One of the main techniques for unitary quantum algebra/topological phases is finite dimensional operator algebras. Here is a terse introduction for $M_n(\mathbb{C})$ via exercises. The presence of (\star) on a problem marks difficulty with respect to the exposition, and $(\star\star)$ denotes well beyond the scope of these notes.

We denote by * the conjugate transpose operation on $M_n(\mathbb{C})$. The matrix algebra $M_n(\mathbb{C})$ acts on the inner product (Hilbert) space \mathbb{C}^n with inner product given by $\langle \eta, \xi \rangle := \sum_{j=1}^n \eta_j \overline{\xi_j}$ which is linear on the left.

Exercise 1. Show that for $a \in M_n(\mathbb{C})$ and $\eta, \xi \in \mathbb{C}^n$, $\langle a\eta, \xi \rangle = \langle \eta, a^* \xi \rangle$.

Exercise 2. Show that if $a \in M_n(\mathbb{C})$ commutes with all $b \in M_n(\mathbb{C})$, then $a = \lambda 1$ for some $\lambda \in \mathbb{C}$.

Definition 3. An element $a \in M_n(\mathbb{C})$ is called:

- normal if $aa^* = a^*a$
- self-adjoint if $a^* = a$
- positive if $\langle a\xi, \xi \rangle \ge 0$ for all $\xi \in \mathbb{C}^n$
- a projection if $a^2 = a = a^*$
- a partial isometry if a^*a is a projection.
- a *unitary* if a is invertible with $a^{-1} = a^*$

Exercise 4. Show that positive implies self-adjoint implies normal.

Exercise 5. Suppose $p \in M_n(\mathbb{C})$ is a minimal projection, i.e., $pM_n(\mathbb{C})p = \mathbb{C}p$. Show that there are partial isometries $v_1, \ldots, v_n \in M_n(\mathbb{C})$ such that $\sum_{i=1}^n v_i p v_i^* = 1$.

Exercise 6. Prove that $M_n(\mathbb{C})$ has no non-trivial 2-sided ideals.

Exercise 7. Use Exercise 6 to show that any (not necessarily unital) *-algebra map out of $M_n(\mathbb{C})$ into another complex *-algebra is either injective or the zero map.

Exercise 8 (Spectral Theorem, \star). Show that the following are equivalent for $a \in M_n(\mathbb{C})$.

- (1) a is normal.
- (2) There is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors for a.
- (3) There is a unitary $u \in M_n(\mathbb{C})$ $(uu^* = u^*u = 1)$ such that u^*au is diagonal.

Definition 9 (Functional calculus). Suppose $a \in M_n(\mathbb{C})$ is normal. Let $\operatorname{spec}(a)$ denote the *spectrum* of a, which is the set of eigenvalues. For $\lambda \in \operatorname{spec}(a)$, let $E_{\lambda} \subset \mathbb{C}^n$ denote the corresponding eigenspace, and let $p_{\lambda} \in M_n(\mathbb{C})$ be the orthogonal projection onto E_{λ} . Note that

$$a = \sum_{\lambda \in \operatorname{spec}(a)} \lambda p_{\lambda},$$

as both operators agree on an orthonormal basis of \mathbb{C}^n , namely the orthonormal basis consisting of eigenvectors for a from Exercise 8. For $f : \operatorname{spec}(a) \to \mathbb{C}$, we define

$$f(a) := \sum_{\lambda \in \operatorname{spec}(a)} f(\lambda) p_{\lambda} \in M_n(\mathbb{C}).$$

Exercise 10. Suppose $a \in M_n(\mathbb{C})$ is normal, and let $C(\operatorname{spec}(a))$ denote the unital *-algebra of \mathbb{C} -valued functions on $\operatorname{spec}(a)$.

- (1) Show that $C(\operatorname{spec}(a)) \ni f \mapsto f(a) \in M_n(\mathbb{C})$ is a unital *-algebra homomorphism.
- (2) (Spectral mapping) Prove that $\operatorname{spec}(f(a)) = f(\operatorname{spec}(a))$.

Exercise 11. For $a \in M_n(\mathbb{C})$, define

 $||a|| := \inf \{c > 0 | ||a\xi||_{\mathbb{C}^n} \le c ||\xi||_{\mathbb{C}^n} \text{ for all } \xi \in \mathbb{C}^n \}.$

(1) Prove that $\|\cdot\|$ is a norm on $M_n(\mathbb{C})$.

(2) Prove that if $a \in M_n(\mathbb{C})$ is normal, then $||a|| = \max_{\lambda \in \operatorname{spec}(a)} |\lambda|$.

Exercise 12. Suppose (a_n) is a sequence of normal matrices such that $a_n \to a$ in norm and U is an open neighborhood of spec(a).

- (1) Suppose $K \subset \mathbb{C}$ is compact such that $\operatorname{spec}(a) \subset K^{\circ}$. Use the Spectral Mapping Theorem 10(2) and Exercise 11(2) to show that $||f(a)|| \leq ||f||_{C(K)}$ for all $f \in C(K)$, where $||f||_{C(K)} := \max_{k \in K} |f(k)|$.
- (2) Show that eventually $\operatorname{spec}(a_n) \subset U$. Hint: $GL_n(\mathbb{C})$ is open in $M_n(\mathbb{C})$.
- (3) Show that for every continuous $f: U \to \mathbb{C}$, $f(a_n) \to f(a)$. *Hint:* Pick an open set V with \overline{V} compact such that $\operatorname{spec}(a) \subset V \subset \overline{V} \subset U$, and approximate f uniformly by a polynomial p on \overline{V} . Then apply part (1) to f - p.

Exercise 13. Show that the following are equivalent for $a \in M_n(\mathbb{C})$.

- (1) $a \ge 0.$
- (2) a is normal and all eigenvalues of a are non-negative.
- (3) There is a $b \in M_n(\mathbb{C})$ such that $b^*b = a$.
- (4) There is a $b \in M_{n \times k}(\mathbb{C})$ for some $k \in \mathbb{N}$ such that $b^*b = a$.

Exercise 14 ($\star\star$, [Pal01, Thm. 9.1.45]).

- (1) Show that any involution \dagger on $M_n(\mathbb{C})$ is of the form $a^{\dagger} = ha^*h^{-1}$ for some invertible $h \in M_n(\mathbb{C})$ such that $h = h^*$.
- (2) Show that $(M_n(\mathbb{C}), \dagger) \cong (M_n(\mathbb{C}), \ast)$ as involutive algebras if and only if the corresponding h for \dagger is positive or negative definite.

Definition 15. Let A be a unital complex *-algebra. We call a linear functional $\varphi : A \to \mathbb{C}$:

- a trace or tracial if $\varphi(ab) = \varphi(ba)$ for all $a, b \in A$.
- positive if $\varphi(a^*a) \ge 0$ for all $a \in A$.
- a state if φ is positive and $\varphi(1) = 1$.
- faithful if φ is positive and $\varphi(a^*a) = 0$ implies a = 0.

Exercise 16. Prove that $M_n(\mathbb{C})$ has a unique trace such that tr(1) = 1. In this case, prove that tr is positive (so tr is a state) and faithful.

Exercise 17. Let $A = \mathbb{C}^2$ with coordinate-wise multiplication and $(a, b)^{\dagger} := (\overline{b}, \overline{a})$. Prove that A has no states.

Exercise 18 (*). Prove that for any state φ on $M_n(\mathbb{C})$, there exists $d \in M_n(\mathbb{C})$ with $d \ge 0$ and $\operatorname{tr}(d) = 1$ such that $\varphi(a) = \operatorname{tr}(da)$ for all $a \in M_n(\mathbb{C})$. Prove that φ is a faithful if and only if d is also invertible.

The matrix d is called the density matrix of φ with respect to tr.

Let H denote a finite dimensional inner product (Hilbert) space. Denote by B(H) the unital *-algebra of linear operators on H.

Exercise 19. Show that the identity

$$\langle a\eta, \xi \rangle = \langle \eta, a^* \xi \rangle \qquad \forall a \in B(H), \quad \forall \eta, \xi \in H$$

gives a well-defined linear map $a^* \in B(H)$.

Exercise 20. Show that a choice of orthonormal basis of H gives a unitary linear map $u: H \to \mathbb{C}^n$ such that $x \mapsto uxu^*$ is a unital *-algebra isomorphism $B(H) \to M_n(\mathbb{C})$.

Definition 21. For a subset $S \subset B(H)$, the *commutant* of S is

 $S' := \{ x \in B(H) | xs = sx \text{ for all } s \in S \}.$

Exercise 22. Show that if $S \subset T \subset B(H)$, then $T' \subset S'$.

Exercise 23. Show that if $S \subset B(H)$, then S' = S'''.

Exercise 24 (**). Show that if $A \subset B(H)$ is a unital *-subalgebra, then A = A''. *Hint: See* [Jon15, Thm. 3.2.1].

Exercise 25. Suppose φ is a faithful state on $M_n(\mathbb{C})$. Show that $\langle a, b \rangle := \varphi(b^*a)$ defines a positive definite inner product on $M_n(\mathbb{C})$ (thought of as a \mathbb{C} -vector space).

Definition 26. We define $L^2(M_n(\mathbb{C}), \varphi)$ to be $M_n(\mathbb{C})$ as an inner product (Hilbert) space with the inner product from Exercise 25. We denote the image of $1 \in M_n(\mathbb{C})$ in $L^2(M_n(\mathbb{C}), \varphi)$ by Ω , so $a\Omega$ is the image of $a \in M_n(\mathbb{C})$.

Exercise 27. Prove that if $a \in M_n(\mathbb{C})$, the map given by $b\Omega \mapsto ab\Omega$ defines a left multiplication operator $\lambda_a \in B(L^2(M_n(\mathbb{C}), \varphi))$. Prove that the adjoint of this operator is λ_{a^*} given by $b\Omega \mapsto a^*b\Omega$.

Exercise 28. Prove that if $a \in M_n(\mathbb{C})$, the map given by $b\Omega \mapsto ba\Omega$ defines a right multiplication operator $\rho_a \in B(L^2(M_n(\mathbb{C}), \varphi))$. Calculate the adjoint of ρ_a . When does $\rho_a^* = \rho_{a^*}$?

Exercise 29. Suppose φ is a faithful state on $M_n(\mathbb{C})$. Prove that the commutant of the *left* $M_n(\mathbb{C})$ action on $L^2(M_n(\mathbb{C}), \varphi)$ is the *right* $M_n(\mathbb{C})$ action.

Exercise 30. Suppose $\langle \cdot, \cdot \rangle$ is a positive definite inner product on the vector space $M_{m \times n}(\mathbb{C})$. Prove that the commutant of the *left* $M_m(\mathbb{C})$ action on $M_{m \times n}(\mathbb{C})$ is the *right* $M_n(\mathbb{C})$ action.

References

- [Jon15] Vaughan F. R. Jones, Von Neumann algebras, 2015, https://math.vanderbilt.edu/jonesvf/ VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf.
- [Pal01] Theodore W. Palmer, Banach algebras and the general theory of *-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001, *-algebras, MR1819503 DOI:10.1017/CB09780511574757.003. MR 1819503