
Penneys Math 8800 Basic operator algebras for Mn(C)

One of the main techniques for unitary quantum algebra/topological phases is finite dimen-
sional operator algebras. Here is a terse introduction for Mn(C) via exercises. The presence
of (?) on a problem marks difficulty with respect to the exposition, and (??) denotes well
beyond the scope of these notes.

We denote by ∗ the conjugate transpose operation on Mn(C). The matrix algebra Mn(C)
acts on the inner product (Hilbert) space Cn with inner product given by 〈η, ξ〉 :=

∑n
j=1 ηjξj

which is linear on the left.

Exercise 1. Show that for a ∈Mn(C) and η, ξ ∈ Cn, 〈aη, ξ〉 = 〈η, a∗ξ〉.

Exercise 2. Show that if a ∈ Mn(C) commutes with all b ∈ Mn(C), then a = λ1 for some
λ ∈ C.

Definition 3. An element a ∈Mn(C) is called:

• normal if aa∗ = a∗a
• self-adjoint if a∗ = a
• positive if 〈aξ, ξ〉 ≥ 0 for all ξ ∈ Cn

• a projection if a2 = a = a∗

• a partial isometry if a∗a is a projection.
• a unitary if a is invertible with a−1 = a∗

Exercise 4. Show that positive implies self-adjoint implies normal.

Exercise 5. Suppose p ∈ Mn(C) is a minimal projection, i.e., pMn(C)p = Cp. Show that
there are partial isometries v1, . . . , vn ∈Mn(C) such that

∑n
i=1 vipv

∗
i = 1.

Exercise 6. Prove that Mn(C) has no non-trivial 2-sided ideals.

Exercise 7. Use Exercise 6 to show that any (not necessarily unital) ∗-algebra map out of
Mn(C) into another complex ∗-algebra is either injective or the zero map.

Exercise 8 (Spectral Theorem, ?). Show that the following are equivalent for a ∈Mn(C).

(1) a is normal.
(2) There is an orthonormal basis of Cn consisting of eigenvectors for a.
(3) There is a unitary u ∈Mn(C) (uu∗ = u∗u = 1) such that u∗au is diagonal.

Definition 9 (Functional calculus). Suppose a ∈Mn(C) is normal. Let spec(a) denote the
spectrum of a, which is the set of eigenvalues. For λ ∈ spec(a), let Eλ ⊂ Cn denote the
corresponding eigenspace, and let pλ ∈ Mn(C) be the orthogonal projection onto Eλ. Note
that

a =
∑

λ∈spec(a)

λpλ,

as both operators agree on an orthonormal basis of Cn, namely the orthonormal basis con-
sisting of eigenvectors for a from Exercise 8. For f : spec(a)→ C, we define

f(a) :=
∑

λ∈spec(a)

f(λ)pλ ∈Mn(C).
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Exercise 10. Suppose a ∈Mn(C) is normal, and let C(spec(a)) denote the unital ∗-algebra
of C-valued functions on spec(a).

(1) Show that C(spec(a)) 3 f 7→ f(a) ∈Mn(C) is a unital ∗-algebra homomorphism.
(2) (Spectral mapping) Prove that spec(f(a)) = f(spec(a)).

Exercise 11. For a ∈Mn(C), define

‖a‖ := inf {c > 0|‖aξ‖Cn ≤ c‖ξ‖Cn for all ξ ∈ Cn} .
(1) Prove that ‖ · ‖ is a norm on Mn(C).
(2) Prove that if a ∈Mn(C) is normal, then ‖a‖ = maxλ∈spec(a) |λ|.

Exercise 12. Suppose (an) is a sequence of normal matrices such that an → a in norm and
U is an open neighborhood of spec(a).

(1) Suppose K ⊂ C is compact such that spec(a) ⊂ K◦. Use the Spectral Mapping
Theorem 10(2) and Exercise 11(2) to show that ‖f(a)‖ ≤ ‖f‖C(K) for all f ∈ C(K),
where ‖f‖C(K) := maxk∈K |f(k)|.

(2) Show that eventually spec(an) ⊂ U .
Hint: GLn(C) is open in Mn(C).

(3) Show that for every continuous f : U → C, f(an)→ f(a).
Hint: Pick an open set V with V compact such that spec(a) ⊂ V ⊂ V ⊂ U , and
approximate f uniformly by a polynomial p on V . Then apply part (1) to f − p.

Exercise 13. Show that the following are equivalent for a ∈Mn(C).

(1) a ≥ 0.
(2) a is normal and all eigenvalues of a are non-negative.
(3) There is a b ∈Mn(C) such that b∗b = a.
(4) There is a b ∈Mn×k(C) for some k ∈ N such that b∗b = a.

Exercise 14 (??, [Pal01, Thm. 9.1.45]).

(1) Show that any involution † on Mn(C) is of the form a† = ha∗h−1 for some invertible
h ∈Mn(C) such that h = h∗.

(2) Show that (Mn(C), †) ∼= (Mn(C), ∗) as involutive algebras if and only if the corre-
sponding h for † is positive or negative definite.

Definition 15. Let A be a unital complex ∗-algebra. We call a linear functional ϕ : A→ C:

• a trace or tracial if ϕ(ab) = ϕ(ba) for all a, b ∈ A.
• positive if ϕ(a∗a) ≥ 0 for all a ∈ A.
• a state if ϕ is positive and ϕ(1) = 1.
• faithful if ϕ is positive and ϕ(a∗a) = 0 implies a = 0.

Exercise 16. Prove that Mn(C) has a unique trace such that tr(1) = 1. In this case, prove
that tr is positive (so tr is a state) and faithful.

Exercise 17. Let A = C2 with coordinate-wise multiplication and (a, b)† := (b, a). Prove
that A has no states.

Exercise 18 (?). Prove that for any state ϕ on Mn(C), there exists d ∈Mn(C) with d ≥ 0
and tr(d) = 1 such that ϕ(a) = tr(da) for all a ∈ Mn(C). Prove that ϕ is a faithful if and
only if d is also invertible.
The matrix d is called the density matrix of ϕ with respect to tr.
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Let H denote a finite dimensional inner product (Hilbert) space. Denote by B(H) the
unital ∗-algebra of linear operators on H.

Exercise 19. Show that the identity

〈aη, ξ〉 = 〈η, a∗ξ〉 ∀ a ∈ B(H), ∀ η, ξ ∈ H
gives a well-defined linear map a∗ ∈ B(H).

Exercise 20. Show that a choice of orthonormal basis of H gives a unitary linear map
u : H → Cn such that x 7→ uxu∗ is a unital ∗-algebra isomorphism B(H)→Mn(C).

Definition 21. For a subset S ⊂ B(H), the commutant of S is

S ′ := {x ∈ B(H)|xs = sx for all s ∈ S} .

Exercise 22. Show that if S ⊂ T ⊂ B(H), then T ′ ⊂ S ′.

Exercise 23. Show that if S ⊂ B(H), then S ′ = S ′′′.

Exercise 24 (??). Show that if A ⊂ B(H) is a unital ∗-subalgebra, then A = A′′.
Hint: See [Jon15, Thm. 3.2.1].

Exercise 25. Suppose ϕ is a faithful state on Mn(C). Show that 〈a, b〉 := ϕ(b∗a) defines a
positive definite inner product on Mn(C) (thought of as a C-vector space).

Definition 26. We define L2(Mn(C), ϕ) to be Mn(C) as an inner product (Hilbert) space
with the inner product from Exercise 25. We denote the image of 1 ∈Mn(C) in L2(Mn(C), ϕ)
by Ω, so aΩ is the image of a ∈Mn(C).

Exercise 27. Prove that if a ∈Mn(C), the map given by bΩ 7→ abΩ defines a left multipli-
cation operator λa ∈ B(L2(Mn(C), ϕ)). Prove that the adjoint of this operator is λa∗ given
by bΩ 7→ a∗bΩ.

Exercise 28. Prove that if a ∈ Mn(C), the map given by bΩ 7→ baΩ defines a right multi-
plication operator ρa ∈ B(L2(Mn(C), ϕ)). Calculate the adjoint of ρa. When does ρ∗a = ρa∗?

Exercise 29. Suppose ϕ is a faithful state on Mn(C). Prove that the commutant of the left
Mn(C) action on L2(Mn(C), ϕ) is the right Mn(C) action.

Exercise 30. Suppose 〈 · , · 〉 is a positive definite inner product on the vector spaceMm×n(C).
Prove that the commutant of the left Mm(C) action on Mm×n(C) is the right Mn(C) action.
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