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4 Projections and factors
For this section, 𝐻 is a Hilbert space and 𝑀 ⊆ 𝐵(𝐻) is a von Neumann algebra. We denote 
the set of projections of 𝑀 by 𝑃 (𝑀) and the group of unitaries in 𝑀 by 𝑈(𝑀).

4.1 Compressions and ideals
Theorem 4.1.1. Suppose 𝑝 ∈ 𝑃 (𝑀). Then 𝑝𝑀𝑝 ⊆ 𝐵(𝑝𝐻) is a von Neumann algebra with 
commutant (𝑝𝑀𝑝)′ = 𝑀 ′𝑝.

Proof. Clearly 𝑝𝑀𝑝 ⊆ 𝐵(𝑝𝐻) is an SOT-closed unital ∗-subalgebra and thus a von 
Neumann algebra.
If 𝑦 ∈ 𝑀 ′, then for all 𝑥 ∈ 𝑀,

(𝑦𝑝)(𝑝𝑥𝑝) = 𝑦𝑝𝑥𝑝 = 𝑝𝑦𝑝𝑥 = (𝑝𝑥𝑝)(𝑦𝑝)

so 𝑦𝑝 ∈ (𝑝𝑀𝑝)′. For the converse, we use a clever trick. First, it suffices to prove every 
unitary in (𝑝𝑀𝑝)′ lies in 𝑀 ′𝑝, as every element of (𝑝𝑀𝑝)′ is a linear combination of 
4 unitaries (why?). Suppose 𝑢 ∈ (𝑝𝑀𝑝)′ and set 𝐾 ∶= 𝑀𝑝𝐻. Since 𝐾 is both 𝑀 and 
𝑀 ′-invariant, 𝑝𝐾 ∈ 𝑀 ′ ∩ 𝑀 = 𝑍(𝑀).

Claim. We may extend 𝑢 to 𝐾 by 𝑢̃ ∑ 𝑥𝑖𝑝𝜉 ∶= ∑ 𝑥𝑖𝑢𝑝𝜉.

Proof of claim. To see 𝑢̃ is well-defined, we prove it is isometric:

‖𝑢̃ ∑ 𝑥𝑖𝑝𝜉𝑖‖
2

= ∑
𝑖,𝑗

⟨𝑥𝑖𝑢𝑝𝜉𝑖, 𝑥𝑗𝑢𝑝𝜉𝑗⟩

∑
𝑖,𝑗

⟨𝑝𝑥∗
𝑗𝑥𝑖𝑝𝑢𝜉𝑖, 𝑢𝜉𝑗⟩ ([𝑢, 𝑝] = 0)

= ∑
𝑖,𝑗

⟨𝑢𝑝𝑥∗
𝑗𝑥𝑖𝑝𝜉𝑖, 𝑢𝜉𝑗⟩ (𝑢 ∈ (𝑝𝑀𝑝)′)

= ∑
𝑖,𝑗

⟨𝑝𝑥∗
𝑗𝑥𝑖𝑝𝜉𝑖, 𝜉𝑗⟩ = ⋯ = ‖∑ ∑ 𝑥𝑖𝑝𝜉𝑖‖

2
. ∎

Now by construction, 𝑢̃ commutes with the action of 𝑀 on 𝐾 = 𝑀𝑝𝐻, and thus 
𝑢̃𝑝𝐾 ∈ 𝑀 ′ ⊆ 𝐵(𝐻); indeed, for all 𝑥 ∈ 𝑀 and all 𝜉 ∈ 𝐻,

𝑢̃𝑝𝐾𝑥𝜉 = 𝑢̃𝑥 𝑝𝐾𝜉⏟
∈𝐾

= 𝑥𝑢̃𝑝𝐾𝜉.
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Finally, we claim that 𝑢 = 𝑢̃𝑝𝐾𝑝 ∈ 𝑀 ′𝑝; indeed, as 𝑢 = 𝑢𝑝 ∈ 𝑀 ′𝑝, for all 𝜉 ∈ 𝐻,

𝑢̃𝑝𝐾𝑝𝜉 = 𝑢̃(1𝑀𝑝𝜉) = 𝑢𝑝𝜉 = 𝑢𝜉. ∎

Definition 4.1.2. We call 𝑝𝑀𝑝, 𝑀 ′𝑝 corners, compressions, or reductions of 𝑀, 𝑀 ′ respec­
tively.

Lemma 4.1.3. If 𝐽 ⊆ 𝑀 is a 𝜎-WOT closed left ideal, then 𝐽 = 𝑀𝑝 for a unique projection 
𝑝 ∈ 𝑀. 

Proof. If 𝑝 is any projection such that 𝐽 = 𝑀𝑝, then since (𝑥𝑝)𝑝 = 𝑥𝑝 for all 𝑥 ∈ 𝑀, 
𝑦𝑝 = 𝑦 for all 𝑦 ∈ 𝐽. It follows that if 𝑀𝑞 = 𝐽 = 𝑀𝑝, then 𝑝 ≤ 𝑞 and 𝑞 ≤ 𝑝, so 𝑝 = 𝑞. 
This also tells us how to construct 𝑝: find the largest projection in 𝐽.
If 𝑥 ∈ 𝐽, then so are |𝑥| = 𝑢∗𝑥 and 𝜒[𝜀,‖𝑥‖](|𝑥|) for all 𝜀 > 0. Since 𝜒[𝜀,‖𝑥‖](|𝑥|) ↗
supp(|𝑥|) = supp(𝑥) as 𝜀 ↘ 0, supp(𝑥) ∈ 𝐽.
Now observe that if there is a maximal projection 𝑝 in 𝐽, then 𝑝 ≥ supp(𝑥) for all 
𝑥 ∈ 𝐽, so 𝑥 = 𝑥 ⋅ supp(𝑥) ⋅ 𝑝 = 𝑥𝑝 for all 𝑥 ∈ 𝐽. We thus have 𝐽 ⊆ 𝑀𝑝 ⊆ 𝐽, and thus 
equality holds.
Finally, to construct the maximal projection, since 𝐽 is 𝜎-WOT closed, it is a norm-
closed left ideal, and thus contains a right approximate identity (𝑒𝑖) such that 0 ≤
𝑒𝑖 ≤ 1 for all 𝑖, 𝑖 ≤ 𝑗 implies 𝑒𝑖 ≤ 𝑒𝑗, and ‖𝑥 − 𝑥𝑒𝑖‖ → 0 for all 𝑥 ∈ 𝐽. Since 𝐽 is 
𝜎-WOT closed, 𝑝 ∶= ⋁ 𝑒𝑖 ∈ 𝐽, which is automatically self-adjoint. Since ‖𝑝−𝑝𝑒𝑖‖ → 0, 
we see that 𝑝 = 𝑝2, so 𝑝 is a projection, and since ‖𝑥 − 𝑥𝑒𝑖‖ → 0, 𝑥 = 𝑥𝑝 for all 𝑥 ∈ 𝐽. 
We conclude that 𝑝 is the largest projection in 𝐽. ∎

Corollary 4.1.4. A left ideal 𝐽 ⊆ 𝑀 is SOT/WOT-closed if and only if it is 𝜎-SOT/𝜎-WOT 
closed. 

Proof. If 𝐽 is 𝜎-WOT closed, then 𝐽 = 𝑀𝑝 for some projection 𝑝 ∈ 𝐽, so 𝐽 is WOT 
closed. The converse is trivial as WOT-closed sets are 𝜎-WOT closed. ∎

Corollary 4.1.5. If 𝐽 ⊆ 𝑀 is a 𝜎-WOT closed 2-sided ideal, then 𝐽 = 𝑀𝑧 for some 
projection 𝑧 ∈ 𝑍(𝑀). 

Proof. Since 𝐽 is 𝜎-WOT closed, it is also WOT and hence SOT-closed. By Lemma 
4.1.3, 𝐽 = 𝑀𝑧 for some projection 𝑧 ∈ 𝑀. But as 𝐽 is 2-sided, for every unitary 𝑢 ∈ 𝑀, 
𝐽 = 𝑢𝐽𝑢∗. It follows that 𝐽 = 𝑢𝐽𝑢∗ = 𝑢𝑀𝑧𝑢∗ = 𝑢𝑀𝑢∗(𝑢𝑧𝑢∗) = 𝑀𝑢𝑧𝑢∗, so 𝑧 = 𝑢𝑧𝑢∗

by the uniqueness statement in Lemma 4.1.3. We conclude 𝑧 ∈ 𝑀 ′ ∩ 𝑀 = 𝑍(𝑀). ∎
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4.2 Central support of a projection
Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., 𝑍(𝑀) =
𝑀 ′ ∩ 𝑀 = ℂ1.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial 𝜎-WOT closed 2-sided ideals.

Just as von Neumann algebras come in pairs 𝑀, 𝑀 ′, so do factors as 𝑍(𝑀) = 𝑀 ′ ∩𝑀 =
𝑍(𝑀 ′).

Recall that for 𝑝, 𝑞 ∈ 𝑃 (𝑀) ⊆ 𝐵(𝐻), 𝑝 ∧ 𝑞 is the projection onto 𝑝𝐻 ∩ 𝑞𝐻 and 𝑝 ∨ 𝑞 is 
the projection onto 𝑝𝐻 + 𝑞𝐻. Observe we have the relation

𝑝 ∨ 𝑞 = 1 − (1 − 𝑝) ∧ (1 − 𝑞). (4.2.3)

For homework, you will show that 𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞 ∈ 𝑀. Thus 𝑃 (𝑀) is a lattice under these 
operations.

Lemma 4.2.4. For 𝑝, 𝑞 ∈ 𝑃 (𝑀) and 𝑢 ∈ 𝑈(𝑀), 𝑢∗(𝑝∨𝑞)𝑢 = 𝑢∗𝑝𝑢∨𝑢∗𝑞𝑢 and 𝑢∗(𝑝∧𝑞)𝑢 =
𝑢∗𝑝𝑢 ∧ 𝑢∗𝑞𝑢.

Proof. Observe that 𝜉 ∈ 𝑝𝐻∩𝑞𝐻 if and only if 𝑢∗𝜉 ∈ 𝑢∗𝑝𝑢𝐻∩𝑢∗𝑞𝑢𝐻, and 𝜂 ⟂ 𝑝𝐻∩𝑞𝐻
if and only if 𝑢∗𝜂 ⟂ 𝑢∗𝑝𝑢𝐻 ∩ 𝑢∗𝑞𝑢𝐻. Thus 𝑢∗(𝑝 ∧ 𝑞)𝑢 = 𝑢∗𝑝𝑢 ∧ 𝑢∗𝑞𝑢. Now apply
(4.2.3) to get 𝑢∗(𝑝 ∨ 𝑞)𝑢 = 𝑢∗𝑝𝑢 ∨ 𝑢∗𝑞𝑢. ∎

Definition 4.2.5. Given 𝑝 ∈ 𝑃 (𝑀), we define its central support

𝑧(𝑝) ≔ ⋁
𝑢∈𝑈(𝑀)

𝑢∗𝑝𝑢 ≔ lub 𝑝𝐹

where 𝑝𝐹 ≔ ⋁
𝑢∈𝐹

𝑢∗𝑝𝑢 for finite subsets 𝐹 ⊂ 𝑈(𝑀), ordered by inclusion. By Lemma 4.2.4, 
for all 𝑤 ∈ 𝑈(𝑀),

𝑤∗𝑝𝐹𝑤 = ⋁
𝑢∈𝐹

𝑤∗𝑢∗𝑝𝑢𝑤 = ⋁
𝑣∈𝐹𝑤

𝑣∗𝑝𝑣 = 𝑝𝐹𝑤.

As 𝑧(𝑝) is the SOT-limit of the 𝑝𝐹 and multiplication is separately SOT-continuous,

𝑤∗𝑧(𝑝)𝑤 = 𝑤∗(lim 𝑆𝑂𝑇𝑝𝐹)𝑤 = lim 𝑆𝑂𝑇𝑤∗𝑝𝐹𝑤 = lim 𝑆𝑂𝑇𝑝𝐹𝑤 = 𝑧(𝑝).

This means 𝑤𝑧(𝑝) = 𝑧(𝑝)𝑤 for all 𝑤 ∈ 𝑈(𝑀), so 𝑧(𝑝) ∈ 𝑀 ′ ∩ 𝑀 = 𝑍(𝑀).

Lemma 4.2.6. Suppose 𝑝 ∈ 𝑃 (𝑀).

1. For 𝑥 ∈ 𝑀, 𝑥𝑢𝑝 = 0 for all 𝑢 ∈ 𝑈(𝑀) if and only if 𝑥𝑧(𝑝) = 0.

2. For 𝑦 ∈ 𝑀 ′, 𝑦𝑝 = 0 if and only if 𝑦𝑧(𝑝) = 0. Hence the map 𝑀 ′𝑧(𝑝) → 𝑀 ′𝑝 given by 
multiplication by 𝑝 is a ∗-isomorphism.
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Proof. 

1. If 𝑥𝑢𝑝 = 0 for all 𝑢 ∈ 𝑈(𝑀), then 𝑥𝑢𝑝𝑢∗ = 0 for all such 𝑢. Then 𝑥𝑝𝐹 = 0
where 𝑝𝐹 = ⋁

𝑢∈𝐹
𝑢𝑝𝑢∗ for any finite 𝐹 ⊂ 𝑈(𝑀),a and taking SOT limits, we 

have 𝑥𝑧(𝑝) = 𝑥 lim𝑆𝑂𝑇 𝑝𝐹 = 0.
Conversely, if 𝑥𝑧(𝑝) = 0, then 𝑥(𝑢𝑝𝑢∗)𝑢 = 𝑥𝑧(𝑝)(𝑢𝑝𝑢∗)𝑢 = 0 for all 𝑢 ∈ 𝑈(𝑀).

2. Since 𝑦𝑝 = 𝑦𝑝𝑧(𝑝) = 𝑦𝑧(𝑝)𝑝, 𝑦𝑧(𝑝) = 0 implies 𝑦𝑝 = 0. Conversely, if 𝑦𝑝 = 0, 
then 𝑦𝑢𝑝𝑢∗ = 0 for all 𝑢 ∈ 𝑈(𝑀) as 𝑦 ∈ 𝑀 ′. The argument from (1) shows 
𝑦𝑝𝐹 = 0 for all finite 𝐹 ⊂ 𝑈(𝑀), so taking SOT limits, 𝑦𝑧(𝑝) = 0. ∎

aIf 𝑢1, … , 𝑢𝑛 ∈ 𝑈(𝑀) and 𝜉𝑖 ∈ 𝑢𝑖𝑝𝑢∗
𝑖𝐻 for 𝑖 = 1, … , 𝑛, then 𝑥 ∑ 𝜉𝑖 = ∑ 𝑥𝜉𝑖 =

∑ 𝑥𝑢𝑖𝑝𝑢∗
𝑖𝜉𝑖 = 0, so 𝑥𝑝𝐹 = 0.

Proposition 4.2.7. For a von Neumann algebra 𝑀 and 𝑝, 𝑞 ∈ 𝑃 (𝑀) ∖ {0}, the following 
are equivalent.

1. 𝑧(𝑝)𝑧(𝑞) ≠ 0,

2. there is a 𝑢 ∈ 𝑈(𝑀) such that 𝑝𝑢𝑞 ≠ 0, and

3. there is a non-zero partial isometry 𝑣 ∈ 𝑀 such that 𝑣𝑣∗ ≤ 𝑝 and 𝑣∗𝑣 ≤ 𝑞.

Proof. 

¬(2) ⇒ ¬(1): If 𝑝𝑢𝑞 = 0 for all 𝑢 ∈ 𝑈(𝑀), then 𝑝𝑧(𝑞) = 0 by Lemma 4.2.6(1). But 
then 0 = 𝑞𝑧(𝑝)𝑢 = 𝑞𝑢𝑧(𝑝) for all 𝑢 ∈ 𝑈(𝑀), so by (the adjoint of) Lemma 
4.2.6(1) again, 𝑧(𝑞)𝑧(𝑝) = 0.

(2) ⇒ (3): If 𝑝𝑢𝑞 ≠ 0, consider the polar decomposition 𝑝𝑢𝑞 = 𝑣|𝑝𝑢𝑞|. By construc­
tion, 𝑣𝑣∗𝐻 = 𝑣𝐻 = 𝑝𝑢𝑞𝐻 ⊂ 𝑝𝐻, so 𝑣𝑣∗ ≤ 𝑝. Since ker(𝑣) = ker(𝑝𝑢𝑞) ⊃ ker(𝑞), 
we have 𝑣∗𝑣 = 𝑝ker(𝑣)⟂ ≤ 𝑝ker(𝑞)⟂ = 𝑞.

(3) ⇒ (1): We prove that if 𝑧(𝑝)𝑧(𝑞) = 0 and 𝑣 ∈ 𝑀 is a partial isometry such that 
𝑣𝑣∗ ≤ 𝑝 and 𝑣∗𝑣 ≤ 𝑞, then 𝑣 = 0. Since 𝑣𝑣∗ ≤ 𝑝 ≤ 𝑧(𝑝), 𝑣𝑣∗ = 𝑣𝑣∗𝑧(𝑝). Since 
𝑣∗𝑣 ≤ 𝑞 ≤ 𝑧(𝑞), 𝑣∗𝑣 = 𝑣∗𝑣𝑧(𝑞). Then

𝑣 = 𝑣𝑣∗𝑣 = 𝑧(𝑝)𝑣𝑣∗𝑣𝑧(𝑞) = 𝑣𝑧(𝑞)𝑧(𝑝) = 0. ∎

Corollary 4.2.8  (Ergodic property of factors). Suppose 𝑀 is a factor and 𝑝, 𝑞 ∈ 𝑃 (𝑀)∖{0}. 
There is a unitary 𝑢 ∈ 𝑈(𝑀) such that 𝑝𝑢𝑞 ≠ 0.

Proof. Since 𝑝, 𝑞 ≠ 0, 𝑧(𝑝) = 𝑧(𝑞) = 1. Now apply Proposition 4.2.7. ∎
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Corollary 4.2.9. Suppose 𝑀 is a factor and 𝑝, 𝑞 ∈ 𝑃 (𝑀) ∖ {0}. There is a non-zero partial 
isometry 𝑢 ∈ 𝑀 such that 𝑢𝑢∗ ≤ 𝑝 and 𝑢∗𝑢 ≤ 𝑞. Moreover, we can find 𝑢 ∈ 𝑀 such that 
𝑢𝑢∗ = 𝑝 or 𝑢∗𝑢 = 𝑞.

Proof. The first part is immediate as 𝑧(𝑝) = 1 = 𝑧(𝑞). Consider the set of partial 
isometries 𝑢 ∈ 𝑀 such that 𝑢𝑢∗ ≤ 𝑝 and 𝑢∗𝑢 ≤ 𝑞. We can order this set by 𝑢 ≤ 𝑣 if 
𝑢𝑢∗ ≤ 𝑣𝑣∗, 𝑢∗𝑢 ≤ 𝑣∗𝑣, and 𝑣|𝑢𝑢∗𝐻 = 𝑢.

Claim. Any increasing chain has an upper bound.

Proof of Claim. If (𝑣𝑖) is an increasing chain, then the operator 𝑤 ∶ ⋃ 𝑣∗
𝑖 𝑣𝑖𝐻 →

⋃ 𝑣𝑗𝑣∗
𝑗𝐻 given by 𝜉 ↦ 𝑣𝑘𝜉 whenever 𝜉 ∈ 𝑣∗

𝑘𝑣𝑘𝐻 is well-defined and unitary. It thus 
extends to an isometry 𝐾 ∶= ⋃ 𝑣∗

𝑖 𝑣𝑖𝐻 → 𝐻, and thus to a partial isometry on 𝐻 by 
defining 𝑤|𝐾⟂ = 0. Clearly 𝑤𝑤∗ ≤ 𝑝, 𝑤∗𝑤 ≤ 𝑞, and 𝑣𝑖 ≤ 𝑤 for all 𝑖. ∎

We claim a maximal element satisfies 𝑢𝑢∗ = 𝑝 or 𝑢∗𝑢 = 𝑞. Indeed, if 𝑝 − 𝑢𝑢∗ ≠ 0 ≠
𝑞 − 𝑢∗𝑢, then there is a non-zero partial isometry 𝑤 ∈ 𝑀 such that 𝑤𝑤∗ ≤ 𝑝 − 𝑢𝑢∗

and 𝑤∗𝑤 ≤ 𝑞 − 𝑤∗𝑤. Observe then that 𝑢 + 𝑤 is a partial isometry (why?) with 
(𝑢 + 𝑤)(𝑢 + 𝑤)∗ ≤ 𝑝 and (𝑢 + 𝑤)∗(𝑢 + 𝑤) ≤ 𝑞 contradicting maximality. ∎

Exercise 4.2.10. Show that the central support 𝑧(𝑝) is the smallest projection in 𝑍(𝑀)
such that 𝑝 ≤ 𝑧(𝑝).

Corollary 4.2.11. 𝑍(𝑝𝑀𝑝) = 𝑍(𝑀)𝑝.

Proof (Dixmier). Clearly 𝑍(𝑀)𝑝 = 𝑝(𝑀 ′ ∩𝑀)𝑝 ⊂ 𝑍(𝑝𝑀𝑝). Suppose 𝑥 ∈ 𝑍(𝑝𝑀𝑝) =
𝑝𝑀𝑝 ∩ 𝑀 ′𝑝. Then there is a 𝑦 ∈ 𝑀 ′ such that 𝑥 = 𝑦𝑝. Since 𝑝 = 𝑧(𝑝)𝑝, replacing 
𝑦 with 𝑦𝑧(𝑝), we may assume 𝑦 = 𝑦𝑧(𝑝). We claim that 𝑦 ∈ 𝑍(𝑀𝑧(𝑝)) so that 
𝑦 ∈ 𝑀 ′ ∩ 𝑀𝑧(𝑝) ⊂ 𝑀 ′ ∩ 𝑀 = 𝑍(𝑀). Indeed, the map 𝑀 ′𝑧(𝑝) → 𝑀 ′𝑝 given by 
multiplication by 𝑝 is an isomorphism by Lemma 4.2.6(2), and thus maps the center 
onto the center. Since 𝑦𝑝 = 𝑥 ∈ 𝑍(𝑝𝑀𝑝), we conclude 𝑦 = 𝑦𝑧(𝑝) ∈ 𝑍(𝑀𝑧(𝑝)), as 
desired. ∎

4.3 Classification of type I factors and their subfactors
Definition 4.3.1. A (nonzero) projection 𝑝 ∈ 𝑃 (𝑀) is called:

• minimal if 𝑞 ∈ 𝑃 (𝑀) with 𝑞 ≤ 𝑝 implies 𝑞 ∈ {0, 𝑝},

• abelian if 𝑝𝑀𝑝 is abelian, and

• diffuse if there is no minimal projection 𝑞 ≤ 𝑝.

Examples 4.3.2. Here are examples of such projections.
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1. The minimal projections in 𝐵(𝐻) are the rank 1 projections.

2. Every projection is diffuse in 𝐿∞([0, 1], 𝜆) where 𝜆 is Lebesgue measure.

Exercise 4.3.3. Suppose 𝜇 is a regular finite Borel measure on a compact Hausdorff space 
𝑋. Show that the minimal projections of 𝐿∞(𝑋, 𝜇) correspond to atoms of 𝑋, i.e., 𝑥 ∈ 𝑋
such that 𝜇({𝑥}) > 0.

Exercise 4.3.4. Suppose 𝑝 ∈ 𝑃 (𝑀) is minimal and 𝑢 ∈ 𝑀 is a non-zero partial isometry 
such that 𝑢𝑢∗ ≤ 𝑝. Show that 𝑢𝑢∗ = 𝑝 and that 𝑢∗𝑢 is a minimal projection.

Definition 4.3.5. A von Neumann algebra 𝑀 is called type I if for all 𝑧 ∈ 𝑃(𝑍(𝑀)) ∖ {0}, 
there is an abelian 𝑝 ∈ 𝑃 (𝑀) ∖ {0} such that 𝑝 ≤ 𝑧, i.e., every non-zero central projection 
majorizes an abelian projection.

Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann 
algebras and 𝐵(𝐻).

Exercise 4.3.7. Here are some exercises on minimal projections.

1. 𝑝 ∈ 𝑃 (𝑀) is minimal if and only if 𝑝𝑀𝑝 = ℂ𝑝.

2. If 𝑀 is a factor and 𝑝 is abelian, then 𝑝 is minimal.

3. If 𝑀 is a factor, then 𝑀 is type I if and only if 𝑀 has a minimal projection.

Theorem 4.3.8  (Classification of type I factors). If 𝑀 is a type I factor acting on a Hilbert 
space 𝐻, there are Hilbert spaces 𝐾, 𝐿 and a unitary 𝑢 ∈ 𝐵(𝐾 ⊗ 𝐿 → 𝐻) such that 
𝑢𝑀𝑢∗ = 𝐵(𝐾) ⊗ 1.

To prove this theorem, we will construct a system of matrix units for 𝑀, i.e., a family 
{𝑒𝑖𝑗|𝑖, 𝑗 ∈ 𝐼} such that

• 𝑒∗
𝑖𝑗 = 𝑒𝑗𝑖,

• 𝑒𝑖𝑗𝑒𝑘ℓ = 𝛿𝑗=𝑘𝑒𝑖ℓ, and

• ∑ 𝑒𝑖𝑖 = 1 converging in SOT.

Lemma 4.3.9. If {𝑒𝑖𝑗}𝑖,𝑗∈𝐼 is a system of matrix units in 𝐵(𝐻), then setting 𝐾 ≔ 𝑒11𝐻
which should be viewed as a ‘multiplicity space,’ there is a unitary 𝑢∶ ℓ2𝐼 ⊗𝐾 → 𝐻 such that 
𝑢∗𝑒𝑖𝑗𝑢 = |𝛿𝑖⟩⟨𝛿𝑗| ⊗ 1 for all 𝑖, 𝑗. Thus 𝑢∗({𝑒𝑖𝑗}″)𝑢 = 𝐵(ℓ2𝐼) ⊗ 1, and dim(𝐻) = |𝐼| dim(𝐾).
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Proof. Let {𝜉𝑗}𝑗∈𝐽 be an ONB of 𝐾 = 𝑒11𝐻. Since 𝑒1𝑖 may be viewed as a unitary from 
𝑒𝑖𝑖𝐻 onto 𝑒11𝐻, we see that {𝑒𝑖1𝜉𝑗|𝑗 ∈ 𝐽} is an ONB for 𝑒𝑖𝑖𝐻. Since 𝐻 = ⨁ 𝑒𝑖𝑖𝐻, 
we see that {𝑒𝑖1𝜉𝑗|𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} is an ONB of 𝐻. Thus the map 𝑢∶ ℓ2𝐼 ⊗ 𝐾 → 𝐻 by 
𝛿𝑖 ⊗ 𝜉𝑗 ↦ 𝑒𝑖1𝜉𝑗 is a unitary isomorphism. Finally, we calculate

𝑢∗𝑒𝑖𝑗𝑢(𝛿𝑘 ⊗ 𝜉ℓ) = 𝑢∗𝑒𝑖𝑗𝑒𝑘1𝜉ℓ = 𝛿𝑗=𝑘𝑢∗𝑒𝑖1𝜉ℓ = 𝛿𝑗=𝑘(𝛿𝑖 ⊗ 𝜉ℓ),

so 𝑢∗𝑒𝑖𝑗𝑢 = |𝛿𝑖⟩⟨𝛿𝑗| ⊗ 1 as claimed. ∎

Remark 4.3.10. Observe that if {𝑝𝑖} is a family of mutually orthogonal projections such 
that ∑ 𝑝𝑖 = 1 SOT, and {𝑒1𝑗}𝑗≠1 is a family of partial isometries such that 𝑒1𝑗𝑒∗

1𝑗 = 𝑝1, and 
𝑒∗

1𝑗𝑒1𝑗 = 𝑝𝑗, then setting 𝑒11 ≔ 𝑝1 and 𝑒𝑖𝑗 ≔ 𝑒∗
1𝑖𝑒1𝑗 for all 𝑖, 𝑗 with 𝑖 ≠ 1 completes {𝑒1𝑗} to 

a system of matrix units.

Proof of Theorem 4.3.8. Since 𝑀 is a type I factor, it has a minimal projection 𝑝1. 
Let {𝑝𝑖} be a maximal family of mutually orthogonal minimal projections.

Claim. ∑ 𝑝𝑖 = 1 SOT.

Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry 𝑢 ∈ 𝑀 such 
that 𝑢𝑢∗ ≤ 𝑝1 and 𝑢∗𝑢 ≤ 1 − ∑ 𝑝𝑖, so 𝑢∗𝑢 ⟂ 𝑝𝑖 for all 𝑖. By minimality, 𝑢𝑢∗ = 𝑝1, so 
𝑢∗𝑢 is also minimal. Then {𝑝𝑖} ⊊ {𝑝𝑖} ∪ {𝑢∗𝑢}, contradicting maximality. ∎

Now by Corollary 4.2.8, for each 𝑖, there is a non-zero partial isometry 𝑒1𝑖 such that 
𝑒1𝑖𝑒∗

1𝑖 ≤ 𝑝1 and 𝑒∗
1𝑖𝑒1𝑖 ≤ 𝑝𝑖. My minimality, we must have 𝑒1𝑖𝑒∗

1𝑖 = 𝑝1 and 𝑒∗
1𝑖𝑒1𝑖 = 𝑝𝑖

Setting 𝑒𝑖𝑖 ≔ 𝑝𝑖 for all 𝑖, we can construct a system of matrix units {𝑒𝑖𝑗} as in Remark 
4.3.10.

Claim. 𝑀 = {𝑒𝑖𝑗}″.

Proof. If 𝑥 ∈ 𝑀, then 𝑥 = (∑ 𝑝𝑖) 𝑥 (∑ 𝑝𝑗) = ∑𝑖𝑗 𝑝𝑖𝑥𝑝𝑗 SOT. But by minimality, 
each

𝑝𝑖𝑥𝑝𝑗 = 𝑒∗
1𝑖𝑒1𝑖𝑥𝑒∗

1𝑗𝑒1𝑗 = 𝑒𝑖1 𝑝1𝑒1𝑖𝑥𝑒𝑗1𝑝1⏟⏟⏟⏟⏟
≕𝜆𝑖𝑗𝑝1∈ℂ𝑝1

𝑒1𝑗 = 𝜆𝑖𝑗𝑒𝑖1𝑝1𝑒1𝑗 = 𝜆𝑖𝑗𝑒𝑖𝑗.

Hence 𝑥 = ∑𝑖𝑗 𝜆𝑖𝑗𝑒𝑖𝑗, and 𝑀 = {𝑒𝑖𝑗}″. ∎

The final claim follows now from Lemma 4.3.9 ∎

Definition 4.3.11. We say a type I factor 𝑀 is type In if 𝑀 ≅ 𝐵(𝐻) with dim(𝐻) = 𝑛.

Fact 4.3.12. If 𝑢, 𝑣 are two partial isometries with 𝑢𝑢∗ ⟂ 𝑣𝑣∗ and 𝑢∗𝑢 ⟂ 𝑣∗𝑣, then 𝑢∗𝑣 =
0 = 𝑢𝑣∗ and 𝑢 + 𝑣 is a partial isometry.
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Corollary 4.3.13. Suppose 𝑀, 𝑁 are two type 𝐼 subfactors of 𝐵(𝐻). Let 𝑝 ∈ 𝑀 and 𝑞 ∈ 𝑁
be minimal projections. The following are equivalent.

1. There is a unitary 𝑢 ∈ 𝑈(𝐻) such that 𝑢∗𝑀𝑢 = 𝑁.

2. There are minimal 𝑝 ∈ 𝑃 (𝑀) and 𝑞 ∈ 𝑃 (𝑁) and a 𝑢 ∈ 𝑈(𝐻) such that 𝑢∗𝑝𝑢 = 𝑞.

3. There are minimal 𝑝 ∈ 𝑃 (𝑀) and 𝑞 ∈ 𝑃(𝑁) and a partial isometry 𝑣 ∈ 𝐵(𝐻) such 
that 𝑣𝑣∗ = 𝑝 and 𝑣∗𝑣 = 𝑞. (Note that this 𝑣 is a unitary isomorphism between the 
multiplicity spaces 𝑝𝐻 and 𝑞𝐻 for 𝑀 and 𝑁 respectively.)

Proof. 

(1) ⇒ (2): If 𝑝 ∈ 𝑃 (𝑀) is minimal, then so is 𝑢∗𝑝𝑢 ∈ 𝑃 (𝑁).

(2) ⇒ (3): Take 𝑣 = 𝑝𝑢.

(3) ⇒ (1): Extend {𝑝} and {𝑞} to systems of matrix units {𝑒𝑖𝑗}𝑖,𝑗∈𝐼 for 𝑀 with 𝑒11 = 𝑝
and {𝑓𝑘,ℓ}𝑘,ℓ∈𝐾 for 𝑁 with 𝑓11 = 𝑞 respectively. Observe that for each 𝑖 ∈ 𝐼 and 
𝑘 ∈ 𝐾,

(𝑒𝑖1𝑣𝑓1𝑘)(𝑒𝑖1𝑣𝑓1𝑘)∗ = 𝑒𝑖1 𝑣𝑞𝑣∗⏟
=𝑝

𝑒∗
𝑖1 = 𝑒𝑖𝑖 and (𝑒𝑖1𝑣𝑓1𝑘)∗(𝑒𝑖1𝑣𝑓1𝑘) = 𝑓∗

1𝑘 𝑣∗𝑝𝑣⏟
=𝑞

𝑓1𝑘 = 𝑓𝑘𝑘.

Since ∑ 𝑒𝑖𝑖 = 1 = ∑ 𝑓𝑘𝑘, we see that |𝐼| = |𝐾|, and we may identify the two 
index sets. By Fact 4.3.12, 𝑢 ∶= ∑ 𝑒𝑖1𝑣𝑓1𝑖 is a unitary such that 𝑢𝑓𝑖𝑗𝑢∗ = 𝑒𝑖𝑗
for all 𝑖, 𝑗. ∎

4.4 Comparison of projections
Definition 4.4.1. For 𝑝, 𝑞 ∈ 𝑃 (𝑀), we say 𝑝 ≼ 𝑞 if there is a partial isometry 𝑢 ∈ 𝑀 such 
that 𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 ≤ 𝑞. We say 𝑝 ≈ 𝑞 if there is a partial isometry 𝑢 ∈ 𝑀 such that 
𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 = 𝑞.

Example 4.4.2. For 𝑥 ∈ 𝑀 and 𝑥 = 𝑢|𝑥| the polar decomposition, 𝑢 ∈ 𝑀 with 𝑢∗𝑢 =
supp(𝑥) and 𝑢𝑢∗ = Range(𝑥). Hence supp(𝑥) ≈ Range(𝑥).

Example 4.4.3. Suppose 𝑢 is a partial isometry such that 𝑢𝑢∗ = 𝑝. Then for all 𝑞 ≤ 𝑝, 𝑞𝑢
is a partial isometry such that 𝑞𝑢𝑢∗𝑞 = 𝑞𝑝𝑞 = 𝑞, so 𝑢∗𝑞𝑢 ≈ 𝑞.

Exercise 4.4.4. Show that ≈ is an equivalence relation on 𝑃 (𝑀) up to ≈.

Theorem 4.4.5. ≼ is a partial order on 𝑃 (𝑀).
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Proof. 
reflexive: 𝑝 ≼ 𝑝 via partial isometry 𝑝.

transitive: Suppose 𝑢𝑢∗ = 𝑝, 𝑢∗𝑢 ≤ 𝑞 = 𝑣𝑣∗, and 𝑣∗𝑣 ≤ 𝑟. Then

𝑢𝑣𝑣∗𝑢∗ = 𝑢𝑞𝑢∗ = 𝑢𝑢∗𝑢𝑞𝑢∗ = 𝑢𝑢∗𝑢𝑢∗ = 𝑢𝑢∗ = 𝑝 and
𝑣∗𝑢∗𝑢𝑣 ≤ 𝑣∗𝑞𝑣 = 𝑣∗𝑣𝑣∗𝑣 = 𝑣∗𝑣 ≤ 𝑟.

anti-symmetric: Suppose 𝑝 ≼ 𝑞 and 𝑞 ≼ 𝑝. Let 𝑢, 𝑣 ∈ 𝑀 br partial isometries such 
that 𝑢𝑢∗ = 𝑝, 𝑢∗𝑢 ≤ 𝑞, 𝑣𝑣∗ = 𝑞, and 𝑣∗𝑣 ≤ 𝑝. Then for each 𝑝′ ≤ 𝑝,

𝑢∗𝑝′𝑢 ≤ 𝑢∗𝑝𝑢 = 𝑢∗𝑢𝑢∗𝑢 = 𝑢∗𝑢 ≤ 𝑞,

and similarly, for each 𝑞′ ≤ 𝑞, 𝑣∗𝑞′𝑣 ≤ 𝑝. That is, we have order preserving maps

{projections ≤ 𝑝} {projections ≤ 𝑞}
Ad(𝑢)

Ad(𝑣)
.

It immediately follows that inductively defining

𝑝𝑛+1 ∶= 𝑣∗𝑞𝑛𝑣 𝑝0 ∶= 𝑝
𝑞𝑛+1 ∶= 𝑢∗𝑝𝑛𝑢 𝑞0 ∶= 𝑞

yields two decreasing sequences of projections in 𝑀. Define 𝑝∞ ∶= lim𝑆𝑂𝑇 𝑝𝑛 =
⋀ 𝑝𝑛 and 𝑞∞ ∶= lim𝑆𝑂𝑇 𝑞𝑛 = ⋀ 𝑞𝑛, the orthogonal projections onto ⋂ 𝑝𝑛𝐻 and 
⋂ 𝑞𝑛𝐻 respectively. The clever trick here is to write 𝑝 = 𝑝0 and 𝑞 = 𝑞0 as 
telescoping sums of mutually orthogonal projections, which converge SOT:

𝑝 = (𝑝0 − 𝑝1) + (𝑝1 − 𝑝2) + (𝑝2 − 𝑝3) + (𝑝3 − 𝑝4) + ⋯ + 𝑝∞

𝑞 = (𝑞0 − 𝑞1) + (𝑞1 − 𝑞2) + (𝑞2 − 𝑞3) + (𝑞3 − 𝑞4) + ⋯ + 𝑞∞

We then pair up projections and sum up the partial isometries with orthogonal 
domains and ranges.
First, since multiplication is separately SOT-continuous,

𝑣∗𝑞∞𝑣 = 𝑣∗(lim 𝑆𝑂𝑇𝑞𝑛)𝑣 = lim 𝑆𝑂𝑇𝑣∗𝑞𝑛𝑣 = lim 𝑆𝑂𝑇𝑝𝑛 = 𝑝∞.

Moreover, since 𝑞∞ ≤ 𝑞, 𝑞∞ = 𝑞∞𝑞𝑞∞ = 𝑞∞𝑣𝑣∗𝑞∞. Hence 𝑝∞ ≈ 𝑞∞ via the 
partial isometry 𝑞∞𝑣. Finally, observe that

Ad(𝑢)(𝑝𝑛 − 𝑝𝑛+1) = 𝑢∗(𝑝𝑛 − 𝑝𝑛+1)𝑢 = 𝑢∗𝑝𝑛𝑢 − 𝑢∗𝑝𝑛+1𝑢 = 𝑞𝑛+1 − 𝑞𝑛+2

Ad(𝑣)(𝑞𝑛 − 𝑞𝑛+1) = 𝑝𝑛+1 − 𝑝𝑛+2.

Thus (𝑝𝑛 − 𝑝𝑛+1)𝑢 is a partial isometry witnessing 𝑝𝑛 − 𝑝𝑛+1 ≈ 𝑞𝑛+1 − 𝑞𝑛+2, 
and (𝑞𝑛 − 𝑞𝑛+1)𝑣 is a partial isometry witnessing 𝑞𝑛 − 𝑞𝑛+1 ≈ 𝑝𝑛+1 − 𝑝𝑛+2. ∎
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Corollary 4.4.6. If 𝑀 is a factor, then ≼ is a total order up to ≈.

Proof. This is a restatement of Corollary 4.2.9. ∎

Definition 4.4.7. A projection 𝑝 ∈ 𝑃 (𝑀) is called:

• finite if for all projections 𝑞 ≤ 𝑝, 𝑞 ≈ 𝑝 implies 𝑞 = 𝑝.

• infinite if there is a 𝑞 ≤ 𝑝 with 𝑞 ≠ 𝑝 such that 𝑞 ≈ 𝑝 (not infinite). An infinite 
projection is called:

– purely infinite if there is no non-zero finite 𝑞 ≤ 𝑝, and
– properly infinite if for all 𝑧 ∈ 𝑃 (𝑍(𝑀)) such that 𝑧𝑝 ≠ 0, 𝑧𝑝 is infinite.

A von Neumann algebra 𝑀 is called finite or (purely/properly) infinite if 1𝑀 is respectively.

Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that 𝑝 abelian 
implies 𝑝 is finite.

Definition 4.4.9. A von Neumann algebra 𝑀 is called:

• type III if 𝑀 is purely infinite.

• type II if 𝑀 has no abelian projections and any non-zero central projection majorizes 
a non-zero finite projection. In this case, we call 𝑀:

– type II1 if 𝑀 is finite, and
– type II∞ if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say 
it. We will informally say that a von Neumann algebra 𝑀 has sufficiently many projections 
with property (P) if every non-zero central projection of 𝑀 majorizes a non-zero projection 
with property (P). Then 𝑀 is:

• type I if 𝑀 has sufficiently many abelian projections,

• type II if 𝑀 has no abelian projections, but has sufficiently many finite projections. In 
this case, 𝑀 is:

1. type II1 if 𝑀 is finite and
2. type II∞ if has no non-zero finite central projections.

• type III if 𝑀 has no abelian projections and no non-zero finite projections.
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4.5 𝐿Γ is a II1 factor when Γ is icc
Let Γ be a countable discrete group. Recall

𝐿Γ ≔ {𝜆𝑔|𝑔 ∈ Γ}″ ⊂ 𝐵(ℓ2Γ) where (𝜆𝑔𝜉)(ℎ) ≔ 𝜉(𝑔−1ℎ).

The functions 𝛿𝑔(ℎ) ≔ 𝛿𝑔=ℎ give a distinguished orthonormal basis of ℓ2Γ. Observe 𝜆𝑔𝛿ℎ =
𝛿𝑔ℎ. We also have a right Γ action on ℓ2Γ by (𝜌𝑔𝜉)(ℎ) ≔ 𝜉(ℎ𝑔). Notice that 𝜌𝑔 ∈ 𝑈(ℓ2Γ) ∩
𝐿Γ′.

Facts 4.5.1. We compute some basic properties about 𝐿Γ.

(𝐿Γ1) For all 𝑥 ∈ 𝐿Γ, there a sequence (𝑥𝑔) ∈ ℓ2Γ such that 𝑥𝛿𝑒 = ∑ 𝑥𝑔𝛿𝑔.

(𝐿Γ2) For all 𝑥 ∈ 𝐿Γ and ℎ ∈ Γ,

𝑥𝛿ℎ = 𝑥𝜌ℎ𝛿𝑒 = 𝜌ℎ𝑥𝛿𝑒 = 𝜌ℎ ∑ 𝑥𝑔𝛿𝑔 = ∑
𝑔

𝑥𝑔𝛿𝑔ℎ = ∑
𝑔

𝑥𝑔ℎ−1𝛿𝑔.

(𝐿Γ3) 𝑥∗𝛿𝑒 = ∑ 𝑥𝑔−1𝛿𝑔 since for all ℎ ∈ Γ,

⟨𝑥∗𝛿𝑒, 𝛿ℎ⟩ = ⟨𝛿𝑒, 𝑥𝛿ℎ⟩ =
(𝐿Γ2)

∑ 𝑥𝑔ℎ−1⟨𝛿𝑒, 𝛿𝑔⟩ = 𝑥ℎ−1 .

(𝐿Γ4) If 𝑥𝛿𝑒 = ∑ 𝑥𝑔𝛿𝑔 and 𝑦𝛿𝑒 = ∑ 𝑦𝑔𝛿𝑔, then 𝑥𝑦𝛿𝑒 = ∑𝑔 (∑ℎ 𝑥ℎ𝑦ℎ−1𝑔) 𝛿𝑔. Thus the 
convolution product (𝑥𝑔) ∗ (𝑦ℎ) ∈ ℓ2Γ.

Proof. For all 𝑔 ∈ Γ,

⟨𝑥𝑦𝛿𝑒, 𝛿𝑔⟩ = ⟨𝑦𝛿𝑒, 𝑥∗𝛿𝑔⟩ =
(𝐿Γ3)

∑
ℎ,𝑘

𝑥ℎ−1𝑦𝑘⟨𝛿𝑘, 𝜌𝑔−1𝛿ℎ⟩ = ∑
ℎ,𝑘

𝑥ℎ−1𝑦𝑘𝛿𝑘=ℎ𝑔,

which simplifies to ∑ℎ−1 𝑥ℎ−1𝑦ℎ𝑔. This is the claimed formula swapping ℎ with 
ℎ−1 as the index of summation. ∎

(𝐿Γ5) 𝛿𝑒 is a cylic and separating vector for 𝐿Γ.

Proof. Clearly ℂ[Γ]𝛿𝑒 ⊂ 𝐿Γ𝛿𝑒 is dense in ℓ2Γ, so 𝛿𝑒 is cyclic. If 𝑥 ∈ 𝐿Γ such that 
𝑥𝛿𝑒 = 0, then 𝑥𝛿𝑔 = 𝜌𝑔−1𝑥𝛿𝑒 = 0 for all 𝑔, and 𝑥 = 0. Thus 𝛿𝑒 is separating. ∎

(𝐿Γ6) tr ≔ ⟨ ⋅ 𝛿𝑒, 𝛿𝑒⟩ is a faithful 𝜎-WOT continuous tracial state on 𝐿Γ with tr(𝑥) = 𝑥𝑒.
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Proof. First, we have the tracial property as

⟨𝑥𝑦𝛿𝑒, 𝛿𝑒⟩ =
(𝐿Γ4)

∑
ℎ

𝑥ℎ𝑦ℎ−1 = ∑
ℎ

𝑦ℎ𝑥ℎ−1 =
(𝐿Γ4)

⟨𝑦𝑥𝛿𝑒, 𝛿𝑒⟩.

Next, tr(𝑥∗𝑥) = ∑𝑔 |𝑥𝑔|2 = 0 if and only if 𝑥𝑔 = 0 for all 𝑔 if and only if 𝑥 = 0, 
so tr is faithful. ∎

(𝐿Γ7) All projections in 𝐿Γ are finite.

Proof. Suppose 𝑢𝑢∗ = 𝑝 and 𝑢∗𝑢 = 𝑞 ≤ 𝑝. Then tr(𝑝−𝑞) = tr(𝑢𝑢∗)−tr(𝑢∗𝑢) =
0 which implies 𝑝 − 𝑞 = 0 as tr is faithful by (𝐿Γ6). ∎

Example 4.5.2. If 𝐻 is infinite dimensional, then 𝐵(𝐻) does not admit a trace.

Proposition 4.5.3. If Γ is icc (infinite and all nontrivial conjugacy classes infinite), then 
𝐿Γ is a II1 factor.

Proof. If 𝑧 ∈ 𝑍(𝐿Γ), then

∑ 𝑧𝑔𝛿𝑔 = 𝑧𝛿𝑒 = 𝜆ℎ−1𝑧𝜆ℎ𝛿𝑒 = ∑ 𝑧ℎ−1𝑔ℎ𝛿𝑔,

so (𝑧𝑔) ∈ ℓ2Γ is constant on conjugacy classes. Since Γ is icc, 𝑧𝑔 = 0 for 𝑔 ≠ 𝑒, so 
𝑧 ∈ ℂ1 by (𝐿Γ6), and 𝐿Γ is a factor.
Since 𝐿Γ is infinite dimensional and admits a trace, it cannot be type I by Exercise 
4.5.2. Since 𝐿Γ is finite by (𝐿Γ7) 𝐿Γ is type II1. ∎

4.6 II1 factor basics
This subsection follows Jones’ von Neumann algebra notes quite closely.

Above, we exploited the trace on 𝐿Γ to prove Proposition 4.5.3. For this subsection, 
we assume a II1 factor comes equipped with a 𝜎-WOT continuous tracial state. We will 
construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factor 𝑀 equipped with a tracial state 
tr, which is sometimes assumed to be faithful or 𝜎-WOT continuous.

(tr1) A 𝜎-WOT continuous tracial state on a factor 𝑀 is faithful. 

Proof. Let 𝐽 = {𝑥 ∈ 𝑀| tr(𝑥∗𝑥) = 0}. Since 𝑥∗𝑦∗𝑦𝑥 ≤ ‖𝑦∗𝑦‖𝑥∗𝑥, 𝐽 is a left ideal. 
But since tr is a trace, 𝐽 is a 2-sided ideal. By Cauchy-Schwarz, tr(𝑥∗𝑥) = 0 if 
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and only if tr(𝑥𝑦) = 0 for all 𝑦, so

𝐽 = ⋂
𝑦∈𝑀

ker( tr( ⋅ 𝑦)⏟
𝜎-WOT cts

)

is 𝜎-WOT closed. By Corollary 4.1.5, 𝑀 has no non-trivial 𝜎-WOT closed 2-sided 
ideals, so ker(tr) = 0. ∎

(tr2) If 𝑀 is a factor with a faithful tracial state, then 𝑀 is finite. 

Proof. The proof of (𝐿Γ7) applies verbatim. ∎

(tr3) An infinite dimensional factor 𝑀 with a 𝜎-WOT continuous tracial state is type II1. 

Proof. The second part of the proof of Proposition 4.5.3 applies verbatim. ∎

(tr4) Suppose 𝑀 is a factor and tr is faithful.

1. 𝑝 ≼ 𝑞 if and only if tr(𝑝) ≤ tr(𝑞).
2. 𝑝 ≈ 𝑞 if and only if tr(𝑝) = tr(𝑞).

Proof. For the forward direction, suppose 𝑝 = 𝑢𝑢∗ and 𝑢∗𝑢 ≤ 𝑞. Then

tr(𝑝) = tr(𝑢𝑢∗) = tr(𝑢∗𝑢) ≤ tr(𝑞)

with equality if and only if 𝑞 = 𝑢∗𝑢 as tr is faithful.
Conversely, suppose tr(𝑝) ≤ tr(𝑞). Since 𝑀 is a factor, then 𝑝 ≼ 𝑞 or 𝑞 ≼ 𝑝. If 
𝑞 ≼ 𝑝, then by the forward step, tr(𝑞) ≤ tr(𝑝), in which case tr(𝑝) = tr(𝑞) and 
𝑝 = 𝑢𝑢∗ by faithfulness of tr. Thus 𝑝 ≈ 𝑞. ∎

Lemma 4.6.2. Suppose 𝑀 is a II1 factor with a faithful trace. For every non-zero 𝑝 ∈ 𝑃 (𝑀)
and 0 < 𝜀 < tr(𝑝), there is a 𝑞 ∈ 𝑃 (𝑀) with 0 ≤ 𝑞 ≤ 𝑝 and 0 < tr(𝑞) < 𝜀. 

Proof. Let
𝛿 ∶= inf {tr(𝑞)|𝑞 ∈ 𝑃 (𝑀) ∖ {0} such that 𝑞 ≤ 𝑝} .

If 0 < 𝛿 ≤ tr(𝑝), there is a non-zero 𝑞 ∈ 𝑃 (𝑀) such that 𝑞 ≤ 𝑝 and tr(𝑞) < 2𝛿 by the 
definition of the inf. Since 𝑀 is not type I, 𝑞 is not minimal, so there is a non-zero 
projection 𝑟 ≤ 𝑞 with 0 ≠ 𝑟 ≠ 𝑞. Then 𝛿 ≤ tr(𝑟), but

tr(𝑞 − 𝑟) = tr(𝑞) − tr(𝑟) ≤ tr(𝑞) − 𝛿 < 2𝛿 − 𝛿 = 𝛿,

a contradiction. ∎
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Proposition 4.6.3. Suppose 𝑀 is a II1 factor with a faithful trace. Then tr(𝑃 (𝑀)) = [0, 1]. 

Proof. Fix 𝑟 ∈ (0, 1), and consider {𝑝 ∈ 𝑃 (𝑀)|0 < tr(𝑝) ≤ 𝑟} which is non-empty by 
Lemma 4.6.2. Ordering this set by ≤, every ascending chain has an upper bound, so by 
Zorn’s Lemma, there is a maximal element 𝑝. Suppose for contradiction that tr(𝑝) < 𝑟. 
Again by Lemma 4.6.2, there is a projection 𝑞 ≤ 1 − 𝑝 with 0 < tr(𝑞) < 𝑟 − tr(𝑝). But 
then 𝑝 + 𝑞 is a projection such that tr(𝑝) < tr(𝑝) + tr(𝑞) < 𝑟, a contradiction. ∎

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in [0, 1] in 𝐿𝔽2
and 𝐿𝑆∞.

Exercise 4.6.5. Let 𝑀 be a II1 factor with 𝜎-WOT continuous tracial state tr.

1. Show that if 𝑝 ∈ 𝑀 is a non-zero projection, then for every 0 < 𝑟 < tr(𝑝), there is a 
projection 𝑞 ∈ 𝑀 with 𝑞 ≤ 𝑝 and tr(𝑞) = 𝑟.

2. For every 𝑛 ∈ ℕ, there is a unital subfactor 𝑁 ⊆ 𝑀 with 𝑁 ≅ 𝑀𝑛(ℂ).

3. 𝑀 is algebraically simple, i.e., 𝑀 has no 2-sided ideals.

Proposition 4.6.6. A finite von Neumann algebra 𝑀 with a faithful 𝜎-WOT continuous 
tracial state tr is a II1 factor if and only if for any other 𝜎-WOT continuous tracial state 𝜑, 
𝜑 = tr. 

Proof. Suppose 𝑀 is a II1 factor. It suffices to prove both traces agree on projections. 
By Exercise 4.6.5(2), the traces must agree on every subfactor 𝑁 ≅ 𝑀𝑛(ℂ) for all 
𝑛 ∈ ℕ. For an arbitrary projection 𝑝 ∈ 𝑀, we can build a sequence (𝑝𝑖) of mutually 
orthogonal projections such that 𝑝 = ∑ 𝑝𝑖 SOT (and thus also 𝜎-WOT) and tr(𝑝𝑖) =
1

𝑛𝑖
 for some 𝑛𝑖 ∈ ℕ for every 𝑖 using Exercise 4.6.5(1).

Suppose now 𝑀 is not a factor, and choose projection 𝑧 ∈ 𝑍(𝑀) such that 0 ≠ 𝑧 ≠ 1. 
Then 𝜑(𝑥) ∶= 1

tr(𝑧) tr(𝑥𝑧) is a 𝜎-WOT continuous tracial state distinct from tr as 
𝜑(1 − 𝑧) = 0 ≠ tr(1 − 𝑧). ∎

4.6.1 The hyperfinite II1 factor

We now use Proposition 4.6.6 to construct a II1 factor 𝑅 which can be well approximated 
by finite dimensional subalgebras.

For 𝑛 ∈ ℕ, let 𝐴𝑛 ∶= ⨂𝑛 𝑀2(ℂ). Include 𝐴𝑛 ↪ 𝐴𝑛+1 by 𝑥 ↦ 𝑥 ⊗ 1, and let 𝐴∞ ∶=
lim→ 𝐴𝑛 = ⨂∞ 𝑀2(ℂ). Since 𝐴𝑛 ≅ 𝑀2𝑛(ℂ) has a unique normalized faithful tracial state 
tr𝑛, tr∞ ∶= lim→ tr𝑛 is the unique faithful trace on 𝐴∞, and it is positive definite in that 
tr∞(𝑥∗𝑥) ≥ 0 for all 𝑥 ∈ 𝐴∞ with equality if and only if 𝑥 = 0. We can thus attempt to 
apply the GNS construction, where there are several things we must check along the way. We 
define 𝐻 to be the completion of 𝐴∞ in ‖ ⋅ ‖2 under the sesqulinear form ⟨𝑥, 𝑦⟩ ∶= tr∞(𝑦∗𝑥). 
We write Ω ∈ 𝐻 for the image of 1 ∈ 𝐴∞ and 𝑎Ω ∈ 𝐻 for the image of 𝑎 = 𝑎1 ∈ 𝐴∞.
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(R1) 𝐴∞ acts faithfully on the left of 𝐻 by bounded operators by 𝑥(𝑎Ω) = 𝑥𝑎Ω. We can 
thus define 𝑅 ∶= (𝐴∞)″ ⊂ 𝐵(𝐻). 

Proof. Since 𝑥∗𝑥 ≤ ‖𝑥∗𝑥‖𝐴𝑛
 for all 𝑥 ∈ 𝐴𝑛, and since the inclusions 𝐴𝑛 ↪ 𝐴𝑛+𝑘

are all injective and thus norm-preserving, we have

‖𝑥𝑎Ω‖2 = tr∞(𝑎∗𝑥∗𝑥𝑎) ≤ ‖𝑥∗𝑥‖𝐴𝑛
⋅ tr∞(𝑎∗𝑎) = ‖𝑥‖2

𝐴𝑛
⋅ ‖𝑎Ω‖2.

Faithfulness of the action follows as Ω is separating for 𝐴∞ by faithfulness of 
tr∞ on 𝐴∞. ∎

(R2) tr𝑅(𝑥) ∶= ⟨𝑥Ω, Ω⟩ is a 𝜎-WOT continuous tracial state on 𝑅 such that tr𝑅 |𝐴∞
= tr∞. 

Proof. For 𝑥 ∈ 𝐴∞, tr𝑅(𝑥) = ⟨𝑥Ω, Ω⟩ = tr∞(𝑥). Since tr𝑅 is a vector state, it is 
both SOT-continuous and 𝜎-WOT continuous. For 𝑥, 𝑦 ∈ 𝑅, by the Kaplansky 
Density Theorem, we may pick bounded nets (𝑥𝑖), (𝑦𝑖) ⊂ 𝐴∞ with 𝑥𝑖 → 𝑥 and 
𝑦𝑖 → 𝑦 SOT. Since multiplication is jointly SOT-continuous on bounded sets, 
𝑥𝑖𝑦𝑖 → 𝑥𝑦 and 𝑦𝑖𝑥𝑖 → 𝑦𝑥 SOT. We thus have

tr𝑅(𝑥𝑦) = lim SOT tr∞(𝑥𝑖𝑦𝑖) = lim SOT tr∞(𝑦𝑖𝑥𝑖) = tr𝑅(𝑦𝑥). ∎

(R3) 𝐴∞ acts on the right of 𝐻 by bounded operators by 𝑥(𝑎Ω) = 𝑎𝑥Ω. 

Proof. This is the step that uses that tr is a trace:

‖𝑎𝑥Ω‖2 = tr∞(𝑥∗𝑎∗𝑎𝑥) = tr∞(𝑎𝑥𝑥∗𝑎∗) ≤ ‖𝑥𝑥∗‖𝐴𝑛
⋅ tr∞(𝑎𝑎∗)

= ‖𝑥∗𝑥‖𝐴𝑛
⋅ tr∞(𝑎∗𝑎) = ‖𝑥‖2

𝐴𝑛
⋅ ‖𝑎Ω‖2. ∎

(R4) tr𝑅 is faithful on 𝑅 so that 𝑅 is a II1 factor by Proposition 4.6.6. 

Proof. Suppose tr𝑅(𝑥∗𝑥) = 0. Since the right 𝐴∞-action is bounded and com­
mutes with the left 𝐴∞-action on 𝐻 and thus also commutes with 𝑅, for all 
𝑎 ∈ 𝐴∞,

‖𝑥𝑎Ω‖2 = ‖𝑥𝑅𝑎Ω‖2 = ‖𝑅𝑎𝑥Ω‖2 ≤ ‖𝑅𝑎‖2 ⋅ ‖𝑥Ω‖2 = ‖𝑅𝑎‖2 ⋅ tr𝑅(𝑥∗𝑥) = 0.

Since 𝐴∞Ω is dense in 𝐻, 𝑥 = 0. ∎

Exercise 4.6.7. Build a projection of arbitrary trace in [0, 1] in 𝑅.
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4.7 Useful results on comparison of projections
Our next task is to prove every finite von Neumann algebra admits a tracial state. We begin 
with some general results on projections in a von Neumann algebra. For this section, unless 
stated otherwise, 𝑀 is a von Neumann algebra and 𝑝, 𝑞 ∈ 𝑃 (𝑀).

Facts 4.7.1. Here are some basic facts about comparison of projections.

(≼1) (Kaplansky’s formula) 𝑝 ∨ 𝑞 − 𝑝 ≈ 𝑞 − 𝑝 ∧ 𝑞.

Proof. Consider 𝑥 = (1 − 𝑝)𝑞. Then ker(𝑥) = ker(𝑞) ⊕ (𝑝 ∧ 𝑞)𝐻, so

𝑝ker(𝑥) = (1 − 𝑞) + 𝑝 ∨ 𝑞 and Range(𝑥∗) = 1 − 𝑝ker(𝑥) = 𝑞 − 𝑝 ∧ 𝑞.

Since 𝑥 = [(1 − (1 − 𝑞))(1 − 𝑝)]∗, the above argument also tells us that

Range(𝑥) = (1 − 𝑝) − (1 − 𝑝) ∧ (1 − 𝑞) = (1 − 𝑝 − (1 − 𝑝 ∨ 𝑞) = 𝑝 ∨ 𝑞 − 𝑝.

Since Range(𝑥∗) = supp(𝑥), these projections are equivalent by Example 4.4.2.
∎

(≼2) If 𝑝1 ≼ 𝑞1, 𝑝2 ≼ 𝑞2, and 𝑞1𝑞2 = 0, then 𝑝1 ∨ 𝑝1 ≼ 𝑞1 + 𝑞2.

Proof. By (≼1), 𝑝1 ∨𝑝2 −𝑝2 ≈ 𝑝1 −𝑝1 ∧𝑝2 ≼ 𝑞1 so 𝑝1 ∨𝑝2 = (𝑝1 ∨𝑝2 −𝑝2)+𝑝2 ≼
𝑞1 + 𝑞2. ∎

(≼3) (Comparison Theorem) There is a 𝑧 ∈ 𝑃 (𝑍(𝑀)) such that 𝑝𝑧 ≼ 𝑞𝑧 and 𝑞(1 − 𝑧) ≼
𝑝(1 − 𝑧).

Proof. By Zorn’s Lemma, there are maximal families of mutually orthogonal 
projections {𝑝𝑖}, {𝑞𝑖} such that ∑ 𝑝𝑖 ≤ 𝑝, ∑ 𝑞𝑖 ≤ 𝑞, and 𝑝𝑖 ≈ 𝑞𝑖 for all 𝑖. Set 
𝑧1 ∶= 𝑧 (𝑝 − ∑ 𝑝𝑖) and 𝑧2 ∶= 𝑧 (𝑞 − ∑ 𝑞𝑖). By maximailty, 𝑧1𝑧2 = 0, so

(𝑝 − ∑ 𝑝𝑖) ≤ 𝑧1 ≤ 1 − 𝑧2 ⟹ 𝑧2 (𝑝 − ∑ 𝑝𝑖) = 0

(𝑞 − ∑ 𝑞𝑖) ≤ 𝑧2 ⟹ (1 − 𝑧2) (𝑞 − ∑ 𝑞𝑖) = 0.

Since ∑ 𝑝𝑖 ≈ ∑ 𝑞𝑖, we see

𝑧2𝑝 = 𝑧2 ∑ 𝑝𝑖 ≈ 𝑧2 ∑ 𝑞𝑖 ≤ 𝑧2𝑞

(1 − 𝑧2)𝑞 = (1 − 𝑧2) ∑ 𝑞𝑖 ≈ (1 − 𝑧2) ∑ 𝑝𝑖 ≤ (1 − 𝑧2)𝑝. ∎

(≼4) If 𝑝, 𝑞 are finite, so is 𝑝 ∨ 𝑞.

16



We omit the proof, which is quite techinical. There is a much simpler proof when 
𝑝, 𝑞 are central in addition, which you will do on homework.

(≼5) If 𝑝, 𝑞 are finite and 𝑝 ≈ 𝑞, then 1 − 𝑝 ≈ 1 − 𝑞. Hence there is a 𝑢 ∈ 𝑈(𝑀) such that 
𝑢∗𝑝𝑢 = 𝑞.

Remark 4.7.2. The proof below only uses (≼4) to reduce to the case that 𝑀 is 
finite. Since we will only use (≼5) for finite von Neumann algebras, the rest of 
these notes is still self-contained without a proof of (≼4) above.

Proof. By (≼4), 𝑝 ∨ 𝑞 is finite, so replacing 𝑀 by (𝑝 ∨ 𝑞)𝑀(𝑝 ∨ 𝑞), we may 
assume 𝑀 is finite. By (≼3), there is a central projection 𝑧 ∈ 𝑃 (𝑍(𝑀)) such 
that (1 − 𝑝)𝑧 ≼ (1 − 𝑞)𝑧 and (1 − 𝑞)(1 − 𝑧) ≼ (1 − 𝑝)(1 − 𝑧). Since we can 
consider 𝑀𝑧 and 𝑀(1 − 𝑧) separately, we may assume 1 − 𝑝 ≈ 𝑟 ≤ 1 − 𝑞. Since 
1 = (1 − 𝑝) + 𝑝 ≈ 𝑟 + 𝑞, and 𝑀 is finite, 𝑟 + 𝑞 = 1, so 1 − 𝑝 ≈ 𝑟 = 1 − 𝑞. Now 
if 𝑣𝑣∗ = 𝑝, 𝑣∗𝑣 = 𝑞 and 𝑤𝑤∗ = 1 − 𝑝, 𝑤∗𝑤 = 1 − 𝑞, then 𝑢 = 𝑣 + 𝑤 is a unitary 
satisfing 𝑢∗𝑝𝑢 = 𝑞. ∎

(≼6) Suppose 𝑝, 𝑞 ∈ 𝑃 (𝑀) finite with 𝑝, 𝑞 ≤ 𝑟.

(≼6f) If 𝑝 ≈ 𝑞, then 𝑟 − 𝑝 ≈ 𝑟 − 𝑞.
(≼6f) If 𝑝 ≼ 𝑞, then 𝑟 − 𝑞 ≼ 𝑟 − 𝑝.

Remark 4.7.3. Again, in the proof below, we will only use (≼4) to pass to the 
case 𝑀 is finite and 𝑟 = 1.

Proof. Since 𝑝, 𝑞 ≤ 𝑟 implies 𝑝∨𝑞 ≤ 𝑟, passing to (𝑝∨𝑞)𝑀(𝑝∨𝑞), we may assume 
𝑀 is finite and 𝑟 = 1 by (≼4). Now (≼6) follows immediately from (≼5). For 
(≼6), let 𝑠 ∈ 𝑃 (𝑀) with 𝑝 ≈ 𝑠 ≤ 𝑞. By (≼5) 1 − 𝑝 ≈ 1 − 𝑠 ≥ 1 − 𝑞. ∎

(≼7) If (𝑞𝑛) is an inrcreasing sequence of finite projections and 𝑝 ∈ 𝑃 (𝑀) such that 𝑞𝑛 ≼ 𝑝
for all 𝑛, then ⋁ 𝑞𝑛 ≼ 𝑝.

Proof. We inductively define a sequence of mutually orthogonal projections 𝑝𝑛 ≤
𝑝 such that 𝑝0 = 𝑞1 and for all 𝑛 ∈ ℕ, 𝑝𝑛 ≈ 𝑞𝑛+1 − 𝑞𝑛. Then

∞
⋁
𝑛=1

𝑞𝑛 = 𝑞1 +
∞

∑
𝑛=1

(𝑞𝑛+1 − 𝑞𝑛) ≈
∞

∑
0

𝑝𝑛 ≤ 𝑝.

By assumption, 𝑞1 ≼ 𝑝, so there is a 𝑝0 ≤ 𝑝 such that 𝑞1 ≈ 𝑝0. Suppose we have 
𝑝0, 𝑝1, … , 𝑝𝑛.

Claim. 𝑞𝑛+2 − 𝑞𝑛+1 ≼ 𝑝 − ∑𝑛
𝑖=0 𝑝𝑖.
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Proof of Claim. Observe 𝑞𝑛+2 ≼ 𝑝, so there is a partial isometry 𝑣 such that 
𝑣𝑣∗ = 𝑞𝑛+2 and 𝑒𝑛+2 ∶= 𝑣∗𝑣 ≤ 𝑝. Since 𝑞𝑛+2 ≥ 𝑞𝑛+1,

𝑒𝑛+1 ∶= 𝑣∗𝑞𝑛+1𝑣 ≤ 𝑣∗𝑞𝑛+2𝑣 = 𝑣∗𝑣𝑣∗𝑣 = 𝑣∗𝑣 ≤ 𝑝

and 𝑒𝑛+1 ≈ 𝑞𝑛+1. Then

𝑣∗(𝑞𝑛+2−𝑞𝑛+1)𝑣 = 𝑒𝑛+2−𝑒𝑛+1 and (𝑞𝑛+2−𝑞𝑛+1)𝑣𝑣∗(𝑞𝑛+2−𝑞𝑛+1) = 𝑞𝑛+2−𝑞𝑛+1,

so 𝑞𝑛+2 − 𝑞𝑛+1 ≈ 𝑒𝑛+2 − 𝑒𝑛+1. By the induction hypothesis,

𝑒𝑛+1 ≈ 𝑞𝑛+1 = (𝑞𝑛+1 − 𝑞𝑛) + (𝑞𝑛 − 𝑞𝑛−1) + ⋯ + (𝑞2 − 𝑞1) + 𝑞1 ≈
𝑛

∑
𝑖=0

𝑝𝑖 ≤ 𝑝.

Since 𝑞𝑛+2, 𝑞𝑛+1 are finite, so are 𝑒𝑛+2, 𝑒𝑛+1 ≈ ∑𝑛
𝑖=0 𝑝𝑖. We calculate

𝑞𝑛+2 − 𝑞𝑛+1 ≈ 𝑒𝑛+2 − 𝑒𝑛+1 = (𝑝 − 𝑒𝑛+1) − (𝑝 − 𝑒𝑛+1) ≤ 𝑝 − 𝑒𝑛+1 ≈
(≼6)

𝑝 −
𝑛

∑
𝑖=0

𝑝𝑖,

proving the claim. ∎

By the claim, we can find a projection 𝑞𝑛+2 − 𝑞𝑛+1 ≈ 𝑝𝑛+1 ≤ 𝑝 − ∑𝑛
𝑖=0 𝑝𝑖, so we 

can inductively build the sequence as claimed. ∎

(≼8) Suppose 𝑀 is a finite von Nuemann algebra and (𝑝𝑛) is an infinite sequence of mutually 
orthogonal projections. Suppose (𝑞𝑛) is another sequence of projections with 𝑝𝑛 ≈ 𝑞𝑛
for each 𝑛. Then 𝑞𝑛 → 0 SOT.

Proof. By induction using (≼2), for all 𝑚 ≤ 𝑛,
𝑛

⋁
𝑖=𝑚

𝑞𝑖 ≼
𝑛

∑
𝑖=𝑚

𝑝𝑖 ≤ ∑
𝑖≥𝑚

𝑝𝑖.

Since ⋁𝑛
𝑖=𝑚

𝑞𝑖 is increasing in 𝑛, ⋁
𝑖≥𝑚

𝑞𝑖 ≼ ∑𝑖≥𝑚 𝑝𝑖 by (≼7). Let 𝑝0 = 1 −
∑∞

𝑖=0 𝑝𝑖. By (≼6),

𝑝0 +
𝑚−1
∑
𝑖=1

𝑝𝑖 = 1 − ∑
𝑖≥𝑚

𝑝𝑖 ≼ 1 − ⋁
𝑖≥𝑚

𝑞𝑖 ≤ 1 −
∞
⋀

𝑚=1
⋁

𝑖≥𝑚
𝑞𝑖.

Again by (≼7), we can conclude that

1 = 𝑝0 +
∞

∑
𝑖=1

𝑝𝑖 ≼ 1 −
∞
⋀

𝑚=1
⋁

𝑖≥𝑚
𝑞𝑖.
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Since 𝑀 is finite, we must have

0 =
∞
⋀

𝑚=1
⋁

𝑖≥𝑚
𝑞𝑖

⏟
decreasing

= SOT − lim ⋁
𝑖≥𝑚

𝑞𝑖
⏟

≥𝑞𝑚

.

Hence for all 𝜉 ∈ 𝐻,

‖𝑞𝑚‖2 = ⟨𝑞𝑚𝜉, 𝜉⟩ ≤ ⟨ ⋁
𝑖≥𝑚

𝑞𝑖𝜉, 𝜉⟩ = ‖ ⋁
𝑖≥𝑚

𝑞𝑖𝜉‖
2

𝑚→∞
−−−−→ 0,

and thus 𝑞𝑚 → 0 SOT. ∎

4.8 Existence of a trace on a finite von Neumann algebra
For this section, 𝑀 is a finite von Neumann algebra. Recall that the 𝜎-WOT on 𝑀 is the 
weak* topology induced by 𝑀∗. Thus we may identify 𝑀∗ with the 𝜎-WOT continuous 
linear functionals on 𝑀.

Definition 4.8.1. Let 𝑆(𝑀) ⊂ 𝑀∗ be the set of 𝜎-WOT continuous states of 𝑀. Note that 
𝑈(𝑀) acts on 𝑆(𝑀) by 𝑢 ⋅ 𝜑 ∶= 𝜑(𝑢∗ ⋅ 𝑢).

Lemma 4.8.2. Let 𝑀 be a von Neumann algebra and 𝜑 ∈ 𝑀∗ a state. The following are 
equivalent.

1. 𝜑 is tracial, i.e., 𝜑(𝑥𝑦) = 𝜑(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝑀.

2. For all 𝑥 ∈ 𝑀, 𝜑(𝑥𝑥∗) = 𝜑(𝑥∗𝑥).

3. For all 𝑢 ∈ 𝑈(𝑀), 𝜑(𝑢∗𝑥𝑢) = 𝜑(𝑥).

Proof. 

(1) ⇒ (2) ∶ Obvious.

(2) ⇒ (3) ∶ For 𝑥 ≥ 0, 𝜑(𝑢∗𝑥𝑢) = 𝜑(𝑢∗𝑥1/2𝑥1/2𝑢) = 𝜑(𝑥1/2𝑢𝑢∗𝑥1/2) = 𝜑(𝑥). Now 
use that every 𝑥 ∈ 𝑀 is a linear combination of 4 positive operators.

(3) ⇒ (1) ∶ Replacing 𝑥 with 𝑢𝑥, we have 𝜑(𝑥𝑢) = 𝜑(𝑢𝑥) for all 𝑥 ∈ 𝑀 and 𝑢 ∈ 𝑈(𝑀). 
Now use that every 𝑦 ∈ 𝑀 is a linear combination of 4 unitaries. ∎

So to construct a trace in 𝑆(𝑀) for 𝑀 finite, we will find a fixed point in 𝑆(𝑀) under 
the 𝑈(𝑀)-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our 
approach here follows the proof of Jacob Lurie.
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Theorem 4.8.3  (Ryll-Nardzewski). Let 𝑋 be a Banach space and 𝐾 ⊂ 𝑋 a weakly compact 
convex subset. Suppose 𝐺 ⊂ 𝐵(𝑋) is a group of isometries with 𝐺𝐾 ⊆ 𝐾. Then there is an 
𝑥 ∈ 𝐾 such that 𝑔𝑥 = 𝑥 for all 𝑔 ∈ 𝐺.

For 𝑢 ∈ 𝑈(𝑀), we define 𝜋𝑢 ∈ 𝐵(𝑀∗) by 𝜋𝑢𝜑 ∶= 𝜑(𝑢∗ ⋅ 𝑢). Hence for our purposes, 
𝐺 = 𝜋(𝑈(𝑀)) ⊂ 𝐵(𝑀∗).

The following theorem is the main result of this section.
Theorem 4.8.4. Suppose 𝑀 is a finite von Neumann algebra and fix 𝜑 ∈ 𝑆(𝑀). Define

𝐾0 ∶= 𝜋(𝑈(𝑀))𝜑 = {𝜑(𝑢∗ ⋅ 𝑢)|𝑢 ∈ 𝑈(𝑀)} ⊂ 𝑆(𝑀),
and let 𝐾 be the weakly closed convex hull of 𝐾0 in 𝑀∗. Then 𝐾 is weakly compact.

Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed 
Point Theorem 4.8.3 yields the desired result.
Corollary 4.8.5. There exists a 𝜎-WOT continuous tracial state on a finite von Neumann 
algebra.

Proof. Let 𝜑 ∈ 𝑆(𝑀). By Theorem 4.8.4, the weakly closed convex hull 𝐾 ⊂ 𝑆(𝑀)
of 𝜋(𝑈(𝑀))𝜑 is weakly compact. As 𝐾 is clearly 𝜋(𝑈(𝑀))-invariant, by the Ryll-
Nardzewski Fixed Point Theorem 4.8.3, there is a 𝜋(𝑈(𝑀))-fixed point tr ∈ 𝐾 ⊂
𝑆(𝑀), which is a tracial state by Lemma 4.8.2. ∎

Lemma 4.8.6. For a positive linear functional 𝜑 ∈ 𝑀∗, the following are equivalent.
1. 𝜑 is 𝜎-WOT continuous.

2. 𝜑 is normal: for all increasing nets of positive operators 𝑥𝑖 ↗ 𝑥 in 𝑀, 𝜑(𝑥𝑖) ↗ 𝜑(𝑥).

3. 𝜑 is completely additive: for every family (𝑝𝑖) of mutually orthogonal projections in 
𝑀, 𝜑 (∑ 𝑝𝑖) = ∑ 𝜑(𝑝𝑖).

Proof. Homework. ∎

Remark 4.8.7. Suppose (𝑝𝑖) is a family of mutually orthogonal projections in 𝑀. For all 
positive 𝜑 ∈ 𝑀∗, and for all finite subsets 𝐹 ⊂ 𝐼, ∑𝑖∈𝐹 𝜑(𝑝𝑖) = 𝜑 (∑𝑖∈𝐹 𝑝𝑖) ≤ 𝜑 (∑ 𝑝𝑖), 
so ∑ 𝜑(𝑝𝑖) ≤ 𝜑 (∑ 𝑝𝑖). Hence 𝜑 is completely additive if and only if for every family of 
mutually orthogonal projections (𝑝𝑖) in 𝑀, for all 𝜀 > 0, there is a finite 𝐹 ⊂ 𝐼 such that 
𝜑 (∑𝑖∉𝐹 𝑝𝑖) ≤ 𝜀. Indeed,

∑ 𝜑(𝑝𝑖) = sup
𝐹⊂𝐼

∑
𝑖∈𝐹

𝜑(𝑝𝑖) = sup
𝐹⊂𝐼

𝜑 (∑
𝑖∈𝐹

𝑝𝑖) = sup
𝐹⊂𝐼

𝜑 (∑ 𝑝𝑖) − 𝜑 (∑
𝑖∉𝐹

𝑝𝑖)

= 𝜑 (∑ 𝑝𝑖) − inf
𝐹⊂𝐼

𝜑 (∑
𝑖∉𝐹

𝑝𝑖) .
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Proof of Theorem 4.8.4. Recall that the relative weak* topology on 𝑋 ⊆ 𝑋∗∗ is the 
weak topology. To show 𝐾 ⊂ 𝑀∗ is weakly compact, by the Banach-Alaoglu Theorem, 
it suffices to prove 𝐾 ⊆ 𝑀∗∗

∗ = 𝑀∗ is weak* closed, as 𝐾 ⊆ (𝑀∗)1 which is weak* 
compact.
Let 𝜓 ∈ 𝐾, the weak* closure of 𝐾 in 𝑀∗. We show 𝜓 is completely additive, and 
thus 𝜓 ∈ 𝑀∗, so 𝜓 ∈ 𝐾. Suppose for contradiction that 𝜓 is not completely additive. 
Then there is a family (𝑝𝑖)𝑖∈𝐼 of mutually orthogonal projections and an 𝜀 > 0 such 
that for all finite 𝐹 ⊂ 𝐼, 𝜓 (∑𝑖∉𝐹 𝑝𝑖) > 𝜀.

Claim. If 𝐹 ⊂ 𝐼 is any finite set, there is a 𝜙 ∈ 𝐾0 and a finite set 𝐺 ⊂ 𝐼 ∖ 𝐹 such 
that 𝜙(∑𝑖∈𝐺 𝑝𝑖) > 𝜀.

Proof. The convex hull conv(𝐾0) is weakly dense in 𝐾, which is weak* dense in 𝐾, so 
conv(𝐾0) is weak* dense in 𝐾. Thus for all 𝛿 > 0, the weak* open neighborhood

{𝜙 ∈ 𝑀∗| |(𝜓 − 𝜙) (∑
𝑖∉𝐹

𝑝𝑖)| < 𝛿}

of 𝜓 has non-empty intersection with conv(𝐾0), so pick 𝜙 in this intersection. Since 
𝜓(∑𝑖∉𝐹 𝑝𝑖) > 𝜀, choosing 𝛿 small, we have 𝜙(∑𝑖∉𝐹 𝑝𝑖) > 𝜀. Now if 𝜙 = ∑𝑛

𝑘=1 𝜆𝑘𝜙𝑘 is a 
convex combination of 𝜙𝑘 ∈ 𝐾0, there must be a particular 𝑘 so that 𝜙𝑘(∑𝑖∉𝐹 𝑝𝑖) > 𝜀. 
Now since 𝜙𝑘 is completely additive, there is a finite 𝐺 ⊂ 𝐼∖𝐹 such that 𝜙𝑘(∑𝑖∈𝐺 𝑝𝑖) >
𝜀. ∎

Claim. There is a sequence (𝐹𝑛) of disjoint finite subsets of 𝐼 and a sequence of states 
(𝜙𝑛) ⊂ 𝐾0 such that for all 𝑛 ∈ ℕ,

𝜙𝑛 ( ∑
𝑖∈𝐹𝑛

𝑝𝑖) > 𝜀.

Proof. We induct on 𝑛. Since 𝜓(∑ 𝑝𝑖) > 𝜀, by the first claim, there is a 𝜙1 ∈ 𝐾0
and a finite set 𝐹1 ⊂ 𝐼 such that 𝜙1(∑𝑖∈𝐹1

𝑝𝑖) > 𝜀. Now suppose we have disjoint 
sets 𝐹1, … , 𝐹𝑛 ⊂ 𝐼 and states 𝜙1, … , 𝜙𝑛 ∈ 𝐾0 such that 𝜙𝑘(∑𝑖∈𝐹𝑘

𝑝𝑖) > 𝜀 for all 
𝑘 = 1, … , 𝑛. Since 𝜓 is not completely additive,

𝜓 (


∑
𝑖∉∐𝑛

𝑗=1 𝐹𝑗

𝑝𝑖
)


> 𝜀,

so again by the first claim, there is a 𝜙𝑛+1 ∈ 𝐾0 and a set 𝐹𝑛+1 ⊂ 𝐼 ∖ ∐𝑛
𝑗=1 𝐹𝑗 such 

that 𝜙𝑛+1(∑𝑖∈𝐹𝑛+1
𝑝𝑖) > 𝜀. ∎
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Now by the above claim, for each 𝜙𝑛 ∈ 𝐾0, there is a unitary 𝑢𝑛 ∈ 𝑈(𝑀) such that 
𝜙𝑛 = 𝜑(𝑢∗

𝑛 ⋅ 𝑢𝑛). Moreover, setting 𝑞𝑛 ∶= ∑𝑖∈𝐹𝑛
𝑝𝑖, we have a sequence (𝑞𝑛) of 

mutually orthogonal projections such that 𝜑(𝑢∗
𝑛𝑞𝑛𝑢𝑛) > 𝜀 for all 𝑛. We now have 

our desired contradiction. Since the 𝐹𝑛 are disjoint, the 𝑞𝑛 are mutually orthogonal. 
Since 𝑢∗

𝑛𝑞𝑛𝑢𝑛 ≈ 𝑞𝑛 for all 𝑛, 𝑢∗
𝑛𝑞𝑛𝑢𝑛 → 0 SOT (and thus also 𝜎-WOT) by (≼8). But 

𝜑 ∈ 𝑆(𝑀) is 𝜎-WOT continuous and 𝜑(𝑢∗
𝑛𝑞𝑛𝑢𝑛) > 𝜀 for all 𝑛, a contradiction. ∎

4.9 The proof of Ryll-Nardzewski
In this section, we prove the Ryll-Nardzewski Fixed Point Theorem 4.8.3 following Lurie’s 
proof.
https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.
We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.

Theorem  (Ryll-Nardzewski, Theorem 4.8.3). Let 𝑋 be a Banach space and 𝐾 ⊂ 𝑋 a weakly 
compact convex subset. Suppose 𝐺 ⊂ 𝐵(𝑋) is a group of isometries with 𝐺𝐾 ⊆ 𝐾. Then 
there is an 𝑥 ∈ 𝐾 such that 𝑔𝑥 = 𝑥 for all 𝑔 ∈ 𝐺.

Remark 4.9.1. Without loss of generality, we may assume 𝐺 is finitely generated. Indeed, 
write 𝐺 = ⋃ 𝐺𝑖 where each 𝐺𝑖 is finitely generated. Then 𝐾𝐺 = ⋂ 𝐾𝐺𝑖 . By compactness 
of 𝐾 and the finite intersection property, ⋂ 𝐾𝐺𝑖 ≠ ∅ for all 𝑖 implies 𝐾𝐺 ≠ ∅.

Fix a Banach space 𝑋 and a weakly compact convex subset 𝐾 ⊂ 𝑋. We begin with the 
following warmup.

Lemma 4.9.2. Suppose 𝑇 ∈ 𝐵(𝑋) such that 𝑇 𝐾 ⊆ 𝐾. There is an 𝑥 ∈ 𝐾 such that 
𝑇 𝑥 = 𝑥. 

Proof. For 𝑛 ∈ ℕ, let 𝑇𝑛 ∶= 1
𝑛 ∑𝑛−1

𝑘=0 𝑇 𝑘 and 𝐾𝑛 = 𝑇𝑛𝐾 ⊆ 𝐾 as 𝐾 is convex. We 
claim that {𝐾𝑛} has the finite intersection property. Indeed,

𝐾𝑛1
∩ ⋯ ∩ 𝐾𝑛𝑘

⊇ 𝑇𝑛1
⋯ 𝑇𝑛𝑘

𝐾

as 𝑇𝑚𝑇𝑛 = 𝑇𝑛𝑇𝑚 for all 𝑚, 𝑛.
Now let 𝑥 ∈ ⋂ 𝐾𝑛 ≠ ∅. For each 𝑛 ∈ ℕ, there is a 𝑦 ∈ 𝐾 such that 𝑥 = 𝑇𝑛𝑦, so

𝑇 𝑥 − 𝑥 = (𝑇 − 1)𝑇𝑛𝑦 = 1
𝑛

(𝑇 − 1)
𝑛−1
∑
𝑘=0

𝑇 𝑘𝑦 = 1
𝑛

(𝑇 𝑛𝑦 − 𝑦) ∈ 1
𝑛

(𝐾 − 𝐾).

Since 𝐾 is weakly compact, so is 𝐾 − 𝐾, and in particular, 𝐾 − 𝐾 is bounded.a Thus 
for every open neighborhood 𝑈 of 𝐾 − 𝐾, there is an 𝑛 ∈ ℕ such that 1

𝑛(𝐾 − 𝐾) ⊂ 𝑈. 
But this means 𝑇 𝑥 − 𝑥 ∈ 𝑈 for every open neighborhood 𝑈 of 0, so 𝑇 𝑥 = 𝑥. ∎

aIf 𝑆 ⊂ 𝑋 ⊆ 𝑋∗∗ is weakly compact, then each 𝑠 ∈ 𝑆 is pointwise bounded as a map on 𝑋∗ by 
compactness. Now apply the Uniform Boundedness Principle.
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The strategy of the proof will be to take our finitely generated group 𝐺 = ⟨𝑔1, … , 𝑔𝑛⟩ ⊆
𝐵(𝑋) of isometries and find a candidate fixed point 𝑥 ∈ 𝐾 for 𝐺 using Lemma 4.9.2. We 
will prove by contradiction that this candidate 𝑥 ∈ 𝐾 satisfies 𝑔𝑖𝑥 = 𝑥 for each generator. 
We thank Saúl Rodríguez for helping distill the conceptual statement in Lemma 4.9.3 below, 
which is the second main ingredient to achieve our contradiction.

Lemma 4.9.3. Suppose 𝑋 is a separable Banach space and 𝐶 ⊂ 𝑋 is a weakly closed convex 
set with diam(𝐶) > 0. For every 0 < 𝜀 < diam(𝐶), there is a nonempty weakly closed convex 
subset 𝐷 = 𝐷(𝜀) ⊊ 𝐶 such that diam(𝐶 ∖ 𝐷) ≤ 𝜀.

Assuming this technical lemma, we can now prove Theorem 4.8.3.

Proof of Theorem 4.8.3. Set 𝑇 = 1
𝑛 ∑ 𝑔𝑖 ∈ 𝐵(𝑋). By the warmup Lemma 4.9.2, there 

is an 𝑥 ∈ 𝐾 such that 𝑇 𝑥 = 𝑥. If 𝑔𝑖(𝑥) = 𝑥 for all 𝑖, we have our fixed point proving 
Theorem 4.8.3. Otherwise, relabelling the 𝑔𝑖, there is a 1 ≤ 𝑘 ≤ 𝑛 such that 𝑔𝑖(𝑥) ≠ 𝑥
for all 𝑖 = 1, … , 𝑘 and 𝑔𝑖(𝑥) = 𝑥 for all 𝑖 = 𝑘 + 1, … , 𝑛. Then

𝑥 = 𝑇 𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑔𝑖(𝑥) = 1
𝑛

𝑘
∑
𝑖=1

𝑔𝑖(𝑥) + 𝑛 − 𝑘
𝑛

𝑥,

which immediately implies that

𝑥 = 𝑇 ′𝑥 = 1
𝑘

𝑘
∑
𝑘=1

𝑔𝑖(𝑥) for 𝑇 ′ ∶= 1
𝑘

𝑘
∑
𝑘=1

𝑔𝑖.

Now consider the norm closure 𝑋′ of

span {𝑔𝑖1
⋯ 𝑔𝑖𝑚

𝑥|𝑚 ∈ ℕ and 1 ≤ 𝑖1, … , 𝑖𝑚 ≤ 𝑘} ,

which is a separable Banach space, and let 𝐶 be the weakly closed convex hull of 
⟨𝑔1, … , 𝑔𝑘⟩𝑥 ⊆ 𝐾, which is again weakly compact. Let 𝜀 > 0 such that ‖𝑔𝑖(𝑥)−𝑥‖ > 𝜀
for all 𝑖 = 1, … , 𝑘. By Lemma 4.9.3, there is a nonempty weakly compact convex 
subset 𝐶(𝜀) ⊊ 𝐶 such that diam(𝐶 ∖ 𝐶(𝜀)) ≤ 𝜀. Since ∅ ≠ 𝐶(𝜀) ≠ 𝐶, there is an 
ℎ ∈ 𝐺 such that ℎ𝑥 ∉ 𝐶(𝜀). Since 𝑇 ′𝑥 = 𝑥, we have

ℎ𝑥 = ℎ𝑇 ′𝑥 = 1
𝑘

𝑘
∑
𝑖=1

ℎ𝑔𝑖(𝑥) ∉ 𝐶(𝜀),

and since 𝐶(𝜀) is convex, there must be some 1 ≤ 𝑖 ≤ 𝑘 such that ℎ𝑔𝑖(𝑥) ∉ 𝐶(𝜀). Now 
both ℎ𝑥, ℎ𝑔𝑖(𝑥) ∉ 𝐶(𝜀), but since ℎ is an isometry, we have

‖𝑥 − 𝑔𝑖(𝑥)‖ = ‖ℎ𝑥 − ℎ𝑔𝑖(𝑥)‖ ≤ diam(𝐶 ∖ 𝐶(𝜀)) ≤ 𝜀,

a contradiction. ∎
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We now prove the lemma.

Proof of Lemma 4.9.3. Let 𝐸 = 𝜕ext𝐶 ⊆ 𝐶 be the set of extreme points. By the 
Krein-Milman Theorem, 𝐶 is the weak closed convex hull of 𝐸. Let 𝐸 ⊆ 𝐶 be the 
weak closure of 𝐸, and let 𝐵 = 𝐵𝜀/3(0) be the closed ball of radius 𝜀/3. Since 𝐵 is 
convex and norm closed, 𝐵 is also weakly closed as the norm and weak topology have 
the same closed convex sets. Since 𝑋 is separable, there is a sequence (𝑦𝑗) ⊂ 𝑋 such 
that (𝑦𝑗 + 𝐵) covers 𝑋. Thus ((𝑦𝑗 + 𝐵) ∩ 𝐸) is a cover of the weakly compact set 𝐸. 
By the Baire Category Theorem, there is a 𝑗 such that (𝑦𝑗 + 𝐵) ∩ 𝐸 has non-empty 
interior 𝑈 in 𝐸 with respect to the relative weak topology on 𝐸.
Now define

𝐶1 ∶= weakly closed convex hull of 𝐸 ∖ 𝑈
𝐶2 ∶= weakly closed convex hull of (𝑦𝑗 + 𝐵) ∩ 𝐸,

which are both nonempty (why?) weakly closed convex subsets of 𝐶. Since 𝐶 is the 
closed convex hull of

𝐸 ⊆ (𝐸 ∖ 𝑈) ∪ ((𝑦𝑗 + 𝐵) ∩ 𝐸),
𝐸 is the convex join of 𝐶1 and 𝐶2, i.e., 𝐶 = im(𝜃) for

𝜃 ∶ 𝐶1 × 𝐶2 × [0, 1] → 𝑋  given by (𝑎, 𝑏, 𝑡) ↦ 𝑡𝑎 + (1 − 𝑡)𝑏.

We now consider the sets 𝐶(𝛿) ∶= im(𝜃|𝐶1×𝐶2×[𝛿,1]).

Step 1: Each 𝐶(𝛿) is a weakly closed convex subset of 𝐶.

Closed: Since 𝜃 is continuous from the (weak,weak,standard) product 
topology to the weak topology as 𝑋 with the weak topology is a topolog­
ical vector space, 𝐾(𝛿) is weakly compact, and thus closed.
Convex: First, note that for all 0 < 𝛿 ≤ 1, 𝛿𝐶1 + (1 − 𝛿)𝐶2 is convex. We 
claim that

𝜃(𝐶1 × 𝐶2 × [𝛿, 1]) = 𝜃(𝐶1 × (𝛿𝐶1 + (1 − 𝛿)𝐶2) × [0, 1]),

which is manifestly convex.
⊆: If 𝑡 ∈ [𝛿, 1], 𝑡𝑎+(1−𝑡)𝑏 = 𝑠𝑎+(1−𝑠)(𝛿𝑎+(1−𝛿𝑏)) for 𝑠 ∈ [0, 1]
such that (1 − 𝑠)(1 − 𝛿) = (1 − 𝑡). This condition is equivalent to 
𝑡 = 𝛿 + 𝑠(1 − 𝛿).
⊇: If 𝑠 ∈ [0, 1], then 𝑠𝑎1 + (1 − 𝑠)[𝛿𝑎2 + (1 − 𝛿)𝑏] = 𝑡𝑎 + (1 − 𝑡)𝑏 for 
𝑡 = 𝑠 + (1 − 𝑠)𝛿 = 𝛿 + 𝑠(1 − 𝛿) ∈ [𝛿, 1] as before and

𝑎 = 𝑠𝑎1 + (1 − 𝑠)𝛿𝑎2
𝑠 + (1 − 𝑠)𝛿

∈ 𝐶1.
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Step 2: For 𝛿 > 0 sufficiently small, diam(𝐶 ∖ 𝐶(𝛿)) ≤ 𝜀. 

Since 𝐶 is weakly compact, it is bounded, so 𝐶 ⊂ 𝐵𝑅(0) for some 𝑅 > 0. 
If 𝑦, 𝑦′ ∈ 𝐶 ∖𝐶(𝛿), then there are 0 ≤ 𝑡, 𝑡′ < 𝛿, 𝑎, 𝑎′ ∈ 𝐶1, and 𝑏, 𝑏′ ∈ 𝐶2
such that

𝑦 = 𝑡𝑎 + (1 − 𝑡)𝑏 and 𝑦′ = 𝑡′𝑎′ + (1 − 𝑡′)𝑏′.

Then

‖𝑦 − 𝑦′‖ = ‖𝑡(𝑎 − 𝑏) + 𝑏 − 𝑡′(𝑎′ − 𝑏′) − 𝑏′‖
≤ 𝑡(‖𝑎‖ + ‖𝑏‖) + 𝑡′(‖𝑎′‖ + ‖𝑏′‖) + ‖ 𝑏 − 𝑏′⏟

𝑏,𝑏′∈𝐶2

‖

≤ 4𝛿𝑅 + 2
3

𝜀

as 𝑏, 𝑏′ ∈ 𝐶2 ⊂ 𝑦𝑗 + 𝐵 which has diameter 2/3 ⋅ 𝜀. Now choose 𝛿 < 𝜀
12𝑅 .

Step 3: For 𝛿 as in Step 2 above, 𝐶(𝛿) ≠ 𝐶. 

Since 𝑈 ⊆ 𝐸 is a non-empty open subset, there is a 𝑦 ∈ 𝐸 ∩𝑈. We claim 
that 𝑦 ∉ 𝐶(𝛿). Since 𝑦 ∈ 𝐸 is an extreme point of 𝐶, it suffices to prove 
𝑦 ∉ 𝐶1. (Indeed, if 𝑦 ∉ 𝐶1 and 𝑦 = 𝑡𝑎 + (1 − 𝑡)𝑏 for 𝑎 ∈ 𝐶1 and 𝑏 ∈ 𝐶2, 
since 𝑦 is extreme, 𝑦 = 𝑎 = 𝑏. But since 𝑎 ∈ 𝐶1 and 𝑦 ∉ 𝐶1, we must 
have 𝑡 = 0. Thus 𝑦 cannot be written as 𝑡𝑎+(1−𝑡)𝑏 for 𝑎 ∈ 𝐶1, 𝑏 ∈ 𝐶2, 
and 𝑡 ∈ [𝛿, 1].) Since 𝑋 with the weak topology is locally convex, there 
is a weakly open convex neighborhood 𝑉 of 0 such that the weak closure 
𝑉 satisfies (𝑦 − 𝑉) ∩ 𝐸 ⊆ 𝑈. (Indeed, we can use here that 𝐸 is weakly 
compact and thus weakly normal.)
Now since 𝐸 ∖ 𝑈 is weakly compact, it admits a weakly open cover 
{𝑧𝑖 + 𝑉 }𝑘

𝑖=1 where each 𝑧𝑖 ∈ 𝐸 ∖ 𝑈. Thus 𝐶1 is contained in the closed 
convex hull of

𝑘
⋃
𝑖=1

(𝑧𝑖 + 𝑉 ) ∩ 𝐸 ⊇ 𝐸 ∖ 𝑈.

In turn, ⋃𝑘
𝑖=1(𝑧𝑖+𝑉 )∩𝐸 is contained in the convex join of the (𝑧𝑖+𝑉)∩𝐶. 

If 𝑦 ∈ 𝐶1, then 𝑦 ∈ (𝑧𝑖 +𝑉)∩𝐶 for some 𝑖. But then 𝑧𝑖 ∈ (𝑦−𝑉)∩𝐸 ⊆ 𝑈, 
a contradiction to 𝑧𝑖 ∈ 𝐸 ∖ 𝑈.

Thus if 𝛿 > 0 is sufficiently small, we can take 𝐶′ = 𝐶(𝛿) ⊊ 𝐶. ∎
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