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5 Tracial von Neumann algebras and the crossed prod-
uct construction

These notes follow Chapters 9 and 11 of Jones’ notes on von Neumann algebras quite closely.

5.1 Tracial von Neumann algebras

Definition 5.1.1. A tracial von Neumann algebra is a von Neumann algebra M equipped
with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (M, tr)
that we have already proven, or which follow easily from facts we have already proven.

(trl) Tracial von Neumann algebras are finite.

(tr2) Every isometry in a tracial von Neumann algebra is a unitary.
TODO: more?

Definition 5.1.3. Given a tracial von Neumann algebra (M, tr), the Gelfand-Naimark-Segal
(GNS) Hilbert space L?(M,tr) is the completion of M under | - |, coming from the inner
product

(z,y) = tr(y"x).

We typically write Q € L?(M,tr) for the image of 1 € M. When M is a tracial factor, the
trace is unique, and we simply write L2 M.
We have the following facts, building on how we constructed the hyperfinite II; factor R.

(J1) The left action A,z := axQ of M on L?(M,tr) is by bounded operators and X} = \,..

(J2) The right action p,xQ := xbQ of M on L*(M,tr) is also by bounded operators and
Py = Py

(J3) The map J : MQ — MQ given by zQ  x*Q is a conjugate-linear unitary such that
J? =1

(J4) The map J satisfies (JzQ, JyQ) = (x*Q, y*Q) = tr(yz*) = tr(z*y) = (yQ,2Q) for all
x,y € M. Hence (Jn, JE) = (£, n) for all n,& € L?(M,tr).

(J5) For all z € B(L?(M,tr)), (JaJ)* = Ja*J.



Proof. For all a,b € M,

(a9, J2Jb®) = (JaQ, Jeb0) = (2J62, JaQ) = (Jb9, 2" JaS))

(33)

= (JbQ, J?x* Ja)

= (Jx*Jaf2, bQY)
(J3) (J4)

By density of MQ in L?(M,tr), (JzJ)* = Jz*J.

.

]

J

(J6) The map J satisfies JA\,J = p, . and Jp,J = N, for all a,b € M. Typically, we

abbreviate JaJ := JA,J. In particular, (JaJ)* = Ja*J and JMJ C M’.
(J7) For all x € M’ Jx§) = x*Q.

Proof. For all a € M, we have
(Jx2, af2) 5 (JzQ, J?a)) o (Jaf2, xQ2) = (a*Q, zQ)
= (Q,axQ) = (Q, za) = (x*Q, aQ)).

By density of MQ in L*(M, tr), JzQ = x*Q.

(J8) For all z,y € M’, JxJy = yJzJ. Hence JM'J C M" = M.

Proof. For all a,b € M,
(JxJyafd, bQ2) 5 (yaf), Jx* JbQY) = (yal), Jx*b*Q) = (ayQ, Jb* x*Q)

o (ayQ), Jb*Jz >(l]6) (JbJayQ), x )((}6) (aJbJyQY, x2)

= (JbJyQ, a*xQ) = (JbJyQ, za*Q) = (JbJyQ, xJal?)

(E) (JbJyQ, J?xJaf) (J:4) (JxJaQ, by*Q) = (JxJaf), y*bQ)

= (yJxJal2, b2).

By density of MQ in L?(M,tr), JaJy = yJxJ.

We may summarize the above results as follows.

Theorem 5.1.4. Given a tracial von Neumann algebra (M, tr), the commutant of the left

action of M in the GNS representation is given by the right action: M’ = JMJ.

Corollary 5.1.5. The commutant of LT acting on ¢?T is RT, the right reqular group von

Neumann algebra.



Exercise 5.1.6. Show that the map between elements x € LI' and their corresponding
?-vectors (x,) such that 26, = Y x,0, has image

{(yg) € (’T|y * z € £°T for all z € (°T}

where (y*2), = > L UnZn1g- That is, LI" corresponds to all the £2-sequences whose convo-
lutions with all other ¢?-sequences are again £2.

5.2 Conditional expectation

In probability theory, there is a notion of a conditional expectation of a random variable
(measurable function f : (X,M) — C) with respect to a o-subalgebra N C M. In
more detail, given a probability measure p : M — [0,00], it restricts to a probability
measure p|, @ N — [0,00], and we have a natural inclusion of von Neumann algebras
L (X, N, uly) C L®(X, M, ). The conditional expectation of f € L>(X, M, u)C with
respect to NV, denoted E, (f) is the unique element of L (X, N, |, ) such that for all
AeN,

/Afdu=/fodu=/[EN(f)xAdu=/A[EN(f)xAdu-

We will show the existence and uniqueness of E,(f) in more general setting, namely a tracial
von Neumann algebra (M, tr,,;) and a von Neumann subalgebra N C M.

Facts 5.2.1. Suppose (M, tr,,) is a tracial von Neumann algebra and N C M is a von
Neumann subalgebra.

(E1) The inclusion NQ < MQ C L?M is isometric with respect to | - |5. We thus get a
canonical isometry i, : L2N — L?M such that n{y > n,,.

(E2) The isometry i, is N-N bilinear, i.e., for all z,n € N,

in(z-nQy) =in(@nQy) = zny = x - nfly, and

(E3) The adjoint i%; : LM — L*N is also N-N bilinear.!

Proof. Since ni = iyn for all n € N, taking adjoints, i3yn* = n*iy foralln € N.
Since Jym*Jyiny = inJyn*Jy for all n € N, taking adjoints,

for all n € N. The result follows. OJ

. J

! In more generality, if w5 : A — B(H) and 7 : A — B(K) are two *-representations of a *-algebra
A and x € B(H — K) such that 7 (a) = mg(a)x for all a € A, then 7wy (a)z* = x* 7w (a) for all a € A.



(E4) For m € M, the operator Ey(m) := iymiy € B(L?N) commutes with the right

N-action and thus lies in (JyNJy) = N.

(E5) En(m) is the unique element of N such that try(FEy(m)n) = try;(mn) for all n € N.

(E6)

(E7)

(E8)

(E9)

s ~

Proof. If x € N such that try(zn) = try,(mn) for all n € N, then

(xQn, nQ) 2y = try(an®) = try(mn*) = (MmQy, Q) 120

= <m[’NQN7 LN”QN>L2M = <L)]k\]mLNQN>nQN>L2N

for all n € N, and thus z = tymiy = En(m). O

Ey(amb) = aEy(m)b for all a,b € N and m € M. In particular, Ey|y = idy-

Proof. Immediate from i, 4% being N — N bilinear. [

Ey : M — N is a normal unital completely positive (ucp) map. In particular,
En(m*) = Ey(m)* for all m € M.

Proof. The formula Ey(m) = ijymiy is manifestly ucp (recall the Stinepring
Theorem). In particular, since Ey sends positive elements to positive elements,
writing a self-adjoint x € M as x, — x_, we see that Ey(z) is also self adjoint.
The final statement now follows by taking real and imaginary parts:

En(m) = Ex(R(m) +43(m)) = Ex(R(m)) + iEn(3(m))
which implies
Ey(m") = Ex(R(m) — i3(m)) = Ex(R(m)) — iBy(3(m)) = Ey(m)*. O

.

For all m € M, |Ex(m)| < |m],

Proof. Since i, is an isometry, |Ey(m)| = |iymiy| < |m]. O

For all m € M, Ex(m)*Eyn(m) < Ex(m*m) and Ey(m*m) = 0 implies m = 0.

Proof. Since i is an isometry, iy < 172,,. In particular,

En(m)*En(m) = iym*iyiymiy < iym*miy = Ex(m*m).

Finally, if Ey(m*m) = 0, then tr,,(m*m) = try(Ey(m*m)) =0,s0 m=0. O




5.3 OQOuter, ergodic, and free actions

In this section, G denotes a group and M denotes a von Neumann algebra.

Definition 5.3.1. An action of G on M is a group homomorphism « : G — Aut(M), where
Aut(M) is the group of x-algebra isomorphisms of M.

Exercise 5.3.2. Prove that every x-algebra isomorphism of M is o-WOT continuous.

Example 5.3.3. Suppose u : G — U(H) such that for all g € G, u,Mu; = M. Then
a: G — Aut(M) by a, = Ad(u,) is an action.

Definition 5.3.4. An automorphism ® of M C B(H) is said to be implemented by a unitary
uwe U(H) if ®(z) = uzu* for all z € M.

We call @ € Aut(M) innerif it is implemented by a unitary uw € U(M ). If ® is not inner,
it is called outer.

An action o : G — Aut(M) is called outer if o is only inner when g = e.

Exercise 5.3.5. Show that every trace-preserving x-automorphism of a tracial von Neumann
algebra (M, tr,,) can be implemented on L?(M,tr). Deduce that every x-automorphism of
a II; factor can be implemented on L?M.

Exercise 5.3.6. Prove that every s-automorphism of B(H) is inner.

Exercise 5.3.7. Consider F, = (a,b). Show that the swap a <> b extends to a *-
automorphism of LF,. Prove it is outer.

Example 5.3.8. Let (X, i) be a measure space and T': X — X a bijection preserving the
measure class of p, i.e., u(A) = 0 iff u(T~1A) = 0 for all measurable A. Then T gives an
automorphism o of L (X, p) by (apf)(z) := f(T 1x).

Moreover, if T preserves p, i.e., u(A) = (T tA) for all measurable A, then o is
implemented by the unitary (ur€)(x) := (T tx) for € € L*(X, ). Indeed, one computes
(uhé)(x) = &(Tx) and we observe

(urM pué)(w) = (M) (T e) = f(T712) (uid) (T e) = f(T 7 2)€(x) = (M )6 (@).

Exercise 5.3.9. Suppose (X, ) is a measure space and v is a measure equivalent to p,
i.e., u(A) = 0 if and only if v(A) = 0 for all measurable A. Explain why we may identify
L>(X,u) = L>®(X,v) as von Neumann algebras.

Definition 5.3.10. A measurable bijection T of X is called ergodic if A measurable with
TA = Aimplies u(A) =0 or u(X\ A) =0.

Proposition 5.3.11. T is ergodic if and only if L>°(X, pu)*r = C1.



Proof. Note that TA = A if and only if ap(x4) = x4. Hence T is ergodic iff
P(L>(X, p)*r) ={0,1} iff L>®(X, u)*r = C1. O

Definition 5.3.12. We say an action o : G — Aut(M) is ergodic if M¢ = C1.

Lemma 5.3.13. Suppose « is an action of a countable group I' on (X, ) preserving the
measure class of . Consider the following statements.

(T'1) « is essentially transitive, i.e., there is an x € X such that (X \ T'x) = 0.

(I'2)  « is essentially countable, i.e., there is a countable set’ Y C X such that p(X\Y) =0
and p({y}) >0 forally € Y.

(T'3) There is an atom x € X, i.e., there is an x € X with u({x}) > 0.
Then (I'1) implies (I'2) implies (I'3). If « is ergodic, then (I'3) implies (I'1).

Proof. The only interesting part is proving (I'3) implies (I'l) when « is ergodic. If
x € X is an atom, then 'z C X is a [-invariant subset with p(I'z) > 0. By ergodicity,
w(X\T'z) =0. O

Remark 5.3.14. Really, an atom of (X, i) is a measurable set A C X such that u(A) >0
and for all measurable B C A, u(B) = 0 or u(A\ B) = 0. Thus atoms of (X, u) exactly
correspond to minimal projections of L>° (X, u). By Lemma 5.3.13 (applied to an equivalent
measure space where all atoms have been collapsed to points), if an ergodic action of a
countable I" on (X, u) preserving the measure class of u is not essentially transitive, then
L*°(X, ) has no minimal projections.

Definition 5.3.15. An automorphism ® of M is called free or properly outer if
m € M and ma(x) =axm Vze M = m = 0.
An action o : G — Aut(M) is called free if o, not free implies g = e.

Exercise 5.3.16. Show that if M = L*°(X,r) where X is countable and v is a weighted
counting measure (without loss of generality, we may assume there are no points with mass
zero), and a = ap € Aut(L>®(X, p)) for some bijection T : X — X, then « is free if and
only if T"has no fixed points.

Exercise 5.3.17. Suppose X is compact Hausdorff and p is a Radon (finite non-negative
regular Borel) measure on X. Let 7' : X — X be a homeomorphism preserving the measure
class of u. Then aq is free iff p({x € X|T'z = x}) =0.

Proposition 5.3.18. If M is a factor, then every outer automorphism is free.



Proof. We prove the contrapositive. Suppose ® € Aut(M) and there is an m € M\{0}
such that m®(x) = am for all x € M. If m € U(M), then ® = Ad(m) and we are
finished. Otherwise, taking adjoints, we have m*z = ®(z)m* for all x € M, and thus

mm*x = m®(z)m* =xmm* Vre M = mm* € Z(M).
Similarly, m*m € Z(M). Since Z(M) = C1 and m # 0, mm* = r and m*m = s

for some non-zero r,s € R.y. Since rm = mm*m = sm and m # 0, r = s. Thus
u:=r"Y2m € U(M) and ® = Ad(u) is inner. O

5.4 The crossed product

The crossed product can be defined for a locally compact group, but we will present a
simplified version for discrete groups acting on tracial von Neumann algebras. In this section,
I' is a discrete group.

The crossed product of a group action a : I' — Aut(M) is a von Neumann algebra
containing M in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose a : I' — Aut(M) is a group action where M C B(H). Form the

Hilbert space
(T, H) = {f T H Y €@ < oo} -
g

We define actions of I' and M on ¢*(T', H) by

(ugé)(h) :=&(g~"h) and (1) (h) := ag-1(m)€(h).

The crossed product M X, I' is the von Neumann algebra generated by the 7, and the u,
acting on ¢2(T, H).

Example 5.4.2. When M = L>®(X,pu) and a : I' — Aut(M) comes from an action of I'
on (X, pu) preserving the measure class of p, we call L (X, u) X T' the group measure space
construction

Exercise 5.4.3. Prove the following facts about the crossed product M X, I.

(1) m: M — B(¢*(T', H)) is an injective normal o-WOT continuous *-homomorphism. Thus
w(M) =m(M)” = M as von Neumann algebras.

(2) u

*

gTmly = Mo (m); 1-€-, the a-action on M is implemented by the u.

(3) Finite linear combinations » x, u, where z, € M form a 0-WOT dense unital x-
subalgebra.



Exercise 5.4.4. Find a unitary isomorphism v : £*(T', H) — (°T ® H such that vu,v* =
Ay @1 and (v, v*)(0), ® §) = &), ® a1 (m)E.

We now provide sufficient conditions for the crossed product to be a factor.

Lemma 5.4.5. If a: ' — Aut(M) is free, then M’ N (M x,I') C Z(M).

Proof. TODO: give general proof Suppose y € M" N (M %, I') and let (y,) C M
such that y(Q2®4,) = > y,Q2®6,. For z € M, we calculate y(zQ2 ® 6,.) in two ways:

Zmyg@)ég:xy(Q@de):yaj(Q®6e) y(xQ ®0d,) Zyg a,

Hence zy, = y,a,(z) for all z € M. By freeness, y, = 0 unless g = e, so y = y, as
Q® 9, is separating by (x5). Hence y € M' N M = Z(M). ]

Remark 5.4.6. Lemma 5.4.5 immediately implies that
ZIM)y=M"NMCM N(Mx,TI')CZ(M)
so all inclusions are equalities, and
ZMx, Y C M N(Mx,T')CZ(M).
Thus if M is a factor and « is free, then M x, I' is a factor.

Corollary 5.4.7. If a: T' — Aut(M) is free and ergodic, then M x, ' is a factor.

Proof. Suppose x € Z(M x, I'). Since « is free, by Remark 5.4.6, x € Z(M). Since

r commutes with every u,, o, (v) = u,zu; =z forall g € ', and z € MPT. Since « is

ergodic, M' = C1, and thus Z(Mx,T)=CL. O

Corollary 5.4.8. Consider a group measure space construction L (X, u)x . If the action
a is free, then L>°(X,u) C L (X, p) XTI is mazimal abelian.

Proof. Since « is free,
L22(X, )" N (L2 (X, ) X T) © Z(L®(X, p)) = L(X, )

by Lemma 5.4.5. Hence if L>®(X,u) € A C L*®(X,u) xI' with A abelian, then
ACL>®(X,pn) N(L>(X, M)NF)CLOO(X ). O

We now give examples of free and ergodic actions.



Example 5.4.9. I' = Z acts by translation on (Z, v) where v is counting measure. We have

L™(Z,v) 1 Z =~ B(£*Z).

Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider
(X,p) = (T,df) and T' = Z generated by tz = €'z where £ ¢ Q.

Example 5.4.11 (Bernoulli shift). Let T" be infinite and countable, and let (X, u) be a
standard probability space. Consider (X, u)" with product measure. Then T acts on (X, u)b
by (g- A)(h) = A(g~h), where A: T — (X, i) is a measurable function.

One can also do the action of T on ®" (M, tr) by h - (Tg, ®Tg, @) =Tpy @Tpy Q.

Example 5.4.12. SL(2,Z) acts on R? by (CCL Z) (z) = (gij:;g)

Example 5.4.13. The “ax + b” group Q x Q™ acts on R by (8 11)> (T) — (axl—k b) .

5.5 The crossed product when the action preserves a trace

We now give a second equivalent definition of M x, I" in the setting where (M, tr) is a tracial
von Neumann algebra and troa, = tr for all g € T".

First, form the Hilbert space L2M ®¢2T". We have an amplified left M-action 2(mQ®¢) =
rmQ ® § and a left I-action given by u,(mQ ® 6;,) = a,(M)Q & §,y,. In other words, if
v, € U(L*M) is the unitary v,m€Q := a,(m)Q implementing o, then u, = v, ® A,. We
define M x_, I' as the von Neumann algebra generated by the operators x ® 1 for x € M and
the u, for g € I' acting on L?M ® ¢°T.

Exercise 5.5.1. Find a unitary isomorphism w : L2M ®¢*T" — ¢?’T'® L?> M which intertwines
the two above definitions of M x, I". [[is there an op issue here?|]

There is also a commuting right action of M and I on L?M ® ¢°T by defining
(MQ® 6),)x :=may, ()2 I, and (ML ® dp,)g := MmO @ b,

Note that these right actions commute with the left action of M x_, I'. We will eventually
show that M x,T" carries a canonical normal faithful tracial state under which L? (M, T') =
L?M ® (2T, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about M x, I'.
(x1) For finite linear combinations )z u, € M X, ', (3 z,u,)(2®46,) = Zg r,Q2®0,.
(x2) For every x € M %, I, there is a unique sequence (z,) in
CO,M) = {m:T = M> |mQ|2,,, < oo}
such that x(Q®4,) = > r,Q2®4,.



(x3)

Proof. For g € T, define p, : L2 M ® £’T — L>M by mQ®n = (1n,6,) a1 (m)<.
Then p;m) = a,(m)Q ® J,. Observe that p; is right M-linear, so p, is as well
by Footnote 1. Hence for all z € M x,, ', p,ap} € (JMJ)' N B(L?M) = M.
Define z, := ag(pgpo) € M. We then compute that for all m € M and g € T,

((Q2®6,),mQ®d,) = (xp;Q, pya,1(m)Q) = (pxpi, ay-1(m)Q) 2,
tr (g1 (m) p,ap;) = (trMoag)(ag— (m)*p,xp;)
try(m*a, (p,aps)) = try(m*z,)

= (2,2®3, m2®J,).
h

We conclude z(Q®d,) = 3, 2,2 ® 4, and z : T — M lies in £*(T, M). O

ForallgeI'and m € Mand x € M X, I, 2(mQ ®6,) = >, )0, (m) QL ® by,

Proof. Note that mQ ® 0, = (2 ®6,) - m - g. Since the left and right actions
commute,

r(mQJ,) = (2(QA®J,)) m-g = (thQ@)éh) m-g = thozh m)Q®dy,
h

as claimed. O]

.

Forz € Mx, I, 2" (Q®0.) =3, o (2}1)2 6.

7~

Proof. We compute
<£L'*<Q ® 56)7 mQ X 6g> = <Q b2 667 w(mQ b2 59)) Z<Q b2 667 whah(m)Q ® 5hg>
'@ g (m))

a2 )m’)

tr
= (troay)(z) oy (m)”) = tr(a
(o (7)) ® 6, m®,8).

h
= Gy 1 (g 10y 1 (m)) =
= <ag(xg,1 1, mD) 20 =

h

The result follows. [

Q® 4, is cyclic and separating for M x, T

Proof. First, x = 0 iff z, = 0 for all g € I, which implies  ® , is separating.

10




Now for any finite linear combination Zg m,N®J, € L*M ® {°T,

Z mQQ ® 59 = (Z mgug> (Q ® 66)7

so 2 ® 9, is cyclic. [

. J

(x6) The normal state wogs = (-2 ® 46, 2@ 6,) on M X, I' is faithful and tracial.

Proof. For z,y € M x, T,

(2y(2®4,),2®34,) = (y(Q®4,),7"(2®4,))
= (W26, 0,(z}, )2 ® )

g:h
= Z <ng7 ag (x;*l )Q>L2M
g

= Z tr(o“/g(xg*1 )yg)

g

= (troay1)(ay(r,1)y,)

= Z tr(z,10,1(y,))
g
= ; tr(ay, (Yp-1)T)
== <y$<ﬂ ® 66)7 O® 5e>'
Faithfulness follows from the computation

(T 2(2®46,),2®46,) = (2(2®6,),z(Q®F,)) = > (z,0®0,,7,287,)
h

g7
= Z(xgﬂ,ng>L2M = Ztr(a:;a:g). O
9 9

(x7) The map mQ ® 6, = mu, S is an M x, ' — M x,, T bilinear unitary L>M ® £*T =
L2(M x, T).

Proof. For finite linear combinations ) x,u, € M x4, T,

103" 24u,) @ i?(fo) (X apwn) (X zgu,) (Q®35,),0038,)

11



<<Z mg“g) (2®0,), (Z xhuh) Qe 5e)>

=> (2,0®6,,7,0045,)
g,h

= HZ 2,0 ® 599\

and thus the map is isometric. We leave M X, I' bilinearity to the reader. [

2
L2M®eT’

5.6 The type of the crossed product

Suppose a : I' — Aut(M) is free and ergodic so that M x, I is a factor. We further consider
the special case of M = L°°(X,p) coming from an action of I' on (X, u) preserving the
measure class of pu. There are 4 types of free and ergodic actions of a countable discrete
group I' acting on (X, u).

type I) T' acts freely transitively so that X is a I-torsor.

type II) I preserves an infinite measure on X.

(

 (type II;) T preserves a finite measure on X.
(
(

type III) no measure on X equivalent to u is preserved by T.

Theorem 5.6.1. If « is a free ergodic, essentially transitive action, then L> (X, pu) x T is
type 1.

Proof. Since « is essentially transitive, by Lemma 5.3.13, X = 'z for some z € X up
to null sets (where we have replaced atoms in (X, p) by points). Thus we may identify
p with a weighted counting measure. Then x,, € L™ (X, ) is a minimal projection
for every z € X. We claim X, is also minimal in L*(X, u) X T', showing it is type L.
Since finite linear combinations » Yy ug form a o-WWOT dense unital *-subalgebra,
it suffices to prove that for every h # e and y € L (X, p),
X{a}YUnX{zy = 0.
Indeed, for all £ € L3(T', L?(X,p)) and g € T,

(X2 YunX(23€)(9) = g1 (X(ay) g1 (¥) (UpX1216)(9)
ot (X)) 21 (1) (X 2y €) (W 1g)
g <X{x})ag*1 (y>ag*1h (X{x})g(hilg)

(0%
(0%

Now as L (X, ) is abelian, we see

O (X{w})ag*1h<X{:r}> = Xg 12 Xgthes = 0
as h # e and « is free. O

12



Fact 5.6.2. Suppose (M, tr) is a tracial von Neumann algebra and o : I' — Aut(M) is an
action such that troa, = tr for all g € T'. If a is free and ergodic, then M x, I" has a faithful
normal tracial state by (x6), so it must be either type I, for n < oo or type II;.

Theorem 5.6.3. If the action of T' on (X, ) is free, ergodic, non-transitive, and p is a
finite measure such that p(gA) = u(A) for all measurable A, then L (X, u)xT is type I1;.

- )

Proof. Since the action of I' preserves the faithful normal tracial state [ -dpu,
L>(X,p) x T is either finite dimensional or type II;. So it suffices to prove that
if L>°(X,pu)xT is finite dimensional and « is free and ergodic, then « is essentially
transitive. If L>° (X, u) x T is finite dimensional, then L (X, p) is finite dimensional,
and thus has minimal projections. Thus (X, u) = (Y, v) for some finite measure space
Y with v a weighted counting measure. Indeed, by a maximality argument, we can
write 1 = ZZ Xa, where each x4 is minimal in L°°(X, u) and the A; are disjoint
measurable subsets. We then define v({i}) := pu(A;). Finally, the action of I" on the
finite measure space (Y, v) is free and ergodic, which implies it is transitive by Exercise
5.3.13. 0

Exercise 5.6.4. A factor M is type Il iff 1,, is infinite and there is a nonzero finite
projection p € M such that pMp is type II;.

Exercise 5.6.5. If {e,;} C M C B(H) is a system of matrix units, then there is a unitary
u: H — e;; H® (?(I) such that uMu* = e;; Mey; ® B(£2(1)).

Lemma 5.6.6. If M is a Il factor, there is a 11} factor N and a unital x-isomorphism
M =~ N ® B({*(I)).

Proof. By Exercise 5.6.4, there is a non-zero finite projection p € M. Let {p, },o; be a
maximal family of mutually orthogonal projections such that p; ~ p for all ¢ € I.

Claim. ) p, ~ 1.

Proof of claim. Set ¢ = 1 — Y p,. Since M is a factor, by maximality, ¢ < p. Since
1, is infinite, there is an i, € I and a bijection I = I \ {iy}. Then

1—q+2pz~q+2pmpzo+2pz > pis1 O

1#ig 1%,

By the claim, we may assume that > p, = 1; ortherwise, replace p; with u*p,u where
uu* = Y p; and w*u = 1. Now since > p, = 1 and each p, ~ p, for each j, we can
choose a partial isometry e;; such that e;,ej; = p; and ej;e;; = p;. We then extend
the e;; to a system of matrix units in the usual way. Finally, the result follows from
Exercise 5.6.5. O
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Theorem 5.6.7. If the action of I' on (X, ) is free, ergodic, non-transitive, and p is an
infinite o-finite measure such that pu(gA) = p(A) for all measurable A, then L>°(X,pu) x T
is type 11 .

Proof. By Remark 5.3.14, there are no minimal projections in L> (X, u). As (X, u)
is o-finite, there is a set Y C X with 0 < pu(Y) < oo. Consider the unit vector
€= pu(Y)?xy® 8, and the projection p := xy-

Claim. The normal state w, on the factor p(L°°(X, u) X T')p is tracial.

Proof of claim. By a calculation similar to (x6), for all x,y € L>°(X,u) x T,

1
we (prppyp) = o) > " trpr(o(p)ay(z4-1)py,)

N ﬁ ZtrM(pxg’l Gtgn (p)ag’l (yg)) = wg(pyppxp). =

By the claim, p(L*° (X, u) X T')p is a factor with no minimal projections and a tracial
state, and thus is type II;. But L>(X,u) x ' is not type II; as it has an infinite
family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and
L>(X,pu) xT is type II) by Exercise 5.6.4. O

We omit the proof that if I' preserves no measure equivalent to p, then L (X, pu) x T is
type IIL.
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