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3 von Neumann algebra basics
For this section, 𝐻 is a Hilbert space.

3.1 Operator topologies
Definition 3.1.1. The weak operator topology (WOT) is the locally convex TVS structure 
on 𝐵(𝐻) induced by the separating family of seminorms

{𝑥 ↦ |⟨𝑥𝜂, 𝜉⟩||𝜂, 𝜉 ∈ 𝐻} .

Thus 𝑥𝑖 → 𝑥 WOT if and only if ⟨𝑥𝑖𝜂, 𝜉⟩ → ⟨𝑥𝜂, 𝜉⟩ for all 𝜂, 𝜉 ∈ 𝐻.
The strong operator topology (SOT) is the locally convex TVS structure on 𝐵(𝐻) induced 

by the separating family of seminorms

{𝑥 ↦ ‖𝑥𝜉‖|𝜉 ∈ 𝐻} .

Thus 𝑥𝑖 → 𝑥 SOT if and only if 𝑥𝑖𝜉 → 𝑥𝜉 for all 𝜉 ∈ 𝐻.

More operator topologies will be introduced later.

Facts 3.1.2. Here are some basic facts about these operator topologies.

(OT1) WOT ⊆ SOT ⊆ norm, with equality if and only if 𝐻 is finite dimensional.

(OT2) ∗ is WOT-continuous, but not SOT-continuous (unless 𝐻 is finite dimensional).

Proof. If 𝑥𝑖 → 𝑥 WOT, then |⟨(𝑥∗ − 𝑥∗
𝑖 )𝜂, 𝜉⟩| = |⟨𝜂, (𝑥 − 𝑥𝑖)𝜉⟩| → 0 for all 𝜂, 𝜉, 

so 𝑥∗
𝑖 → 𝑥∗ WOT.

Now suppose (𝑒𝑛) is an orthonormal sequence, and consider the unilateral shift 
𝑠𝑒𝑛 = 𝑒𝑛+1 for all 𝑛. Then 𝑠∗𝑒𝑛 = 𝑒𝑛−1 for 𝑛 ≥ 2 and 𝑠∗𝑒1 = 0. Then 
(𝑠∗)𝑛 → 0 SOT, but ‖𝑠𝑛𝜉‖ = ‖𝜉‖ for all 𝑛. ∎

(OT3) ∗ is SOT-continuous on the subset of normal elements.

Proof. Observe that 𝑥 normal is equivalent to ‖𝑥𝜉‖ = ‖𝑥∗𝜉‖ for all 𝜉 ∈ 𝐻. If 
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𝑥𝑖 → 𝑥 SOT, then for all 𝜉 ∈ 𝐻,

‖(𝑥∗ − 𝑥∗
𝑖 )𝜉‖2 = ⟨(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖)∗𝜉, 𝜉⟩

= ‖𝑥∗𝜉‖2 − ⟨𝑥𝑥∗
𝑖 𝜉, 𝜉⟩ − ⟨𝑥𝑖𝑥∗𝜉, 𝜉⟩ + ‖𝑥∗

𝑖 𝜉‖2.
= ‖𝑥∗𝜉‖2 − ⟨𝑥∗

𝑖 𝜉, 𝑥∗𝜉⟩⏟⏟⏟⏟⏟
→⟨𝑥∗𝜉,𝑥∗𝜉⟩

− ⟨𝑥𝑖𝑥∗𝜉, 𝜉⟩⏟⏟⏟⏟⏟
→⟨𝑥𝑥∗𝜉,𝜉⟩

+ ‖𝑥𝑖𝜉‖2⏟
→‖𝑥𝜉‖2

= ‖𝑥∗𝜉‖2 − ‖𝑥𝜉‖2 = 0.

In the third equality above, we used normality of 𝑥𝑖. To get to the next line, 
we used that SOT-convergence implies WOT-convergence and that ∗ is WOT-
continuous. The final equality follows from normality of 𝑥. ∎

(OT4) Multiplication is separately WOT/SOT-continuous in each variable, but not jointly.

Example 3.1.3. 𝑁 ≔ {𝑥 ∈ 𝐵(𝐻)|𝑥2 = 0} is SOT dense in 𝐵(𝐻). Indeed, 
the sets

{𝑥 ∈ 𝐵(𝐻)|‖(𝑥 − 𝑥0)𝜉𝑖‖ < 𝜀, ∀ 𝑖 = 1, … , 𝑛}

indexed over fixed 𝑥0 ∈ 𝐵(𝐻) and 𝜉1, … , 𝜉𝑛 ∈ 𝐻 linearly independent form 
a base for the SOT. Each such set contains an element of 𝑁. To see this, 
choose 𝜂1, … , 𝜂𝑛 such that 𝑆 = {𝜉1, … , 𝜉𝑛, 𝜂1, … , 𝜂𝑛} is linearly independent 
and ‖𝑥0𝜉𝑖 − 𝜂𝑖‖ < 𝜀 for all 𝑖. Defining 𝑥𝜉𝑖 = 𝜂𝑖 and 𝑥𝜂𝑖 = 0 and 𝑥 = 0 on 𝑆⟂

gives such an element of 𝑁.

(OT5) Multiplication is jointly SOT-continuous on 𝐵𝑟(0)×𝐵(𝐻) for all 𝑟 > 0. In particular, 
multiplication is jointly SOT-continuous on bounded sets.

Proof. If 𝑥𝑖 → 𝑥 and 𝑦𝑖 → 𝑦 SOT with ‖𝑥𝑖‖ < 𝑟 for all 𝑖, then

‖(𝑥𝑦 − 𝑥𝑖𝑦𝑖)𝜉‖ ≤ ‖(𝑥𝑦 − 𝑥𝑖𝑦)𝜉‖ + ‖(𝑥𝑖𝑦 − 𝑥𝑖𝑦𝑖)𝜉‖
≤ ‖(𝑥 − 𝑥𝑖)𝑦𝜉‖⏟⏟⏟⏟⏟

→0

+ ‖𝑥𝑖‖⏟
≤𝑟

⋅ ‖(𝑦 − 𝑦𝑖)𝜉‖⏟⏟⏟⏟⏟
→0

. ∎

For Proposition 3.1.4 below, we will use the following trick.

Trick  (Amplification). Given a Hilbert space 𝐻, 𝐻𝑛 is also a Hilbert space with

⟨(𝜂𝑖), (𝜉𝑖)⟩𝐻𝑛 ≔
𝑛

∑
𝑖=1

⟨𝜂𝑖, 𝜉𝑖⟩𝐻.
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Given 𝑥 ∈ 𝐵(𝐻), 𝑥 acts on 𝐻𝑛 by 𝛼𝑥(𝜂𝑖) ≔ (𝑥𝜂𝑖), and ‖𝛼𝑥‖𝐵(𝐻𝑛) = ‖𝑥‖𝐵(𝐻).

Proposition 3.1.4. For a functional 𝜑∶ 𝐵(𝐻) → ℂ, the following are equivalent.

1. There are 𝜉1, … , 𝜉𝑛, 𝜂1, … , 𝜂𝑛 ∈ 𝐻 such that 𝜑(𝑥) = ∑⟨𝑥𝜂𝑖, 𝜉𝑖⟩,

2. 𝜑 is WOT-continuous, and

3. 𝜑 is SOT-continuous.

Proof. That (1) ⇒ (2) ⇒ (3) is straightforward.
For (3) ⇒ (1), the strategy of the proof is as follows:
(a) use SOT-continuity to find 𝜂1, … , 𝜂𝑛,

(b) amplify the action and look at 𝜂 ≔ (𝜂𝑖)𝑛
𝑖=1 ∈ 𝐻𝑛,

(c) 𝜑 gives a bounded functional on the cyclic subspace generated by 𝜂 ∈ 𝐻𝑛, and

(d) use Hahn-Banach and Riesz Representation to find 𝜉1, … , 𝜉𝑛.

Suppose 𝜑 is SOT-continuous. Since 𝜑−1(𝐵ℂ
1 (0)) is SOT-open, there are 𝜂1, … , 𝜂𝑛 ∈ 𝐻

such that

‖𝑥𝜂𝑖‖ < 1 ⇒ |𝜑(𝑥)| < 1 ∀ 𝑖 = 1, … , 𝑛, ∀ 𝑥 ∈ 𝐵(𝐻).

This implication gives the following inequalities:a

|𝜑(𝑥)| ≤ max
𝑖=1,…,𝑛

‖𝑥𝜂𝑖‖ ≤ (
𝑛

∑
𝑖=1

‖𝑥𝜂𝑖‖2)
1/2

∀ 𝑥 ∈ 𝐵(𝐻). (3.1.5)

Consider the cyclic subspace generated by 𝜂 ≔ (𝜂𝑖)𝑛
𝑖=1 ∈ 𝐻𝑛:

𝐾 ≔ {𝛼𝑥𝜂 = (𝑥𝜂𝑖)𝑛
𝑖=1|𝑥 ∈ 𝐵(𝐻)} ⊂ 𝐻𝑛.

We claim 𝜓(𝛼𝑥𝜂) ≔ 𝜑(𝑥) is a well-defined bounded linear functional on 𝐾. Indeed,

|𝜓(𝛼𝑥𝜂)| ≔ |𝜑(𝑥)| ≤
(3.1.5)

(
𝑛

∑
𝑖=1

‖𝑥𝜂𝑖‖2)
1/2

= ‖𝛼𝑥𝜂‖𝐾,

so 𝛼𝑥𝜂 = 0 implies 𝜓(𝛼𝑥𝜂) = 0, and 𝜓 ∈ 𝐾∗. By Hahn-Banach, we can extend 𝜓 to 
𝐻𝑛, and by Riesz Representation, there is a 𝜉 = (𝜉𝑖)𝑛

𝑖=1 ∈ 𝐻𝑛 such that

𝜑(𝑥) = 𝜓(𝛼𝑥𝜂) = ⟨𝛼𝑥𝜂, 𝜉⟩𝐾 = 𝜑(𝑥) = ∑⟨𝑥𝜂𝑖, 𝜉𝑖⟩ ∀ 𝑥 ∈ 𝐵(𝐻)

as desired. ∎
aWLOG, if ‖𝑥𝜂1‖ < |𝜑(𝑥)| for some 𝑥, then for some 𝜆 > 0, ‖(𝜆𝑥)𝜂1‖ < 1 < |𝜑(𝜆𝑥)|. The other 

inequality is a standard fact about ‖ ⋅ ‖2 and ‖ ⋅ ‖∞ on ℝ𝑛.

3



Corollary 3.1.6. Both the WOT and the SOT have the same closed convex sets.

Proof. Apply the Separating Hyperplane Theorem to see that each closed convex set is 
an intersection of one side of the separating hyperplanes associated to the continuous 
linear functionals. Since the sets of continuous linear functionals agree, so does this 
intersection. ∎

Exercise 3.1.7. Suppose 𝐻 is a Hilbert space, and (𝑥𝑖) is a norm bounded, increasing net 
of self-adjoint operators in 𝐵(𝐻), i.e., 𝑥𝑖 = 𝑥∗

𝑖  and ‖𝑥𝑖‖ < 𝐾 for all 𝑖, and 𝑖 ≤ 𝑗 implies 
𝑥𝑖 ≤ 𝑥𝑗. Prove that the following are equivalent.

1. 𝑥𝑖 → 𝑥 SOT.

2. 𝑥𝑖 → 𝑥 WOT.

3. For every 𝜉 ∈ 𝐻, 𝜔𝜉(𝑥𝑖) = ⟨𝑥𝑖𝜉, 𝜉⟩ ↗ ⟨𝑥𝜉, 𝜉⟩ = 𝜔𝜉(𝑥).

4. There exists a dense subspace 𝐷 ⊂ 𝐻 such that for every 𝜉 ∈ 𝐷, 𝜔𝜉(𝑥𝑖) = ⟨𝑥𝑖𝜉, 𝜉⟩ ↗
⟨𝑥𝜉, 𝜉⟩ = 𝜔𝜉(𝑥).

We say an increasing net of positive operators (𝑥𝑖) increases to 𝑥 ∈ 𝐵(𝐻)+, denoted 𝑥𝑖 ↗ 𝑥, 
if any of the above equivalent conditions hold.
Hint: It suffices to prove (3) ⇒ (1) and (4) ⇒ (3). For (3) ⇒ (1), note that √𝑥 − 𝑥𝑖 ≥ 0, 
and use (OT5 and (SOT4) to show 𝑥𝑖 → 𝑥 SOT if and only if √𝑥 − 𝑥𝑖 → 0 SOT.

3.2 Bicommutant Theorem and first examples
Definition 3.2.1. For 𝑆 ⊆ 𝐵(𝐻), define the commutant

𝑆′ ≔ {𝑥 ∈ 𝐵(𝐻)|𝑥𝑠 = 𝑠𝑥 for all 𝑠 ∈ 𝑆} .

Exercise 3.2.2. Prove the following.

1. 𝑆 ⊆ 𝑇 implies 𝑇 ′ ⊆ 𝑆′.

2. 𝑆 ⊆ 𝑆″

3. 𝑆′ = 𝑆‴.

Lemma 3.2.3. Suppose 𝑆 ⊆ 𝐵(𝐻) is ∗-closed and 𝐾 ⊆ 𝐻 is a closed subspace. Then 𝐾 is 
𝑆-invariant (𝑠𝐾 ⊂ 𝐾 for all 𝑠 ∈ 𝑆) if and only if 𝑝𝐾 ∈ 𝑆′.

Proof. Immediate from the earlier exercise that 𝐾 is 𝑠 and 𝑠∗-invariant if and only if 
[𝑠, 𝑝𝐾] = 0. ∎
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Exercise 3.2.4. In this exercise, we work through the compatibility between commutant 
and amplification. Let 𝐻 be a Hilbert space.

1. Find a unital ∗-isomorphism 𝐵(𝐻𝑛) ≅ 𝑀𝑛(𝐵(𝐻)).
Hint: use orthogonal projections.

2. Suppose 𝑆 ⊆ 𝐵(𝐻), and let 𝛼∶ 𝐵(𝐻) → 𝑀𝑛(𝐵(𝐻)) be the amplification

𝑥 ⟼ (


𝑥
⋱

𝑥
)


.

Prove that:

(a) 𝛼(𝑆)′ = 𝑀𝑛(𝑆′), and
(b) If 0, 1 ∈ 𝑆, then 𝑀𝑛(𝑆)′ = 𝛼(𝑆′).
(c) Deduce that when 0, 1 ∈ 𝑆, 𝛼(𝑆)″ = 𝛼(𝑆″).

Lemma 3.2.5. If 𝑀 ⊆ 𝑀𝑛(ℂ) is a unital ∗-closed subalgebra, then 𝑀 = 𝑀″.

Proof. It suffices to prove 𝑦 ∈ 𝑀″ implies 𝑦 ∈ 𝑀. Fix 𝑦 ∈ 𝑀″, and consider the 
amplified action 𝛼 ∶ 𝑀″ → 𝑀𝑛(𝑀𝑛(ℂ)) ≅ 𝐵(⨁𝑛

𝑖=1 ℂ𝑛) and the vector 𝜉 = (𝑒𝑖)𝑛
𝑖=1 ∈

⨁𝑛
𝑖=1 ℂ𝑛. Set 𝐾 = 𝛼(𝑀)𝜉 ⊆ ⨁𝑛

𝑖=1 ℂ𝑛, and observe that 𝛼(𝑀)𝐾 ⊆ 𝐾. Since 
𝑀 = 𝑀∗, 𝑝𝐾 ∈ 𝛼(𝑀)′ = 𝑀𝑛(𝑀 ′) by Exercise 3.2.4. So if 𝑦 ∈ 𝑀″, then 𝛼(𝑦) ∈
𝑀𝑛(𝑀 ′)′ commutes with 𝑝𝐾, and thus 𝛼(𝑦)𝐾 ⊆ 𝐾. Since 1 ∈ 𝑀, 𝜉 ∈ 𝐾, and thus 
𝛼(𝑦)𝜉 ∈ 𝐾 = 𝛼(𝑀)𝜉. So there is an 𝑥 ∈ 𝑀 such that 𝛼(𝑦)𝜉 = 𝛼(𝑥)𝜉. Then for all 
𝑖 = 1, … , 𝑛, 𝑦𝑒𝑖 = 𝑥𝑒𝑖, so 𝑦 = 𝑥 ∈ 𝑀. ∎

Theorem 3.2.6  (von Neumann bicommutant). If 𝑀 ⊂ 𝐵(𝐻) is a unital ∗-closed subalgebra, 
the following are equivalent:

1. 𝑀 = 𝑀″,

2. 𝑀 is WOT-closed, and

3. 𝑀 is SOT-closed.

Such a unital ∗-closed subalgebra of 𝐵(𝐻) is called a von Neumann algebra.

Proof. 

(1) ⇒ (2): Commutants are WOT-closed, since if 𝑥𝑖 → 𝑥 WOT in 𝑀, then for 
all 𝑦 ∈ 𝑀 ′ and 𝜂, 𝜉 ∈ 𝐻,

⟨𝑥𝑦𝜂, 𝜉⟩ ⟵ ⟨𝑥𝑖𝑦𝜂, 𝜉⟩ = ⟨𝑦𝑥𝑖𝜂, 𝜉⟩ ⟶ ⟨𝑦𝑥𝜂, 𝜉⟩,
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so 𝑥𝑦 = 𝑦𝑥.

(2) ⇔ (3): Since 𝑀 is convex, 𝑀 is WOT-closed if and only if it is SOT-closed 
by Corollary 3.1.6.

(3) ⇒ (1): Suppose 𝑦 ∈ 𝑀″, and consider a basic SOT-open neighborhood

{𝑥 ∈ 𝐵(𝐻)|‖(𝑥 − 𝑦)𝜉𝑖|| < 𝜀, ∀ 𝑖 = 1, … , 𝑛}

of 𝑦 where 𝜉1, … , 𝜉𝑛 are linearly independent. To see that 𝑀 intersects this 
neighborhood non-trivially, set 𝜉 = (𝜉𝑖)𝑛

𝑖=1 ∈ ⨁𝑛
𝑖=1 𝐻, and consider the amplified 

representation of 𝐵(𝐻) on ⨁𝑛
𝑖=1 𝐻. Define 𝐾 ∶= 𝛼(𝑀)𝜉 ⊆ ⨁𝑛

𝑖=1 𝐻, and observe 
𝐾 is 𝛼(𝑀)-invariant. Hence 𝑝𝐾 ∈ 𝛼(𝑀)′ = 𝑀𝑛(𝑀 ′) which visibly commutes 
with 𝛼(𝑦). Since 1 ∈ 𝑀, 𝛼(𝑦)𝜉 ∈ 𝐾, and thus for every 𝜀 > 0, there is an 𝑥 ∈ 𝑀
with ‖𝛼(𝑥)𝜉 − 𝛼(𝑦)𝜉‖ < 𝜀. But then ‖𝑥𝜉𝑖 − 𝑦𝜉𝑖‖ < 𝜀 for all 𝑖. ∎

Examples 3.2.7. Here are some examples of von Neumann algebras.

1. 𝑀𝑛(ℂ) ≅ 𝐵(𝐻) for dim(𝐻) = 𝑛.

2. Any finite dimensional unital ∗-closed subalgebra of 𝑀𝑛(ℂ).

3. 𝐵(𝐻) itself.

4. 𝐿∞(𝑋, 𝜇) for a 𝜎-finite meansure space (𝑋, 𝜇).

5. If 𝑆 = 𝑆∗ ⊂ 𝐵(𝐻), then 𝑆′ is a von Neumann algebra.

6. If 𝑆 ⊂ 𝐵(𝐻), then ⟨𝑆⟩ ≔ (𝑆 ∪ 𝑆∗)″ is the von Neumann algebra generated by 𝑆.

Example 3.2.8  (Group von Neumann algebra). Let Γ be a discrete group. Define

ℓ2Γ ∶= {𝜉 ∶ Γ → ℂ| ∑
𝑔

|𝜉(𝑔)|2 < ∞}

with inner product ⟨𝜂, 𝜉⟩ ∶= ∑𝑔 𝜂(𝑔)𝜉(𝑔). An ONB for ℓ2Γ is given by {𝛿𝑔 ∶ ℎ ↦ 𝛿𝑔=ℎ}𝑔∈Γ. 
For all 𝑔 ∈ Γ, we define a unitary operator 𝜆𝑔 ∈ 𝐵(ℓ2Γ) by (𝜆𝑔𝜉)(ℎ) ∶= 𝜉(ℎ−1𝑔). Then 
𝜆𝑔𝜆ℎ = 𝜆𝑔ℎ and 𝜆∗

𝑔 = 𝜆𝑔−1 , so we get a group homomorphism 𝜆 ∶ Γ → 𝑈(ℓ2Γ) called the left 
regular representation. The group algebra is ℂΓ ∶= span 𝜆Γ. Its norm closure is the reduced 
group C∗-algebra C∗

𝑟Γ ∶= 𝜆Γ‖⋅‖. The group von Neumann algebra is 𝐿Γ ∶= (𝜆Γ)″.

Open problem: Is 𝐿𝔽2 ≅ 𝐿𝔽3?

Proposition 3.2.9. Suppose 𝑀 ⊆ 𝐵(𝐻) is a von Neumann algebra and 𝑥 = 𝑢|𝑥| is the 
polar decomposition of 𝑥 ∈ 𝑀. Then 𝑢 ∈ 𝑀.
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Proof. Since |𝑥| ∈ 𝑀, for all 𝑣 ∈ 𝑈(𝑀 ′), 𝑥 = 𝑣∗𝑥𝑣 = 𝑣∗𝑢|𝑥|𝑣 = 𝑣∗𝑢𝑣|𝑥|. Moreover, 
ker(𝑣∗𝑢𝑣) = 𝑣∗ ker(𝑢) = 𝑣∗ ker(𝑥). But since 𝑣∗ commutes with 𝑥, 𝑣∗ ker(𝑥) = ker(𝑥). 
So by the uniqueness statement of the polar decomposition, 𝑣∗𝑢𝑣 = 𝑢 for all 𝑣 ∈
𝑈(𝑀 ′). Since the unitaries of 𝑀 ′ linearly span 𝑀 ′, 𝑢 ∈ 𝑀″ = 𝑀. ∎

3.3 Strongly continuous functions and Kaplansky density
Facts 3.3.1. Here are some basic facts about SOT-continuous functions.

(SOT1) If 𝑝 ∈ ℂ[𝑧, 𝑧], then 𝑥 ↦ 𝑝(𝑥) is SOT-continuous on bounded sets of normal operators.

Proof. Multiplication is jointly SOT-continuous on bounded subsets, and ∗ is 
SOT-continuous on the subset of normal operators. ∎

Remark 3.3.2. (SOT1) above holds on bounded sets of 𝐵(𝐻) for non-commutative poly­
nomials 𝑝 ∈ ℂ⟨𝑧, 𝑧⟩.

(SOT2) If 𝑓 ∈ 𝐶(ℂ), then 𝑥 ↦ 𝑓(𝑥) is SOT-continuous on bounded sets of normal opera­
tors. 

Proof. Suppose (𝑥𝑖) is a bounded net of normal operators and 𝑥 is normal 
with 𝑥𝑖 → 𝑥 SOT. There is an 𝑅 > 0 such that sp(𝑥), sp(𝑥𝑖) ⊆ 𝐵ℂ

𝑅(0). Then 
𝑓|𝐵𝑅(0) can be uniformly approximated by polynomials in 𝑧, 𝑧. The result now 
follows from (SOT1) by a standard 𝜀/3 argument. ∎

(SOT3) The Cayley transform 𝑥 ↦ (𝑥 − 𝑖)(𝑥 + 𝑖)−1 is SOT-countinuous 𝐵(𝐻)sa → 𝑈(𝐻). 

Proof. First, observe that the map 𝑧 ↦ 𝑧−1 on ℂ maps

𝑖
⟼

−𝑖
.

Hence by the Spectral Mapping Theorem, for 𝑥 self-adjoint, sp((𝑥 + 𝑖)−1) ⊂
𝐵ℂ

1 (0). Since (𝑥+𝑖)−1 is normal, we know that ‖(𝑥+𝑖)−1‖ = 𝑟((𝑥+𝑖)−1) ≤ 1.
Now suppose 𝑥𝑗 → 𝑥 is an SOT-convergent net of self-adjoint operators (so 𝑥
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is self-adjoint). Then for all 𝜉 ∈ 𝐻,

‖(𝑥 − 𝑖)(𝑥 + 𝑖)−1𝜉 − (𝑥𝑗 − 𝑖)(𝑥𝑗 + 𝑖)−1𝜉‖
= ‖(𝑥𝑗 + 𝑖)−1 ((𝑥𝑗 + 𝑖)(𝑥 − 𝑖) − (𝑥𝑗 − 𝑖)(𝑥 + 𝑖))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑖(𝑥−𝑥𝑗)

(𝑥 + 𝑖)−1𝜉‖

≤ 2‖(𝑥 − 𝑥𝑗) (𝑥 + 𝑖)−1𝜉⏟⏟⏟⏟⏟
∈𝐻

‖ ⟶ 0. ∎

Remark 3.3.3. The Cayley transform is a Möbius transformation which sends ℝ → 𝕋 = 𝑆1, 
since

𝑡 − 𝑖
𝑡 + 𝑖

⋅ 𝑡 − 𝑖
𝑡 − 𝑖

= (𝑡 − 𝑖)2

𝑡2 + 1
= 𝑡2 − 1

𝑡2 + 1
− 𝑖 2𝑡

𝑡2 + 1
,

and (𝑡2 − 1)2 + (2𝑡)2 = (𝑡2 + 1)2.
Alternatively, a Möbius transformation must map ℝ onto a line or circle in ℂ, and we 

calculate

0 ↦ −𝑖
𝑖

= −1

1 ↦ 1 − 𝑖
1 + 𝑖

= (1 − 𝑖)2

2
= −2𝑖

2
= −𝑖

−1 ↦ −1 − 𝑖
−1 + 𝑖

= (−1 − 𝑖)2

2
= 2𝑖

2
= 𝑖.

For 𝑥 ∈ 𝐵(𝐻)sa, by the Spectral Mapping Theorem, sp((𝑥 − 𝑖)(𝑥 + 𝑖)−1) ⊂ 𝕋 = 𝑆1 and is 
normal, and is thus a unitary.

Since the inverse of the Möbius transformation 𝑧 ↦ 𝑎𝑧+𝑏
𝑐𝑧+𝑑  (𝑎𝑑 − 𝑏𝑐 ≠ 0) is given by 

𝑧 ↦ 𝑑𝑧−𝑏
−𝑐𝑧+𝑎 , the inverse of the Cayley transform is given by 𝑢 ↦ 𝑖(1 + 𝑢)(1 − 𝑢)−1.

(SOT4) If 𝑓 ∈ 𝐶0(ℝ), then 𝑥 ↦ 𝑓(𝑥) is SOT-continuous on 𝐵(𝐻)sa.

Proof. Let 𝑓 ∈ 𝐶0(ℝ). Define 𝑔∶ 𝕋 → ℂ by

𝑔(𝑡) ≔ {
𝑓 (𝑖 ⋅ 1+𝑡

1−𝑡) if 𝑡 ≠ 1
0 if 𝑡 = 1

so 𝑔 = 𝑓 ∘ 𝑐−1

where 𝑐−1 is the inverse of the Cayley Transform. By (SOT2), 𝑔 is SOT-
continuous on 𝑈(𝐻). Now 𝑓 = 𝑔 ∘ 𝑐 where 𝑐 is the Cayley Transform. So 
by (SOT3), we have 𝑓 is SOT-continuous as a composite of SOT-continuous 
maps. ∎
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For 𝑆 ⊂ 𝐵(𝐻), we write (𝑆)1 ≔ 𝑆 ∩ 𝐵1(0).

Theorem 3.3.4  (Kaplansky Density). Suppose 𝑀 ⊆ 𝐵(𝐻) is a ∗-subalgebra.

1. (𝑀sa)1 is SOT-dense in (𝑀𝑆𝑂𝑇
sa )1.

2. (𝑀+)1 is SOT-dense in (𝑀𝑆𝑂𝑇
+ )1.

3. (𝑀)1 is SOT-dense in (𝑀𝑆𝑂𝑇)1.

Proof. We proceed in several steps.

Step 1: We may assume 𝑀 is a C∗-algebra.

This reduction follows by noting:

(3′) (𝑀)1 is norm dense in (𝑀‖⋅‖)1. Indeed, for 𝑥 ∈ (𝑀‖⋅‖)1, pick (𝑥𝑛) ⊂
𝑀 with 𝑥𝑛 → 𝑥 in ‖⋅‖. Then ‖𝑥𝑛‖ → ‖𝑥‖ ≤ 1, so passing to a subsequence 
if necessary, we may assume ‖𝑥𝑛‖ ≤ 1 + 1

𝑛 . Then 𝑛
𝑛+1𝑥𝑛 → 𝑥 and 

‖ 𝑛
𝑛+1𝑥𝑛‖ ≤ 1 for all 𝑛.

(1′) (𝑀sa)1 is norm dense in (𝑀‖⋅‖
sa )1. Indeed, for 𝑥 ∈ (𝑀‖⋅‖

sa )1, pick 
(𝑥𝑛) ⊂ (𝑀)1 and 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖. Then 𝑥𝑛+𝑥∗

𝑛
2 → 𝑥 as desired.

(2′) (𝑀+)1 is norm dense in (𝑀‖⋅‖
+ )1. Indeed, for 𝑥 ∈ (𝑀‖⋅‖

+ )1. we can 
write 𝑥 = 𝑦∗𝑦 where 𝑦 ∈ (𝑀‖⋅‖)1. We can pick (𝑦𝑛) ⊂ (𝑀)1 with 𝑦𝑛 → 𝑦, 
so 𝑦∗

𝑛𝑦𝑛 → 𝑦∗𝑦 = 𝑥 as desired.

Finally, we note that since SOT-closed sets are norm-closed, 𝑀‖⋅‖ ⊂ 𝑀𝑆𝑂𝑇, 
and if 𝑥𝑛 → 𝑥 in ‖ ⋅ ‖, then 𝑥𝑛 → 𝑥 SOT. Hence if 𝑅 is norm-dense in 𝑆 and 
𝑆 is SOT-dense in 𝑇, then 𝑅 is SOT-dense in 𝑇.

We now proceed with the rest of the proof assuming 𝑀 is a C∗-algebra.

Step 2: (𝑀sa)1 is SOT-dense in (𝑀𝑆𝑂𝑇
sa )1.

Suppose 𝑥 ∈ 𝑀𝑆𝑂𝑇
sa . Let 𝑥𝑖 → 𝑥 SOT where (𝑥𝑖) ⊂ 𝑀. Then 𝑥𝑖 → 𝑥

WOT, and since ∗ is continuous WOT, 𝑥∗
𝑖 → 𝑥∗ = 𝑥 WOT. Thus 𝑥𝑖+𝑥∗

𝑖
2 → 𝑥

WOT. Hence 𝑀sa is WOT-dense in 𝑀𝑆𝑂𝑇
sa . But since 𝑀sa is convex, we have 

𝑀sa
𝑆𝑂𝑇 = 𝑀sa

𝑊𝑂𝑇 = 𝑀𝑆𝑂𝑇
sa .

Now in addition, assume ‖𝑥‖ ≤ 1. There is some net (𝑥𝑖) ⊂ 𝑀sa such that 
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𝑥𝑖 → 𝑥 SOT. Consider 𝑓 ∈ 𝐶0(ℝ) such that 𝑓(𝑡) = 𝑡 for all |𝑡| ≤ 1, e.g.,

−1
1

1

−1

By (SOT4), 𝑓(𝑥𝑖) → 𝑓(𝑥) = 𝑥 SOT. By the Spectral Mapping Theorem, 
sp(𝑓(𝑥𝑖)) ⊂ [−1, 1], and thus ‖𝑓(𝑥𝑖)‖ = 𝑟(𝑓(𝑥𝑖)) ≤ 1 for all 𝑖.

Step 3: (𝑀+)1 is SOT-dense in (𝑀𝑆𝑂𝑇
+ )1.

Suppose 𝑥 ∈ (𝑀𝑆𝑂𝑇
+ )1. By (1), there is a net (𝑥𝑖) ⊂ (𝑀sa)1 with 𝑥𝑖 → 𝑥 SOT. 

Let 𝑓 ∈ 𝐶0(ℝ) be any function which is zero on the negative reals and 𝑓(𝑡) = 𝑡
for 0 ≤ 𝑡 ≤ 1, e.g.,

1

1

By (SOT4), 𝑓(𝑥𝑖) → 𝑓(𝑥) = 𝑥 SOT. Again by Spectral Mapping, sp(𝑓(𝑥𝑖)) ⊂
[0, 1] and 𝑓(𝑥𝑖) is self-adjoint, and thus 𝑓(𝑥𝑖) is positive for all 𝑖.

Step 4: (𝑀)1 is SOT-dense in (𝑀𝑆𝑂𝑇)1.

First, we prove 𝑀2(𝑀) is SOT-dense in 𝑀2(𝑀𝑆𝑂𝑇) on 𝐻2. Suppose (𝑥𝑖𝑗) ∈
𝑀2(𝑀𝑆𝑂𝑇), and let (𝑥𝑘

𝑖𝑗) ⊂ 𝑀 such that 𝑥𝑘
𝑖𝑗 → 𝑥𝑖𝑗 SOT. One then checks that 

(𝑥𝑘
𝑖𝑗) → (𝑥𝑖𝑗) SOT in 𝐵(𝐻2).

Now suppose 𝑥 ∈ (𝑀𝑆𝑂𝑇)1. Then

𝑋 ≔ [ 0 𝑥
𝑥∗ 0] ∈ (𝑀2(𝑀𝑆𝑂𝑇)sa)1,

so by (1), there is an SOT-convergent net

(𝑋𝑖 ≔ [𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

]) ⊂ (𝑀2(𝑀))1

with 𝑋𝑖 → 𝑋 in SOT in 𝐵(𝐻2). Then ‖𝑏𝑖‖ ≤ 1 for all 𝑖, and 𝑏𝑖 → 𝑥 SOT in 
𝐵(𝐻). ∎

Remark 3.3.5. It is also true that the unitary group 𝑈(𝑀) is SOT-dense in 𝑈(𝑀𝑆𝑂𝑇)
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when 𝑀 is a unital C∗-algebra. As this uses the Borel functional calculus, we will postpone 
this until later.

3.4 Predual
In the homework, you proved that 𝐵(𝐻) ≅ ℒ1(𝐻)∗, implemented by Tr.

Definition 3.4.1. The 𝜎-weak operator topology (𝜎-WOT) is the weak* topology induced 
by the predual ℒ1(𝐻).

Corollary 3.4.2. The unit ball of 𝐵(𝐻) is 𝜎-WOT compact.

Proof. Immediate from the Banach-Alaoglu Theorem. ∎

Proposition 3.4.3. For a functional 𝜑∶ 𝐵(𝐻) → ℂ, the following are equivalent.

1. There are (𝜂𝑛), (𝜉𝑛) ⊂ 𝐻 such that ∑ ‖𝜂𝑛‖2, ∑ ‖𝜉𝑛‖2 < ∞ and 𝜑(𝑥) = ∑⟨𝑥𝜂𝑛, 𝜉𝑛⟩
for all 𝑥 ∈ 𝐵(𝐻),

2. There are (𝜂𝑛), (𝜉𝑛) ⊂ 𝐻, pairwise orthogonal, such that ∑ ‖𝜂𝑛‖2, ∑ ‖𝜉𝑛‖2 < ∞ and 
𝜑(𝑥) = ∑⟨𝑥𝜂𝑛, 𝜉𝑛⟩ for all 𝑥 ∈ 𝐵(𝐻),

3. There is a 𝑡 ∈ ℒ1(𝐻) such that 𝜑(𝑥) = Tr(𝑡𝑥) for all 𝑥 ∈ 𝐵(𝐻), and

4. 𝜑 is 𝜎-WOT continuous.

Proof. 

(1) ⇒ (3): Let 𝐻0 ⊆ 𝐻 be the closed subspace generated by (𝜂𝑛), (𝜉𝑛), and let 
(𝑒𝑛) be an ONB for 𝐻0. If dim(𝐻0) < ∞, we may express each of 𝜂𝑛, 𝜉𝑛 as a 
linear combination of the 𝑒𝑛 to obtain scalars 𝜆𝑖𝑗 such that

𝜑(𝑥) = ∑ 𝜆𝑖𝑗⟨𝑥𝑒𝑖, 𝑒𝑗⟩ = Tr(𝑥𝑡) where 𝑡 ∶= ∑
𝑖,𝑗

𝜆𝑖𝑗|𝑒𝑖⟩⟨𝑒𝑗|

is finite rank. If dim(𝐻0) = ∞, define 𝑡1, 𝑡2 ∈ 𝐵(𝐻) by 𝑡𝑖|𝐻⟂
0

= 0 and

𝑡1 = ∑ |𝜂𝑛⟩⟨𝑒𝑛| and 𝑡1 = ∑ |𝜉𝑛⟩⟨𝑒𝑛|

which are both bounded (by Cauchy-Schwarz). We calculate

Tr(𝑡∗
1𝑡1) = ∑⟨𝑡∗

2𝑡1𝑒𝑛, 𝑒𝑛⟩ = ∑ ‖𝜂𝑛‖2 < ∞

and similarly Tr(𝑡∗
2𝑡2) = ∑ ‖𝜉𝑛‖2 < ∞, so 𝑡1, 𝑡2 ∈ ℒ2(𝐻). Thus 𝑡 = 𝑡1𝑡∗

2 ∈
ℒ1(𝐻), and

Tr(𝑥𝑡) = Tr(𝑥𝑡1𝑡∗
2) = Tr(𝑡∗

2𝑥𝑡1) = ∑⟨𝑥𝑡1𝑒𝑛, 𝑡2𝑒𝑛⟩ = ∑⟨𝑥𝜂𝑛, 𝜉𝑛⟩ = 𝜑(𝑥).
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(3) ⇒ (2): Let 𝑡 = 𝑢|𝑡| be the polar decomposition so that |𝑡| = 𝑢∗𝑡 ∈ ℒ1(𝐻)+. 
Let |𝑡| = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| be a Schmidt decomposition, and note ∑ 𝜆𝑛 = ‖𝑡‖1 < ∞. 
Define 𝜂𝑛 ∶= 𝜆1/2

𝑛 𝑢𝑒𝑛 and 𝜉𝑛 ∶= 𝜆1/2
𝑛 𝑒𝑛. Then the (𝜂𝑛) are pairwise orthogonal 

as 𝑢 is a partial isometry with 𝑢∗𝑢𝑒𝑛 = 𝑒𝑛 for all 𝑛. Clearly the (𝜉𝑛) are pairwise 
orthogonal, and we calculate

𝜑(𝑥) = Tr(𝑥𝑡) = ∑⟨𝑥𝑡𝑒𝑛, 𝑒𝑛⟩ = ∑ 𝜆𝑛⟨𝑥𝑢𝑒𝑛, 𝑒𝑛⟩ = ∑⟨𝑥𝜂𝑛, 𝜉𝑛⟩.

(2) ⇒ (1): Obvious.

(3) ⇔ (4): By a homework exercise, Tr implements the duality ℒ1(𝐻)∗ ≅ 𝐵(𝐻), 
so a linear functional is 𝜎-WOT continuous if and only if it is of the form 𝑥 ↦
Tr(𝑡𝑥) for some 𝑡 ∈ ℒ1(𝐻). ∎

Corollary 3.4.4. If 𝜑 is a 𝜎-WOT continuous linear functional on 𝐵(𝐻) and 𝜑 ≥ 0, then 
𝜑(𝑥) = ∑⟨𝑥𝜉𝑛, 𝜉𝑛⟩ for some orthogonal sequence (𝜉𝑛) ⊂ 𝐻 with ∑ ‖𝜉𝑛‖2 < ∞. 

Proof. By the proposition, 𝜑 = Tr( ⋅ 𝑡) for some 𝑡 ∈ ℒ1(𝐻). Now for all 𝜉 ∈ 𝐻,

⟨𝑡𝜉, 𝜉⟩ = Tr(|𝜉⟩⟨𝜉|𝑡) = 𝜑(|𝜉⟩⟨𝜉|) ≥ 0,

so 𝑡 ≥ 0. Letting 𝑡 = ∑ 𝜆𝑛|𝑒𝑛⟩⟨𝑒𝑛| be a Schmidt decomposition, 𝜉𝑛 ∶= 𝜆1/2
𝑛 𝑒𝑛

works. ∎

Proposition 3.4.5. On bounded subsets of 𝐵(𝐻), the 𝜎-WOT and the WOT agree. In 
particular, the unit ball of 𝐵(𝐻) is WOT-compact.

Proof. The identity map (𝐵(𝐻), 𝜎 − WOT) → (𝐵(𝐻), WOT) is continuous and bi­
jective. Restricting to the unit ball of 𝐵(𝐻), we get a continuous bijection from a 
compact space to a Hausdorff space, which is necessarily a homeomorphism. ∎

Lemma 3.4.6. Suppose 𝑀 is a von Neumann algebra. For any norm bounded increasing 
net (𝑥𝑖) ⊂ 𝑀 of self-adjoint operators, there is a unique self-adjoint operator 𝑥 = lub 𝑥𝑖 ∈ 𝑀
such that 𝑥𝑖 ≤ 𝑥 for all 𝑖, 𝑥 is minimal with respect to this property, and 𝑥𝑖 ↗ 𝑥.

Proof. Since the norm-closed ball of radius 𝑅 is WOT-compact, there is a WOT-limit 
point 𝑥 of (𝑥𝑖). For every 𝜉 ∈ 𝐻, we see ⟨𝑥𝑖𝜉, 𝜉⟩ ↗ ⟨𝑥𝜉, 𝜉⟩ as (𝑥𝑖) is increasing, so 
𝑥𝑖 → 𝑥 WOT. Since each 𝑥𝑖 is self-adjoint and ∗ is WOT-continuous, 𝑥 = 𝑥∗. Finally, 
if 𝑦 ∈ 𝐵(𝐻) such that 𝑥𝑖 ≤ 𝑦 for all 𝑖, then ⟨𝑥𝑖𝜉, 𝜉⟩ ≤ ⟨𝑦𝜉, 𝜉⟩, and thus ⟨𝑥𝜉, 𝜉⟩ ≤ ⟨𝑦𝜉, 𝜉⟩
for all 𝜉 ∈ 𝐻, so 𝑥 ≤ 𝑦. ∎
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Corollary 3.4.7. If (𝑝𝑖)𝑖∈𝐼 is a family of mutually orthogonal projections, then ∑ 𝑝𝑖 con­
verges as the increasing limit of finite sums to the orthogonal projection onto ⨁ 𝑝𝑖𝐻.

Proof. Consider the index set of finite subsets 𝐹 ⊆ 𝐼 ordered by inclusion. Then 
𝑝𝐹 ≔ ∑𝑖∈𝐹 𝑝𝑖 defines an increasing net which is bounded above. Apply Lemma 3.4.6 
to get 𝑝𝐹 ↗ 𝑝 for 𝑝 ≔ lub 𝑝𝐹 ∈ 𝐵(𝐻). Use (OT5 to see 𝑝2 = 𝑝 and Exercise 3.1.7(2) 
to see 𝑝∗ = 𝑝. Since 𝑝𝑖 ≤ 𝑝, we have 𝑝𝑖𝐻 ⊆ 𝑝𝐻 for all 𝑖, and thus ⨁ 𝑝𝑖𝐻 ⊆ 𝑝𝐻. 
Since ⨁ 𝑝𝑖𝐻 is the smallest closed subspace containing each 𝑝𝑖𝐻, the claim follows by 
minimality from Lemma 3.4.6. ∎

Remark 3.4.8. The 𝜎-WOT is the WOT on 𝛼(𝐵(𝐻)) where 𝛼∶ 𝐵(𝐻) → 𝐵(𝐻 ⊗ ℓ2) is the 
countably infinite amplification.

Definition 3.4.9. The 𝜎-SOT is the SOT on 𝛼(𝐵(𝐻)). That is, 𝑥𝑖 → 𝑥 𝜎-SOT if and only 
if for all (𝜉𝑛) ⊂ 𝐻 with ∑ ‖𝜉𝑛‖2 < ∞, ∑𝑛 ‖(𝑥 − 𝑥𝑖)𝜉𝑛‖2 → 0.

The SOT* is generated by the seminorms 𝑥 ↦ ‖𝑥𝜉‖ + ‖𝑥∗𝜉‖ for 𝜉 ∈ 𝐻. The 𝜎-SOT* 
is generated by the seminorms 𝑥 ↦ ∑ ‖𝑥𝜉𝑛‖2 + ‖𝑥∗𝜉𝑛‖2 for (𝜉𝑛) ⊂ 𝐻 with ∑ ‖𝜉𝑛‖2 < ∞. 
These locally convex topologies are like the SOT/𝜎-SOT, but they ensure ∗ is continuous.

Remark 3.4.10. We have:
𝜎-WOT ⊂ 𝜎-SOT ⊂ 𝜎-SOT* ⊂ norm

∪ ∪ ∪
WOT ⊂ SOT ⊂ SOT*

Exercise 3.4.11. Show that a functional 𝜑∶ 𝐵(𝐻) → ℂ is 𝜎-WOT continuous if and only 
if it is 𝜎-SOT continuous.

Exercise 3.4.12. Show that for a unital ∗-subalgebra 𝑀 ⊆ 𝐵(𝐻), the following are equiv­
alent.

1. 𝑀 = 𝑀″

2. 𝑀 is 𝜎-WOT closed

3. 𝑀 is 𝜎-SOT closed

4. 𝑀 is SOT*-closed

5. 𝑀 is 𝜎-SOT* closed

Exercise 3.4.13. Prove that on bounded subsets of 𝐵(𝐻), the 𝜎-SOT and SOT agree.

Theorem 3.4.14. Let 𝑀 ⊆ 𝐵(𝐻) be a von Neumann algebra. There is a Banach space 𝑀∗
such that 𝑀 is isometrically isomorphic to (𝑀∗)∗. Moreover, the 𝜎-WOT on 𝑀 is the weak* 
topology induced by 𝑀∗. We call 𝑀∗ a predual of 𝑀. Any other predual of 𝑀 inducing the 
𝜎-WOT topology on 𝑀 is canonically isometrically isomorphic to 𝑀∗. 
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Proof. We identify 𝐵(𝐻) = ℒ1(𝐻)∗. Consider the pre-annihilator

𝑀⟂ = {𝑡 ∈ ℒ1(𝐻)| Tr(𝑚𝑡) = 0 for all 𝑚 ∈ 𝑀} .

Then 𝑀⟂ ⊆ ℒ1(𝐻) is a ‖ ⋅ ‖1-closed subspace, so 𝑀∗ ∶= ℒ1(𝐻)/𝑀⟂ is a Banach space 
with the quotient norm. Since 𝑀 ⊆ 𝐵(𝐻) is 𝜎-WOT (weak*) closed,

𝑀 = (𝑀⟂)⟂ = {𝑥 ∈ 𝐵(𝐻)| Tr(𝑥𝑡) = 0 for all 𝑡 ∈ 𝑀⟂} .

We recall that for a closed subspace 𝑌 of a normed space 𝑋, there is a canonical 
isometric isomorphism (𝑋/𝑌 )∗ ≅ 𝑌 ⟂. Taking 𝑋 = ℒ1(𝐻) and 𝑌 = 𝑀⟂ so that 
𝑋/𝑌 = 𝑀∗ yields (𝑀∗)∗ ≅ (𝑀⟂)⟂ = 𝑀. It follows that the 𝜎-WOT on 𝑀, which 
is the relative weak* topology on 𝑀 ⊆ 𝐵(𝐻) = ℒ1(𝐻)∗ is the the weak* topology 
induced by 𝑀∗.
Suppose now we have another predual 𝑋 of 𝑀 which also induces the 𝜎-WOT on 𝑀. 
The images of the canonical isometric embeddings 𝑋 ↪ 𝑀∗ and 𝑀∗ ↪ 𝑀∗ agree, 
which gives an isometric isomorphism 𝑋 ≅ 𝑀∗. Indeed, the image of 𝑋 (respectively 
𝑀∗) is precisely the bounded linear functionals 𝑀 → ℂ which are continuous with 
respect to the 𝑋-weak* (respectively 𝑀∗-weak*) topology, which is the 𝜎-WOT. ∎

Definition 3.4.15. A unital C∗-algebra 𝑀 is called a W∗-algebra if it has a predual, i.e., 
there exists a Banach space 𝑀∗ and an isometric isomorphism 𝑀 ≅ (𝑀∗)∗.

By Theorem 3.4.14, every von Neumann algebra is a W∗-algebra. The converse is also 
true by a result of Sakai, but it goes beyond this class.

3.5 Borel functional calculus
Definition 3.5.1. Let (𝑋, ℳ) be a measurable set (ℳ is a 𝜎-algebra on 𝑋), let 𝐻 be a 
Hilbert space, and let 𝑃 (𝐻) denote the set of orthogonal projections. A spectral measure is 
a function 𝐸∶ ℳ → 𝑃 (𝐻) satisfying

0. 𝐸(∅) = 0 and

1. For all disjoint sequences (𝑆𝑛) ⊂ ℳ, ∑ 𝐸(𝑆𝑛) = 𝐸(⋃ 𝑆𝑛), where the sum converges 
SOT.

Observe that for all 𝜂, 𝜉 ∈ 𝐻, 𝜇𝜂,𝜉(𝑆) ≔ ⟨𝐸(𝑆)𝜂, 𝜉⟩ is a finite ℂ-valued measure. If 𝑋 is 
LCH, ℳ is the Borel 𝜎-algebra, and every 𝜇𝜂,𝜉 is regular, we call 𝐸 a regular Borel spectral 
measure.

Example 3.5.2. Suppose 𝑋 is a compact Hausdorff space and 𝜇 is a finite regular Borel 
measure (a.k.a. a Radon measure) on 𝑋. Then 𝑆 ↦ 𝜒𝑆 ∈ 𝐿∞(𝑋, 𝜇) ⊂ 𝐵(𝐿2(𝑋, 𝜇)) defines 
a regular Borel spectral measure.
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Facts 3.5.3. Here are some facts about spectral measures. All sets below are assumed 
measurable.

(E1) If 𝑆 ∩ 𝑇 = ∅, then 𝐸(𝑆) ⟂ 𝐸(𝑇 ). 

Proof. Since 𝐸(𝑆 ∪𝑇 ) = 𝐸(𝑆)+𝐸(𝑇 ) is a projection, the result follows from the 
following exercise.

Exercise 3.5.4. Suppose 𝑝, 𝑞 ∈ 𝑃 (𝐻) are projections. Then 𝑝 ⟂ 𝑞 if and only if 
𝑝 + 𝑞 is a projection. ∎

(E2) 𝐸(𝑆 ∩ 𝑇 ) = 𝐸(𝑆)𝐸(𝑇 ). 

Proof. By (E1),

𝐸(𝑆)𝐸(𝑇 ) = (𝐸(𝑆 ∖ 𝑇 ) + 𝐸(𝑆 ∩ 𝑇 ))(𝐸(𝑇 ∖ 𝑆) + 𝐸(𝑆 ∩ 𝑇 )) = 𝐸(𝑆 ∩ 𝑇 ). ∎

(E3) If 𝑆 ⊂ 𝑇, then 𝐸(𝑆) ≤ 𝐸(𝑇 ) (which is equivalent to 𝐸(𝑆)𝐸(𝑇 ) = 𝐸(𝑆)). 

Proof. Immediate from (E2). ∎

Definition 3.5.5. Let 𝐸∶ (𝑋, ℳ) → 𝑃 (𝐻) be a spectral measure. We say a mesurable 
function 𝑓 on 𝑋 is essentially bounded with respect to 𝐸 if there is a 𝑐 > 0 such that 
𝐸({|𝑓| > 𝑐}) = 0. For such 𝑓, we define

‖𝑓‖𝐸 ≔ inf {𝑐 > 0|𝐸({|𝑓| > 𝑐}) = 0} .

We denote by 𝐿∞(𝐸) the collection of (equivalence classes of) functions essentially bounded 
with respect to 𝐸.

Exercise 3.5.6. Show that 𝐿∞(𝐸) is a unital commutative C∗-algebra.

Remark 3.5.7. Suppose 𝐸∶ (𝑋, ℳ) → 𝑃 (𝐻) is a spectral measure. Consider 𝐵∞(𝑋), 
the bounded measurable functions on 𝑋. Observe there is a unital ∗-homomorphism from 
𝐵∞(𝑋) → 𝐿∞(𝐸) such that 𝑓𝑖 ↗ 𝑓 in 𝐵∞(𝑋) implies [𝑓𝑖] ↗ [𝑓] in 𝐿∞(𝐸). (Here, 
increasing means pointwise, as neither algebra is a priori a von Neumann algebra acting on 
a Hilbert space.)

While the kernel is generally difficult to describe and is highly dependent on 𝐸, we claim 
this map is surjective. Indeed, suppose [𝑓] ∈ 𝐿∞(𝐸), so that 𝐸({|𝑓| > 𝑐}) = 0 for some 
𝑐 > 0. Then consider the function 𝑓𝜒{|𝑓|≤𝑐} ∈ 𝐵∞(𝑋). Observe that [𝑓𝜒{|𝑓|≤𝑐}] = [𝑓] since 
‖𝑓𝜒{|𝑓|>𝑐}‖𝐸 = 0. Indeed, for all 𝜀 > 0 (with 𝑐 > 𝜀), we have

𝐸({|𝑓𝜒{|𝑓|>𝑐}| > 𝜀}) = 𝐸({|𝑓| > 𝑐}) = 0.
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Construction 3.5.8. Given a spectral measure 𝐸∶ (𝑋, ℳ) → 𝑃 (𝐻), we construct an 
isometric unital ∗-homomorphism ∫ ⋅ 𝑑𝐸∶ 𝐿∞(𝐸) → 𝐵(𝐻).

Step 1: We first define it for simple functions ∫ ∑𝑛
𝑖=1 𝑐𝑖𝜒𝑆𝑖

𝑑𝐸 ≔ ∑𝑛
𝑖=1 𝑐𝑖𝐸(𝑆𝑖). 

Well-defined. Suppose ∑𝑛
𝑖=1 𝑐𝑖𝜒𝑆𝑖

= 0. For 𝐹 ⊆ {1, … , 𝑛}, let

𝑆𝐹 ∶= (⋂
𝑖∈𝐹

𝑆𝑖) ∖ (⋃
𝑗∉𝐹

𝑆𝑗) .

Then the sets {𝑆𝐹|𝐹 ⊆ {1, … , 𝑛}} are mutually disjoint and 𝑆𝑖 = ⋃𝑖∈𝐹 𝑆𝐹. 
We calculate

0 =
𝑛

∑
𝑖=1

𝑐𝑖𝜒𝑆𝑖
=

𝑛
∑
𝑖=1

𝑐𝑖𝜒⋃𝑖∈𝐹 𝑆𝐹
=

𝑛
∑
𝑖=1

𝑐𝑖 ∑
𝑖∈𝐹

𝜒𝑆𝐹
= ∑

𝐹
(∑

𝑖∈𝐹
𝑐𝑖) 𝜒𝑆𝐹

,

so ∑𝑖∈𝐹 𝑐𝑖 = 0 for all 𝐹. Thus

𝑛
∑
𝑖=1

𝑐𝑖𝐸(𝑆𝑖) =
𝑛

∑
𝑖=1

𝑐𝑖𝐸 (⋃
𝑖∈𝐹

𝑆𝐹) =
𝑛

∑
𝑖=1

∑
𝑖∈𝐹

𝑐𝑖𝐸(𝑆𝐹) = ∑
𝐹

(


∑
𝑖∈𝐹

𝑐𝑖
⏟

=0

)


𝐸(𝑆𝐹) = 0.

∎

Step 2: For all simple functions 𝑓, ‖ ∫ 𝑓 𝑑𝐸‖𝐵(𝐻) = ‖𝑓‖𝐸. 

Proof. As in the proof of Step 1, ∑𝑛
𝑖=1 𝑐𝑖𝜒𝑆𝑖

= ∑𝐹 (∑𝑖∈𝐹 𝑐𝑖) 𝜒𝑆𝐹
 and 

∫ 𝑓 𝑑𝐸 = ∑𝐹 (∑𝑖∈𝐹 𝑐𝑖) 𝐸(𝑆𝐹) where the 𝑆𝐹 are disjoint. Both norms are 
equal to the largest |∑𝑖∈𝐹 𝑐𝑖| such that 𝐸(𝑆𝐹) ≠ 0. ∎

Step 3: Since ∫ ⋅ 𝑑𝐸 is a linear isometry from simple functions in 𝐿∞(𝐸) to 𝐵(𝐻), and the 
simple functions are dense in 𝐿∞(𝐸), it extends uniquely to an isometry 𝐿∞(𝐸) →
𝐵(𝐻).

Facts 3.5.9. The unital ∗-homomorphism ∫ ⋅ 𝑑𝐸 satisfies the following properties. All 
functions below are assumed to be in 𝐿∞(𝐸).

(∫1) ∫ 𝑓 𝑑𝐸 = (∫ 𝑓 𝑑𝐸)∗.

Proof. The condition is clearly 𝐿∞(𝐸)-norm closed and holds for simple func­
tions, which are norm-dense in 𝐿∞(𝐸). ∎
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(∫2) (∫ 𝑓 𝑑𝐸) (∫ 𝑔 𝑑𝐸) = (∫ 𝑓𝑔 𝑑𝐸)

Proof. Again, this holds when 𝑓, 𝑔 are simple functions, and we can approximate 
separately. ∎

(∫3) ⟨(∫ 𝑓 𝑑𝐸) 𝜂, 𝜉⟩ = ∫ 𝑓 𝑑𝜇𝜂,𝜉

Proof. Again, use simple functions. ∎

(∫4) If (𝑓𝑖) ⊂ 𝐿∞(𝐸) with 𝑓𝑖 ↗ 𝑓 ∈ 𝐿∞(𝐸) pointwise, then ∫ 𝑓𝑖 𝑑𝐸 ↗ ∫ 𝑓 𝑑𝐸 SOT.

Proof. For 𝜉 ∈ 𝐻, 𝜇𝜉,𝜉(𝑆) = ⟨𝐸(𝑆)𝜉, 𝜉⟩, which is a non-negative finite measure 
on (𝑋, ℳ). Since 𝑓𝑖 ↗ 𝑓 in 𝐿∞(𝐸) and 𝜇𝜉,𝜉 is finite, 𝑓 ∈ 𝐿1(𝜇𝜉,𝜉). By the 
Monotone Convergence Theorem,

⟨(∫ 𝑓𝑖 𝑑𝐸) 𝜉, 𝜉⟩ = ∫ 𝑓𝑖 𝑑𝜇𝜉,𝜉 ↗ ∫ 𝑓 𝑑𝜇𝜉,𝜉 = ⟨(∫ 𝑓 𝑑𝐸) 𝜉, 𝜉⟩ .

Since 𝜉 was arbitrary, ∫ 𝑓𝑖 𝑑𝐸 ↗ ∫ 𝑓 𝑑𝐸. ∎

(∫5) (Spectral Mapping) sp𝐵(𝐻)(∫ 𝑓 𝑑𝐸) = ess. range(𝑓) in 𝐿∞(𝐸).

Proof. Suppose 𝜆 ∈ ℂ and 𝜀 > 0 such that 𝐸(𝑆 ∶= {|𝑓 − 𝜆| < 𝜀}) = 0. Define 
𝑔 ∈ 𝐿∞(𝐸) by

𝑔(𝑧) ∶= {
(𝑓(𝑧) − 𝜆)−1 if |𝑓(𝑧) − 𝜆| ≥ 𝜀 ⇔ 𝑧 ∉ 𝑆

0 if |𝑓(𝑧) − 𝜆| < 𝜀 ⇔ 𝑧 ∈ 𝑆,

and note that ‖𝑔‖𝐸 ≤ 𝜀−1. Then

(∫ 𝑔 𝑑𝐸) (∫ 𝑓 𝑑𝐸 − 𝜆) = ∫ 𝑔(𝑓 − 𝜆) 𝑑𝐸

= ∫
𝑆

𝑔(𝑓 − 𝜆) 𝑑𝐸
⏟⏟⏟⏟⏟⏟⏟
∶=∫ 𝜒𝑆𝑔(𝑓−𝜆)⏟⏟⏟⏟⏟

=0

𝑑𝐸

+ ∫
𝑋∖𝑆

𝑔(𝑓 − 𝜆) 𝑑𝐸
⏟⏟⏟⏟⏟⏟⏟

∶=∫ 𝜒𝑆𝑔(𝑓−𝜆)⏟⏟⏟⏟⏟
=1

𝑑𝐸

= 𝐸(𝑋 ∖ 𝑆) = 1,
so 𝜆 ∉ sp (∫ 𝑓 𝑑𝐸).
Conversely, suppose 𝐸(𝑆𝜀 ∶= {|𝑓 − 𝜆| < 𝜀}) ≠ 0. Since |𝑓 − 𝜆|𝜒𝑆𝜀

< 𝜀𝜒𝑆𝜀
, for 

all unit vectors 𝜉𝜀 ∈ 𝐸(𝑆𝜀)𝐻,

‖(∫ 𝑓 𝑑𝐸 − 𝜆) 𝜉𝜀‖ = ‖(∫(𝑓 − 𝜆) 𝑑𝐸) 𝐸(𝑆𝜀)𝜉𝜀‖
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= ‖(∫ 𝜒𝑆𝜀
(𝑓 − 𝜆) 𝑑𝐸) 𝜉𝜀‖

≤ ‖(∫ 𝜒𝑆𝜀
(𝑓 − 𝜆) 𝑑𝐸)‖

≤ 𝜀 ‖𝜒𝑆𝜀
‖ = 𝜀.

Thus 𝜆 is an approximate eigenvalue for ∫ 𝑓 𝑑𝐸 and lies in its spectrum. ∎

Theorem 3.5.10  (Spectral). Let 𝐴 ⊆ 𝐵(𝐻) be a unital commutative C∗-algebra. There is 
a unique regular Borel spectral measure 𝐸𝑥 on 𝐴̂ such that ∫ 𝑓 𝑑𝐸𝑥 = 𝑓(𝑥) for all 𝑓 ∈ 𝐶(𝐴̂). 
Moreover, ∫ ⋅ 𝑑𝐸𝑥 is an isometric unital ∗-homomorphism 𝐿∞(𝐸𝑥) → 𝐴″ ⊂ 𝐵(𝐻).

The proof proceeds in a series of steps.

Step 1: Construction of the candidate operator 𝐸𝑥(𝑆) for 𝑆 ⊂ 𝐴̂ Borel. 

Proof. For 𝜂, 𝜉 ∈ 𝐻, 𝑓 ↦ ⟨𝑓(𝑥)𝜂, 𝜉⟩ is a continuous linear functional on 𝐶(𝐴̂). 
By the Riesz Representation Theorem, there is a unique finite regular Borel 
measure 𝜇𝜂,𝜉 on 𝐴̂ such that ⟨𝑓(𝑥)𝜂, 𝜉⟩ = ∫ 𝑓 𝑑𝜇𝜂,𝜉 for all 𝑓 ∈ 𝐶(𝐴̂). Now 𝜇𝜉,𝜉

is non-negative, and since 𝐴̂ is compact Hausdorff and thus normal, for every 
open 𝑈 ⊂ 𝐴̂,

𝜇𝜉,𝜉(𝑈) = sup {∫ 𝑓 𝑑𝜇𝜉,𝜉|𝑓 ∈ 𝐶(𝐴̂), 0 ≤ 𝑓 ≤ 1, supp(𝑓) ⊂ 𝑈} . (3.5.11)

We now observe that (𝜂, 𝜉) ↦ 𝜇𝜂,𝜉 is linear in 𝜂, conjugate linear in 𝜉, and so 
by polarization,

𝜇𝜂,𝜉 = 1
4

3
∑
𝑘=0

𝑖𝑘𝜇𝜂+𝑖𝑘𝜉,𝜂+𝑖𝑘𝜉.

By (3.5.11) and regularity, it follows that 𝜇𝜂,𝜉(𝑆) = 𝜇𝜉,𝜂(𝑆) for every Borel 
set 𝑆 and 𝜂, 𝜉 ∈ 𝐻. Fixing 𝑆 Borel, the map (𝜂, 𝜉) ↦ 𝜇𝜂,𝜉(𝑆) is sesquilinear 
and bounded. Hence there is a unique operator 𝐸(𝑆) ∈ 𝐵(𝐻) such that 
𝜇𝜂,𝜉(𝑆) = ⟨𝐸(𝑆)𝜂, 𝜉⟩ for all 𝜂, 𝜉 ∈ 𝐻. ∎

Step 2: 𝐸𝑥 ∶ (𝐴̂, Borel) → 𝐵(𝐻) is a regular spectral measure which takes values in 𝑃 (𝐴″). 

Proof. This step of the proof proceeds in a series of sub-steps. In the proofs 
below, 𝜂, 𝜉 ∈ 𝐻 are arbitrary.
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1. 𝐸𝑥(∅) = 0 and 𝐸𝑥(𝐴̂) = 1:

⟨𝐸𝑥(∅)𝜂, 𝜉⟩ = 𝜇𝜂,𝜉(∅) = 0 and ⟨𝐸𝑥(𝐴̂)𝜂, 𝜉⟩ = 𝜇𝜂,𝜉(𝐴̂) = ⟨𝜂, 𝜉⟩.

2. 𝐸𝑥(𝑆)∗ = 𝐸(𝑆) for all Borel 𝑆 ⊂ 𝐴̂:

⟨𝐸𝑥(𝑆)∗𝜂, 𝜉⟩ = ⟨𝜂, 𝐸𝑥(𝑆)𝜉⟩ = 𝜇𝜉,𝜂(𝑆) = 𝜇𝜂,𝜉(𝑆) = ⟨𝐸𝑥(𝑆)𝜂, 𝜉⟩.

3. If 𝑆1 ∩ 𝑆2 = ∅, 𝐸(𝑆1 ∪ 𝑆2) = 𝐸(𝑆1) + 𝐸(𝑆2):

⟨𝐸𝑥(𝑆1 ∪ 𝑆2)𝜂, 𝜉⟩ = 𝜇𝜂,𝜉(𝑆1 ∪ 𝑆2)
= 𝜇𝜂,𝜉(𝑆1) + 𝜇𝜂,𝜉(𝑆2)
= ⟨𝐸𝑥(𝑆1)𝜂, 𝜉⟩ + ⟨𝐸𝑥(𝑆2)𝜂, 𝜉⟩
= ⟨(𝐸𝑥(𝑆1) + 𝐸𝑥(𝑆2))𝜂, 𝜉⟩

4. For all 𝑔 ∈ 𝐶(𝐴̂), 𝑑𝜇𝑔(𝑥)𝜂,𝜉 = 𝑔𝑑𝜇𝜂,𝜉:

∫ 𝑓 𝑑𝜇𝑔(𝑥)𝜂,𝜉 = ⟨𝑓(𝑥)𝑔(𝑥)𝜂, 𝜉⟩ = ∫ 𝑓𝑔 𝑑𝜇𝜂,𝜉 ∀𝑓 ∈ 𝐶(𝐴̂).

5. For all 𝑔 ∈ 𝐶(𝐴̂) and 𝑆 ⊆ 𝐴̂ Borel, 𝑑𝜇𝐸𝑥(𝑆)𝜂,𝜉 = 𝜒𝑆𝑑𝜇𝜂,𝜉:

∫ 𝑓 𝑑𝜇𝐸𝑥(𝑆)𝜂,𝜉 = ⟨𝑓(𝑥)𝐸𝑥(𝑆)𝜂, 𝜉⟩ = ⟨𝐸𝑥(𝑆)𝜂, 𝑓(𝑥)∗𝜉⟩

= 𝜇𝜂,𝑓∗(𝑥)𝜉(𝑆) = 𝜇𝑓(𝑥)𝜉,𝜂(𝑆)

= ∫ 𝜒𝑆𝑓 𝑑𝜇𝜉,𝜂 = ∫ 𝑓𝜒𝑆 𝑑𝜇𝜂,𝜉 ∀𝑓 ∈ 𝐶(𝐴̂).

6. 𝐸𝑥(𝑆1 ∩ 𝑆2) = 𝐸𝑥(𝑆1)𝐸𝑥(𝑆2). In particular 𝐸𝑥(𝑆)2 = 𝐸𝑥(𝑆):

⟨𝐸𝑥(𝑆1)𝐸𝑥(𝑆2)𝜂, 𝜉⟩ = 𝜇𝐸𝑥(𝑆2)𝜂,𝜉(𝑆1) = ∫ 𝜒𝑆1
𝜒𝑆2⏟

=𝜒𝑆1∩𝑆2

𝑑𝜇𝜂,𝜉 = ⟨𝐸𝑥(𝑆1∩𝑆2)𝜂, 𝜉⟩.

7. If (𝑆𝑛) is a sequence of disjoint Borel sets, then 𝐸𝑥 (𝑆 ∶= ⋃ 𝑆𝑛) =
∑ 𝐸𝑥(𝑆𝑛) where the sum converges SOT:
Indeed, for all 𝑁 ∈ ℕ,

𝐸𝑥(𝑆) −
𝑁

∑
𝑛=1

𝐸𝑥(𝑆𝑛) = 𝐸𝑥(𝑆) − 𝐸𝑥 (
𝑁
⋃
𝑛=1

𝑆𝑛) = 𝐸𝑥 (𝑆 ∖
𝑁
⋃
𝑛=1

𝑆𝑛) .

19



Then for all 𝜉 ∈ 𝐻,

‖(𝐸𝑥(𝑆) −
𝑁

∑
𝑛=1

𝐸𝑥(𝑆𝑛)) 𝜉‖
2

= ‖𝐸𝑥 (𝑆 ∖
𝑁
⋃
𝑛=1

𝑆𝑛) 𝜉‖
2

= ⟨𝐸𝑥 (𝑆 ∖
𝑁
⋃
𝑛=1

𝑆𝑛) 𝜉, 𝜉⟩

= 𝜇𝜉,𝜉 (𝑆 ∖
𝑁
⋃
𝑛=1

𝑆𝑛)

𝑛→∞
−−−→ 0.

8. For all Borel 𝑆 ⊆ 𝐴̂, 𝐸𝑥(𝑆) ∈ 𝐴″:

Indeed, for all 𝑎 ∈ 𝐴′, 𝜇𝑎𝜂,𝜉 = 𝜇𝜂,𝑎∗𝜉 since for all 𝑓 ∈ 𝐶(𝐴̂),

∫ 𝑓 𝑑𝜇𝑎𝜂,𝜉 = ⟨𝑓(𝑥)𝑎𝜂, 𝜉⟩ = ⟨𝑓(𝑥)𝜂, 𝑎∗𝜉⟩ = ∫ 𝑓 𝑑𝜇𝜂,𝑎∗𝜉.

Thus for all Borel 𝑆 ⊆ 𝐴̂,

⟨𝐸(𝑆)𝑎𝜂, 𝜉⟩ = 𝜇𝑎𝜂,𝜉(𝑆) = 𝜇𝜂,𝑎∗𝜉(𝑆) = ⟨𝐸(𝑆)𝜂, 𝑎∗𝜉⟩ = ⟨𝑎𝐸(𝑆)𝜂, 𝜉⟩. ∎

Step 3: For all 𝑓 ∈ 𝐶(𝐴̂), 𝑓(𝑥) = ∫ 𝑓 𝑑𝐸𝑥. Thus 𝐶(𝑋) sits injectively inside 𝐿∞(𝐸𝑥), and 
thus for all non-empty open 𝑈 ⊂ 𝐴̂, 𝐸𝑥(𝑈) ≠ 0 by Urysohn’s Lemma. 

Proof. Let 𝑓 ∈ 𝐶(𝐴̂). Then 𝑓 also defines an element of 𝐿∞(𝐸𝑥). We simply 
check for all 𝜂, 𝜉 ∈ 𝐻,

⟨𝑓(𝑥)𝜂, 𝜉⟩ = ∫ 𝑓 𝑑𝜇𝜂,𝜉 = ⟨(∫ 𝑓 𝑑𝐸𝑥) 𝜂, 𝜉⟩ . ∎

Step 4: 𝐸𝑥 is the unique regular Borel spectral measure such that 𝑓(𝑥) = ∫ 𝑓 𝑑𝐸𝑥 for all 
𝑓 ∈ 𝐶(𝐴̂). 

Proof. Suppose 𝐹 is another such regular Borel spectral measure so that for 
𝜂, 𝜉 ∈ 𝐻, 𝜈𝜂,𝜉(𝑆) ∶= ⟨𝐹(𝑆)𝜂, 𝜉⟩ is a regular Borel measure on 𝐴̂. Then for all 
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𝑓 ∈ 𝐶(𝐴̂),

∫ 𝑓 𝑑𝜈𝜂,𝜉 = ⟨(∫ 𝑓 𝑑𝐹) 𝜂, 𝜉⟩ = ⟨𝑓(𝑥)𝜂, 𝜉⟩ = ⟨(∫ 𝑓 𝑑𝐸𝑥) 𝜂, 𝜉⟩ = ∫ 𝑓 𝑑𝜇𝜂,𝜉

so 𝜈𝜂,𝜉 = 𝜇𝜂,𝜉. We conclude that 𝐸(𝑆) = 𝐹(𝑆) for all Borel 𝑆 ⊆ 𝐴̂. ∎

Construction 3.5.12  (Borel/𝐿∞ functional calculus (BFC)). Let 𝑥 ∈ 𝐵(𝐻) be normal and 
consider the von Neumann algebra W∗(𝑥) ≔ {𝑥, 𝑥∗}″ generated by 𝑥. There is a unique 
regular Borel spectral measure 𝐸𝑥 on sp(𝑥) such that ∫ id 𝑑𝐸𝑥 = 𝑥 where id(𝑧) = 𝑧 for all 
𝑧 ∈ sp(𝑥). Moreover, ∫ 𝑓 𝑑𝐸𝑥 = 𝑓(𝑥) for all 𝑓 ∈ 𝐶(sp(𝑥)). We may thus unambiguously 
denote ∫ 𝑓 𝑑𝐸𝑥 = 𝑓(𝑥) for 𝑓 ∈ 𝐿∞(𝐸𝑥).

Proposition 3.5.13. Suppose 𝑥 ∈ 𝐵(𝐻) is normal and 𝑓 ∈ 𝐿∞(𝐸𝑥). Then for all 𝑔 ∈
𝐿∞(𝐸𝑓(𝑥)), 𝑔 ∘ 𝑓 ∈ 𝐿∞(𝐸𝑥), and (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).

Proof. First, since sp(𝑓(𝑥)) = ess. range(𝑓) in 𝐿∞(𝐸𝑥) and 𝑔 is Borel measurable on 
sp(𝑓(𝑥)), 𝑔 ∘ 𝑓 is Borel measurable on sp(𝑥), and defines an element of 𝐿∞(𝐸𝑥).
It suffices to prove that

𝐺(𝑆) ∶= (𝜒𝑆 ∘ 𝑓)(𝑥) ∈ 𝑃 (W∗(𝑥)) 𝑆 ⊂ sp(𝑓(𝑥)) Borel

is a regular Borel spectral measure on sp(𝑓(𝑥)) such that ∫ id 𝑑𝐺 = 𝑓(𝑥). Note that 
𝜒𝑆 ∘ 𝑓 = 𝜒𝑓−1(𝑆), so 𝐺(𝑆) = 𝐸(𝑓−1(𝑆)), and for all 𝜂, 𝜉 ∈ 𝐻, 𝜇𝐺

𝜂,𝜉 on ess. range(𝑓) is 
the pushforward of 𝜇𝐸

𝜂,𝜉 via 𝑓 ∶ sp(𝑥) → sp(𝑓(𝑥)). Hence 𝜇𝐺
𝜂,𝜉 is regular Borel. (Recall 

that any finite Borel measure on a second countable locally compact space is regular, 
and ess. range(𝑓) ⊂ ℂ is compact.)
Now if we approximate id ∈ 𝐵∞(sp(𝑓(𝑥))) by simple functions 𝑔𝑛 → id in ‖ ⋅ ‖∞, then 
𝑔𝑛 ∘ 𝑓 → 𝑓 in ‖ ⋅ ‖∞ in 𝐵∞(sp(𝑥)), so 𝑔𝑛 ∘ 𝑓 → 𝑓 in 𝐿∞(𝐸). Finally,

∫ id 𝑑𝐺 = lim ∫ 𝑔𝑛 𝑑𝐺 = lim(𝑔𝑛 ∘ 𝑓)(𝑥) = lim ∫ 𝑔𝑛 ∘ 𝑓 𝑑𝐸 = ∫ 𝑓 𝑑𝐸 = 𝑓(𝑥). ∎

Facts 3.5.14. Here are some elementary applications of the BFC. Let 𝑀 ⊂ 𝐵(𝐻) be a von 
Neumann algebra.

1. 𝑀 is the norm-closure of the span of its projections.
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Proof. It suffices to approximate any positive operator in the unit ball of 𝑀 by 
a linear combination of projections. Just uniformly approximate the identity 
function on [0, 1] by a simple function.

1

1

1

1

1

1

1

1

etc. ∎

2. If 𝐿 ⊆ 𝑀 is a non-zero left-ideal, then 𝐿 contains a projection.

Proof. If 𝑥 ∈ 𝐿 ∖ {0}, then 𝑥∗𝑥 ∈ 𝐿 ∖ {0}. Without loss of generality, ‖𝑥∗𝑥‖ = 1. 
Let 0 < 𝜀 < 1 and consider 𝑓(𝑡) = 𝑡−1𝜒[𝜀,1](𝑡). Then 𝑓(𝑥∗𝑥)𝑥∗𝑥 = 𝜒[𝜀,1](𝑥) ∈ 𝐿
is a non-zero projection. ∎

3. If 𝑥 ∈ 𝑀 is normal, then 𝜒{0}(𝑥) = 𝑝ker(𝑥). 

Proof. Clearly 𝑥𝜒{0}(𝑥) = 0, so 𝜒{0}(𝑥) ≤ 𝑝ker(𝑥).
For 𝑛 ≥ 0, let 𝐸𝑛 ∶= sp(𝑥) ∖ 𝐵1/(𝑛+1)(0); then set 𝐹0 = 𝐸0 and for 𝑛 ∈ ℕ
inductively define 𝐹𝑛 ∶= 𝐸𝑛 ∖ 𝐸𝑛−1. Then the projections 𝑝𝑛 ∶= 𝜒𝐹𝑛

(𝑥) are 
mutually orthogonal, and ∑∞

𝑛=0 𝑝𝑛 = 𝜒sp(𝑥)∖{0}(𝑥) converges SOT. For 𝑛 ≥ 0, 
define 𝑓𝑛 ∶ sp(𝑥) → ℂ by

𝑓𝑛(𝑧) = {
𝑧−1 if 𝑧 ∈ 𝐹𝑛

0 else,

and observe that 𝑝𝑛 = 𝑓𝑛(𝑥)𝑥. If 𝜉 ∈ ker(𝑥), then for all 𝑛 ≥ 0, 𝑝𝑛𝜉 =
𝑓𝑛(𝑥)𝑥𝜉 = 0. Thus 𝜒sp(𝑥)∖{0}(𝑥)𝜉 = ∑∞

𝑛=0 𝑝𝑛𝜉 = 0, and thus 𝜉 = 𝜒{0}(𝑥)𝜉. 
Hence 𝑝ker(𝑥) ≤ 𝜒{0}(𝑥), and so they are equal. ∎

4. For all 𝑥 ∈ 𝑀, supp(𝑥) and Range(𝑥) lie in 𝑀. 

Proof. Since 𝑝ker(𝑥∗𝑥) = 𝜒{0}(𝑥∗𝑥) ∈ 𝑀 and ker(𝑥) = ker(𝑥∗𝑥), supp(𝑥) =
1 − 𝑝ker(𝑥) ∈ 𝑀. Formally, Range(𝑥) = supp(𝑥∗) ∈ 𝑀. ∎

5. The unitary group 𝑈(𝑀) is path connected in the norm topology.

Proof. Let 𝑢 ∈ 𝑈(𝑀) and let log be any branch of the logarithm. Then 𝑢 =
exp(log(𝑢)) = exp(𝑖(−𝑖 log(𝑢))) where −𝑖 log(𝑢) is self-adjoint by the Spectral 
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Mapping Theorem (∫5). Then 𝑡 ↦ exp(𝑖𝑡(−𝑖 log(𝑢))) is a norm-continuous path 
of unitaries from 𝑢 to 1 in 𝑈(𝑀). ∎

Corollary 3.5.15. (Kaplansky) If 𝐴 ⊂ 𝐵(𝐻) is a unital C∗-algebra, then 𝑈(𝐴) is SOT-dense 
in 𝑈(𝐴𝑆𝑂𝑇).

Proof. Suppose 𝑢 ∈ 𝑈(𝐴𝑆𝑂𝑇). Let 𝑥 ∈ 𝐴𝑆𝑂𝑇
sa  such that 𝑢 = exp(𝑖𝑥). By the Kaplan­

sky Density Theorem 3.3.4, there is a net (𝑥𝑖) ⊂ 𝐴sa with ‖𝑥𝑖‖ ≤ ‖𝑥‖ and 𝑥𝑖 → 𝑥
SOT. Let 𝑓 ∈ 𝐶0(ℝ) such that 𝑓 = exp(𝑖𝑡) on [−‖𝑥‖, ‖𝑥‖]. Then 𝑓(𝑥𝑖) ∈ 𝑈(𝐴) for all 
𝑖, and since 𝑓 is SOT-continuous by (SOT4), 𝑓(𝑥𝑖) → 𝑓(𝑥) SOT. ∎

Definition 3.5.16. Suppose 𝑀 ⊂ 𝐵(𝐻) is a von Neumann algebra. A unital ∗-homomorphism 
Φ ∶ 𝑀 → 𝐵(𝐾) is called normal if 0 ≤ 𝑥𝑖 ↗ 𝑥 in 𝑀 implies Φ(𝑥𝑖) ↗ Φ(𝑥). Observe that 
𝜎-WOT continuous unital ∗-homomorphisms are normal by

Example 3.5.17. Every 𝜎-WOT continuous unital ∗-homomorphism is normal by Exercise 
3.1.7 and Proposition 3.4.5.

Proposition 3.5.18. Suppose Φ ∶ 𝑀 → 𝐵(𝐾) is a normal ∗-homomorphism and 𝑥 ∈ 𝑀 is 
normal. For all 𝑓 ∈ 𝐵∞(sp(𝑥)), Φ(𝑓(𝑥)) = 𝑓(Φ(𝑥)). 

Proof. Since Φ is contractive, sp𝐵(𝐾)(Φ(𝑥)) ⊆ sp𝑀(𝑥), and thus 𝑓(Φ(𝑥)) is well-
defined. Since Φ is normal, 𝐹(𝑆) ∶= Φ(𝐸𝑥(𝑆)) is a well-defined regular Borel spectral 
measure on sp(𝑥). Moreover, as simple functions are dense in 𝐿∞(𝐹), for all 𝑓 ∈
𝐶(sp(𝑥)),

∫ 𝑓 𝑑𝐹 = Φ(𝑓(𝑥)).

Note that Φ(𝑓(𝑥)) = 𝑓(Φ(𝑥)) whenever 𝑓 is a polynomial in 𝑧 and 𝑧, so by Stone-
Weierstrass, Φ(𝑓(𝑥)) = 𝑓(Φ(𝑥)) for any 𝑓 ∈ 𝐶(sp(𝑥)). Thus for all 𝑓 ∈ 𝐶(sp(𝑥)) and 
𝜂, 𝜉 ∈ 𝐾,

∫ 𝑓 𝑑𝜇𝐹
𝜂,𝜉 = ⟨(∫ 𝑓 𝑑𝐹) 𝜂, 𝜉⟩ = ⟨Φ(𝑓(𝑥))𝜂, 𝜉⟩

= ⟨𝑓(Φ(𝑥))𝜂, 𝜉⟩ = ⟨(∫ 𝑓 𝑑𝐸Φ(𝑥)) 𝜂, 𝜉⟩ = ∫ 𝑓 𝑑𝜇𝐸Φ(𝑥)
𝜂,𝜉 .

Hence 𝜇𝐹
𝜂,𝜉 = 𝜇𝐸Φ(𝑥)

𝜂,𝜉  for all 𝜂, 𝜉 ∈ 𝐾, and thus 𝐹(𝑆) = 𝐸Φ(𝑥)(𝑆) for all Borel sets 
𝑆 ⊆ sp(𝑥). The result follows. ∎

Corollary 3.5.19. The partial isometry 𝑢 in the polar decomposition 𝑥 = 𝑢|𝑥| is independent 
of the choice of faithful 𝜎-WOT continuous representation of 𝑀.
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Proof. Suppose 𝐾 is another Hilbert space and 𝜋∶ 𝑀 → 𝐵(𝐾) is a faithful 𝜎-WOT 
continuous unital ∗-homomorphism, which is automatically normal. Let 𝜋(𝑥) =
𝑣𝜋(|𝑥|) be the polar decompostion on 𝐾, where we have used that 𝜋(|𝑥|) = |𝜋(𝑥)|
as 𝜋(𝑥∗𝑥) = 𝜋(𝑥)∗𝜋(𝑥) has a unique positive square root. By the uniqueness state­
ment of the polar decomposition, it suffices to prove ker(𝜋(𝑢)) = ker(𝑣), which follows 
by the calculation

𝑣∗𝑣 = supp(𝜋(𝑥)) = 𝜒sp(𝜋(𝑥))∖{0}(𝜋(𝑥)) = 𝜒sp(𝑥)∖{0}(𝜋(𝑥))
= 𝜋(𝜒sp(𝑥)∖{0}(𝑥)) = 𝜋(supp(𝑥)) = 𝜋(𝑢∗𝑢) = 𝜋(𝑢)∗𝜋(𝑢). ∎

3.6 Abelian von Neumann algebras and multiplicity theory
Exercise 3.6.1. Suppose 𝑀 ⊂ 𝐵(𝐻) is a unital ∗-subalgebra. A vector 𝜉 ∈ 𝐻 is called:

• cyclic for 𝑀 if 𝑀𝜉 is dense in 𝐻.

• separating for 𝑀 if for every 𝑥, 𝑦 ∈ 𝑀, 𝑥𝜉 = 𝑦𝜉 implies 𝑥 = 𝑦.

1. Prove that 𝜉 is cyclic for 𝑀 if and only if 𝜉 is separating for 𝑀 ′.

2. Prove that 𝐻 can be orthogonally decomposed into 𝑀-invariant subspaces 𝐻 = ⨁𝑖∈𝐼 𝐾𝑖, 
such that each 𝐾𝑖 is cyclic for 𝑀 (has a cyclic vector). Prove that if 𝐻 is separable, 
this decomposition is countable.

3. Prove that if 𝑀 is abelian and 𝐻 is separable, then there is a separating vector in 𝐻
for 𝑀.

Exercise 3.6.2. Let 𝐻 be a separable Hilbert space and 𝐴 ⊆ 𝐵(𝐻) an abelian von Neumann 
algebra. Prove that the following are equivalent.

1. 𝐴 is maximal abelian, i.e., 𝐴 = 𝐴′.

2. 𝐴 has a cyclic vector 𝜉 ∈ 𝐻.

3. For every norm separable SOT-dense C*-subalgebra 𝐴0 ⊂ 𝐴, 𝐴0 has a cyclic vector.

4. There is a norm separable SOT-dense C*-subalgebra 𝐴0 ⊂ 𝐴 such that 𝐴0 has a cyclic 
vector.

5. There is a finite regular Borel measure 𝜇 on a compact Hausdorff second countable 
space 𝑋 and a unitary 𝑢 ∈ 𝐵(𝐿2(𝑋, 𝜇), 𝐻) such that 𝑓 ↦ 𝑢𝑀𝑓𝑢∗ is an isometric 
∗-isomorphism 𝐿∞(𝑋, 𝜇) → 𝐴.
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Hints:
For (1) ⇒ (2), use Exercise 3.6.1.
For (3) ⇒ (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show 
that 𝐴∗ = ℒ1(𝐻)/𝐴⟂ is a separable Banach space. Then show that 𝐴 is 𝜎-WOT separable, 
which implies SOT-separable. Take 𝐴0 to be the unital C*-algebra generated by an SOT-
dense sequence.
For (4) ⇒ (5) show that 𝐴0 separable implies 𝑋 = 𝐴̂0 is second countable. Define 𝜇 = 𝜇𝜉,𝜉
on 𝑋, and show that the map 𝐶(𝑋) → 𝐻 by 𝑓 ↦ Γ−1(𝑓)𝜉 is a ‖ ⋅ ‖2 − ‖ ⋅ ‖𝐻 isometry with 
dense range.

Exercise 3.6.3. Suppose 𝐸∶ (𝑋, ℳ) → 𝑃 (𝐻) is a spectral measure with 𝐻 separable, and 
let 𝐴 ⊂ 𝐵(𝐻) be the unital C*-algebra which is the image of 𝐿∞(𝐸) under ∫ ⋅ 𝑑𝐸. Suppose 
there is a cyclic unit vector 𝜉 ∈ 𝐻 for 𝐴.

1. Show that 𝜔𝜉(𝑓) = ⟨(∫ 𝑓𝑑𝐸)𝜉, 𝜉⟩ is a faithful state on 𝐿∞(𝐸) (𝜔𝜉(|𝑓|2) = 0 ⟹ 𝑓 = 0).

2. Consider the finite non-negative measure 𝜇 = 𝜇𝜉,𝜉 on (𝑋, ℳ). Show that a measurable 
function 𝑓 on (𝑋, ℳ) is essentially bounded with respect to 𝐸 if and only if 𝑓 is 
essentially bounded with respect to 𝜇.

3. Deduce that for essentially bounded measurable 𝑓 on (𝑋, ℳ), ‖𝑓‖𝐸 = ‖𝑓‖𝐿∞(𝑋,ℳ,𝜇).

4. Construct a unitary 𝑢 ∈ 𝐵(𝐿2(𝑋, ℳ, 𝜇), 𝐻) such that for all 𝑓 ∈ 𝐿∞(𝐸) = 𝐿∞(𝑋, ℳ, 𝜇), 
(∫ 𝑓𝑑𝐸)𝑢 = 𝑢𝑀𝑓.

5. Deduce that 𝐴 ⊂ 𝐵(𝐻) is a maximal abelian von Neumann algebra.

Definition 3.6.4. A normal operator 𝑥 ∈ 𝐵(𝐻) is called multiplicity free if one of the 
following equivalent conditions holds:

• C∗(𝑥) has a cyclic vector or

• W∗(𝑥) = W∗(𝑥)′(= C∗(𝑥)′)

Corollary 3.6.5. Suppose 𝐻is separable and 𝑥 ∈ 𝐵(𝐻) is normal and multiplicity free. 
There exist a regular Borel measure 𝜇 on sp(𝑥) and a unitary 𝑢 ∈ 𝐵(𝐿2(sp(𝑥), 𝜇) → 𝐻)
such that

1. 𝐿∞(𝑋, 𝜇) = 𝐿∞(𝐸𝑥),

2. for all 𝑓 ∈ 𝐿∞(𝑋, 𝜇), 𝑢𝑀𝑓𝑢∗ = ∫ 𝑓 𝑑𝐸𝑥 = 𝑓(𝑥), and

3. the map 𝐿∞(𝑋, 𝜇) ∋ 𝑓 ↦ 𝑓(𝑥) ∈ W∗(𝑥) is an isometric ∗-isomorphism.

Theorem 3.6.6. Suppose 𝐻 is separable and 𝑥 ∈ 𝐵(𝐻) is normal.
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1. There exists a sequence (𝑝𝑛) ⊂ C∗(𝑥)′ of mutually orthogonal projections such that 
∑𝑛 𝑝𝑛 = 1 SOT and 𝑝𝑛𝐻 is a cyclic subspace for C∗(𝑥) for all 𝑛.

2. For all 𝑛, there is a finite regular Borel measure 𝜇𝑛 on sp(𝑥) and a unitary 𝑢𝑛 ∈
𝐵(𝐿2(sp(𝑥), 𝜇𝑛) → 𝐻) such that

• for all 𝑓 ∈ 𝐵∞(sp(𝑥)), 𝑢𝑛𝑀𝑓𝑢∗
𝑛 = 𝑓(𝑥)𝑝𝑛 = 𝑓(𝑥𝑝𝑛), and

• the map 𝐿∞(sp(𝑥), 𝜇𝑛) ∋ 𝑓 ↦ 𝑓(𝑥)𝑝𝑛 ∈ W∗(𝑥)𝑝𝑛 is an isometric ∗-isomorphism.

3. Setting 𝜇 ≔ ∑ 2−𝑛𝜇𝑛,

• for all 𝑓 ∈ 𝐿∞(sp(𝑥), 𝜇), ∑ 𝑢𝑛𝑀𝑓𝑢∗
𝑛 = ∑ 𝑓(𝑥)𝑝𝑛 = 𝑓(𝑥) SOT, and

• the map 𝐿∞(sp(𝑥), 𝜇) ∋ 𝑓 ↦ 𝑓(𝑥) ∈ W∗(𝑥) is an isometric ∗-isomorphism.
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