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5 Tracial von Neumann algebras and the crossed prod­
uct construction

These notes follow Chapters 9 and 11 of Jones’ notes on von Neumann algebras quite closely.

5.1 Tracial von Neumann algebras
Definition 5.1.1. A tracial von Neumann algebra is a von Neumann algebra 𝑀 equipped 
with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (𝑀, tr)
that we have already proven, or which follow easily from facts we have already proven.

(tr1) Tracial von Neumann algebras are finite.

(tr2) Every isometry in a tracial von Neumann algebra is a unitary.
TODO: more?

Definition 5.1.3. Given a tracial von Neumann algebra (𝑀, tr), the Gelfand-Naimark-Segal 
(GNS) Hilbert space 𝐿2(𝑀, tr) is the completion of 𝑀 under ‖ ⋅ ‖2 coming from the inner 
product

⟨𝑥, 𝑦⟩ ∶= tr(𝑦∗𝑥).

We typically write Ω ∈ 𝐿2(𝑀, tr) for the image of 1 ∈ 𝑀. When 𝑀 is a tracial factor, the 
trace is unique, and we simply write 𝐿2𝑀.

We have the following facts, building on how we constructed the hyperfinite II1 factor 𝑅.

(J1) The left action 𝜆𝑎𝑥Ω ∶= 𝑎𝑥Ω of 𝑀 on 𝐿2(𝑀, tr) is by bounded operators and 𝜆∗
𝑎 = 𝜆𝑎∗ .

(J2) The right action 𝜌𝑏𝑥Ω ∶= 𝑥𝑏Ω of 𝑀 on 𝐿2(𝑀, tr) is also by bounded operators and 
𝜌∗

𝑏 = 𝜌𝑏∗ .

(J3) The map 𝐽 ∶ 𝑀Ω → 𝑀Ω given by 𝑥Ω ↦ 𝑥∗Ω is a conjugate-linear unitary such that 
𝐽2 = 1.

(J4) The map 𝐽 satisfies ⟨𝐽𝑥Ω, 𝐽𝑦Ω⟩ = ⟨𝑥∗Ω, 𝑦∗Ω⟩ = tr(𝑦𝑥∗) = tr(𝑥∗𝑦) = ⟨𝑦Ω, 𝑥Ω⟩ for all 
𝑥, 𝑦 ∈ 𝑀. Hence ⟨𝐽𝜂, 𝐽𝜉⟩ = ⟨𝜉, 𝜂⟩ for all 𝜂, 𝜉 ∈ 𝐿2(𝑀, tr).

(J5) For all 𝑥 ∈ 𝐵(𝐿2(𝑀, tr)), (𝐽𝑥𝐽)∗ = 𝐽𝑥∗𝐽. 
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Proof. For all 𝑎, 𝑏 ∈ 𝑀,

⟨𝑎Ω, 𝐽𝑥𝐽𝑏Ω⟩ =
(J3)

⟨𝐽2𝑎Ω, 𝐽𝑥𝐽𝑏Ω⟩ =
(J4)

⟨𝑥𝐽𝑏Ω, 𝐽𝑎Ω⟩ = ⟨𝐽𝑏Ω, 𝑥∗𝐽𝑎Ω⟩

=
(J3)

⟨𝐽𝑏Ω, 𝐽2𝑥∗𝐽𝑎Ω⟩ =
(J4)

⟨𝐽𝑥∗𝐽𝑎Ω, 𝑏Ω⟩

By density of 𝑀Ω in 𝐿2(𝑀, tr), (𝐽𝑥𝐽)∗ = 𝐽𝑥∗𝐽. ∎

(J6) The map 𝐽 satisfies 𝐽𝜆𝑎𝐽 = 𝜌𝑎∗ and 𝐽𝜌𝑏𝐽 = 𝜆𝑏∗ for all 𝑎, 𝑏 ∈ 𝑀. Typically, we 
abbreviate 𝐽𝑎𝐽 ∶= 𝐽𝜆𝑎𝐽. In particular, (𝐽𝑎𝐽)∗ = 𝐽𝑎∗𝐽 and 𝐽𝑀𝐽 ⊆ 𝑀 ′.

(J7) For all 𝑥 ∈ 𝑀 ′, 𝐽𝑥Ω = 𝑥∗Ω. 

Proof. For all 𝑎 ∈ 𝑀, we have

⟨𝐽𝑥Ω, 𝑎Ω⟩ =
(J3)

⟨𝐽𝑥Ω, 𝐽2𝑎Ω⟩ =
(J4)

⟨𝐽𝑎Ω, 𝑥Ω⟩ = ⟨𝑎∗Ω, 𝑥Ω⟩

= ⟨Ω, 𝑎𝑥Ω⟩ = ⟨Ω, 𝑥𝑎Ω⟩ = ⟨𝑥∗Ω, 𝑎Ω⟩.

By density of 𝑀Ω in 𝐿2(𝑀, tr), 𝐽𝑥Ω = 𝑥∗Ω. ∎

(J8) For all 𝑥, 𝑦 ∈ 𝑀 ′, 𝐽𝑥𝐽𝑦 = 𝑦𝐽𝑥𝐽. Hence 𝐽𝑀 ′𝐽 ⊆ 𝑀″ = 𝑀. 

Proof. For all 𝑎, 𝑏 ∈ 𝑀,

⟨𝐽𝑥𝐽𝑦𝑎Ω, 𝑏Ω⟩ =
(J5)

⟨𝑦𝑎Ω, 𝐽𝑥∗𝐽𝑏Ω⟩ = ⟨𝑦𝑎Ω, 𝐽𝑥∗𝑏∗Ω⟩ = ⟨𝑎𝑦Ω, 𝐽𝑏∗𝑥∗Ω⟩

=
(J7)

⟨𝑎𝑦Ω, 𝐽𝑏∗𝐽𝑥Ω⟩ =
(J6)

⟨𝐽𝑏𝐽𝑎𝑦Ω, 𝑥Ω⟩ =
(J6)

⟨𝑎𝐽𝑏𝐽𝑦Ω, 𝑥Ω⟩

= ⟨𝐽𝑏𝐽𝑦Ω, 𝑎∗𝑥Ω⟩ = ⟨𝐽𝑏𝐽𝑦Ω, 𝑥𝑎∗Ω⟩ = ⟨𝐽𝑏𝐽𝑦Ω, 𝑥𝐽𝑎Ω⟩
=

(J3)
⟨𝐽𝑏𝐽𝑦Ω, 𝐽2𝑥𝐽𝑎Ω⟩ =

(J4)
⟨𝐽𝑥𝐽𝑎Ω, 𝑏𝑦∗Ω⟩ = ⟨𝐽𝑥𝐽𝑎Ω, 𝑦∗𝑏Ω⟩

= ⟨𝑦𝐽𝑥𝐽𝑎Ω, 𝑏Ω⟩.

By density of 𝑀Ω in 𝐿2(𝑀, tr), 𝐽𝑥𝐽𝑦 = 𝑦𝐽𝑥𝐽. ∎

We may summarize the above results as follows.

Theorem 5.1.4. Given a tracial von Neumann algebra (𝑀, tr), the commutant of the left 
action of 𝑀 in the GNS representation is given by the right action: 𝑀 ′ = 𝐽𝑀𝐽.

Corollary 5.1.5. The commutant of 𝐿Γ acting on ℓ2Γ is 𝑅Γ, the right regular group von 
Neumann algebra.

2



Exercise 5.1.6. Show that the map between elements 𝑥 ∈ 𝐿Γ and their corresponding 
ℓ2-vectors (𝑥𝑔) such that 𝑥𝛿𝑒 = ∑ 𝑥𝑔𝛿𝑔 has image

{(𝑦𝑔) ∈ ℓ2Γ|𝑦 ∗ 𝑧 ∈ ℓ2Γ for all 𝑧 ∈ ℓ2Γ}

where (𝑦 ∗ 𝑧)𝑔 = ∑ℎ 𝑦ℎ𝑧ℎ−1𝑔. That is, 𝐿Γ corresponds to all the ℓ2-sequences whose convo­
lutions with all other ℓ2-sequences are again ℓ2.

5.2 Conditional expectation
In probability theory, there is a notion of a conditional expectation of a random variable 
(measurable function 𝑓 ∶ (𝑋, ℳ) → ℂ) with respect to a 𝜎-subalgebra 𝒩 ⊂ ℳ. In 
more detail, given a probability measure 𝜇 ∶ ℳ → [0, ∞], it restricts to a probability 
measure 𝜇|𝒩 ∶ 𝒩 → [0, ∞], and we have a natural inclusion of von Neumann algebras 
𝐿∞(𝑋, 𝒩, 𝜇|𝒩) ⊂ 𝐿∞(𝑋, ℳ, 𝜇). The conditional expectation of 𝑓 ∈ 𝐿∞(𝑋, ℳ, 𝜇)𝐶 with 
respect to 𝒩, denoted 𝔼𝒩(𝑓) is the unique element of 𝐿∞(𝑋, 𝒩, 𝜇|𝒩) such that for all 
𝐴 ∈ 𝒩,

∫
𝐴

𝑓 𝑑𝜇 = ∫ 𝑓𝜒𝐴 𝑑𝜇 = ∫ 𝔼𝒩(𝑓)𝜒𝐴 𝑑𝜇 = ∫
𝐴

𝔼𝒩(𝑓)𝜒𝐴 𝑑𝜇.

We will show the existence and uniqueness of 𝔼𝒩(𝑓) in more general setting, namely a tracial 
von Neumann algebra (𝑀, tr𝑀) and a von Neumann subalgebra 𝑁 ⊆ 𝑀.

Facts 5.2.1. Suppose (𝑀, tr𝑀) is a tracial von Neumann algebra and 𝑁 ⊆ 𝑀 is a von 
Neumann subalgebra.

(E1) The inclusion 𝑁Ω ↪ 𝑀Ω ⊂ 𝐿2𝑀 is isometric with respect to ‖ ⋅ ‖2. We thus get a 
canonical isometry 𝑖𝑁 ∶ 𝐿2𝑁 → 𝐿2𝑀 such that 𝑛Ω𝑁 ↦ 𝑛Ω𝑀.

(E2) The isometry 𝑖𝑁 is 𝑁-𝑁 bilinear, i.e., for all 𝑥, 𝑛 ∈ 𝑁,

𝑖𝑁(𝑥 ⋅ 𝑛Ω𝑁) = 𝑖𝑁(𝑥𝑛Ω𝑁) = 𝑥𝑛Ω𝑀 = 𝑥 ⋅ 𝑛Ω𝑀 and
𝑖𝑁(𝑛Ω𝑁) ⋅ 𝑥 = 𝐽𝑀𝑥∗𝐽𝑀𝜄𝑁𝑛Ω𝑁 = 𝑛𝑥Ω𝑀 = 𝑖𝑁(𝑛𝑥Ω𝑁) = 𝑖𝑁𝐽𝑁𝑥∗𝐽𝑁𝑛Ω𝑁 = 𝑖𝑁(𝑛Ω𝑁 ⋅ 𝑥).

(E3) The adjoint 𝑖∗
𝑁 ∶ 𝐿2𝑀 → 𝐿2𝑁 is also 𝑁-𝑁 bilinear.1

Proof. Since 𝑛𝑖𝑁 = 𝑖𝑁𝑛 for all 𝑛 ∈ 𝑁, taking adjoints, 𝑖∗
𝑁𝑛∗ = 𝑛∗𝑖∗

𝑁 for all 𝑛 ∈ 𝑁. 
Since 𝐽𝑀𝑛∗𝐽𝑀𝑖𝑁 = 𝑖𝑁𝐽𝑁𝑛∗𝐽𝑁 for all 𝑛 ∈ 𝑁, taking adjoints,

𝑖∗
𝑁𝐽𝑀𝑛𝐽𝑀 = 𝑖∗

𝑁(𝐽𝑀𝑛∗𝐽𝑀)∗ = (𝐽𝑁𝑛∗𝐽𝑁)∗𝑖∗
𝑁 = 𝐽𝑁𝑛𝐽𝑁𝑖∗

𝑁

for all 𝑛 ∈ 𝑁. The result follows. ∎

1 In more generality, if 𝜋𝐻 ∶ 𝐴 → 𝐵(𝐻) and 𝜋𝐾 ∶ 𝐴 → 𝐵(𝐾) are two ∗-representations of a ∗-algebra 
𝐴 and 𝑥 ∈ 𝐵(𝐻 → 𝐾) such that 𝑥𝜋𝐻(𝑎) = 𝜋𝐾(𝑎)𝑥 for all 𝑎 ∈ 𝐴, then 𝜋𝐻(𝑎)𝑥∗ = 𝑥∗𝜋𝐾(𝑎) for all 𝑎 ∈ 𝐴.
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(E4) For 𝑚 ∈ 𝑀, the operator 𝐸𝑁(𝑚) ∶= 𝑖∗
𝑁𝑚𝑖𝑁 ∈ 𝐵(𝐿2𝑁) commutes with the right 

𝑁-action and thus lies in (𝐽𝑁𝑁𝐽𝑁)′ = 𝑁.

(E5) 𝐸𝑁(𝑚) is the unique element of 𝑁 such that tr𝑁(𝐸𝑁(𝑚)𝑛) = tr𝑀(𝑚𝑛) for all 𝑛 ∈ 𝑁. 

Proof. If 𝑥 ∈ 𝑁 such that tr𝑁(𝑥𝑛) = tr𝑀(𝑚𝑛) for all 𝑛 ∈ 𝑁, then

⟨𝑥Ω𝑁, 𝑛Ω𝑁⟩𝐿2𝑁 = tr𝑁(𝑥𝑛∗) = tr𝑀(𝑚𝑛∗) = ⟨𝑚Ω𝑀, 𝑛Ω𝑀⟩𝐿2𝑀

= ⟨𝑚𝜄𝑁Ω𝑁, 𝜄𝑁𝑛Ω𝑁⟩𝐿2𝑀 = ⟨𝜄∗
𝑁𝑚𝜄𝑁Ω𝑁, 𝑛Ω𝑁⟩𝐿2𝑁

for all 𝑛 ∈ 𝑁, and thus 𝑥 = 𝜄∗
𝑁𝑚𝜄𝑁 = 𝐸𝑁(𝑚). ∎

(E6) 𝐸𝑁(𝑎𝑚𝑏) = 𝑎𝐸𝑁(𝑚)𝑏 for all 𝑎, 𝑏 ∈ 𝑁 and 𝑚 ∈ 𝑀. In particular, 𝐸𝑁|𝑁 = id𝑁. 

Proof. Immediate from 𝑖𝑁, 𝑖∗
𝑁 being 𝑁 − 𝑁 bilinear. ∎

(E7) 𝐸𝑁 ∶ 𝑀 → 𝑁 is a normal unital completely positive (ucp) map. In particular, 
𝐸𝑁(𝑚∗) = 𝐸𝑁(𝑚)∗ for all 𝑚 ∈ 𝑀. 

Proof. The formula 𝐸𝑁(𝑚) = 𝑖∗
𝑁𝑚𝑖𝑁 is manifestly ucp (recall the Stinepring 

Theorem). In particular, since 𝐸𝑁 sends positive elements to positive elements, 
writing a self-adjoint 𝑥 ∈ 𝑀 as 𝑥+ − 𝑥−, we see that 𝐸𝑁(𝑥) is also self adjoint. 
The final statement now follows by taking real and imaginary parts:

𝐸𝑁(𝑚) = 𝐸𝑁(ℜ(𝑚) + 𝑖ℑ(𝑚)) = 𝐸𝑁(ℜ(𝑚)) + 𝑖𝐸𝑁(ℑ(𝑚))

which implies

𝐸𝑁(𝑚∗) = 𝐸𝑁(ℜ(𝑚) − 𝑖ℑ(𝑚)) = 𝐸𝑁(ℜ(𝑚)) − 𝑖𝐸𝑁(ℑ(𝑚)) = 𝐸𝑁(𝑚)∗. ∎

(E8) For all 𝑚 ∈ 𝑀, ‖𝐸𝑁(𝑚)‖ ≤ ‖𝑚‖, 

Proof. Since 𝑖𝑁 is an isometry, ‖𝐸𝑁(𝑚)‖ = ‖𝑖∗
𝑁𝑚𝑖𝑁‖ ≤ ‖𝑚‖. ∎

(E9) For all 𝑚 ∈ 𝑀, 𝐸𝑁(𝑚)∗𝐸𝑁(𝑚) ≤ 𝐸𝑁(𝑚∗𝑚) and 𝐸𝑁(𝑚∗𝑚) = 0 implies 𝑚 = 0. 

Proof. Since 𝑖𝑁 is an isometry, 𝑖𝑁𝑖∗
𝑁 ≤ 1𝐿2𝑀. In particular,

𝐸𝑁(𝑚)∗𝐸𝑁(𝑚) = 𝑖∗
𝑁𝑚∗𝑖𝑁𝑖∗

𝑁𝑚𝑖𝑁 ≤ 𝑖∗
𝑁𝑚∗𝑚𝑖𝑁 = 𝐸𝑁(𝑚∗𝑚).

Finally, if 𝐸𝑁(𝑚∗𝑚) = 0, then tr𝑀(𝑚∗𝑚) = tr𝑁(𝐸𝑁(𝑚∗𝑚)) = 0, so 𝑚 = 0. ∎

4



5.3 Outer, ergodic, and free actions
In this section, 𝐺 denotes a group and 𝑀 denotes a von Neumann algebra.

Definition 5.3.1. An action of 𝐺 on 𝑀 is a group homomorphism 𝛼 ∶ 𝐺 → Aut(𝑀), where 
Aut(𝑀) is the group of ∗-algebra isomorphisms of 𝑀.

Exercise 5.3.2. Prove that every ∗-algebra isomorphism of 𝑀 is 𝜎-WOT continuous.

Example 5.3.3. Suppose 𝑢 ∶ 𝐺 → 𝑈(𝐻) such that for all 𝑔 ∈ 𝐺, 𝑢𝑔𝑀𝑢∗
𝑔 = 𝑀. Then 

𝛼 ∶ 𝐺 → Aut(𝑀) by 𝛼𝑔 = Ad(𝑢𝑔) is an action.

Definition 5.3.4. An automorphism Φ of 𝑀 ⊆ 𝐵(𝐻) is said to be implemented by a unitary 
𝑢 ∈ 𝑈(𝐻) if Φ(𝑥) = 𝑢𝑥𝑢∗ for all 𝑥 ∈ 𝑀.

We call Φ ∈ Aut(𝑀) inner if it is implemented by a unitary 𝑢 ∈ 𝑈(𝑀). If Φ is not inner, 
it is called outer.

An action 𝛼 ∶ 𝐺 → Aut(𝑀) is called outer if 𝛼𝑔 is only inner when 𝑔 = 𝑒.

Exercise 5.3.5. Show that every trace-preserving ∗-automorphism of a tracial von Neumann 
algebra (𝑀, tr𝑀) can be implemented on 𝐿2(𝑀, tr). Deduce that every ∗-automorphism of 
a II1 factor can be implemented on 𝐿2𝑀.

Exercise 5.3.6. Prove that every ∗-automorphism of 𝐵(𝐻) is inner.

Exercise 5.3.7. Consider 𝔽2 = ⟨𝑎, 𝑏⟩. Show that the swap 𝑎 ↔ 𝑏 extends to a ∗-
automorphism of 𝐿𝔽2. Prove it is outer.

Example 5.3.8. Let (𝑋, 𝜇) be a measure space and 𝑇 ∶ 𝑋 → 𝑋 a bijection preserving the 
measure class of 𝜇, i.e., 𝜇(𝐴) = 0 iff 𝜇(𝑇 −1𝐴) = 0 for all measurable 𝐴. Then 𝑇 gives an 
automorphism 𝛼𝑇 of 𝐿∞(𝑋, 𝜇) by (𝛼𝑇𝑓)(𝑥) ∶= 𝑓(𝑇 −1𝑥).

Moreover, if 𝑇 preserves 𝜇, i.e., 𝜇(𝐴) = 𝜇(𝑇 −1𝐴) for all measurable 𝐴, then 𝛼𝑇 is 
implemented by the unitary (𝑢𝑇𝜉)(𝑥) ∶= 𝜉(𝑇 −1𝑥) for 𝜉 ∈ 𝐿2(𝑋, 𝜇). Indeed, one computes 
(𝑢∗

𝑇𝜉)(𝑥) = 𝜉(𝑇 𝑥) and we observe

(𝑢𝑇𝑀𝑓𝑢∗
𝑇𝜉)(𝑥) = (𝑀𝑓𝑢∗

𝑇𝜉)(𝑇 −1𝑥) = 𝑓(𝑇 −1𝑥)(𝑢∗
𝑇𝜉)(𝑇 −1𝑥) = 𝑓(𝑇 −1𝑥)𝜉(𝑥) = (𝑀𝛼𝑇(𝑓)𝜉)(𝑥).

Exercise 5.3.9. Suppose (𝑋, 𝜇) is a measure space and 𝜈 is a measure equivalent to 𝜇, 
i.e., 𝜇(𝐴) = 0 if and only if 𝜈(𝐴) = 0 for all measurable 𝐴. Explain why we may identify 
𝐿∞(𝑋, 𝜇) = 𝐿∞(𝑋, 𝜈) as von Neumann algebras.

Definition 5.3.10. A measurable bijection 𝑇 of 𝑋 is called ergodic if 𝐴 measurable with 
𝑇 𝐴 = 𝐴 implies 𝜇(𝐴) = 0 or 𝜇(𝑋 ∖ 𝐴) = 0.

Proposition 5.3.11. 𝑇 is ergodic if and only if 𝐿∞(𝑋, 𝜇)𝛼𝑇 = ℂ1. 
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Proof. Note that 𝑇 𝐴 = 𝐴 if and only if 𝛼𝑇(𝜒𝐴) = 𝜒𝐴. Hence 𝑇 is ergodic iff 
𝑃 (𝐿∞(𝑋, 𝜇)𝛼𝑇) = {0, 1} iff 𝐿∞(𝑋, 𝜇)𝛼𝑇 = ℂ1. ∎

Definition 5.3.12. We say an action 𝛼 ∶ 𝐺 → Aut(𝑀) is ergodic if 𝑀𝐺 = ℂ1.

Lemma 5.3.13. Suppose 𝛼 is an action of a countable group Γ on (𝑋, 𝜇) preserving the 
measure class of 𝜇. Consider the following statements.

(Γ1) 𝛼 is essentially transitive, i.e., there is an 𝑥 ∈ 𝑋 such that 𝜇(𝑋 ∖ Γ𝑥) = 0.

(Γ2) 𝛼 is essentially countable, i.e., there is a countable set 𝑌 ⊆ 𝑋 such that 𝜇(𝑋 ∖ 𝑌 ) = 0
and 𝜇({𝑦}) > 0 for all 𝑦 ∈ 𝑌.

(Γ3) There is an atom 𝑥 ∈ 𝑋, i.e., there is an 𝑥 ∈ 𝑋 with 𝜇({𝑥}) > 0.

Then (Γ1) implies (Γ2) implies (Γ3). If 𝛼 is ergodic, then (Γ3) implies (Γ1). 

Proof. The only interesting part is proving (Γ3) implies (Γ1) when 𝛼 is ergodic. If 
𝑥 ∈ 𝑋 is an atom, then Γ𝑥 ⊆ 𝑋 is a Γ-invariant subset with 𝜇(Γ𝑥) > 0. By ergodicity, 
𝜇(𝑋 ∖ Γ𝑥) = 0. ∎

Remark 5.3.14. Really, an atom of (𝑋, 𝜇) is a measurable set 𝐴 ⊆ 𝑋 such that 𝜇(𝐴) > 0
and for all measurable 𝐵 ⊆ 𝐴, 𝜇(𝐵) = 0 or 𝜇(𝐴 ∖ 𝐵) = 0. Thus atoms of (𝑋, 𝜇) exactly 
correspond to minimal projections of 𝐿∞(𝑋, 𝜇). By Lemma 5.3.13 (applied to an equivalent 
measure space where all atoms have been collapsed to points), if an ergodic action of a 
countable Γ on (𝑋, 𝜇) preserving the measure class of 𝜇 is not essentially transitive, then 
𝐿∞(𝑋, 𝜇) has no minimal projections.

Definition 5.3.15. An automorphism Φ of 𝑀 is called free or properly outer if

𝑚 ∈ 𝑀 and 𝑚𝛼(𝑥) = 𝑥𝑚 ∀ 𝑥 ∈ 𝑀 ⟹ 𝑚 = 0.

An action 𝛼 ∶ 𝐺 → Aut(𝑀) is called free if 𝛼𝑔 not free implies 𝑔 = 𝑒.

Exercise 5.3.16. Show that if 𝑀 = 𝐿∞(𝑋, 𝜈) where 𝑋 is countable and 𝜈 is a weighted 
counting measure (without loss of generality, we may assume there are no points with mass 
zero), and 𝛼 = 𝛼𝑇 ∈ Aut(𝐿∞(𝑋, 𝜇)) for some bijection 𝑇 ∶ 𝑋 → 𝑋, then 𝛼 is free if and 
only if 𝑇 has no fixed points.

Exercise 5.3.17. Suppose 𝑋 is compact Hausdorff and 𝜇 is a Radon (finite non-negative 
regular Borel) measure on 𝑋. Let 𝑇 ∶ 𝑋 → 𝑋 be a homeomorphism preserving the measure 
class of 𝜇. Then 𝛼𝑇 is free iff 𝜇({𝑥 ∈ 𝑋|𝑇 𝑥 = 𝑥}) = 0.

Proposition 5.3.18. If 𝑀 is a factor, then every outer automorphism is free. 
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Proof. We prove the contrapositive. Suppose Φ ∈ Aut(𝑀) and there is an 𝑚 ∈ 𝑀∖{0}
such that 𝑚Φ(𝑥) = 𝑥𝑚 for all 𝑥 ∈ 𝑀. If 𝑚 ∈ 𝑈(𝑀), then Φ = Ad(𝑚) and we are 
finished. Otherwise, taking adjoints, we have 𝑚∗𝑥 = Φ(𝑥)𝑚∗ for all 𝑥 ∈ 𝑀, and thus

𝑚𝑚∗𝑥 = 𝑚Φ(𝑥)𝑚∗ = 𝑥𝑚𝑚∗ ∀ 𝑥 ∈ 𝑀 ⟹ 𝑚𝑚∗ ∈ 𝑍(𝑀).

Similarly, 𝑚∗𝑚 ∈ 𝑍(𝑀). Since 𝑍(𝑀) = ℂ1 and 𝑚 ≠ 0, 𝑚𝑚∗ = 𝑟 and 𝑚∗𝑚 = 𝑠
for some non-zero 𝑟, 𝑠 ∈ ℝ>0. Since 𝑟𝑚 = 𝑚𝑚∗𝑚 = 𝑠𝑚 and 𝑚 ≠ 0, 𝑟 = 𝑠. Thus 
𝑢 ∶= 𝑟−1/2𝑚 ∈ 𝑈(𝑀) and Φ = Ad(𝑢) is inner. ∎

5.4 The crossed product
The crossed product can be defined for a locally compact group, but we will present a 
simplified version for discrete groups acting on tracial von Neumann algebras. In this section, 
Γ is a discrete group.

The crossed product of a group action 𝛼 ∶ Γ → Aut(𝑀) is a von Neumann algebra 
containing 𝑀 in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose 𝛼 ∶ Γ → Aut(𝑀) is a group action where 𝑀 ⊆ 𝐵(𝐻). Form the 
Hilbert space

ℓ2(Γ, 𝐻) ∶= {𝜉 ∶ Γ → 𝐻| ∑
𝑔

‖𝜉(𝑔)‖2 < ∞} .

We define actions of Γ and 𝑀 on ℓ2(Γ, 𝐻) by

(𝑢𝑔𝜉)(ℎ) ∶= 𝜉(𝑔−1ℎ) and (𝜋𝑚𝜉)(ℎ) ∶= 𝛼ℎ−1(𝑚)𝜉(ℎ).

The crossed product 𝑀 ⋊𝛼 Γ is the von Neumann algebra generated by the 𝜋𝑚 and the 𝑢𝑔
acting on ℓ2(Γ, 𝐻).

Example 5.4.2. When 𝑀 = 𝐿∞(𝑋, 𝜇) and 𝛼 ∶ Γ → Aut(𝑀) comes from an action of Γ
on (𝑋, 𝜇) preserving the measure class of 𝜇, we call 𝐿∞(𝑋, 𝜇) ⋊ Γ the group measure space 
construction

Exercise 5.4.3. Prove the following facts about the crossed product 𝑀 ⋊𝛼 Γ.

(1) 𝜋 ∶ 𝑀 → 𝐵(ℓ2(Γ, 𝐻)) is an injective normal 𝜎-WOT continuous ∗-homomorphism. Thus 
𝜋(𝑀) = 𝜋(𝑀)″ ≅ 𝑀 as von Neumann algebras.

(2) 𝑢𝑔𝜋𝑚𝑢∗
𝑔 = 𝜋𝛼𝑔(𝑚), i.e., the 𝛼𝑔-action on 𝑀 is implemented by the 𝑢𝑔.

(3) Finite linear combinations ∑ 𝑥𝑔𝑢𝑔 where 𝑥𝑔 ∈ 𝑀 form a 𝜎-WOT dense unital ∗-
subalgebra.
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Exercise 5.4.4. Find a unitary isomorphism 𝑣 ∶ ℓ2(Γ, 𝐻) → ℓ2Γ ⊗ 𝐻 such that 𝑣𝑢𝑔𝑣∗ =
𝜆𝑔 ⊗ 1 and (𝑣𝜋𝑚𝑣∗)(𝛿ℎ ⊗ 𝜉) = 𝛿ℎ ⊗ 𝛼ℎ−1(𝑚)𝜉.

We now provide sufficient conditions for the crossed product to be a factor.

Lemma 5.4.5. If 𝛼 ∶ Γ → Aut(𝑀) is free, then 𝑀 ′ ∩ (𝑀 ⋊𝛼 Γ) ⊆ 𝑍(𝑀). 

Proof. TODO: give general proof Suppose 𝑦 ∈ 𝑀 ′ ∩ (𝑀 ⋊𝛼 Γ) and let (𝑦𝑔) ⊂ 𝑀
such that 𝑦(Ω ⊗ 𝛿𝑒) = ∑ 𝑦𝑔Ω ⊗ 𝛿𝑔. For 𝑥 ∈ 𝑀, we calculate 𝑦(𝑥Ω ⊗ 𝛿𝑒) in two ways:

∑ 𝑥𝑦𝑔 ⊗ 𝛿𝑔 = 𝑥𝑦(Ω ⊗ 𝛿𝑒) = 𝑦𝑥(Ω ⊗ 𝛿𝑒) = 𝑦(𝑥Ω ⊗ 𝛿𝑒) =
(⋊3)

∑ 𝑦𝑔𝛼𝑔(𝑥) ⊗ 𝛿𝑔.

Hence 𝑥𝑦𝑔 = 𝑦𝑔𝛼𝑔(𝑥) for all 𝑥 ∈ 𝑀. By freeness, 𝑦𝑔 = 0 unless 𝑔 = 𝑒, so 𝑦 = 𝑦𝑒 as 
Ω ⊗ 𝛿𝑒 is separating by (⋊5). Hence 𝑦 ∈ 𝑀 ′ ∩ 𝑀 = 𝑍(𝑀). ∎

Remark 5.4.6. Lemma 5.4.5 immediately implies that

𝑍(𝑀) = 𝑀 ′ ∩ 𝑀 ⊆ 𝑀 ′ ∩ (𝑀 ⋊𝛼 Γ) ⊆ 𝑍(𝑀)

so all inclusions are equalities, and

𝑍(𝑀 ⋊𝛼 Γ) ⊆ 𝑀 ′ ∩ (𝑀 ⋊𝛼 Γ) ⊆ 𝑍(𝑀).

Thus if 𝑀 is a factor and 𝛼 is free, then 𝑀 ⋊𝛼 Γ is a factor.

Corollary 5.4.7. If 𝛼 ∶ Γ → Aut(𝑀) is free and ergodic, then 𝑀 ⋊𝛼 Γ is a factor. 

Proof. Suppose 𝑥 ∈ 𝑍(𝑀 ⋊𝛼 Γ). Since 𝛼 is free, by Remark 5.4.6, 𝑥 ∈ 𝑍(𝑀). Since 
𝑥 commutes with every 𝑢𝑔, 𝛼𝑔(𝑥) = 𝑢𝑔𝑥𝑢∗

𝑔 = 𝑥 for all 𝑔 ∈ Γ, and 𝑥 ∈ 𝑀Γ. Since 𝛼 is 
ergodic, 𝑀Γ = ℂ1, and thus 𝑍(𝑀 ⋊𝛼 Γ) = ℂ1. ∎

Corollary 5.4.8. Consider a group measure space construction 𝐿∞(𝑋, 𝜇) ⋊ Γ. If the action 
𝛼 is free, then 𝐿∞(𝑋, 𝜇) ⊂ 𝐿∞(𝑋, 𝜇) ⋊ Γ is maximal abelian. 

Proof. Since 𝛼 is free,

𝐿∞(𝑋, 𝜇)′ ∩ (𝐿∞(𝑋, 𝜇) ⋊ Γ) ⊆ 𝑍(𝐿∞(𝑋, 𝜇)) = 𝐿∞(𝑋, 𝜇)

by Lemma 5.4.5. Hence if 𝐿∞(𝑋, 𝜇) ⊆ 𝐴 ⊆ 𝐿∞(𝑋, 𝜇) ⋊ Γ with 𝐴 abelian, then 
𝐴 ⊆ 𝐿∞(𝑋, 𝜇)′ ∩ (𝐿∞(𝑋, 𝜇) ⋊ Γ) ⊆ 𝐿∞(𝑋, 𝜇). ∎

We now give examples of free and ergodic actions.
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Example 5.4.9. Γ = ℤ acts by translation on (ℤ, 𝜈) where 𝜈 is counting measure. We have 
𝐿∞(ℤ, 𝜈) ⋊ ℤ ≅ 𝐵(ℓ2ℤ).

Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider 
(𝑋, 𝜇) = (𝕋, 𝑑𝜃) and Γ = ℤ generated by 𝑡𝑧 = 𝑒𝑖𝛼𝑧 where 𝛼

2𝜋 ∉ ℚ.

Example 5.4.11  (Bernoulli shift). Let Γ be infinite and countable, and let (𝑋, 𝜇) be a 
standard probability space. Consider (𝑋, 𝜇)Γ with product measure. Then Γ acts on (𝑋, 𝜇)Γ

by (𝑔 ⋅ 𝐴)(ℎ) = 𝐴(𝑔−1ℎ), where 𝐴 ∶ Γ → (𝑋, 𝜇) is a measurable function.
One can also do the action of Γ on ⨂Γ(𝑀, tr) by ℎ ⋅ (𝑥𝑔1

⊗ 𝑥𝑔2
⊗ ⋯) = 𝑥ℎ𝑔1

⊗ 𝑥ℎ𝑔2
⊗ ⋯.

Example 5.4.12. 𝑆𝐿(2, ℤ) acts on ℝ2 by (𝑎 𝑏
𝑐 𝑑) (𝑥

𝑦) = (𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦).

Example 5.4.13. The “𝑎𝑥 + 𝑏” group ℚ ⋊ ℚ× acts on ℝ by (𝑎 𝑏
0 1) (𝑥

1) = (𝑎𝑥 + 𝑏
1 ) .

5.5 The crossed product when the action preserves a trace
We now give a second equivalent definition of 𝑀 ⋊𝛼 Γ in the setting where (𝑀, tr) is a tracial 
von Neumann algebra and tr ∘𝛼𝑔 = tr for all 𝑔 ∈ Γ.

First, form the Hilbert space 𝐿2𝑀⊗ℓ2Γ. We have an amplified left 𝑀-action 𝑥(𝑚Ω⊗𝜉) =
𝑥𝑚Ω ⊗ 𝜉 and a left Γ-action given by 𝑢𝑔(𝑚Ω ⊗ 𝛿ℎ) ∶= 𝛼𝑔(𝑚)Ω ⊗ 𝛿𝑔ℎ. In other words, if 
𝑣𝑔 ∈ 𝑈(𝐿2𝑀) is the unitary 𝑣𝑔𝑚Ω ∶= 𝛼𝑔(𝑚)Ω implementing 𝛼𝑔, then 𝑢𝑔 = 𝑣𝑔 ⊗ 𝜆𝑔. We 
define 𝑀 ⋊𝛼 Γ as the von Neumann algebra generated by the operators 𝑥 ⊗ 1 for 𝑥 ∈ 𝑀 and 
the 𝑢𝑔 for 𝑔 ∈ Γ acting on 𝐿2𝑀 ⊗ ℓ2Γ.

Exercise 5.5.1. Find a unitary isomorphism 𝑤 ∶ 𝐿2𝑀 ⊗ℓ2Γ → ℓ2Γ⊗𝐿2𝑀 which intertwines 
the two above definitions of 𝑀 ⋊𝛼 Γ. [[is there an op issue here?]]

There is also a commuting right action of 𝑀 and Γ on 𝐿2𝑀 ⊗ ℓ2Γ by defining

(𝑚Ω ⊗ 𝛿ℎ)𝑥 ∶= 𝑚𝛼ℎ(𝑥)Ω ⊗ 𝛿ℎ and (𝑚Ω ⊗ 𝛿ℎ)𝑔 ∶= 𝑚Ω ⊗ 𝛿ℎ𝑔.

Note that these right actions commute with the left action of 𝑀 ⋊𝛼 Γ. We will eventually 
show that 𝑀 ⋊𝛼 Γ carries a canonical normal faithful tracial state under which 𝐿2(𝑀 ⋊𝛼 Γ) ≅
𝐿2𝑀 ⊗ ℓ2Γ, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about 𝑀 ⋊𝛼 Γ.
(⋊1) For finite linear combinations ∑ 𝑥𝑔𝑢𝑔 ∈ 𝑀 ⋊𝛼 Γ, (∑ 𝑥𝑔𝑢𝑔)(Ω ⊗ 𝛿𝑒) = ∑𝑔 𝑥𝑔Ω ⊗ 𝛿𝑔.

(⋊2) For every 𝑥 ∈ 𝑀 ⋊𝛼 Γ, there is a unique sequence (𝑥𝑔) in

ℓ2(Γ, 𝑀) ∶= {𝑚 ∶ Γ → 𝑀| ∑ ‖𝑚𝑔Ω‖2
𝐿2𝑀 < ∞}

such that 𝑥(Ω ⊗ 𝛿𝑒) = ∑ 𝑥𝑔Ω ⊗ 𝛿𝑔. 
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Proof. For 𝑔 ∈ Γ, define 𝑝𝑔 ∶ 𝐿2𝑀 ⊗ ℓ2Γ → 𝐿2𝑀 by 𝑚Ω ⊗ 𝜂 ↦ ⟨𝜂, 𝛿𝑔⟩𝛼𝑔−1(𝑚)Ω. 
Then 𝑝∗

𝑔𝑚Ω = 𝛼𝑔(𝑚)Ω ⊗ 𝛿𝑔. Observe that 𝑝∗
𝑔 is right 𝑀-linear, so 𝑝𝑔 is as well 

by Footnote 1. Hence for all 𝑥 ∈ 𝑀 ⋊𝛼 Γ, 𝑝𝑔𝑥𝑝∗
𝑒 ∈ (𝐽𝑀𝐽)′ ∩ 𝐵(𝐿2𝑀) = 𝑀. 

Define 𝑥𝑔 ∶= 𝛼𝑔(𝑝𝑔𝑥𝑝∗
𝑒) ∈ 𝑀. We then compute that for all 𝑚 ∈ 𝑀 and 𝑔 ∈ Γ,

⟨𝑥(Ω ⊗ 𝛿𝑒), 𝑚Ω ⊗ 𝛿𝑔⟩ = ⟨𝑥𝑝∗
𝑒Ω, 𝑝∗

𝑔𝛼𝑔−1(𝑚)Ω⟩ = ⟨𝑝𝑔𝑥𝑝∗
𝑒Ω, 𝛼𝑔−1(𝑚)Ω⟩𝐿2𝑀

= tr𝑀(𝛼𝑔−1(𝑚)∗𝑝𝑔𝑥𝑝∗
𝑒) = (tr𝑀 ∘𝛼𝑔)(𝛼𝑔−1(𝑚)∗𝑝𝑔𝑥𝑝∗

𝑒)
= tr𝑀(𝑚∗𝛼𝑔(𝑝𝑔𝑥𝑝∗

𝑒)) = tr𝑀(𝑚∗𝑥𝑔)
= ∑

ℎ
⟨𝑥ℎΩ ⊗ 𝛿ℎ, 𝑚Ω ⊗ 𝛿𝑔⟩.

We conclude 𝑥(Ω ⊗ 𝛿𝑒) = ∑ℎ 𝑥ℎΩ ⊗ 𝛿ℎ and 𝑥 ∶ Γ → 𝑀 lies in ℓ2(Γ, 𝑀). ∎

(⋊3) For all 𝑔 ∈ Γ and 𝑚 ∈ 𝑀 and 𝑥 ∈ 𝑀 ⋊𝛼 Γ, 𝑥(𝑚Ω ⊗ 𝛿𝑔) = ∑ℎ 𝑥ℎ𝛼ℎ(𝑚)Ω ⊗ 𝛿ℎ𝑔. 

Proof. Note that 𝑚Ω ⊗ 𝛿𝑔 = (Ω ⊗ 𝛿𝑒) ⋅ 𝑚 ⋅ 𝑔. Since the left and right actions 
commute,

𝑥(𝑚Ω⊗𝛿𝑔) = (𝑥(Ω⊗𝛿𝑒)) ⋅𝑚⋅𝑔 = (∑
ℎ

𝑥ℎΩ ⊗ 𝛿ℎ)⋅𝑚⋅𝑔 = ∑
ℎ

𝑥ℎ𝛼ℎ(𝑚)Ω⊗𝛿ℎ𝑔

as claimed. ∎

(⋊4) For 𝑥 ∈ 𝑀 ⋊𝛼 Γ, 𝑥∗(Ω ⊗ 𝛿𝑒) = ∑ℎ 𝛼ℎ(𝑥∗
ℎ−1)Ω ⊗ 𝛿ℎ. 

Proof. We compute

⟨𝑥∗(Ω ⊗ 𝛿𝑒), 𝑚Ω ⊗ 𝛿𝑔⟩ = ⟨Ω ⊗ 𝛿𝑒, 𝑥(𝑚Ω ⊗ 𝛿𝑔)⟩ = ∑
ℎ

⟨Ω ⊗ 𝛿𝑒, 𝑥ℎ𝛼ℎ(𝑚)Ω ⊗ 𝛿ℎ𝑔⟩

= 𝛿ℎ=𝑔−1⟨Ω, 𝑥𝑔−1𝛼𝑔−1(𝑚)Ω⟩ = tr(𝑥∗
𝑔−1𝛼𝑔−1(𝑚)∗)

= (tr ∘𝛼𝑔)(𝑥∗
𝑔−1𝛼𝑔−1(𝑚)∗) = tr(𝛼𝑔(𝑥∗

𝑔−1)𝑚∗)

= ⟨𝛼𝑔(𝑥∗
𝑔−1)Ω, 𝑚Ω⟩𝐿2𝑀 = ∑

ℎ
⟨𝛼ℎ(𝑥∗

ℎ−1)Ω ⊗ 𝛿𝑒, 𝑚 ⊗ 𝛿𝑔Ω⟩.

The result follows. ∎

(⋊5) Ω ⊗ 𝛿𝑒 is cyclic and separating for 𝑀 ⋊𝛼 Γ. 

Proof. First, 𝑥 = 0 iff 𝑥𝑔 = 0 for all 𝑔 ∈ Γ, which implies Ω ⊗ 𝛿𝑒 is separating. 
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Now for any finite linear combination ∑𝑔 𝑚𝑔Ω ⊗ 𝛿𝑔 ∈ 𝐿2𝑀 ⊗ ℓ2Γ,

∑
𝑔

𝑚𝑔Ω ⊗ 𝛿𝑔 = (∑
𝑔

𝑚𝑔𝑢𝑔) (Ω ⊗ 𝛿𝑒),

so Ω ⊗ 𝛿𝑒 is cyclic. ∎

(⋊6) The normal state 𝜔Ω⊗𝛿𝑒
= ⟨ ⋅ Ω ⊗ 𝛿𝑒, Ω ⊗ 𝛿𝑒⟩ on 𝑀 ⋊𝛼 Γ is faithful and tracial. 

Proof. For 𝑥, 𝑦 ∈ 𝑀 ⋊𝛼 Γ,

⟨𝑥𝑦(Ω ⊗ 𝛿𝑒), Ω ⊗ 𝛿𝑒⟩ = ⟨𝑦(Ω ⊗ 𝛿𝑒), 𝑥∗(Ω ⊗ 𝛿𝑒)⟩
= ∑

𝑔,ℎ
⟨𝑦𝑔Ω ⊗ 𝛿𝑔, 𝛼ℎ(𝑥∗

ℎ−1)Ω ⊗ 𝛿ℎ⟩

= ∑
𝑔

⟨𝑦𝑔Ω, 𝛼𝑔(𝑥∗
𝑔−1)Ω⟩𝐿2𝑀

= ∑
𝑔

tr(𝛼𝑔(𝑥𝑔−1)𝑦𝑔)

= ∑
𝑔

(tr ∘𝛼𝑔−1)(𝛼𝑔(𝑥𝑔−1)𝑦𝑔)

= ∑
𝑔

tr(𝑥𝑔−1𝛼𝑔−1(𝑦𝑔))

= ∑
ℎ

tr(𝛼ℎ(𝑦ℎ−1)𝑥ℎ)

= ⋯ = ⟨𝑦𝑥(Ω ⊗ 𝛿𝑒), Ω ⊗ 𝛿𝑒⟩.

Faithfulness follows from the computation

⟨𝑥∗𝑥(Ω ⊗ 𝛿𝑒), Ω ⊗ 𝛿𝑒⟩ = ⟨𝑥(Ω ⊗ 𝛿𝑒), 𝑥(Ω ⊗ 𝛿𝑒)⟩ = ∑
𝑔,ℎ

⟨𝑥𝑔Ω ⊗ 𝛿𝑔, 𝑥ℎΩ ⊗ 𝛿ℎ⟩

= ∑
𝑔

⟨𝑥𝑔Ω, 𝑥𝑔Ω⟩𝐿2𝑀 = ∑
𝑔

tr(𝑥∗
𝑔𝑥𝑔). ∎

(⋊7) The map 𝑚Ω ⊗ 𝛿𝑔 ↦ 𝑚𝑢𝑔Ω is an 𝑀 ⋊𝛼 Γ − 𝑀 ⋊𝛼 Γ bilinear unitary 𝐿2𝑀 ⊗ ℓ2Γ ≅
𝐿2(𝑀 ⋊𝛼 Γ). 

Proof. For finite linear combinations ∑ 𝑥𝑔𝑢𝑔 ∈ 𝑀 ⋊𝛼 Γ,

‖(∑ 𝑥𝑔𝑢𝑔) Ω‖
2

𝐿2(𝑀⋊Γ)
= ⟨(∑ 𝑥ℎ𝑢ℎ)

∗
(∑ 𝑥𝑔𝑢𝑔) (Ω ⊗ 𝛿𝑒), Ω ⊗ 𝛿𝑒⟩
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= ⟨(∑ 𝑥𝑔𝑢𝑔) (Ω ⊗ 𝛿𝑒), (∑ 𝑥ℎ𝑢ℎ) (Ω ⊗ 𝛿𝑒)⟩

= ∑
𝑔,ℎ

⟨𝑥𝑔Ω ⊗ 𝛿𝑔, 𝑥ℎΩ ⊗ 𝛿ℎ⟩

= ‖∑ 𝑥𝑔Ω ⊗ 𝛿𝑔Ω‖
2

𝐿2𝑀⊗ℓ2Γ
,

and thus the map is isometric. We leave 𝑀 ⋊𝛼 Γ bilinearity to the reader. ∎

5.6 The type of the crossed product
Suppose 𝛼 ∶ Γ → Aut(𝑀) is free and ergodic so that 𝑀 ⋊𝛼 Γ is a factor. We further consider 
the special case of 𝑀 = 𝐿∞(𝑋, 𝜇) coming from an action of Γ on (𝑋, 𝜇) preserving the 
measure class of 𝜇. There are 4 types of free and ergodic actions of a countable discrete 
group Γ acting on (𝑋, 𝜇).

• (type I) Γ acts freely transitively so that 𝑋 is a Γ-torsor.

• (type II1) Γ preserves a finite measure on 𝑋.

• (type II∞) Γ preserves an infinite measure on 𝑋.

• (type III) no measure on 𝑋 equivalent to 𝜇 is preserved by Γ.

Theorem 5.6.1. If 𝛼 is a free ergodic, essentially transitive action, then 𝐿∞(𝑋, 𝜇) ⋊ Γ is 
type I. 

Proof. Since 𝛼 is essentially transitive, by Lemma 5.3.13, 𝑋 = Γ𝑥 for some 𝑥 ∈ 𝑋 up 
to null sets (where we have replaced atoms in (𝑋, 𝜇) by points). Thus we may identify 
𝜇 with a weighted counting measure. Then 𝜒{𝑥} ∈ 𝐿∞(𝑋, 𝜇) is a minimal projection 
for every 𝑥 ∈ 𝑋. We claim 𝜒{𝑥} is also minimal in 𝐿∞(𝑋, 𝜇) ⋊ Γ, showing it is type I. 
Since finite linear combinations ∑ 𝑦𝑔𝑢𝑔 form a 𝜎-WWOT dense unital ∗-subalgebra, 
it suffices to prove that for every ℎ ≠ 𝑒 and 𝑦 ∈ 𝐿∞(𝑋, 𝜇),

𝜒{𝑥}𝑦𝑢ℎ𝜒{𝑥} = 0.

Indeed, for all 𝜉 ∈ 𝐿2(Γ, 𝐿2(𝑋, 𝜇)) and 𝑔 ∈ Γ,

(𝜒{𝑥}𝑦𝑢ℎ𝜒{𝑥}𝜉)(𝑔) = 𝛼𝑔−1(𝜒{𝑥})𝛼𝑔−1(𝑦)(𝑢ℎ𝜒{𝑥}𝜉)(𝑔)
= 𝛼𝑔−1(𝜒{𝑥})𝛼𝑔−1(𝑦)(𝜒{𝑥}𝜉)(ℎ−1𝑔)
= 𝛼𝑔−1(𝜒{𝑥})𝛼𝑔−1(𝑦)𝛼𝑔−1ℎ(𝜒{𝑥})𝜉(ℎ−1𝑔).

Now as 𝐿∞(𝑋, 𝜇) is abelian, we see

𝛼𝑔−1(𝜒{𝑥})𝛼𝑔−1ℎ(𝜒{𝑥}) = 𝜒𝑔−1𝑥𝜒𝑔−1ℎ𝑥 = 0

as ℎ ≠ 𝑒 and 𝛼 is free. ∎
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Fact 5.6.2. Suppose (𝑀, tr) is a tracial von Neumann algebra and 𝛼 ∶ Γ → Aut(𝑀) is an 
action such that tr ∘𝛼𝑔 = tr for all 𝑔 ∈ Γ. If 𝛼 is free and ergodic, then 𝑀 ⋊𝛼 Γ has a faithful 
normal tracial state by (⋊6), so it must be either type In for 𝑛 < ∞ or type II1.

Theorem 5.6.3. If the action of Γ on (𝑋, 𝜇) is free, ergodic, non-transitive, and 𝜇 is a 
finite measure such that 𝜇(𝑔𝐴) = 𝜇(𝐴) for all measurable 𝐴, then 𝐿∞(𝑋, 𝜇) ⋊ Γ is type II1. 

Proof. Since the action of Γ preserves the faithful normal tracial state ∫ ⋅ 𝑑𝜇, 
𝐿∞(𝑋, 𝜇) ⋊ Γ is either finite dimensional or type II1. So it suffices to prove that 
if 𝐿∞(𝑋, 𝜇) ⋊ Γ is finite dimensional and 𝛼 is free and ergodic, then 𝛼 is essentially 
transitive. If 𝐿∞(𝑋, 𝜇) ⋊ Γ is finite dimensional, then 𝐿∞(𝑋, 𝜇) is finite dimensional, 
and thus has minimal projections. Thus (𝑋, 𝜇) ≅ (𝑌 , 𝜈) for some finite measure space 
𝑌 with 𝜈 a weighted counting measure. Indeed, by a maximality argument, we can 
write 1 = ∑𝑛

𝑖=1 𝜒𝐴𝑖
 where each 𝜒𝐴𝑖

 is minimal in 𝐿∞(𝑋, 𝜇) and the 𝐴𝑖 are disjoint 
measurable subsets. We then define 𝜈({𝑖}) ∶= 𝜇(𝐴𝑖). Finally, the action of Γ on the 
finite measure space (𝑌 , 𝜈) is free and ergodic, which implies it is transitive by Exercise 
5.3.13. ∎

Exercise 5.6.4. A factor 𝑀 is type II∞ iff 1𝑀 is infinite and there is a nonzero finite 
projection 𝑝 ∈ 𝑀 such that 𝑝𝑀𝑝 is type II1.

Exercise 5.6.5. If {𝑒𝑖𝑗} ⊂ 𝑀 ⊆ 𝐵(𝐻) is a system of matrix units, then there is a unitary 
𝑢 ∶ 𝐻 → 𝑒11𝐻 ⊗ ℓ2(𝐼) such that 𝑢𝑀𝑢∗ = 𝑒11𝑀𝑒11 ⊗ 𝐵(ℓ2(𝐼)).

Lemma 5.6.6. If 𝑀 is a II∞ factor, there is a II1 factor 𝑁 and a unital ∗-isomorphism 
𝑀 ≅ 𝑁 ⊗ 𝐵(ℓ2(𝐼)). 

Proof. By Exercise 5.6.4, there is a non-zero finite projection 𝑝 ∈ 𝑀. Let {𝑝𝑖}𝑖∈𝐼 be a 
maximal family of mutually orthogonal projections such that 𝑝𝑖 ≈ 𝑝 for all 𝑖 ∈ 𝐼.

Claim. ∑ 𝑝𝑖 ≈ 1.

Proof of claim. Set 𝑞 = 1 − ∑ 𝑝𝑖. Since 𝑀 is a factor, by maximality, 𝑞 ≼ 𝑝. Since 
1𝑀 is infinite, there is an 𝑖0 ∈ 𝐼 and a bijection 𝐼 ≅ 𝐼 ∖ {𝑖0}. Then

1 = 𝑞 + ∑ 𝑝𝑖 ≈ 𝑞 + ∑
𝑖≠𝑖0

𝑝𝑖 ≼ 𝑝𝑖0
+ ∑

𝑖≠𝑖0

𝑝𝑖 = ∑ 𝑝𝑖 ≼ 1. ∎

By the claim, we may assume that ∑ 𝑝𝑖 = 1; ortherwise, replace 𝑝𝑖 with 𝑢∗𝑝𝑖𝑢 where 
𝑢𝑢∗ = ∑ 𝑝𝑖 and 𝑢∗𝑢 = 1. Now since ∑ 𝑝𝑖 = 1 and each 𝑝𝑖 ≈ 𝑝, for each 𝑗, we can 
choose a partial isometry 𝑒1𝑗 such that 𝑒1𝑗𝑒∗

1𝑗 = 𝑝1 and 𝑒∗
1𝑗𝑒1𝑗 = 𝑝𝑗. We then extend 

the 𝑒1𝑗 to a system of matrix units in the usual way. Finally, the result follows from 
Exercise 5.6.5. ∎
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Theorem 5.6.7. If the action of Γ on (𝑋, 𝜇) is free, ergodic, non-transitive, and 𝜇 is an 
infinite 𝜎-finite measure such that 𝜇(𝑔𝐴) = 𝜇(𝐴) for all measurable 𝐴, then 𝐿∞(𝑋, 𝜇) ⋊ Γ
is type II∞. 

Proof. By Remark 5.3.14, there are no minimal projections in 𝐿∞(𝑋, 𝜇). As (𝑋, 𝜇)
is 𝜎-finite, there is a set 𝑌 ⊂ 𝑋 with 0 < 𝜇(𝑌 ) < ∞. Consider the unit vector 
𝜉 ∶= 𝜇(𝑌 )−1/2𝜒𝑌 ⊗ 𝛿𝑒 and the projection 𝑝 ∶= 𝜒𝑌.

Claim. The normal state 𝜔𝜉 on the factor 𝑝(𝐿∞(𝑋, 𝜇) ⋊ Γ)𝑝 is tracial.

Proof of claim. By a calculation similar to (⋊6), for all 𝑥, 𝑦 ∈ 𝐿∞(𝑋, 𝜇) ⋊ Γ,

𝜔𝜉(𝑝𝑥𝑝𝑝𝑦𝑝) = 1
𝜇(𝑌 )

∑
𝑔

tr𝑀(𝛼𝑔(𝑝)𝛼𝑔(𝑥𝑔−1)𝑝𝑦𝑔)

= 1
𝜇(𝑌 )

∑
𝑔

tr𝑀(𝑝𝑥𝑔−1𝛼𝑔−1(𝑝)𝛼𝑔−1(𝑦𝑔)) = 𝜔𝜉(𝑝𝑦𝑝𝑝𝑥𝑝). ∎

By the claim, 𝑝(𝐿∞(𝑋, 𝜇) ⋊ Γ)𝑝 is a factor with no minimal projections and a tracial 
state, and thus is type II1. But 𝐿∞(𝑋, 𝜇) ⋊ Γ is not type II1 as it has an infinite 
family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and 
𝐿∞(𝑋, 𝜇) ⋊ Γ is type II)∞ by Exercise 5.6.4. ∎

We omit the proof that if Γ preserves no measure equivalent to 𝜇, then 𝐿∞(𝑋, 𝜇) ⋊ Γ is 
type III.
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