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1 Banach algebras

1.1 Spectrum
Let 𝐴 be a unital Banach algebra. The spectrum of 𝑎 ∈ 𝐴 is

sp(𝑎) = {𝜆 ∈ ℂ|𝑎 − 𝜆1 ∉ 𝐴×} ,

which is a non-empty compact subset of 𝐵𝑟(𝑎)(0). Here, 𝑟(𝑎) is the spectral radius:

𝑟(𝑎) = lim ‖𝑎𝑛‖1/𝑛.

Fact 1.1.1. Suppose 𝜙 ∶ 𝐴 → 𝐵 is a unital algebra map between Banach algebras. If 
𝑎 ∈ 𝐴×, then 𝜙(𝑎) ∈ 𝐵×, so sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎).

Corollary 1.1.2. Suppose 1 ∈ 𝐴 ⊂ 𝐵 is a unital inclusion of Banach algebras. For all 
𝑎 ∈ 𝐴, sp𝐵(𝑎) ⊆ sp𝐴(𝑎) and 𝜕 sp𝐴(𝑎) ⊆ 𝜕 sp𝐵(𝑎).

Proof. By Fact 1.1.1, sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎), so it suffices to prove 𝜕 sp𝐴(𝑎)∩ sp𝐵(𝑎)𝑐 =
∅. Suppose for contradiction that 𝜆 ∈ 𝜕 sp𝐴(𝑎) ∩ sp𝐵(𝑎)𝑐. Pick a sequence (𝜆𝑛) ⊂
sp𝐴(𝑎)𝑐 such that 𝜆𝑛 → 𝜆, so 𝑎−𝜆𝑛 → 𝑎−𝜆. Then 𝑎−𝜆𝑛 ∈ 𝐴×, so 𝑎−𝜆𝑛 ∈ 𝐵×, and 
thus 𝜆𝑛 ∉ sp𝐵(𝑎) for all 𝑛. Since we assumed 𝜆 ∉ sp𝐵(𝑎) and inversion is continuous 
on 𝐵×, we have (𝑎 − 𝜆𝑛)−1 → (𝑎− 𝜆)−1 ∈ 𝐵. But 𝐴 is complete, so (𝑎 − 𝜆)−1 ∈ 𝐴, a 
contradiction. ∎

1.2 Holomorphic functional calculus
For each 𝑎 ∈ 𝐴, the holomorphic functional calculus (HFC) gives a unital algebra homomor­
phism 𝒪(sp(𝑎)) → 𝐴 given by

𝑓 ⟼ 𝑓(𝑎) ≔ 1
2𝜋𝑖

∫
𝛾

𝑓(𝑧)
𝑎 − 𝑧

𝑑𝑧 𝑈

where 𝛾 is a simple closed contour in 𝑈 ∖ sp(𝑎) such that

ind𝛾(𝑧) = {
1 if 𝑧 ∈ sp(𝑎)
0 if 𝑧 ∉ 𝑈.

The HFC satisfies the following two properties, which characterize this ring homomorphism:
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• If sp(𝑎) ⊂ 𝑈, and 𝑓𝑛 → 𝑓 locally uniformly on 𝑈, then 𝑓𝑛(𝑎) → 𝑓(𝑎) in 𝐴, and

• If 𝑓(𝑧) = ∑𝛼𝑘𝑧𝑘 is a power series with radius of convergence greater than 𝑟(𝑎), then 
𝑓(𝑎) = ∑𝛼𝑘𝑎𝑘.

The HFC also satisfies:

1. If 𝑓(𝑧) = ∏(𝑧 − 𝑧𝑗)𝑚𝑗 is rational, then 𝑓(𝑎) = ∏(𝑎 − 𝑧𝑗)𝑚𝑗 .

2. (spectral mapping) sp(𝑓(𝑎)) = 𝑓(sp(𝑎)), and

3. if 𝑔 ∈ 𝒪(sp(𝑎)), then 𝑔(𝑓(𝑎)) = (𝑔 ∘ 𝑓)(𝑎).

Corollary 1.2.1. If 𝜙 ∶ 𝐴 → 𝐵 and 𝑓 ∈ 𝒪(sp𝐴(𝑎)), then 𝑓(𝜙(𝑎)) = 𝜙(𝑓(𝑎)).

Proof. By Fact 1.1.1, sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎), so 𝒪(sp𝐴(𝑎)) ⊆ 𝒪(sp𝐵(𝜙(𝑎))). Observe 
that 𝑓(𝜙(𝑎)) = 𝜙(𝑓(𝑎)) whenever 𝑓 is a polynomial, and whenever 𝑓 is a rational function 
with poles outside of sp𝐴(𝑎). The result now follows by Runge’s Theorem, since every 
𝑓 ∈ 𝒪(sp𝐴(𝑎)) can be approximated by such rational functions. ∎

1.3 Gelfand transform
If 𝐴 is unital and commutative, the Gelfand transform gives a norm-contractive unital algebra 
homomorphism 𝐴 → 𝐶(𝐴̂) given by

𝑎 ↦ [ev𝑎 ∶ 𝜑 ↦ 𝜑(𝑎)],

where 𝐴̂ is the set of algebra homomorphisms from 𝐴 → ℂ, also called characters or mul­
tiplicative linear functionals. The image of the Gelfand transform is a subalgebra of 𝐶(𝐴̂)
which separates points of 𝐴̂.

Lemma 1.3.1. If 𝐴 is unital and 𝑎 ∈ 𝐴, then for all 𝜑 ∈ 𝐴̂, 𝜑(𝑎) ∈ sp(𝑎).

Proof. Observe 𝜑(𝑎 − 𝜑(𝑎)) = 0, so 𝑎 − 𝜑(𝑎) ∉ 𝐴× and thus 𝜑(𝑎) ∈ sp(𝑎). ∎

2 C∗- algebras
Let 𝐴 be a unital C∗-algebra, i.e., a unital Banach algebra with an involution satisfying 
‖𝑎∗𝑎‖ = ‖𝑎‖2 for all 𝑎 ∈ 𝐴.
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2.1 Operators
We call 𝑎 ∈ 𝐴:

• self-adjoint if 𝑎 = 𝑎∗,

• positive if 𝑎 = 𝑏∗𝑏 for some 𝑏 ∈ 𝐴,

• normal if 𝑎𝑎∗ = 𝑎∗𝑎,

• a projection if 𝑎 = 𝑎∗ = 𝑎2,

• an isometry if 𝑎∗𝑎 = 1,

• a unitary if 𝑎∗𝑎 = 1 = 𝑎𝑎∗ (equivalently, an invertible isometry),

• a partial isometry if 𝑎∗𝑎 is a projection.

Here are some elementary properties:

(C∗1) Each 𝑎 can be written as 𝑎 = ℜ(𝑎) + 𝑖ℑ(𝑎) where ℜ(𝑎) = 𝑎+𝑎∗

2  and ℑ(𝑎) = 𝑎−𝑎∗

2𝑖  are 
self-adjoint.

(C∗2) If 𝜆 ∈ sp(𝑎), then 𝜆 ∈ sp(𝑎∗).

(C∗3) If 𝑎 is normal, then ‖𝑎‖ = 𝑟(𝑎).

Proof. Observe ‖𝑎2‖2 = ‖(𝑎2)∗𝑎2‖ = ‖(𝑎∗𝑎)2‖ = ‖𝑎∗𝑎‖2 = ‖𝑎‖4. Thus 𝑟(𝑎) =
lim ‖𝑎2𝑛‖2−𝑛 = ‖𝑎‖. ∎

(C∗4) If 𝑢 is unitary, then sp(𝑢) ⊂ 𝜕𝔻 = 𝕋 = 𝑆1.

Proof. Since 𝑢∗ = 𝑢−1, by (C∗2), 𝜆 ∈ sp(𝑢) if and only if 𝜆−1 ∈ sp(𝑢). Since 
‖𝑢‖ = 1, both |𝜆|, |𝜆−1| ≤ 1, so 𝜆 ∈ 𝕋. ∎

(C∗5) If 𝑎 = 𝑎∗, then 𝑒𝑖𝑎 is unitary (defined by the HFC).

Proof. Observe (𝑒𝑖𝑎)∗ = (∑ (𝑖𝑎)𝑛

𝑛! )
∗
= ∑ (−𝑖𝑎)𝑛

𝑛! = 𝑒−𝑖𝑎 = (𝑒𝑖𝑎)−1. ∎

(C∗6) If 𝑎 = 𝑎∗, then sp(𝑎) ⊂ ℝ.

Proof. By (C∗4), sp(𝑒𝑖𝑎) ⊂ 𝕋, and by the Spectral Mapping Theorem, sp(𝑒𝑖𝑎) =
𝑒𝑖 sp(𝑎). Hence sp(𝑎) ⊂ ℝ. ∎
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2.2 Continuous functional calculus
Lemma 2.2.1. If 𝐴 is commutative, then every 𝜑 ∈ 𝐴̂ is a ∗-homomorphism.

Proof. Let 𝑎 ∈ 𝐴 and 𝜑 ∈ 𝐴̂. Recall from (C∗1) that 𝑎 = ℜ(𝑎) + 𝑖ℑ(𝑎) where 
ℜ(𝑎), ℑ(𝑎) are self-adjoint. From Lemma 1.3.1 and (C∗6) we see that 𝜑(ℜ(𝑎)) ∈
sp(ℜ(𝑎)) ⊂ ℝ and 𝜑(ℑ(𝑎)) ∈ sp(ℑ(𝑎)) ⊂ ℝ. Thus

𝜑(𝑎∗) = 𝜑(ℜ(𝑎)) − 𝑖𝜑(ℑ(𝑎)) = 𝜑(ℜ(𝑎)) + 𝑖𝜑(ℑ(𝑎)) = 𝜑(𝑎). ∎

Theorem 2.2.2. The Gelfand transform affords an equivalence of categories

{Unital commutative C∗-algebras} ≅ {Compact Hausdorff spaces}op .

Question 2.2.3. What happens for non-unital C∗-algebras?

Lemma 2.2.4  (Spectral permanence). Suppose 1 ∈ 𝐴 ⊂ 𝐵 is a unital inclusion of C∗-
algebras. Then sp𝐴(𝑎) = sp𝐵(𝑎) for all 𝑎 ∈ 𝐴.

Proof. By Corllary 1.1.2, sp𝐵(𝑎) ⊆ sp𝐴(𝑎), so it suffices to prove 𝑏 ∈ 𝐴 ∩ 𝐵× implies 
𝑏 ∈ 𝐴×. Suppose 𝑏 ∈ 𝐴 ∩ 𝐵×. Then 𝑏∗ ∈ 𝐴 ∩ 𝐵× and 𝑏∗𝑏 ∈ 𝐴 ∩ 𝐵×. By (C∗6), 
sp𝐴(𝑏∗𝑏), sp𝐵(𝑏∗𝑏) ⊂ ℝ. By Corollary 1.1.2,

sp𝐴(𝑏∗𝑏) = 𝜕 sp𝐴(𝑏∗𝑏) ⊆ 𝜕 sp𝐵(𝑏∗𝑏) = sp𝐵(𝑏∗𝑏) ⊆ sp𝐴(𝑏∗𝑏),

so equality holds. Notice that this shows that 𝑏 admits a left inverse in 𝐴, since

(𝑏∗𝑏)−1𝑏∗𝑏 = 1.

A similar argument for 𝑏𝑏∗ shows 𝑏 has a right inverse, and the result follows. ∎

Given 𝑎 ∈ 𝐴 normal, the continuous functional calculus (CFC) is a unital ∗-isomorphism 
from Φ𝑎 ∶ 𝐶(sp(𝑎)) → C∗(𝑎), the smallest unital C∗-subalgebra of 𝐴 containing 𝑎, which 
extends the HFC. It is characterized by the properties:

• Φ𝑎(1) = 1 and Φ𝑎(id ∶ 𝑧 ↦ 𝑧) = 𝑎, and

• for all 𝑓 ∈ 𝒪(sp(𝑎)), Φ𝑎(𝑓) = 𝑓(𝑎) from the HFC.

Thus it makes sense to denote Φ𝑎(𝑓) = 𝑓(𝑎).
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Exercise 2.2.5. Show that every 𝑎 in a unital C∗-algebra 𝐴 is a linear combination of 4 
unitaries.
Hint: Show every self-adjoint 𝑎 with ‖𝑎‖ ≤ 1 is a linear combination of 2 unitaries by 
considering 𝑓(𝑡) ∶= 𝑡 + 𝑖

√
1 − 𝑡2 on sp(𝑎).

Exercise 2.2.6. Suppose 𝑉 is an inner product space (not necessarily complete) and 𝜋 ∶
𝐴 → End(𝑉 ) is a unital ∗-homomorphism such that ⟨𝜋(𝑎)𝑢, 𝑣⟩ = ⟨𝑢, 𝜋(𝑎)∗𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑉. 
Prove that 𝜋 induces a unital ∗-homomorphism 𝜋 ∶ 𝐴 → 𝐵(𝑉).
Hint: First show for every unitary 𝑢 ∈ 𝐴, ‖𝜋(𝑢)‖ = 1.

Lemma 2.2.7. If 𝜙 ∶ 𝐴 → 𝐵, 𝑎 ∈ 𝐴 is normal, and 𝑓 ∈ 𝐶(sp𝐴(𝑎)), then 𝑓(𝜙(𝑎)) = 𝜙(𝑓(𝑎)).

Proof. By Fact 1.1.1, sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎), so there is a canonical surjection 
𝐶(sp𝐴(𝑎)) ↠ 𝐶(sp𝐵(𝜙(𝑎))). Observe that 𝑓(𝜙(𝑎)) = 𝜙(𝑓(𝑎)) whenever 𝑓 is a poly­
nomial in 𝑧 and 𝑧. The result now follows by the Stone-Weierstrass Theorem. ∎

Proposition 2.2.8. Every ∗-homomorphism 𝜙∶ 𝐴 → 𝐵 of unital C∗-algebras is norm-
contractive. If 𝜙 is injective, then

1. sp𝐵(𝜙(𝑎)) = sp𝐴(𝑎) for all normal 𝑎 ∈ 𝐴, and

2. ‖𝜙(𝑎)‖ = ‖𝑎‖ for all 𝑎 ∈ 𝐴.

Proof. Since 𝑎 ∈ 𝐴× implies 𝜙(𝑎) ∈ 𝐵×, we have sp𝐵(𝜙(𝑎)) ⊆ sp𝐴(𝑎), and thus 
𝑟(𝜙(𝑎)) ≤ 𝑟(𝑎) for all 𝑎 ∈ 𝐴. Then

‖𝜙(𝑎)‖2 = ‖𝜙(𝑎)∗𝜙(𝑎)‖ = ‖𝜙(𝑎∗𝑎)‖ =
(C∗3)

𝑟(𝜙(𝑎∗𝑎)) ≤ 𝑟(𝑎∗𝑎) =
(C∗3)

‖𝑎∗𝑎‖ = ‖𝑎‖2.

1. Suppose 𝜆 ∈ sp𝐴(𝑎) ∖ sp𝐵(𝜙(𝑎)) for some normal 𝑎 ∈ 𝐴. We will show 𝜙 is 
not injective. Since sp𝐴(𝑎) is compact Hausdorff, it is normal. By Urysohn’s 
Lemma, there is a continuous 𝑓∶ sp𝐴(𝑎) → [0, 1] such that 𝑓|sp𝐵(𝜙(𝑎)) = 0 and 
𝑓(𝜆) = 1. Then 𝑓(𝑎) ≠ 0, but by Lemma 2.2.7, 𝜙(𝑓(𝑎)) = 𝑓(𝜙(𝑎)) = 0, so 𝜙 is 
not injective.

2. This follows by (1), (C∗3), and the C∗-identity. ∎

2.3 Positivity
Let 𝐴 be a unital C∗-algebra. Recall that 𝑎 ∈ 𝐴 is called positive, denoted 𝑎 ≥ 0, if 𝑎 = 𝑏∗𝑏
for some 𝑏 ∈ 𝐴. We write 𝑎 ≥ 𝑏 if 𝑎 − 𝑏 ≥ 0. You will show some of the following facts in 
the homework.
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Facts 2.3.1. 

(≥1) If 𝑎 = 𝑎∗, there are positive 𝑎+ and 𝑎− in C∗(𝑎) such that 𝑎 = 𝑎+ −𝑎− and 𝑎+𝑎− = 0.

Proof. Use the CFC to set 𝑎+ ≔ max{id, 0}(𝑎) and 𝑎− ≔ max{− id, 0}(𝑎). ∎

−‖𝑎‖ ‖𝑎‖

max{id,0}
max{− id,0}

(≥2) If 𝑎 = 𝑎∗, then 𝑎 ≤ ‖𝑎‖.

Proof. Observe that the absolute value function dominates the identity function 
on ℝ, and apply the CFC. ∎

(≥3) If 𝑎 ≤ 𝑏, then for all 𝑐 ∈ 𝐴, 𝑐∗𝑎𝑐 ≤ 𝑐∗𝑏𝑐.

Proof. Write 𝑏 − 𝑎 = 𝑑∗𝑑, and observe 𝑐∗𝑏𝑐 − 𝑐∗𝑎𝑐 = 𝑐∗(𝑏 − 𝑎)𝑐 = 𝑐∗𝑑∗𝑑𝑐. ∎

(≥4) 𝑎 ≥ 0 if and only if 𝑎 = 𝑎∗ and sp(𝑎) ⊂ [0,∞).

Proof. Homework. ∎

(≥5) The set 𝐴+ of positive elements is a closed cone.

Proof. Homework. ∎

(≥6) ≤ is a partial order on 𝐴.

Proof. Clearly 𝑎 ≤ 𝑎.
If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑏 − 𝑎 ≥ 0 and 𝑎 − 𝑏 = −(𝑏 − 𝑎) ≥ 0. Thus 𝑏 − 𝑎 is 
self-adjoint and sp(𝑏 − 𝑎) = {0}. By the CFC, 𝑏 − 𝑎 = 0, so 𝑎 = 𝑏.
Finally, if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑏−𝑎 ≥ 0 and 𝑐−𝑏 ≥ 0, so 𝑐−𝑎 = (𝑐−𝑏)+(𝑏−𝑎) ≥
0 by (≥5). ∎

(≥7) If 0 ≤ 𝑎 ≤ 𝑏, then ‖𝑎‖ ≤ ‖𝑏‖.

Proof. By (≥2), 0 ≤ 𝑎 ≤ 𝑏 ≤ ‖𝑏‖, so by (≥6), 𝑎 ≤ ‖𝑏‖. Using the CFC for 𝑎, 
sp(𝑎) ⊆ [0, ‖𝑏‖], so ‖𝑎‖ ≤ ‖𝑏‖ by (C∗3). ∎
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Definition 2.3.2. A linear functional 𝜑 on 𝐴 is called positive if 𝜑(𝑎) ≥ 0 whenever 𝑎 ≥ 0.
A state is a positive linear functional such that 𝜑(1) = 1.

Example 2.3.3. If ‖𝜉‖ = 1, 𝜔𝜉(𝑎) ≔ ⟨𝑎𝜉, 𝜉⟩ is a state on 𝐵(𝐻).

Example 2.3.4. The unital ∗-algebra ℂ ⊕ ℂ with (𝛼, 𝛽)∗ = (𝛽, 𝛼) has no states; its only 
positive linear functional is zero.

Proof. The positive elements of 𝐴 ≔ ℂ ⊕ ℂ are of the form (𝛽𝛼, 𝛼𝛽) for 𝛼, 𝛽 ∈ ℂ. 
Choosing 𝛼 = 𝑖 and 𝛽 = −𝑖, we see (−1,−1) is positive. But choosing 𝛼 = 𝛽 = 1, 
we see (1, 1) is positive. This means for any positive linear functional 𝜑, we have 
±𝜑(1, 1) ≥ 0, so 𝜑(1, 1) = 0. ∎

Lemma 2.3.5. If 𝜑 is positive, then 𝜑(𝑎) ∈ ℝ whenever 𝑎 = 𝑎∗. Moreover, for all 𝑎 ∈ 𝐴, 
𝜑(𝑎∗) = 𝜑(𝑎).

Proof. If 𝑎 = 𝑎∗, then writing 𝑎 = 𝑎+ −𝑎− as in (≥1), we see 𝜑(𝑎) = 𝜑(𝑎+)−𝜑(𝑎−) ∈
ℝ. For arbitrary 𝑎 ∈ 𝐴, we have

𝜑(𝑎∗) = 𝜑(ℜ(𝑎)) − 𝑖𝜑(ℑ(𝑎)) = 𝜑(ℜ(𝑎)) − 𝑖𝜑(ℑ(𝑎)) = 𝜑(𝑎). ∎

2.4 Representations of complex ∗-algebras and the GNS construc­
tion

A representation of a (unital) complex ∗-algebra is a pair (𝐻, 𝜋) where 𝐻 is a Hilbert space 
and 𝜋∶ 𝐴 → 𝐵(𝐻) is a (unital) ∗-homomorphism. We call (𝐻, 𝜋):

• nondegenerate if {𝜋(𝑎)𝜉|𝑎 ∈ 𝐴 and 𝜉 ∈ 𝐻} is dense in 𝐻. Observe that unital repre­
sentations are nondegenerate.

• cyclic if there is a vector Ω ∈ 𝐻 such that 𝜋(𝐴)Ω is dense in 𝐻. We call Ω a cyclic 
vector and (𝐻, 𝜋,Ω) a cyclic representation.

Example 2.4.1. The complex ∗-algebra 𝐶(𝑋) acts on 𝐿2(𝑋, 𝜇), where 𝜇 is any regular 
finite Borel measure.

Example 2.4.2. Let Γ be a discrete group. Then Γ acts on ℓ2Γ by (𝜆𝑔𝜉)(ℎ) ≔ 𝜉(𝑔−1ℎ). 
Since 𝜆𝑔 is isometric and has inverse 𝜆𝑔−1 , it is unitary. We thus get a group homomor­
phism 𝜆∶ Γ → 𝑈(𝐻), the unitary group of 𝐻. Extending by linearity, we get a unital 
∗-homomorphism ℂ[Γ] → 𝐵(ℓ2Γ), where ℂ[Γ] is the group algebra of Γ. The reduced group 
C∗-algebra of Γ is the C∗-algebra C∗

𝑟(Γ) generated by {𝜆𝑔|𝑔 ∈ Γ}.
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Given a positive linear functional 𝜑 on 𝐴, define ⟨𝑎, 𝑏⟩𝜑 ≔ 𝜑(𝑏∗𝑎), which is a positive 
sesquilinear form on 𝐴. Observe that all positive sesquilinear forms satisfy the Cauchy-
Schwarz inequality, which is a powerful tool.

Proposition 2.4.3. Suppose 𝐴 is a unital Banach ∗-algebra (∗ is an isometric involution) 
and 𝜑 is a positive linear functional.

1. If 𝑎 = 𝑎∗ and ‖𝑎‖ < 1, there is a 𝑏 ∈ 𝐴 with 𝑏 = 𝑏∗ such that 𝑏2 = 1 − 𝑎,

2. 𝜑(𝑎∗𝑎) ≤ ‖𝑎∗𝑎‖𝜑(1) for all 𝑎 ∈ 𝐴, and

3. ‖𝜑‖ = 𝜑(1).

Proof. 

1. The function 
√
1 − 𝑧 is analytic on 𝐵1(0) ⊃ sp(𝑎). setting 𝑏 ≔

√
1 − 𝑎, we 

have 𝑏2 = 1 − 𝑎. To see 𝑏 is self-adjoint, observe 
√
1 − 𝑎 is a uniform limit of 

polynomials in 𝑎 on sp(𝑎). (Indeed, we can find an open 𝑈 such that sp(𝑎) ⊂
𝑈 ⊂ 𝑈 ⊂ 𝐵1(0).)

2. Let 𝜀 > 0. Applying (1) to 𝑎∗𝑎
‖𝑎∗𝑎‖+𝜀 , we have a 𝑏 = 𝑏∗ such that 𝑏2 = 1 − 𝑎∗𝑎

‖𝑎∗𝑎‖+𝜀 . 
Thus

0 ≤ 𝜑(𝑏∗𝑏) = 𝜑(1)− 𝜑(𝑎∗𝑎)
‖𝑎∗𝑎‖ + 𝜀

⟹ 𝜑(𝑎∗𝑎) ≤ (‖𝑎∗𝑎‖+𝜀)𝜑(1).

Since 𝜀 > 0 was arbitrary, the result follows.

3. Take square roots in the inequality

|𝜑(𝑎)|2 = |⟨𝑎, 1⟩𝜑|2 ≤
CS

⟨1, 1⟩𝜑⟨𝑎, 𝑎⟩𝜑 = 𝜑(1)𝜑(𝑎∗𝑎) ≤
(2)

𝜑(1)2‖𝑎∗𝑎‖ ≤ 𝜑(1)2‖𝑎‖2,

and observe the bound 𝜑(1) is achieved at 1 ∈ 𝐴. ∎

Proposition 2.4.4. Suppose 𝐴 is a unital C∗-algebra and 𝜑 is a linear functional. Then 𝜑
is positive if and only if 𝜑 is bounded and ‖𝜑‖ = 𝜑(1).

Proof. Positivity implies ‖𝜑‖ = 𝜑(1) by Proposition 2.4.3. Conversely, suppose 𝜑 is 
bounded with ‖𝜑‖ = 𝜑(1). By normalizing 𝜑, we may assume ‖𝜑‖ = 𝜑(1) = 1. It 
remains to show that 𝜑(𝑎) ≥ 0 whenever 𝑎 ≥ 0. By the CFC, it suffices to prove 
this for a positive linear functional on 𝐶(𝑋) where 𝑋 is compact Hausdorff. Suppose 
𝜑(𝑓) = 𝛼 + 𝑖𝛽 for 𝑓 = 𝑓. Then for all 𝑡 ∈ ℝ, we have

|𝜑(𝑓 + 𝑖𝑡)|2 = |𝛼 + 𝑖(𝛽 + 𝑡)|2 = 𝛼2 + 𝛽2 + 2𝛽𝑡 + 𝑡2, but
|𝜑(𝑓 + 𝑖𝑡)|2 ≤ ‖𝑓 + 𝑖𝑡‖2 = (‖𝑓‖2 + 𝑡2).
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This implies
𝛼2 + 𝛽2 + 2𝛽𝑡 ≤ ‖𝑓‖2 ∀𝑡 ∈ ℝ,

which is only possible if 𝛽 = 0. Now, if 𝑓 ≥ 0,

|𝜑(𝑓) − ‖𝑓‖| = |𝜑(𝑓 − ‖𝑓‖ ⋅ 1)| ≤ ‖𝑓 − ‖𝑓‖ ⋅ 1‖ ≤ ‖𝑓‖ ‖𝑓‖−𝑓 𝑓

‖𝑓‖

‖𝑓‖⋅1

which implies 𝜑(𝑓) ≥ 0. ∎

Definition 2.4.5. A state on a normed unital ∗-algebra is a continuous positive linear 
functional such that 𝜑(1) = 1.

Corollary 2.4.6. If 𝐴 is a normed unital ∗-algebra and 𝜑 is positive and continuous, then 
‖𝜑‖ = 𝜑(1).

Proof. Let 𝐴 be the completion of 𝐴, which is a normed unital Banach ∗-algebra. 
Since 𝜑 is bounded, it extends to 𝐴 by Hahn-Banach. If 𝑎 ∈ 𝐴, choose a sequence 
(𝑎𝑛) such that 𝑎𝑛 → 𝑎. Then (𝑎𝑛) is norm-bounded, and 𝑎∗

𝑛𝑎𝑛 → 𝑎∗𝑎. Thus the 
extension of 𝜑 to 𝐴 is positive. Now apply Proposition 2.4.3. ∎

The left kernel of the form is given by

𝑁𝜑 ≔ {𝑎 ∈ 𝐴|𝜑(𝑎∗𝑎) = ⟨𝑎, 𝑎⟩𝜑 = 0} =
(CS)

{𝑎 ∈ 𝐴|⟨𝑎, 𝑏⟩𝜑 = 0 ∀ 𝑏 ∈ 𝐴} ,

which is a left ideal of 𝐴. Thus the left regular action 𝐿𝑎 ∶ 𝐴/𝑁𝜑 → 𝐴/𝑁𝜑 given by 
𝐿𝑎(𝑏 + 𝑁𝜑) ≔ 𝑎𝑏 + 𝑁𝜑 is well-defined.

Exercise 2.4.7. Prove the assertion that 𝑁𝜑 is a left ideal of 𝐴.

Question 2.4.8. When is the left regular action of 𝐴 on 𝐴/𝑁𝜑 bounded?

Proposition 2.4.9. If 𝐴 is a unital normed ∗-algebra and 𝜑 is a continuous positive linear 
functional, then the left regular action of 𝐴 on 𝐴/𝑁𝜑 is bounded with ‖𝐿𝑎‖ ≤ ‖𝑎‖.

Proof. Since the left regular action preserves 𝑁𝜑, it suffices to prove that the left 
regular action of 𝐴 on itself is bounded with ‖𝐿𝑎‖ ≤ ‖𝑎‖. For 𝑏 ∈ 𝐴, define 𝜑𝑏(𝑎) ≔
𝜑(𝑏∗𝑎𝑏), which is a continuous positive linear functional on 𝐴. By extending 𝜑𝑏 to 𝐴
as in the proof of Corollary 2.4.6, we see that 𝜑𝑏(𝑎∗𝑎) ≤ ‖𝑎∗𝑎‖𝜑𝑏(1) for all 𝑎 ∈ 𝐴 by 
Proposition 2.4.3 applied to 𝐴. Thus

‖𝑎𝑏‖2
𝜑 = 𝜑(𝑏∗𝑎∗𝑎𝑏) = 𝜑𝑏(𝑎∗𝑎) ≤ ‖𝑎∗𝑎‖𝜑𝑏(1) = ‖𝑎∗𝑎‖𝜑(𝑏∗𝑏) = ‖𝑎∗𝑎‖‖𝑏‖2

𝜑 ≤ ‖𝑎‖2‖𝑏‖2
𝜑.

The result follows. ∎
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Define 𝐻𝜑 ≔ 𝐴/𝑁𝜑, which is called the GNS Hilbert space with respect to 𝜑. Observe 
that the image of 1 ∈ 𝐴 in 𝐻𝜑, denoted Ω𝜑, is a cyclic vector for the representation (𝐻𝜑, 𝜋𝜑), 
i.e., 𝜋𝜑(𝐴)Ω𝜑 is dense in 𝐻𝜑. Observe that 𝜑(𝑎) = ⟨𝑎Ω𝜑, Ω𝜑⟩ for all 𝑎 ∈ 𝐴, so 𝜑 is a vector 
state in the GNS representation.

Question 2.4.10. When does 𝐴 act on the right of 𝐻𝜑 by bounded operators? That is, 
consider the map 𝑅𝑎 on 𝐴 given by 𝑏 ↦ 𝑏𝑎. When does this pass to 𝐴/𝑁𝜑? And when is it 
bounded?

Exercise 2.4.11. Consider the linear functional tr on ℂ[Γ] given by tr(∑𝑐𝑔𝑔) ≔ 𝑐𝑒.
1. Show that tr is positive and continuous. Here, the norm on ℂ[Γ] is the operator norm 

coming from its left regular action on ℓ2Γ.
Hint: Show that tr = ⟨ ⋅ 𝛿𝑒, 𝛿𝑒⟩, where 𝛿𝑒 ∈ ℓ2Γ is given by 𝛿𝑒(𝑔) = 𝛿𝑔=𝑒.

2. Prove that tr(𝑥𝑦) = tr(𝑦𝑥) for all 𝑥, 𝑦 ∈ ℂ[Γ].

3. Find a unitary isomorphism 𝐻tr → ℓ2Γ which intertwines the left regular action of 
ℂ[Γ] on 𝐻tr with the left action 𝜆∶ ℂ[Γ] → 𝐵(ℓ2Γ) from Example 2.4.2.

If (𝐻𝑖) is a family of Hilbert spaces, the direct sum ⨁𝐻𝑖 is the completion of the algebraic 
direct sum under the inner product ⟨𝜂, 𝜉⟩ ≔ ∑𝑖⟨𝜂𝑖, 𝜉𝑖⟩. One can show that elements of ⨁𝐻𝑖
are square-summable sequences of vectors.

Definition 2.4.12. If (𝐻𝑖, 𝜋𝑖) is a family of representations of a unital C∗-algebra 𝐴, then 
⨁𝐻𝑖 carries an action of 𝐴 via ⨁𝜋𝑖 defined by (⨁𝜋𝑖)(𝑎)𝑗 ≔ 𝜋𝑗(𝑎). Observe ⨁𝜋𝑖(𝑎) is 
bounded if and only if (‖𝜋𝑖(𝑎)‖) is uniformly bounded.

Definition 2.4.13. The universal representation of a unital C∗-algebra 𝐴 is ⨁
states 𝜑

𝐿2(𝐴, 𝜑), 

which is a direct sum of cyclic representations.

Lemma 2.4.14. Suppose 1 ∈ 𝐴 ⊂ 𝐵 is a unital inclusion of C∗-algebras. Then any state 
on 𝐴 extends to a state on 𝐵.

Proof. Use Hahn-Banach to extend the state 𝜑 on 𝐴 to 𝜑̃ on 𝐵, and note

𝜑̃(1) = 𝜑(1) =
(Prop. 2.4.3)

‖𝜑‖ =
(HB)

‖𝜑̃‖.

So 𝜑̃ is positive by Proposition 2.4.3. ∎

Proposition 2.4.15. Suppose 𝐴 is a unital C∗-algebra and 𝑎 ∈ 𝐴 is self-adjoint (or normal). 
For every 𝜆 ∈ sp(𝑎), there is a state 𝜑 on 𝐴 such that 𝜑(𝑎) = 𝜆.

Proof. Recall C∗(𝑎) ≅ 𝐶(sp(𝑎)) where 𝑎 corresponds to the identity function. Use 
Lemma 2.4.14 to extend ev𝜆 ∶ 𝐶(sp(𝑎)) → ℂ (which is manifestly positive) to a state 
𝜑 on 𝐴. Since ev𝜆(id) = 𝜆, 𝜑(𝑎) = 𝜆. ∎
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Theorem 2.4.16  (Gelfand-Naimark). The universal representation of a unital C∗-algebra 
is isometric. Thus every C∗-algebra is ∗-isomorphic to a closed ∗-subalgebra of bounded 
operators on a Hilbert space.

Proof. Let 𝑎 ∈ 𝐴. Then ‖𝑎‖2 ≥ ‖𝜓(𝑎)‖2 = ‖𝜓(𝑎∗𝑎)‖ ≥ ‖𝜋𝜓(𝑎∗𝑎)‖ for all states 
𝜓. By Proposition 2.4.15, there is a state 𝜑 ∈ 𝐴∗ such that ‖𝑎∗𝑎‖ = 𝜑(𝑎∗𝑎), as 
‖𝑎∗𝑎‖ ∈ sp(𝑎∗𝑎). We then have that

‖𝑎‖2 = ‖𝑎∗𝑎‖ = 𝜑(𝑎∗𝑎) = ⟨𝜋𝜑(𝑎∗𝑎)Ω𝜑, Ω𝜑⟩𝜑

Since the norm is equal to the numerical radius for normal operators, we have 
‖𝜋𝜑(𝑎∗𝑎)‖ ≥ ‖𝑎‖2. We thus have that

‖𝑎‖2 ≤ ‖𝜋𝜑(𝑎∗𝑎)‖ ≤ ‖𝜋(𝑎)‖2 ≤ ‖𝑎‖2.

We conclude that 𝜋 is isometric. ∎
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