𝑛 ∶= 𝑠𝑛(|𝑦|𝑞−1) = 𝑠𝑛(|𝑦|)𝑞−1, so (𝑎𝑛) ∈ ℓ𝑝

and |𝑦|𝑞−1 ∈ ℒ𝑝(𝐻). For 𝑥 ∶= |𝑦|𝑞−1𝑢∗ ∈ ℒ𝑝(𝐻), setting 𝜇𝑛 = 𝑠𝑛(𝑦),

Tr(𝑥𝑦) = Tr(|𝑦|𝑞−1𝑢∗𝑦) = Tr(|𝑦|𝑞) = ‖𝑦‖𝑞
𝑞

= ‖(𝜇𝑛)‖𝑞
𝑞 = ‖(𝜇𝑞−1

𝑛 )‖𝑝 ⋅ ‖(𝜇𝑛)‖𝑞 = ‖𝑥‖𝑝 ⋅ ‖𝑦‖𝑞 ∎

Step 2: The map 𝑦 ↦ Tr( ⋅ 𝑦) from Step 4 is surjective.

Proof. Since 1 < 𝑝, ℒ1(𝐻) ⊆ ℒ𝑝(𝐻) with ‖ ⋅ ‖1 ≥ ‖ ⋅ ‖𝑝. Thus if 𝜑 ∈ ℒ𝑝(𝐻)∗, 
𝜑|ℒ1(𝐻) ∈ ℒ1(𝐻)∗ = 𝐵(𝐻), so there is a 𝑦 ∈ 𝐵(𝐻) such that 𝜑|ℒ1(𝐻) = Tr( ⋅ 𝑦)
by Exercise 2.5.15. It remains to prove 𝑦 ∈ ℒ𝑞(𝐻) and 𝜑 = Tr( ⋅ 𝑦) on ℒ𝑝(𝐻).

Claim. 𝑦 ∈ 𝐾(𝐻).

Proof of Claim. By polar decomposition 𝑦 = 𝑢|𝑦|, we may assume 𝑦 ≥ 0 as 
𝑦 ∈ 𝐾(𝐻) iff |𝑦| ∈ 𝐾(𝐻), and

| Tr(𝑥|𝑦|)| = | Tr(𝑥𝑢∗𝑦)| ≤ ‖𝜑‖ ⋅ ‖𝑥𝑢∗‖𝑝 ≤
(SV4)

‖𝜑‖ ⋅ ‖𝑥‖𝑝.

If 𝑦 ∉ 𝐾(𝐻), then by Remark 2.4.13, there is a 𝜀 > 0 such that 𝑝 ∶= 𝜒(𝜀,∞)(𝑦)
has infinite dimensional image. Pick an orthonormal sequence (𝑓𝑛) ⊂ 𝑝𝐻, and 
note that 𝑦 ≥ 𝜀 on 𝑝𝐻, i.e., ⟨𝑦𝑓𝑛, 𝑓𝑛⟩ ≥ 𝜀 for all 𝑛. Pick (𝜇𝑛) ∈ ℓ𝑝 ∖ ℓ1 (we 
may assume 𝜇𝑛 ≥ 0 for all 𝑛) and set 𝑥𝑘 = ∑𝑘

𝑛=0 𝜇𝑛|𝑓𝑛⟩⟨𝑓𝑛| and 𝑥 = lim 𝑥𝑘 ∈
ℒ𝑝(𝐻). Then 𝑥𝑘 ∈ ℒ1(𝐻) for all 𝑘, and

𝜀
𝑘

∑
𝑛=0

𝜇𝑛 ≤
𝑘

∑
𝑛=0

𝜇𝑛⟨𝑦𝑓𝑛, 𝑓𝑛⟩ = Tr(𝑥𝑘𝑦) = 𝜑(𝑥𝑘)
𝑘→∞
−−−→ 𝜑(𝑥).

But (𝜇𝑛) ∉ ℓ1, so 𝜀 ∑𝑘
𝑛=0 𝜇𝑛 → ∞, a contradiction. ∎

Since 𝑦 ∈ 𝐾(𝐻), we can take a Schmidt decomposition |𝑦| = ∑ 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛|, 
and let 𝑦 = 𝑢|𝑦| be the polar decomposition with 𝑢𝑓𝑛 = 𝑒𝑛 so that 
𝑦 = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑓𝑛|. For each 𝑘, let 𝑟𝑘 be the orthogonal projection onto 
span{𝑓0, 𝑓1, … , 𝑓𝑘}, and observe that 𝑟𝑘 commutes with |𝑦|𝑠 for all 𝑠 > 0. 
For each 𝑘, 𝑥𝑘 ∶= |𝑦|𝑞−1𝑟𝑘𝑢∗ is finite rank and thus in ℒ2(𝐻) ⊆ ℒ𝑝(𝐻). 
Observe now that

𝑥∗
𝑘𝑥𝑘 = 𝑢|𝑦|𝑞−1𝑟𝑘|𝑦|𝑞−1𝑢∗ = 𝑢𝑟𝑘 (∑ 𝜆2𝑞−2

𝑛 |𝑓𝑛⟩⟨𝑓𝑛|) 𝑢∗ =
𝑘

∑
𝑛=0

𝜆2𝑞−2
𝑛 |𝑒𝑛⟩⟨𝑒𝑛|

21



which implies that

‖𝑥𝑘‖𝑝
𝑝 = Tr((𝑥∗

𝑘𝑥𝑘)𝑝/2) =
𝑘

∑
𝑛=0

(𝜆2𝑞−2
𝑛 )𝑝/2 =

𝑘
∑
𝑛=0

𝜆𝑞
𝑛 = Tr(|𝑦|𝑞𝑟𝑘).

But note that also

𝜑(𝑥𝑘) = Tr(𝑥𝑘𝑦) = Tr(|𝑦|𝑞−1𝑟𝑘𝑢∗𝑦) = Tr(|𝑦|𝑞−1𝑟𝑘|𝑦|) = Tr(|𝑦|𝑞𝑟𝑘).

This means

Tr(|𝑦|𝑞𝑟𝑘) = |𝜑(𝑥𝑘)| ≤ ‖𝜑‖ ⋅ ‖𝑥𝑘‖𝑝 = ‖𝜑‖ ⋅ Tr(|𝑦|𝑞𝑟𝑘)1/𝑝

which implies that

Tr(|𝑦|𝑞𝑟𝑘)1/𝑞 = Tr(|𝑦|𝑞𝑟𝑘)1−1/𝑝 ≤ ‖𝜑‖.

Hence Tr(|𝑦|𝑞𝑟𝑘) ≤ ‖𝜑‖𝑞 for all 𝑘, and so 𝑦 ∈ ℒ𝑞(𝐻).
Finally, the finite rank operators are contained in ℒ2(𝐻) and also dense in 
ℒ𝑝(𝐻). Indeed, if 𝑥 ∈ ℒ𝑝(𝐻)+ has Schmidt decomposition 𝑥 = ∑ 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛|, 
then 𝑥𝑘 ∶= ∑𝑘

𝑛=0 𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛| is finite rank, and

‖𝑥 − 𝑥𝑘‖𝑝
𝑝 = ‖∑

𝑛>𝑘
𝜆𝑛|𝑓𝑛⟩⟨𝑓𝑛|‖

𝑝

𝑝

= ∑
𝑛>𝑘

𝜆𝑝
𝑛

𝑘→∞
−−−→ 0.

Thus ℒ2(𝐻) is dense in ℒ𝑝(𝐻), and so 𝜑 = Tr( ⋅ 𝑦) on ℒ𝑝(𝐻). ∎

Since our proof above did not distinguish 𝑝 and 𝑞, we also conclude ℒ𝑝(𝐻) ≅ ℒ𝑞(𝐻)∗. ∎
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