Penneys Math 7212, Spectral Theory Spring 2026

1 Banach algebras

1.1 Spectrum
Let A be a unital Banach algebra. The spectrum of a € A is
sp(a) ={ e Cla— A1 ¢ A*},
which is a non-empty compact subset of B, (0). Here, r(a) is the spectral radius:

r(a) = lim |a™|*/™.

Fact 1.1.1. Suppose ¢ : A — B is a unital algebra map between Banach algebras. If
a € A, then ¢(a) € B*, so spy(¢(a)) Csp,(a).

Corollary 1.1.2. Suppose 1 € A C B is a unital inclusion of Banach algebras. For all
a € A, spgla) Csp,(a) and dsp ,(a) C Ispy(a).

Proof. By Fact 1.1.1, sp 5(¢(a)) C sp ,(a), so it suffices to prove dsp , (a) Nspy(a)® =
(. Suppose for contradiction that A € dsp ,(a) Nspy(a)®. Pick a sequence (A,) C
sp ,(a)¢ such that A, — A, soa—A, = a—A. Thena—\, € A%, s0oa—A, € B, and
thus A,, & sp(a) for all n. Since we assumed A ¢ sp ;(a) and inversion is continuous
on B*, we have (a —\,))™! — (a—\)"! € B. But A is complete, so (a— )" € 4, a
contradiction. [

1.2 Holomorphic functional calculus

For each a € A, the holomorphic functional calculus (HFC) gives a unital algebra homomor-
phism O(sp(a)) — A given by

1 ’ :
fr— fla) = — O | @O i
2mt J o a—z w\ e
Y < /
where v is a simple closed contour in U \ sp(a) such that

ind. (2) = {1 if z € sp(a)

0 ifz¢U.

The HFC satisfies the following two properties, which characterize this ring homomorphism:

1



o If sp(a) C U, and f,, — flocally uniformly on U, then f, (a) — f(a) in A, and

o If f(2) = a,z" is a power series with radius of convergence greater than r(a), then

fla) =3 aya®.
The HFC also satisfies:

L If f(2) = [1(z — 2;)™5 is rational, then f(a) = [[(a — 2;)™7.

2. (spectral mapping) sp(f(a)) = f(sp(a)), and
3. if g € O(sp(a)), then g(f(a)) = (g° f)(a).
Corollary 1.2.1. If ¢ : A — B and f € O(sp ,(a)), then f(é(a)) = ¢(f(a)).

Proof. By Fact 1.1.1, spy(é(a)) C sp,(a), so O(sp,(a)) € O(spy(¢(a))). Observe
that f(¢(a)) = ¢(f(a)) whenever fis a polynomial, and whenever f is a rational function
with poles outside of sp,(a). The result now follows by Runge’s Theorem, since every
f € O(sp 4(a)) can be approximated by such rational functions. O

1.3 Gelfand transform

If A is unital and commutative, the Gelfand transform gives a norm-contractive unital algebra

—~

homomorphism A — C(A) given by
a > fevy: ¢ = p(a)],

where A is the set of algebra homomorphisms from A — C, also called characters or mul-
tiplicative linear functionals. The image of the Gelfand transform is a subalgebra of C'(A)
which separates points of A.

Lemma 1.3.1. If A is unital and a € A, then for all € A, p(a) € sp(a).

[ Proof. Observe cp(a — gp(a)) =0,s0 a—p(a) ¢ A and thus p(a) € sp(a). O ]

2 (- algebras

Let A be a unital C*-algebra, i.e., a unital Banach algebra with an involution satisfying
a*a| = |la|? for all a € A.



2.1 Operators
We call a € A:

 self-adjoint if a = a*,

positive if a = b*b for some b € A,

normal if aa® = a*a,

a projection if a = a* = a?,

an isometry if a*a =1,

a unitary if a*a = 1 = aa* (equivalently, an invertible isometry),
 a partial isometry if a*a is a projection.

Here are some elementary properties:

(C*1) Each a can be written as a = R(a) + iJ(a) where R(a) = 2EL and J(a) = 5% are
self-adjoint.

(C*2) If X € sp(a), then X € sp(a*).

(C*3) If a is normal, then |a| = r(a).

Proof. Observe [a®[* = |[(a®)*a®| = |(a*a)*| = a*a|* = |a|*. Thus r(a) =
lim la*"* " = al. O

(C*4) If u is unitary, then sp(u) C D =T = S*.

Proof. Since u* = u™!, by (C*2), A € sp(u) if and only if X le sp(u). Since
lu| =1, both |A,|A7 < 1,50 A€ T. O

(C*5) If @ = a*, then €' is unitary (defined by the HFC).

Proof. Observe (e')* = (Z (m)n)* = Ea? _ mia — (gia)-1, O

n!

(C*6) If a = a*, then sp(a) C R.

Proof. By (C4), sp(e*®) C T, and by the Spectral Mapping Theorem, sp(e??)
e?*P(@) Hence sp(a) C R.
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2.2 Continuous functional calculus

Lemma 2.2.1. If A is commutative, then every ¢ € Aisa x-homomorphism.

Proof. Let a € A and ¢ € A. Recall from (C°1) that @ = R(a) + iJ(a) where
R(a),T(a) are self-adjoint. From Lemma 1.3.1 and (C*6) we see that ¢(R(a)) €
sp(R(a)) C R and ¢(JI(a)) € sp(I(a)) C R. Thus

o(a”) = p(R(a)) —iv(3(a)) = p(R(0)) +ip(3(a) = ¥(a). 0

Theorem 2.2.2. The Gelfand transform affords an equivalence of categories

{Unital commutative C*-algebras} = {Compact Hausdorff spaces}" .

Question 2.2.3. What happens for non-unital C*-algebras?

Lemma 2.2.4 (Spectral permanence). Suppose 1 € A C B is a unital inclusion of C*-
algebras. Then sp ,(a) = spy(a) for alla € A.

Proof. By Corllary 1.1.2, sp(a) C sp ,(a), so it suffices to prove b € AN B* implies
b € A*. Suppose b € AN B*. Then b* € AN B* and b*b € AN B*. By (C'6),
sp ,(bb),sp 5 (b*b) C R. By Corollary 1.1.2,
5p(b°b) = Dsp , (b"B) C Bsp,(b*B) = sp (b°b) C sp., (D),
so equality holds. Notice that this shows that b admits a left inverse in A, since
(b*b)1b*b = 1.

A similar argument for bb* shows b has a right inverse, and the result follows. [

Given a € A normal, the continuous functional calculus (CFC) is a unital *-isomorphism
from ®,: C(sp(a)) — C*(a), the smallest unital C*-subalgebra of A containing a, which
extends the HFC. It is characterized by the properties:

e & (1)=1and ®,(id: z — z) = a, and
o forall f € O(sp(a)), ®,(f) = f(a) from the HFC.

Thus it makes sense to denote @, (f) = f(a).



Exercise 2.2.5. Show that every a in a unital C*-algebra A is a linear combination of 4
unitaries.
Hint: Show every self-adjoint a with |al| < 1 is a linear combination of 2 unitaries by

considering f(t) :=t+ivV1—1t2 on sp(a).

Exercise 2.2.6. Suppose V'is an inner product space (not necessarily complete) and 7 :
A — End(V) is a unital s-homomorphism such that (7(a)u,v) = (u, w(a)*v) for all u,v € V.
Prove that 7 induces a unital *-homomorphism 7 : A — B(V).

Hint: First show for every unitary u € A, ||w(u)| = 1.

Lemma 2.2.7. If¢: A — B, a € A is normal, and f € C(sp ,(a)), then f(¢(a)) = ¢(f(a)).

Proof. By Fact 1.1.1, spy(¢(a)) C sp,(a), so there is a canonical surjection

C(sp(a)) = C(spz(¢(a))). Observe that f(é(a)) = ¢(f(a)) whenever fis a poly-
nomial in z and Z. The result now follows by the Stone-Weierstrass Theorem. O

Proposition 2.2.8. Every sx-homomorphism ¢: A — B of unital C*-algebras is norm-
contractive. If ¢ is injective, then

1. spy(@(a)) =sp,(a) for all normal a € A, and
2. o)l = lla| for all a € A.

Proof. Since a € A* implies ¢(a) € B*, we have SpB(gb(a)) C sp,(a), and thus
r(¢(a)) < r(a) for all a € A. Then

[6(a)|* = [é(a)*d(a)] = l¢(a*a)] Gy "Pl@7e)) srl@e) = ata] = lall®.

1. Suppose A € sp,(a) \ spy(#(a)) for some normal a € A. We will show ¢ is
not injective. Since sp ,(a) is compact Hausdorff, it is normal. By Urysohn’s
Lemma, there is a continuous f: sp ,(a) — [0, 1] such that f|SpB(¢(a)) = 0 and
f(A) = 1. Then f(a) # 0, but by Lemma 2.2.7, ¢(f(a)) = f(¢(a)) = 0, so ¢ is

not injective.

2. This follows by (1), (C*3), and the C*-identity. O

2.3 Positivity

Let A be a unital C*-algebra. Recall that a € A is called positive, denoted a > 0, if a = b*b
for some b € A. We write a > b if a — b > 0. You will show some of the following facts in
the homework.



Facts 2.3.1.

(>1) If @ = a*, there are positive a, and a_ in C*(a) such that e =a, —a_ and a,a_ = 0.

Proof. Use the CFC to set a, := max{id,0}(a) and a_ := max{—id,0}(a). O

— max{id,0}
— max{—1id,0}

—al lal

(>2) If a = a*, then a < ||a|.

Proof. Observe that the absolute value function dominates the identity function
on R, and apply the CFC. [

(>3) If a < b, then for all ¢ € A, c¢*ac < c*be.

Proof. Write b — a = d*d, and observe ¢*bc — c*ac = c*(b— a)c = c*d*dc. O

(>4) a > 0 if and only if a = a* and sp(a) C [0, c0).

Proof. Homework. ]

(>5) The set A, of positive elements is a closed cone.

Proof. Homework. 0

(>6) < is a partial order on A.

Proof. Clearly a < a.

Ifa<band b <a,thenb—a>0and a—b=—(b—a)>0. Thus b —a is
self-adjoint and sp(b — a) = {0}. By the CFC, b—a =0, so a = b.

Finally, ifa < band b < ¢, then b—a > 0 and ¢—b > 0, so c—a = (¢c—b)+(b—a) >
0 by (>5). 0

(>7) If 0 < a <b, then |al < b].

Proof. By (>2), 0 < a < b < ||b]|, so by (>6), a < |[b]. Using the CFC for a,
p(a) € [0, o[}, 5o la] < [8] by (C3). .




Definition 2.3.2. A linear functional ¢ on A is called positive if p(a) > 0 whenever a > 0.
A state is a positive linear functional such that ¢(1) = 1.

Example 2.3.3. If || = 1, we(a) := (a€, §) is a state on B(H).

Example 2.3.4. The unital *-algebra C @ C with (a, 8)* = (B, @) has no states; its only
positive linear functional is zero.

Proof. The positive elements of A := C @ C are of the form (Ba,aﬁ) for a, 8 € C.

Choosing o = i and § = —i, we see (—1,—1) is positive. But choosing o = 8 = 1,
we see (1,1) is positive. This means for any positive linear functional ¢, we have
+¢(1,1) >0, so ¢(1,1) = 0. u

Lemma 2.3.5. If ¢ is positive, then ¢(a) € R whenever a = a*. Moreover, for all a € A,

Proof. If a = a*, then writing a = a, —a_ asin (>1), we see p(a) = p(a,)—p(a_) €
R. For arbitrary a € A, we have

p(a”) = p(R(a)) —ip(3(a)) = p(R(a)) — ip

O
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2.4 Representations of complex *x-algebras and the GNS construc-
tion

A representation of a (unital) complex *-algebra is a pair (H, ) where H is a Hilbert space
and m: A — B(H) is a (unital) *-homomorphism. We call (H,r):

 nondegenerate if {m(a)fla € A and £ € H} is dense in H. Observe that unital repre-
sentations are nondegenerate.

o cyclic if there is a vector 2 € H such that w(A)Q is dense in H. We call  a cyclic
vector and (H,,2) a cyclic representation.

Example 2.4.1. The complex *-algebra C(X) acts on L?(X,u), where p is any regular
finite Borel measure.

Example 2.4.2. Let T' be a discrete group. Then I' acts on £°T by (X £)(h) == &(g " h).
Since A, is isometric and has inverse A -1, it is unitary. We thus get a group homomor-
phism A: I' — U(H), the unitary group of H. Extending by linearity, we get a unital
*-homomorphism C[['] — B(¢?T"), where C[I'] is the group algebra of T'. The reduced group
C*-algebra of T' is the C*-algebra C}(I') generated by {\ |g € '}
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Given a positive linear functional ¢ on A, define (a,b), := ¢(b*a), which is a positive
sesquilinear form on A. Observe that all positive sesquilinear forms satisfy the Cauchy-
Schwarz inequality, which is a powerful tool.

Proposition 2.4.3. Suppose A is a unital Banach *-algebra (x is an isometric involution)
and @ is a positive linear functional.

1. Ifa=a* and ||a]| < 1, there is a b € A with b = b* such that b*> = 1 — a,
2. p(a*a) < |a*a|e(1) for alla € A, and
3. el = ¢(1).

Proof.

1. The function V1 — z is analytic on B;(0) D sp(a). setting b := v1—a, we
have b2 = 1 — a. To see b is self-adjoint, observe v/1 — a is a uniform limit of
polynomials in a on sp(a). (Indeed, we can find an open U such that sp(a) C
UcUc B(0).)

2. Let € > 0. Applying (1) to m, we have a b = b* such that b2 =1 — m
Thus

pla*a)

0 < p(b*b) = p(1) — Tara] + 2

= pla*a) < (la*al +e)p(1).

Since € > 0 was arbitrary, the result follows.

3. Take square roots in the inequality
p(a)? = [{a, 1), | s (Lgle,a), = e(l)p(a’a) (% p(1)*|a*al < (1)*]al?,

and observe the bound (1) is achieved at 1 € A. ]

Proposition 2.4.4. Suppose A is a unital C*-algebra and ¢ is a linear functional. Then ¢
is positive if and only if ¢ is bounded and ||p| = ¢(1).

Proof. Positivity implies |¢| = ¢(1) by Proposition 2.4.3. Conversely, suppose ¢ is
bounded with ||¢| = ¢(1). By normalizing ¢, we may assume |¢| = ¢(1) = 1. It
remains to show that ¢(a) > 0 whenever a > 0. By the CFC, it suffices to prove
this for a positive linear functional on C(X) where X is compact Hausdorff. Suppose
o(f) = a+iBfor f = f. Then for all t € R, we have

lo(f +it)2 =|a+i(B+t)2=a®+5%2+26t+t>,  but
lo(f +it)|2 < |If +it]* = (|1 + ).




This implies
o + B2 + 28t < || f|? vVt € R,

which is only possible if 5 = 0. Now, if f > 0,

() =17l =le(f = 1A1- DI <1 =1 U< s T4

which implies ¢(f) > 0. H

Definition 2.4.5. A state on a normed unital *-algebra is a continuous positive linear
functional such that ¢(1) = 1.

Corollary 2.4.6. If A is a normed unital *-algebra and ¢ is positive and continuous, then
lell = (1)

Proof. Let A be the completion of A, which is a normed unital Banach x-algebra.
Since ¢ is bounded, it extends to A by Hahn-Banach. If a € A, choose a sequence
(a,,) such that a,, — a. Then (a,) is norm-bounded, and a}a, — a*a. Thus the
extension of ¢ to A is positive. Now apply Proposition 2.4.3. [

The left kernel of the form is given by
N, = {a € Alp(a*a) = (a,a), = 0} s {a € Al(a, b),=0VbEe A},
which is a left ideal of A. Thus the left regular action L,: A/N, — A/N, given by
L,(b+ N,):=ab+ N, is well-defined.
Exercise 2.4.7. Prove the assertion that N, is a left ideal of A.
Question 2.4.8. When is the left regular action of A on A/N,, bounded?

Proposition 2.4.9. If A is a unital normed x-algebra and ¢ is a continuous positive linear
functional, then the left regular action of A on A/N,, is bounded with |L,| < |a].

Proof. Since the left regular action preserves N,,, it suffices to prove that the left
regular action of A on itself is bounded with |L,| < |a|. For b € A, define ¢, (a) =
@(b*ab), which is a continuous positive linear functional on A. By extending ¢, to A
as in the proof of Corollary 2.4.6, we see that o, (a*a) < |la*allp,(1) for all @ € A by
Proposition 2.4.3 applied to A. Thus

labls, = (b*a*ab) = ¢, (a*a) < Ja*alp,(1) = a*ale(bd) = Ja*allb] < |al|b]3.

The result follows. O]




Define H,, := A/N(p7 which is called the GNS Hilbert space with respect to ¢. Observe
that the image of 1 € Ain H,,, denoted 2, is a cyclic vector for the representation (H, o> 7r<p),
ie., m,(A)Q, is dense in H,. Observe that ¢(a) = (af2,,Q,) for all a € A, so ¢ is a vector

state in the GNS representation.

Question 2.4.10. When does A act on the right of H, by bounded operators? That is,
consider the map R, on A given by b+ ba. When does this pass to A/NLP? And when is it
bounded?

Exercise 2.4.11. Consider the linear functional tr on C[I'] given by tr(}c,g) = c,.

1. Show that tr is positive and continuous. Here, the norm on C[I'] is the operator norm
coming from its left regular action on £2T.
Hint: Show that tr = (-6,,8,), where 6, € £°T is given by 5,(g) = &

e’ Ve g=e-

2. Prove that tr(xy) = tr(yx) for all z,y € C[I'].

3. Find a unitary isomorphism H,, — ¢2T which intertwines the left regular action of
C['] on H,, with the left action A\: C[T'| — B(£?T") from Example 2.4.2.

If (H,) is a family of Hilbert spaces, the direct sum @ H; is the completion of the algebraic
direct sum under the inner product (n,§) = >- (;,&;). One can show that elements of P H;
are square-summable sequences of vectors.

Definition 2.4.12. If (H;, ;) is a family of representations of a unital C*-algebra A, then

@ H; carries an action of A via P m; defined by (P m;)(a); := 7;(a). Observe Pm;(a) is
bounded if and only if (|7;(a)]) is uniformly bounded.

Definition 2.4.13. The universal representation of a unital C*-algebra Ais € L2(A,¢),

states ¢
which is a direct sum of cyclic representations.

Lemma 2.4.14. Suppose 1 € A C B is a unital inclusion of C*-algebras. Then any state
on A extends to a state on B.

s ~

Proof. Use Hahn-Banach to extend the state ¢ on A to @ on B, and note

%] 1 = 1 = = %] .
A=) = el = I3

So @ is positive by Proposition 2.4.3. O

Proposition 2.4.15. Suppose A is a unital C*-algebra and a € A is self-adjoint (or normal).
For every A € sp(a), there is a state ¢ on A such that p(a) = A.

Proof. Recall C*(a) = C(sp(a)) where a corresponds to the identity function. Use
Lemma 2.4.14 to extend evy: C(sp(a)) — C (which is manifestly positive) to a state
w on A. Since ev, (id) = A, p(a) = A. O
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Theorem 2.4.16 (Gelfand-Naimark). The universal representation of a unital C*-algebra
is isometric. Thus every C*-algebra is *-isomorphic to a closed *-subalgebra of bounded
operators on a Hilbert space.

Proof. Let a € A. Then [a]® > |[¢(a)|* = |[¥(a*a)| > |m,(a*a)| for all states
¥. By Proposition 2.4.15, there is a state ¢ € A* such that |a*a| = ¢(a*a), as
[a*a| € sp(a*a). We then have that

lall? = lla*al = ¢(a*a) = (7, (a*a)Qy,, Q,),

Since the norm is equal to the numerical radius for normal operators, we have
|7, (a*a)| > [a]*>. We thus have that

lall? < lImy(a”a)] < |lm(a)]* < Jal*.

We conclude that 7 is isometric. O]
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