Penneys Math 7212, Projections and factors Spring 2026

4 Projections and factors

For this section, H is a Hilbert space and M C B(H) is a von Neumann algebra. We denote
the set of projections of M by P(M) and the group of unitaries in M by U(M).

4.1 Compressions and ideals

Theorem 4.1.1. Suppose p € P(M). Then pMp C B(pH) is a von Neumann algebra with
commutant (pMp) = M'p.

Proof. Clearly pMp C B(pH) is an SOT-closed unital #-subalgebra and thus a von
Neumann algebra.
If y € M’, then for all z € M,

(yp)(pxp) = yprp = pypx = (pxp)(Yp)

soyp € (pMp)’. For the converse, we use a clever trick. First, it suffices to prove every
unitary in (pMp)’ lies in M’p, as every element of (pMp)’ is a linear combination of
4 unitaries (why?). Suppose u € (pMp)" and set K := MpH. Since K is both M and
M'-invariant, ppr € M' N M = Z(M).

Claim. We may extend u to K by u) | x,p§ := > x,up.

Proof of claim. To see u is well-defined, we prove it is isometric:
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Now by construction, & commutes with the action of M on K = MpH, and thus
Upr € M’ C B(H); indeed, for all z € M and all £ € H,

upgré = ﬂxplé = zupgE.
K




Finally, we claim that u = upgp € M'p; indeed, as u = up € M’p, for all £ € H,

upgpé = W(1yp) = upé = uk. O

. J

Definition 4.1.2. We call pMp, M’p corners, compressions, or reductions of M, M’ respec-
tively.

Lemma 4.1.3. If J C M is a o-WOT closed left ideal, then J = Mp for a unique projection
p € M.

Proof. If p is any projection such that J = Mp, then since (xp)p = xp for all x € M,
yp =y for all y € J. It follows that if Mg = J = Mp, then p < gand ¢ < p, sop =q.
This also tells us how to construct p: find the largest projection in J.

If x € J, then so are |z| = w*z and x|, (|2|) for all € > 0. Since xi. j,y(|z])
supp(|z|) = supp(z) as € \( 0, supp(z) € J.

Now observe that if there is a maximal projection p in J, then p > supp(z) for all
x € J,sox=ux-supp(z)-p=xp for all z € J. We thus have J C Mp C J, and thus
equality holds.

Finally, to construct the maximal projection, since J is o-WOT closed, it is a norm-
closed left ideal, and thus contains a right approximate identity (e;) such that 0 <
e; < 1forall i, i < jimplies e; < e;, and ||z — we;| — 0 for all x € J. Since J is
o-WOT closed, p :=\/ e; € J, which is automatically self-adjoint. Since ||p—pe;| — 0,
we see that p = p?, so p is a projection, and since |z —ze;| — 0, z = xp for all x € J.
We conclude that p is the largest projection in J. [

Corollary 4.1.4. A left ideal J C M is SOT/WOT-closed if and only if it is 0-SOT/o-WOT
closed.

Proof. If Jis o-WOT closed, then J = Mp for some projection p € J, so Jis WOT
closed. The converse is trivial as WOT-closed sets are o-WO'T closed. ]

Corollary 4.1.5. If J C M is a o-WOT closed 2-sided ideal, then J = Mz for some
projection z € Z(M).

Proof. Since J is o-WOT closed, it is also WOT and hence SOT-closed. By Lemma
4.1.3, J = Mz for some projection z € M. But as J is 2-sided, for every unitary v € M,
J = uJu*. It follows that J = uJu* = uMzu* = uMu*(uzu*) = Muzu*, so z = uzu*
by the uniqueness statement in Lemma 4.1.3. We conclude z € M'NM = Z(M). O




4.2 Central support of a projection

Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., Z(M) =
M nM =Cl.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial o-WO'T closed 2-sided ideals.

Just as von Neumann algebras come in pairs M, M’, so do factors as Z(M) = M'NM =
Z(M").

Recall that for p,q € P(M) C B(H), p A q is the projection onto pH N gH and p V q is
the projection onto pH + gH. Observe we have the relation

pVg=1—(1—p)A(1—gq). (4.2.3)

For homework, you will show that p A ¢,pV ¢ € M. Thus P(M) is a lattice under these
operations.

Lemma 4.2.4. Forp,q € P(M) andu € UM), u*(pVq)u = u*puVu*qu and u*(pAq)u =
u*pu A u*qu.

Proof. Observe that ¢ € pHNqH if and only if u*¢ € vw*puHNu*quH, and n L pHNgH
if and only if w*n L uw*puH Nu*quH. Thus u*(p A ¢)u = u*pu A u*qu. Now apply
(4.2.3) to get u*(p V q)u = u*pu V u*qu. O

Definition 4.2.5. Given p € P(M), we define its central support
z(p) == \/ u*pu = lubpp

uelU (M)

where pp = \/ueFu*pu for finite subsets F' C U(M ), ordered by inclusion. By Lemma 4.2.4,
for all w e U(M),

wppw = \/ wruFpuw = \/ VDV = Py,
ueF veFw

As z(p) is the SOT-limit of the pp and multiplication is separately SOT-continuous,

w*z(p)w = w*(lim “9Tpp)w = lim *°Tw*prw = lim “°Tpr. = z(p).

This means wz(p) = z(p)w for all w € U(M), so z(p) e M' "M = Z(M).
Lemma 4.2.6. Suppose p € P(M).
1. Forx € M, zup =0 for allu € U(M) if and only if zz(p) = 0.

2. Forye M’, yp =0 if and only if yz(p) = 0. Hence the map M'z(p) — M'p given by
multiplication by p is a x-isomorphism.



Proof.

1. If zup = 0 for all w € U(M), then zupu* = 0 for all such u. Then zpr = 0
where pp = \/ueFupu* for any finite F' C U(M),* and taking SOT limits, we

SOoT

have zz(p) = x1im”~" pp = 0.

Conversely, if zz(p) = 0, then x(upu*)u = xz(p)(upu*)u = 0 for all u € U(M).
2. Since yp = ypz(p) = yz(p)p, yz(p) = 0 implies yp = 0. Conversely, if yp = 0,

then yupu* = 0 for all w € U(M) as y € M’. The argument from (1) shows
ypp = 0 for all finite F' C U(M), so taking SOT limits, yz(p) = 0. O

oI uy,..,u, € UM) and &, € wu,puiH for ¢+ = 1,...,n, then x> & = Y xf, =
Sau;puié; =0, s0 zpp = 0.

Proposition 4.2.7. For a von Neumann algebra M and p,q € P(M) \ {0}, the following
are equivalent.

1. z(p)z(q) # 0,
2. there is a w € U(M) such that puq # 0, and

3. there is a non-zero partial isometry v € M such that vv* < p and v*v < q.

Proof.

—(2) = —(1): If pug = 0 for all u € U(M), then pz(q) = 0 by Lemma 4.2.6(1). But
then 0 = gz(p)u = quz(p) for all u € U(M), so by (the adjoint of) Lemma
4.2.6(1) again, 2(q)z(p) = 0.

(2) = (3): If pug # 0, consider the polar decomposition pug = v|pugq|. By construc-
tion, vv*H = vH = puqH C pH, so vv* < p. Since ker(v) = ker(puq) D ker(q),
we have v*v = D)t < Prer(q)t = ¢-

(3) = (1): We prove that if z(p)z(¢) = 0 and v € M is a partial isometry such that
vo* < p and v*v < ¢, then v = 0. Since vv* < p < z(p), vv* = vv*z(p). Since
viu < q < 2(q), v*v = v*vz(q). Then

*

v = vw*v = z(p)vv*vz(q) = vz(q)z(p) = 0. O]

Corollary 4.2.8 (Ergodic property of factors). Suppose M is a factor and p,q € P(M)\{0}.
There is a unitary uw € U(M) such that puq # 0.

Proof. Since p,q # 0, z(p) = z(q) = 1. Now apply Proposition 4.2.7. O




Corollary 4.2.9. Suppose M is a factor and p,q € P(M)\{0}. There is a non-zero partial
isometry u € M such that uvu* < p and uw*u < q. Moreover, we can find uw € M such that
uu® =p oru'u = q.

Proof. The first part is immediate as z(p) = 1 = 2(q). Consider the set of partial
isometries u € M such that uu® < p and u*u < q. We can order this set by v < v if
wu* < wv*, uru < v'u, and v,y = U.

Claim. Any increasing chain has an upper bound.

Proof of Claim. If (v;) is an increasing chain, then the operator w : (Jviv,H —
UijjH given by § — v,§ whenever £ € vyv, H is well-defined and unitary. It thus
extends to an isometry K := | Jvfv,H — H, and thus to a partial isometry on H by
defining w| . = 0. Clearly ww* < p, w*w < ¢, and v; < w for all 7. O

We claim a maximal element satisfies uu* = p or u*u = ¢. Indeed, if p — uu* £ 0 #
q — u*u, then there is a non-zero partial isometry w € M such that ww* < p — uu*
and ww < ¢ — w*w. Observe then that u + w is a partial isometry (why?) with
(u+w)(u+w)* <pand (u+w)*(u+ w) < ¢ contradicting maximality. O

Exercise 4.2.10. Show that the central support z(p) is the smallest projection in Z (M)
such that p < z(p).

Corollary 4.2.11. Z(pMp) = Z(M)p.

Proof (Dizmier). Clearly Z(M)p = p(M'NM)p C Z(pMp). Suppose x € Z(pMp) =
pMp N M’p. Then there is a y € M’ such that x = yp. Since p = z(p)p, replacing
y with yz(p), we may assume y = yz(p). We claim that y € Z(Mz(p)) so that
ye M NMzp) c M NM = Z(M). Indeed, the map M’z(p) — M’p given by
multiplication by p is an isomorphism by Lemma 4.2.6(2), and thus maps the center
onto the center. Since yp = z € Z(pMp), we conclude y = yz(p) € Z(Mz(p)), as
desired. [

4.3 Classification of type I factors and their subfactors
Definition 4.3.1. A (nonzero) projection p € P(M) is called:

e minimal if ¢ € P(M) with ¢ < p implies ¢q € {0, p},
 abelian if pMp is abelian, and
o diffuse if there is no minimal projection ¢ < p.

Examples 4.3.2. Here are examples of such projections.
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1. The minimal projections in B(H) are the rank 1 projections.

2. Every projection is diffuse in L*°([0, 1], A) where X is Lebesgue measure.

Exercise 4.3.3. Suppose p is a regular finite Borel measure on a compact Hausdorff space
X. Show that the minimal projections of L>° (X, u) correspond to atoms of X, i.e., x € X
such that p({z}) > 0.

Exercise 4.3.4. Suppose p € P(M) is minimal and u € M is a non-zero partial isometry
such that uu* < p. Show that uu* = p and that u*u is a minimal projection.

Definition 4.3.5. A von Neumann algebra M is called type I if for all z € P(Z(M))\ {0},
there is an abelian p € P(M) \ {0} such that p < z, i.e., every non-zero central projection
majorizes an abelian projection.

Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann
algebras and B(H).

Exercise 4.3.7. Here are some exercises on minimal projections.
1. p € P(M) is minimal if and only if pMp = Cp.
2. If M is a factor and p is abelian, then p is minimal.

3. If M is a factor, then M is type I if and only if M has a minimal projection.

Theorem 4.3.8 (Classification of type I factors). If M is a type 1 factor acting on a Hilbert
space H, there are Hilbert spaces K,L and a unitary v € B(K @ L — H) such that
uMu* = B(K) ® 1.

To prove this theorem, we will construct a system of matrix units for M, i.e., a family
{eij|i,j € I} such that

o eij = eji7

* €Che = 5j:kez’£7 and

e > e;; =1 converging in SOT.
Lemma 4.3.9. If {e;;}; jes s a system of matriz units in B(H), then setting K := e;; H

which should be viewed as a ‘multiplicity space,’ there is a unitary u: (21 @ K — H such that
wre;;u=10;)(0,|®1 for all i,j. Thus u*({e;;}")u = B({*I)®1, and dim(H) = |I| dim(K).



Proof. Let {;};c; bean ONB of K = e;; H. Since e;; may be viewed as a unitary from
e;; H onto e;; H, we see that {ei1§j|j € J} is an ONB for e;;H. Since H = Pe;;H,
we see that {eﬂgj‘i el,je J} is an ONB of H. Thus the map u: /21 ® K — H by
0; ® §; > €;,; is a unitary isomorphism. Finally, we calculate

u*e;;u(d, ® &) = ue; e 6y = 0, pute & = 6;_4,(5; ® &),

so u'e;;u = 10;)(d;| ® 1 as claimed. O

Remark 4.3.10. Observe that if {p,} is a family of mutually orthogonal projections such
that > p; = 1 SOT, and {e,},,; is a family of partial isometries such that e, e7; = p;, and
ej;€1; = pj, then setting ey := p; and e;; := ej;ey; for all i, j with i # 1 completes {e;;} to
a system of matrix units.

Proof of Theorem 4.3.8. Since M is a type I factor, it has a minimal projection p;.
Let {p;} be a maximal family of mutually orthogonal minimal projections.

Claim. ) p, =1 SOT.

Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry v € M such
that uu* < p; and vw*u <1—> p,, so u*u L p, for all 7. By minimality, uu* = p,, so
uw*u is also minimal. Then {p,} C {p;} U {u*u}, contradicting maximality. O

Now by Corollary 4.2.8, for each i, there is a non-zero partial isometry e;; such that
e;,€1; < p; and ej,eq; < p;. My minimality, we must have e;;e], = p; and ej;e;; = p;
Setting e;; := p, for all i, we can construct a system of matrix units {e,;} as in Remark
4.3.10.

Proof. If x € M, then = = (3 p;)z (X p;) = Zijpimpj SOT. But by minimality,
each
P;xp; = eiielixe?jelj = €;1 P161;X€1P1 €15 = )‘ijez‘lplelj = )‘ijez‘j'
——
=:A;;p1€Cpy

and M = {e;;}". O

ij€ijs

Hence x = Zij A

The final claim follows now from Lemma 4.3.9 ]

Definition 4.3.11. We say a type I factor M is type I if M = B(H) with dim(H) = n.

Fact 4.3.12. If u, v are two partial isometries with uu* L vo* and u*u L v*v, then u*v =
0 = wv* and u + v is a partial isometry.



Corollary 4.3.13. Suppose M, N are two type I subfactors of B(H). Let p € M and g € N
be minimal projections. The following are equivalent.

1. There is a unitary w € U(H) such that w*Mu = N.

2. There are minimal p € P(M) and ¢ € P(N) and a uw € U(H) such that u*pu = q.

3. There are minimal p € P(M) and ¢ € P(N) and a partial isometry v € B(H) such
that vv* = p and v*v = q. (Note that this v is a unitary isomorphism between the
multiplicity spaces pH and gH for M and N respectively.)

Proof.

(1) = (2): If p € P(M) is minimal, then so is u*pu € P(N).
(2) = (3): Take v = pu.

(3) = (1): Extend {p} and {q} to systems of matrix units {e;, }; ;c; for M withe;; = p

and { fy, ¢}k eerc for N with f1; = q respectively. Observe that for each i € I and
keK,

(e;1vfir)(€i10f1k)" = €51 Uﬁf e =¢€; and  (e;;vf1)"(eqvfi) = ffk@flk i

=p =q
Since > e; =1 =Y fur, we see that |I| = | K|, and we may identify the two
index sets. By Fact 4.3.12, u := ) e;1vfy; is a unitary such that uf;u* = e;;
for all 4, j.

4.4 Comparison of projections

Definition 4.4.1. For p,q € P(M), we say p < q if there is a partial isometry u € M such
that uu* = p and v*u < q. We say p ~ q if there is a partial isometry v € M such that
uu* = p and u'u = q.

Example 4.4.2. For € M and = = u|x| the polar decomposition, u € M with u*u =
supp(z) and uu* = Range(x). Hence supp(x) ~ Range(x).

Example 4.4.3. Suppose u is a partial isometry such that uu* = p. Then for all ¢ < p, qu
is a partial isometry such that quu*q = qpq = q, so u*qu =~ q.

Exercise 4.4.4. Show that ~ is an equivalence relation on P(M) up to ~.

Theorem 4.4.5. <X is a partial order on P(M).

ik



Proof.
reflexive: p <X p via partial isometry p.
transitive: Suppose uu* = p, u*u < g = vv*, and v*v < r. Then
wov*u® = uqu* = vutuqut = uwutuut = uut =p and

v'utuv < viqu = vrovty = vt <7

anti-symmetric: Suppose p X ¢ and ¢ <X p. Let u,v € M br partial isometries such
that uu* = p, u*u < g, vv* = ¢, and v*v < p. Then for each p’ < p,

w p'u < u'pu = vruutu = uru < g,
and similarly, for each ¢’ < ¢, v*¢’v < p. That is, we have order preserving maps
Ad(u)

{projections < p} = {projections < q} .
Ad(v)

It immediately follows that inductively defining

Ppt1 = VU Po =
Qpi1 = U PLU do =4

yields two decreasing sequences of projections in M. Define p_ := lim 7 D, =

Ap, and g :=1lim°°Tq = Aqg,, the orthogonal projections onto (] p, H and
(g, H respectively. The clever trick here is to write p = p, and ¢ = ¢, as
telescoping sums of mutually orthogonal projections, which converge SOT:

p=(po—p1) + (pr —p2) + (P2 —3) + (P3 — Ps) + -+ + Poo

I

q= (9 — @)+ (a1 —a) + (02— a5) + (g5 — q4) + + 4o
We then pair up projections and sum up the partial isometries with orthogonal
domains and ranges.

First, since multiplication is separately SOT-continuous,

sSoT SOT, oT,

v*q v = v*(lim 99%Tq, v = lim *°Tv*q v = lim 9%Tp_ = p__.

Moreover, since ¢, < ¢, ¢oo = 450990 = 9oVV q,- Hence p ~ q., via the
partial isometry g, v. Finally, observe that
Ad(u) (pn _pn+1> =u" (pn _pn-i-l)u = u*pnu _ u*pn-i-lu = qn+1 — Qny2
Ad(v)(¢n = Gny1) = Pri1 — Pria-

Thus (p,, — P,41)u is a partial isometry witnessing p,, — .1 & ¢pi1 — Gpias
and (g,, — ¢,,.1)v is a partial isometry witnessing ¢,, — ¢,,41 = Ppi1 — Pnya- U




Corollary 4.4.6. If M is a factor, then <X is a total order up to =.

Proof. This is a restatement of Corollary 4.2.9. ]

Definition 4.4.7. A projection p € P(M) is called:
« finite if for all projections ¢ < p, ¢ & p implies ¢ = p.

o infinite if there is a ¢ < p with ¢ # p such that ¢ ~ p (not infinite). An infinite
projection is called:

— purely infinite if there is no non-zero finite ¢ < p, and

— properly infinite if for all z € P(Z(M)) such that zp # 0, zp is infinite.

A von Neumann algebra M is called finite or (purely/properly) infinite if 1,; is respectively.

Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that p abelian
implies p is finite.

Definition 4.4.9. A von Neumann algebra M is called:
o type III if M is purely infinite.

o type II if M has no abelian projections and any non-zero central projection majorizes
a non-zero finite projection. In this case, we call M:

— type 1I; if M is finite, and

— type Il if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say
it. We will informally say that a von Neumann algebra M has sufficiently many projections
with property (P) if every non-zero central projection of M majorizes a non-zero projection
with property (P). Then M is:

o type I if M has sufficiently many abelian projections,

o type II if M has no abelian projections, but has sufficiently many finite projections. In
this case, M is:

1. type II; it M is finite and

2. type Il if has no non-zero finite central projections.

o type III if M has no abelian projections and no non-zero finite projections.
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4.5 LI is a II; factor when I' is icc

Let I' be a countable discrete group. Recall
LT :={)\Jg €T} C B(’T)  where  (A\,€)(h):=&(g " h).

The functions 6,(h) := d,_;, give a distinguished orthonormal basis of £°I". Observe A d;, =

6Lg§/. We also have a right T' action on £T by (p,€)(h) := £(hg). Notice that p, € U(¢*T) N

Facts 4.5.1. We compute some basic properties about LI'.

(LT'1) For all z € LT, there a sequence (z,) € £T such that zd, = Y z,0,
(LI'2) For all x € LT and h € T,

x0y, = xpp0, = Ppxo, = Py, ngég = ngégh = nghflég.
9 9

(LI'3) 2%6, = > 7,16, since for all h € T,

<$*6676h> = <5e,x5h> (L?2) Z:':Egh*1 6 ;0 > = Tp-t-

(LT4) If »0, = > 2,0, and yd, = > y,0,, then xyd, = Zg (Zh xhyhflg> 6, Thus the
convolution product (z,) * (y,) € £°T.

Proof. For all g € T,

<‘ry(5675g> <y667x 6 (LF th 1Yg 5k7pg 16}7, thflykék:hga
h,k

which simplifies to 41 Tr-1Ypg- This is the claimed formula swapping b with
h~1 as the index of summation. O]

(LI'5) 6, is a cylic and separating vector for LI

Proof. Clearly C[T']d, C LT'6, is dense in £°T, so 4, is cyclic. If z € LT such that
zd, = 0, then 26, = p, 126, = 0 for all g, and x = 0. Thus 4, is separating. [

(LT6) tr:= (-0,,0,) is a faithful o-WOT continuous tracial state on LI with tr(z) = =

e
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Proof. First, we have the tracial property as

<xy66756> (L?ZL) Zh:xhyhl = zh:yhxhl (L?Zl) <yxée7ée>'

Next, tr(z*x) = Zg |z,|> = 0 if and only if 2, = 0 for all g if and only if 2 = 0,
so tr is faithful. [

.

(LI'7) All projections in LI' are finite.

Proof. Suppose uu* = p and u*u = ¢ < p. Then tr(p—q) = tr(uu*)—tr(u*u) =
0 which implies p — ¢ = 0 as tr is faithful by (LI'6). ]

Example 4.5.2. If H is infinite dimensional, then B(H) does not admit a trace.

Proposition 4.5.3. If ' is icc (infinite and all nontrivial conjugacy classes infinite), then
LT is a 11 factor.

Proof. 1f z € Z(LT"), then

> 2,8, =20, = Xy12X,0, = ) 24100,

so (2,) € 22T is constant on conjugacy classes. Since I is ic, z, = 0 for g # e, so
z € C1 by (LI'6), and LI is a factor.

Since LI is infinite dimensional and admits a trace, it cannot be type I by Exercise
4.5.2. Since LT is finite by (LI'7) LI is type II;. O

4.6 II, factor basics

This subsection follows Jones’ von Neumann algebra notes quite closely.

Above, we exploited the trace on LI' to prove Proposition 4.5.3. For this subsection,
we assume a II; factor comes equipped with a o-WQOT continuous tracial state. We will
construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factor M equipped with a tracial state
tr, which is sometimes assumed to be faithful or c-WQO'T continuous.

(trl) A o-WOT continuous tracial state on a factor M is faithful.

Proof. Let J = {x € M|tr(z*z) = 0}. Since z*y*yx < |y*y|z*z, Jis a left ideal.
But since tr is a trace, J is a 2-sided ideal. By Cauchy-Schwarz, tr(z*z) = 0 if
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and only if tr(zy) = 0 for all y, so

Jf = ﬂ ker( tr(-y) )
yeM o-WOT cts

is 0-WOT closed. By Corollary 4.1.5, M has no non-trivial o-WO'T closed 2-sided
ideals, so ker(tr) = 0. O

(tr2) If M is a factor with a faithful tracial state, then M is finite.

Proof. The proof of (LI'7) applies verbatim. ]

(tr3) An infinite dimensional factor M with a o-WO'T continuous tracial state is type I1;.

N

[ Proof. The second part of the proof of Proposition 4.5.3 applies verbatim. [

(tr4) Suppose M is a factor and tr is faithful.

1. p <X q if and only if tr(p) < tr(q).
2. p &~ ¢ if and only if tr(p) = tr(q).

Proof. For the forward direction, suppose p = uu* and u*u < q. Then
tr(p) = tr(uu*) = tr(u*u) < tr(q)

with equality if and only if ¢ = u*u as tr is faithful.

Conversely, suppose tr(p) < tr(q). Since M is a factor, then p < q or ¢ < p. If
q < p, then by the forward step, tr(q) < tr(p), in which case tr(p) =

p = wu* by faithfulness of tr. Thus p ~ q. O]

Lemma 4.6.2. Suppose M is a 11y factor with a faithful trace. For every non-zerop € P(M)
and 0 < e < tr(p), there is a g € P(M) with 0 < g <p and 0 < tr(q) < €.

Proof. Let
0 :=inf {tr(q)|qg € P(M) \ {0} such that ¢ < p}.

If 0 < 6 < tr(p), there is a non-zero g € P(M) such that ¢ < p and tr(q) < 29 by the
definition of the inf. Since M is not type I, ¢ is not minimal, so there is a non-zero
projection r < ¢ with 0 # r # ¢. Then § < tr(r), but

tr(g —7) = tr(q) — tr(r) < tr(q) —9 <20 — 0 =9,

a contradiction. O]
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Proposition 4.6.3. Suppose M is a 11y factor with a faithful trace. Then tr(P(M)) = [0, 1].

Proof. Fix r € (0,1), and consider {p € P(M)|0 < tr(p) < r} which is non-empty by
Lemma 4.6.2. Ordering this set by <, every ascending chain has an upper bound, so by
Zorn’s Lemma, there is a maximal element p. Suppose for contradiction that tr(p) < r.
Again by Lemma 4.6.2, there is a projection ¢ < 1—p with 0 < tr(q) < r—tr(p). But
then p + ¢ is a projection such that tr(p) < tr(p) + tr(q) < r, a contradiction. O

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in [0, 1] in L[,
and LS.

Exercise 4.6.5. Let M be a II; factor with o-WO'T continuous tracial state tr.

1. Show that if p € M is a non-zero projection, then for every 0 < r < tr(p), there is a
projection ¢ € M with ¢ < p and tr(q) =r.

2. For every n € N, there is a unital subfactor N C M with N = M, (C).
3. M is algebraically simple, i.e., M has no 2-sided ideals.

Proposition 4.6.6. A finite von Neumann algebra M with a faithful o-WOT continuous
tracial state tr is a 11, factor if and only if for any other o-WOT continuous tracial state @,
p = tr.

Proof. Suppose M is a II; factor. It suffices to prove both traces agree on projections.
By Exercise 4.6.5(2), the traces must agree on every subfactor N =~ M, (C) for all
n € N. For an arbitrary projection p € M, we can build a sequence (p,) of mutually
orthogonal projections such that p = > p; SOT (and thus also 0-WOT) and tr(p;) =
n%- for some n,; € N for every i using Exercise 4.6.5(1).

Suppose now M is not a factor, and choose projection z € Z(M) such that 0 # z #+ 1.
Then ¢(z) := @tr(mz) is a o-WOT continuous tracial state distinct from tr as
o(l1—2) =0 #tr(1 —z2). O

4.6.1 The hyperfinite II, factor

We now use Proposition 4.6.6 to construct a II; factor R which can be well approximated
by finite dimensional subalgebras.

Forn € N, let 4, := ®" M,(C). Include A, = A,.; by x = z® 1, and let A :=
lim A4, = @™ M,(C). Since A,, = M,.(C) has a unique normalized faithful tracial state
tr,, tro, := limtr, is the unique faithful trace on A, and it is positive definite in that
tro (z*z) > 0 for all z € A with equality if and only if z = 0. We can thus attempt to
apply the GNS construction, where there are several things we must check along the way. We
define H to be the completion of A_ in | - ||y under the sesqulinear form (x,y) := tr_(y*z).

We write 2 € H for the image of 1 € A__ and af2 € H for the image of a =al € A__.
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(R1) A, acts faithfully on the left of H by bounded operators by z(af2) = xaf). We can
thus define R := (A, )" C B(H).

Proof. Since x*z < |z*z|, for all z € A,,, and since the inclusions 4,, = A, .,
are all injective and thus norm-preserving, we have

|zaQ)* = tro (a*2*za) < |2*z| 4, - tro(a”a) = 2] - |a>.

Faithfulness of the action follows as 2 is separating for A_, by faithfulness of
tr,, on A_. [

(R2) trg(z) := (2, Q) is a o-WOT continuous tracial state on R such that trp |4 = tr.

Proof. For x € A, trp(z) = (2, Q) = tr(x). Since try is a vector state, it is
both SOT-continuous and o-WOT continuous. For x,y € R, by the Kaplansky
Density Theorem, we may pick bounded nets (z;), (y;) C A,, with z; — z and
y; — y SOT. Since multiplication is jointly SOT-continuous on bounded sets,
x;y; = xy and y,x; — yxr SOT. We thus have

trp(2y) = lim ST tr__ (z,y,) = lim 59T tr__ (y, ;) = trp(yx). O

(R3) A, acts on the right of H by bounded operators by z(af)) = az).

oo

Proof. This is the step that uses that tr is a trace:

lazQ|? = tr(z*a*az) = tr(azz*a*) < |z* la, - tre(aa®)

= 2"zl 4, - troo(a*a) = |2l - |aQ|?. H

(R4) trp is faithful on R so that R is a II; factor by Proposition 4.6.6.

Proof. Suppose trp(z*z) = 0. Since the right A_-action is bounded and com-
mutes with the left A__-action on H and thus also commutes with R, for all
a€ A,

|zaQ* = 2R, QI = | R,2Q|* < |R,|* - [2Q]* = |R, | - trp(z*z) = 0.

Since A (2 is dense in H, z = 0. O]

Exercise 4.6.7. Build a projection of arbitrary trace in [0, 1] in R.
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4.7 Useful results on comparison of projections

Our next task is to prove every finite von Neumann algebra admits a tracial state. We begin
with some general results on projections in a von Neumann algebra. For this section, unless

stated otherwise, M is a von Neumann algebra and p,q € P(M).

Facts 4.7.1. Here are some basic facts about comparison of projections.

(x1) (Kaplansky’s formula) pVg¢—p~qg—pAq.

Proof. Consider © = (1 — p)q. Then ker(z) = ker(q) & (p A q)H, so

Pyer(z) = (]‘ — q) +pVyg and Range(a:‘*) =1- Drer(z) =4 —P Ng.

Since z = [(1 — (1 — ¢))(1 — p)]*, the above argument also tells us that

Range(r) = (1—p)—(1—-p)A(1—-¢)=(1—-p—(1—-pVg) =pVqg—p.

Since Range(z*) = supp(x), these projections are equivalent by Example 4.4.2.

[

(x2) If p; < q1, P2 X @2, and qyq5 = 0, then p; Vp; < q; + go.

q; + qs.

Proof. By (1), p1 VDy =Py & Py —P1 APy X Gy 50 Py V Py = (P VDy— Do) + Do <

]

J

(x3) (Comparison Theorem) There is a z € P(Z(M)) such that pz < gz and ¢(1 — 2) <

p(1—2z).

projections {p;},{q;} such that > p, < p, > q; < ¢q, and p, ~ q; for all 7.
2z, :=2z(p—>Y_p;) and 2z, := z(q — > ¢;). By maximailty, 2,25 = 0, so

(P—Zpi>§21§1—z2 — 22(1’_21%):0
(1= ) <2 - (1—2)(¢—> ¢)=0.

Since Y p; ~ > q;, we see

3219:2’221% %ZZZQi < 224
(1_Z2)q:<1_752)2% (1—2) sz_ (1—2y)p.

Proof. By Zorn’s Lemma, there are maximal families of mutually orthogonal
Set

(x4) If p, q are finite, so is p V q.
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We omit the proof, which is quite techinical. There is a much simpler proof when
P, q are central in addition, which you will do on homework.

(x5) If p, q are finite and p ~ ¢, then 1 — p &~ 1 — q. Hence there is a u € U(M) such that
u*pu = q.

Remark 4.7.2. The proof below only uses (<4) to reduce to the case that M is
finite. Since we will only use (<5) for finite von Neumann algebras, the rest of
these notes is still self-contained without a proof of (<4) above.

Proof. By (<4), p V q is finite, so replacing M by (p V q)M(p V q), we may
assume M is finite. By (<3), there is a central projection z € P(Z(M)) such
that (1 —p)z < (1 —¢)zand (1 —q)(1 —2) < (1 —p)(1 — 2). Since we can
consider Mz and M (1 — z) separately, we may assume 1 —p ~ r < 1 —¢. Since
l=(1—-p)+p~r+gq, and M is finite, r+¢g=1,s0 l —p~r=1—¢q. Now
if vv* =p, v*'v =qand ww* =1—p, w'w =1—¢q, then u = v+ w is a unitary
satisfing u*pu = q. [

(<6) Suppose p,q € P(M) finite with p,q <.

(X6f) If p~ g, then r —p ~ 17 —q.
(x6f) If p<q, thenr —g <1 —p.

Remark 4.7.3. Again, in the proof below, we will only use (<4) to pass to the
case M is finite and r = 1.

Proof. Since p,q < r implies pV g < r, passing to (pVq)M (pV q), we may assume
M is finite and 7 = 1 by (x4). Now (<6) follows immediately from (<5). For
(£6),let s€e P(M) withp~s<gq By (5)1—p~1—s>1—g¢. ]

(X7) If (g,,) is an inrcreasing sequence of finite projections and p € P(M) such that q,, < p
for all n, then \/ ¢, < p.

Proof. We inductively define a sequence of mutually orthogonal projections p,, <
p such that py = ¢; and for all n € N, p,, ~ q,,,1 — ¢q,,- Then

0 o o0
Van=a+D (@1 —a0)~ D p, <p
=1 n=1 0

By assumption, ¢; < p, so there is a p, < p such that ¢; ~ p,. Suppose we have
p())pla 7pn‘

Claim. ¢, .5 — ¢, P — Z::Z:O Pi-
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Proof of Claim. Observe g, ., < p, so there is a partial isometry v such that
wW* = q, 9 and e, o = v'v < p. Since ¢, 19 > G,i1;

e oy * IS Koo ok
Ent1 =V 1V S VG 0 =v0wWv=vv<Dp
and e, ; ~ ¢q,,,. Then

v (qn+2_qn+1)v = €127 Cp11 and (qn+2_qn+1)vv* (qn+2_qn+1) = qni2—4n11;

SO Gpi9 — Qpi1 & €540 — €,,1- By the induction hypothesis,
n
€nt1 P pp1 = Qi1 — @)+ (@G — @)+ -+ (@ —a)+a ~ Y p <p.
i=0

Since q,, 9, ¢, are finite, so are e, ,,€, 1 ~ Z?:o p;. We calculate
n
Ini2 = ni1 ™ €nyz — €1 = (P—€np1) —(P—€np1) SP—€n (556) p— Zpi’
S i=0
proving the claim. O

By the claim, we can find a projection g, .o — ;.1 & Dpy1 <D — Z?:o D;, SO We
can inductively build the sequence as claimed.

(<8) Suppose M is a finite von Nuemann algebra and (p,,) is an infinite sequence of mutually
orthogonal projections. Suppose (g,,) is another sequence of projections with p,, ~ ¢,
for each n. Then ¢,, — 0 SOT.

Proof. By induction using (<2), for all m < n,

n n
\/ 4 = Zpi < Zpi'
i=m

>m

=m

Since \/j:m g; is increasing in n, \/._ ¢, < >.._ p; by (7). Let p, = 1 —

m—1 [e%¢)
p0+zpi:1_zpi—ﬁ<l_\/%gl_ /\ \/%’-
i=1

>m i>m m=11i>m

>m >m

Again by (<7), we can conclude that

oo

1:po+zp¢<1_ /\ \/qi-
=1

m=11i>m
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Since M is finite, we must have

oo
0:/\ \/qi :SOT—lim\/qi.
m=1 1>m >m
—_——— —_———
decreasing 2qm

Hence for all £ € H,

|4l = (@€, 6) < <\/ €, §> —

>m

2
m—00

— 0,

\/ ;€

>m

and thus ¢,,, — 0 SOT.

4.8 Existence of a trace on a finite von Neumann algebra

For this section, M is a finite von Neumann algebra. Recall that the o-WOT on M is the
weak™® topology induced by M,. Thus we may identify M, with the o-WOT continuous

linear functionals on M.

Definition 4.8.1. Let S(M) C M, be the set of 0-WOT continuous states of M. Note that

U(M) acts on S(M) by u - ¢ := p(u* - u).

Lemma 4.8.2. Let M be a von Neumann algebra and o € M* a state. The following are

equivalent.
1. @ is tracial, i.e., p(xy) = p(yx) for all z,y € M.
2. Forallz € M, p(zz*) = p(z*x).
3. Forallue UM), p(u*zu) = p(x).

Proof.

(1) = (2) : Obvious.

use that every x € M is a linear combination of 4 positive operators.

Now use that every y € M is a linear combination of 4 unitaries.

(2) = (3): For z > 0, p(u*zu) = @(u*z2z?u) = p(z2uu*2?) = p(x). Now

(3) = (1) : Replacing x with ux, we have p(zxu) = ¢(uz) forallz € Mand u € U(M).

[

So to construct a trace in S(M) for M finite, we will find a fixed point in S(M) under
the U(M)-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our

approach here follows the proof of Jacob Lurie.
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Theorem 4.8.3 (Ryll-Nardzewski). Let X be a Banach space and K C X a weakly compact
convex subset. Suppose G C B(X) is a group of isometries with GK C K. Then there is an
x € K such that gr = x for all g € G.

For u € U(M), we define w, € B(M,) by m,¢ := p(u* - u). Hence for our purposes,
G=n(U(M)) C B(M,).
The following theorem is the main result of this section.

Theorem 4.8.4. Suppose M is a finite von Neumann algebra and fiz ¢ € S(M). Define
Ko :=7m(UM))e ={p(u" - u)uecUM)} CS(M),
and let K be the weakly closed convex hull of K, in M,. Then K is weakly compact.

Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed
Point Theorem 4.8.3 yields the desired result.

Corollary 4.8.5. There exists a o-WOT continuous tracial state on a finite von Neumann
algebra.

Proof. Let ¢ € S(M). By Theorem 4.8.4, the weakly closed convex hull K C S(M)
of mM(U(M))yp is weakly compact. As K is clearly 7(U(M))-invariant, by the Ryll-
Nardzewski Fixed Point Theorem 4.8.3, there is a w(U(M))-fixed point tr € K C
S(M), which is a tracial state by Lemma 4.8.2. O

Lemma 4.8.6. For a positive linear functional p € M*, the following are equivalent.

1. ¢ is o-WOT continuous.
2. ¢ is normal: for all increasing nets of positive operators x; / x in M, o(x;) / o(x).

3. ¢ is completely additive: for every family (p;) of mutually orthogonal projections in

M, ¢ (32pi) = 2 ¢pi)-
Proof. Homework. [

Remark 4.8.7. Suppose (p;) is a family of mutually orthogonal projections in M. For all

positive ¢ € M*, and for all finite subsets F' C I, 3. ¢(p;) = ¢ (Zieri) < o> p),
so > o(p;) < ¢ (O p;). Hence ¢ is completely additive if and only if for every family of
mutually orthogonal projections (p;) in M, for all € > 0, there is a finite F' C I such that

% (Z&sz) < e. Indeed,

> elp) = SFHCQZ #(pi) = sup ¢ (Zm) = sup (> p)—¢ (Zpi)

i€l cI ieF i¢F
=¢(d_p;)— inf (Zm) -

iEF
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Proof of Theorem J.8./. Recall that the relative weak™ topology on X C X** is the
weak topology. To show K C M, is weakly compact, by the Banach-Alaoglu Theorem,
it suffices to prove K C M’* = M* is weak™ closed, as K C (M*); which is weak™*
compact.

Let 1) € K, the weak* closure of K in M*. We show 4 is completely additive, and
thus v € M,, so ¢ € K. Suppose for contradiction that v is not completely additive.
Then there is a family (p;),c; of mutually orthogonal projections and an € > 0 such

that for all finite F I, 1) (Zi ngi) > e

Claim. If F' C I is any finite set, there is a ¢ € K, and a finite set G C I \ F such

Proof. The convex hull conv(K) is weakly dense in K, which is weak* dense in K, so
conv(K,) is weak™ dense in K. Thus for all § > 0, the weak™ open neighborhood

{¢ e M| (¥ —¢) (Zm) < 6}

it F
of ¥ has non-empty intersection with conv(K), so pick ¢ in this intersection. Since
w(ziqéFp’i) > ¢, choosing ¢ small, we have ¢(Zi¢Fpi) >e. Nowif¢p =3 Noypisa
convex combination of ¢, € K, there must be a particular £ so that ¢k(ZZ ¢F p;) > €.

Now since ¢,, is completely additive, there is a finite G C I\ F'such that ¢, (> ) >
E. ]

icc Pi

Claim. There is a sequence (F,)) of disjoint finite subsets of I and a sequence of states
(¢,,) C K, such that for alln € N,

o <Zpi> > g,

ieF,

Proof. We induct on n. Since (> p;) > €, by the first claim, there is a ¢; € K|,
and a finite set F} C I such that ¢, (Ze . p;) > €. Now suppose we have disjoint
e

sets Fy,..., F,, C I and states ¢q,...,¢, € K, such that ¢, (> - p;) > € for all
el
k=1,...,n. Since 9 is not completely additive,

1/)( Z pz) >€7
igll; | F;

so again by the first claim, there is a ¢,, . ; € Ky and a set F, | C I\ ]_[;,1:1 F; such
that ¢n+1(zi€F pz) > €. L
n+1
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Now by the above claim, for each ¢,, € K, there is a unitary w,, € U(M) such that

*

o, = p(u - u,). Moreover, setting g, := ZieF p;, we have a sequence (g,,) of

mutually orthogonal projections such that ¢(u}q,u,) > ¢ for all n. We now have
our desired contradiction. Since the F), are disjoint, the g, are mutually orthogonal.
Since u} q,u,, =~ g, for all n, v} q,u, — 0 SOT (and thus also o-WOT) by (<8). But

p € S(M) is o-WOT continuous and ¢(u} q,u,, ) > € for all n, a contradiction. O

4.9 The proof of Ryll-Nardzewski

In this section, we prove the Ryll-Nardzewski Fixed Point Theorem 4.8.3 following Lurie’s
proof.

https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.

We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.

Theorem (Ryll-Nardzewski, Theorem 4.8.3). Let X be a Banach space and K C X a weakly
compact conver subset. Suppose G C B(X) is a group of isometries with GK C K. Then
there is an x € K such that gx = x for all g € G.

Remark 4.9.1. Without loss of generality, we may assume G is finitely generated. Indeed,
write G = | G, where each G, is finitely generated. Then K¢ = [ K. By compactness
of K and the finite intersection property, (| K% % () for all i implies K& = ).

Fix a Banach space X and a weakly compact convex subset K C X. We begin with the
following warmup.

Lemma 4.9.2. Suppose T € B(X) such that TK C K. There is an x € K such that
Tr =ux.

Proof. For n € N, let T, := %Z:;; TF and K, = T, K C K as K is convex. We
claim that {K,} has the finite intersection property. Indeed,
K, n-nK, 2T, T, K
1 k 1 k

as 1,1, =1T,T,, for all m,n.
Now let z € (| K,, # (0. For each n € N, there is a y € K such that z = T, y, so

1 = 1 1
Te—oc=(T-1)T,y=—(T-1 Tky = —(Ty — —(K — K).
z—r=(T-1)Ty=_( )kEZO y=_(T"y—y) e )
Since K is weakly compact, so is K — K, and in particular, K — K is bounded.” Thus

for every open neighborhood U of K — K|, there is an n € N such that L (K — K) C U.
But this means Tz — x € U for every open neighborhood U of 0, so Tx = . [

°If S ¢ X € X* is weakly compact, then each s € S is pointwise bounded as a map on X* by
compactness. Now apply the Uniform Boundedness Principle.
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The strategy of the proof will be to take our finitely generated group G = (g4, ..., g,,) C
B(X) of isometries and find a candidate fixed point z € K for G using Lemma 4.9.2. We
will prove by contradiction that this candidate z € K satisfies g,z = x for each generator.
We thank Sail Rodriguez for helping distill the conceptual statement in Lemma 4.9.3 below,

which is the second main ingredient to achieve our contradiction.

Lemma 4.9.3. Suppose X is a separable Banach space and C C X is a weakly closed convex
set with diam(C') > 0. For every 0 < ¢ < diam(C'), there is a nonempty weakly closed convex

subset D = D(e) C C such that diam(C \ D) < e.

Assuming this technical lemma, we can now prove Theorem 4.8.3.

Proof of Theorem 4.8.5. Set T' = % >~ g; € B(X). By the warmup Lemma 4.9.2, there
is an x € K such that Tz = z. If g,(z) = x for all ¢, we have our fixed point proving
Theorem 4.8.3. Otherwise, relabelling the g,, there is a 1 < k < n such that g;(z) # =
foralli=1,...,kand g,(x) =x for alli = k+1,...,n. Then

1 & 1< n—k
=Tz = E;gz(x> = E;%@)‘F —

which immediately implies that
/ 1F 1 k
m:Tm:E;gi(x) for T ::E;gi.
Now consider the norm closure X’ of
span {gil ---gimx’m eNand1<ig,...,7, < k},

which is a separable Banach space, and let C' be the weakly closed convex hull of
(91, -, gp)x C K, which is again weakly compact. Let e > 0 such that |g;(x) —z| > €
for all + = 1,...,k. By Lemma 4.9.3, there is a nonempty weakly compact convex
subset C(g) € C such that diam(C \ C(g)) < e. Since @ # C(g) # C, there is an
h € G such that hx ¢ C(e). Since 7'z = x, we have

/ 1 k
hr = hT'x = Z ;hgi(x) ¢ Cl(e),

and since C(¢) is convex, there must be some 1 < i < k such that hg,(xz) ¢ C(g). Now
both hzx, hg;(z) ¢ C(e), but since h is an isometry, we have

|z = g:;(@)| = |he — hg;(x)| < diam(C\ C(e)) <e,

a contradiction. O]
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We now prove the lemma.

Proof of Lemma 4.9.5. Let E = 0,,,C C C be the set of extreme points. By the

Krein-Milman Theorem, C is the weak closed convex hull of E. Let E C C be the

weak closure of F, and let B = B, 5(0) be the closed ball of radius /3. Since B is
convex and norm closed, B is also weakly closed as the norm and weak topology have
the same closed convex sets. Since X is separable, there is a sequence (yj) C X such

that (y; + B) covers X. Thus ((y; + B) N E) is a cover of the weakly compact set E.
By the Baire Category Theorem, there is a j such that (y; + B) N E has non-empty
interior U in E with respect to the relative weak topology on E.

Now define
C, := weakly closed convex hull of E\ U
Cy := weakly closed convex hull of (y; + B) N E,

which are both nonempty (why?) weakly closed convex subsets of C. Since C'is the

closed convex hull of - -
EC (E\U)U((y;+ B)NE),

E is the convez join of Cy and Cy, i.e., C' = im(0) for

6:C; xCyx1[0,1] > X given by (a,b,t) > ta+ (1 —1)b.
We now consider the sets C'(6) :=im(0|c, «c, «[5,1])-
Step 1: Each C(0) is a weakly closed convex subset of C.

Closed: Since 6 is continuous from the (weak,weak standard) product
topology to the weak topology as X with the weak topology is a topolog-
ical vector space, K (§) is weakly compact, and thus closed.

Convex: First, note that for all 0 < 6 < 1, 6C; 4+ (1 —9)C, is convex. We
claim that

0(Cy x Cy x [0,1]) =0(C; x (0C, + (1 —6)Cy) x [0,1]),

which is manifestly convex.
C:Ifte[d,1], ta+(1—¢t)b = sa+(1—s)(da+ (1—0db)) for s € [0,1]
such that (1 —s)(1 —6) = (1 —t). This condition is equivalent to
t=050+s(1—-9).
D: If s € [0, 1], then sa; + (1 —s)[day + (1 —6)b] = ta+ (1 —¢)b for
t=s+(1—s)0 =0+ s(1—20) € [J,1] as before and

_sap + (1 —s)da,
T s+ (1—s)d

GCl.
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Step 2: For 0 > 0 sufficiently small, diam(C'\ C(J)) < e.

~

\

Since C'is weakly compact, it is bounded, so C' C Bg(0) for some R > 0.
Ify,y" € C\C(9), then there are 0 < ¢,t’ < 0, a,a” € Cy, and b,b" € C,
such that

y=ta+ (1—1t)b and y =tad +(1—t").
Then

ly —y'| = t(a—b) +b—t'(a" =) — b’
< t(lla] + o) + ¢ (a’| + 16"]) + [ =0 |
b,b’eC,

2
S 45R+ 58

as b, b’ EC’2CyJ R

Step 3: For 0 as in Step 2 above, C(d) # C.

r

\

Since U C E is a non-empty open subset, there is a y € ENU. We claim
that y ¢ C'(9). Since y € E is an extreme point of C, it suffices to prove
y ¢ C,. (Indeed, if y ¢ C; and y =ta+ (1 —1t)b for a € Cy and b € C,,
since y is extreme, y = a = b. But since a € C| and y ¢ C,, we must
have t = 0. Thus y cannot be written as ta+ (1 —t)b for a € C;, b € Cs,
and t € [d,1].) Since X with the weak topology is locally convex, there
is a weakly open convex neighborhood V of 0 such that the weak closure
V satisfies (y — V) N E C U. (Indeed, we can use here that E is weakly
compact and thus weakly normal.)

Now since E \ U is weakly compact, it admits a weakly open cover
{2, + V}¥_| where each z; € E\ U. Thus C] is contained in the closed
convex hull of

k
[Jz+V NEDE\U.

In turn, Uf: (2;#+V)NE is contained in the convex join of the (z;+V)NC.

If y € Cy, then y € (2,4 V)NC for some i. But then z; € (y—V)NE C U,
a contradiction to z;, € E\ U.

Thus if § > 0 is sufficiently small, we can take C" = C(J) C C.
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