
Penneys Math 8800 Phase transitions

7. Phase transitions

In this section, we discuss various notions of quantum phase transitions between topo-
logical phases, including gapped spatial phase transitions, and gapless critical value phase
transitions for a local Hamiltonian.

We begin this section by describing the two most widely known quantum phase transitions:
gapped boundaries of toric code, and an application of the transverse-field Ising model to a
quantum phase transition for the toric code. We will then do a systematic study of phase
transitions, first starting with the notions of (de)equivariantiazation for fusion categories,
and condensation and gauging for braided fusion categories.

7.1. Gapped boundaries of the toric code. Our discussion of the two gapped boundaries
for toric code follows [KK12, §2], but with the Pauli X and Z operators swapped, which
swaps the roles of e,m.

Recall that we defined the toric code lattice model on a genus g surface Σg by picking
some cellulation, giving vertex terms Av =

∏
`∼v Z` and plaquette terms Bp =

∏
`∼pX`,

v

p
Av =

⊗
`∼v

Z` Bp =
⊗
`∼p

X`.

and setting the Hamiltonian equal to

HTC := −
∑
v

Av −
∑
p

Bp.

The lowest energy excitations of the toric code are when exactly two of the Av or exactly two
of the Bp are violated, which creates a pair of e or m quasiparticle excitations respectively.
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Above, we have string operators which create these quasiparticle excitations from the ground
state on a torus with periodic boundary conditions.

We can define two gapped boundaries for the toric code to the vaccuum. For convenience,
we will work with square lattices.

(1) The smooth boundary is a line (which really closes into a circle) of trivalent vertices
in our lattice, where we do not have a plaquette term for the ‘missing’ face. In the
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diagram below, we create two smooth boundaries on the left and right, and we have
periodic vertical boundary conditions.

Z
Z

Z

On the boundary, we have modified vertex terms A′v with only three Pauli Z operators
attached to each vertex. Observe that the Hamiltonian with these new truncated
vertex terms at the boundary is still commuting projector.

(2) The rough boundary is a line (circle) of singly valent vertices in our lattice, where
there is no vertex term for these vertices. In the diagram below, we create two rough
boundaries on the left and right, and we have periodic vertical boundary conditions.

X
X
X

On the boundary, we have modified plaquette terms B′p with only three Pauli X oper-
ators around each partial plaquette. Again, this new Hamiltonian is still commuting
projector.

The effect of these boundaries is that certain quasi-particle excitations can be created or
destroyed for free, or even negative energy cost.

(1) On the smooth boundary, an m excitation can completely vanish, but e particles
remain, giving boundary excitations of 1, e. The particles 1,m both map to 1, and
the particles e, ε both map to e. Since these four excitations represent the simple
objects in D(Z/2) = Z(Hilbfd(Z/2)) where Z/2 = {1, e} and m represents the sign
representation of Z/2, we see that the behavior of anyons at the boundary corresponds
to the forgetful functor F : Z(Hilbfd(Z/2))→ Hilbfd(Z/2).

(2) On the rough boundary, an e particle can complete vanish, but m particles remain,
giving boundary excitations 1,m. The behavior is similar to the smooth boundary
with e,m swapped. That is, as D(Z/2) = Z(Rep(Z/2)), we have another forgetful
functor F : D(Z/2) → Rep(Z/2) which describes the behavior of anyons at the
boundary.

7.2. Application of the transverse-field Ising model to toric code. Recall from the
Lattice Models section that the 1D transverse-field Ising model has local Hamiltonian given
by

C2 C2 C2 C2 C2
· · · HtIs = HtIs(B) := −

∑
j

ZjZj+1 −B
∑
j

Xj

on a 1D lattice with L sites, where B denotes the external magnetic field. This model has a
well-understood quantum phase transition at B = 1, where the gap in the spectrum of HtIs
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closes in the thermodynamic limit (as L → ∞). The 2D transverse-field Ising model has a
similar Hamiltonian, but on a 2D lattice.

We can drive the toric code through a quantum phase transition by changing the local
Hamiltonian in two different ways, which are analogous to the two different smooth and
rough boundaries for toric code discussed in the previous section. We will do the case of
condensing the m particle, and the case for the e particle is similar.

We can add terms of the form C` for each ` in our 2D lattice on Σg corresponding to a
single Pauli Z operator, giving the Hamiltonian

H(B) := −
∑
v

Av −
∑
p

Bp −B
∑
`

C`.

Observe that this Pauli Z operator for C` commutes with all Av, but does not commute with
the Bp such that ` ∈ p.

When B = 0, we have HTC, and when B is large the energetics of the C` term dominates,
in which m particles can be freely created and destroyed everywhere on the lattice. Thus
the m particle has been condensed. This is a good indicator that we have a quantum phase
transition.

To make this rigorous, we can map this system onto the transverse-field Ising model as
follows. First, observe that each C` term commutes with each of the Av terms, so we may
pass into the ground state space GA of −

∑
Av to analyze the phase transition. Recall that

the space GA is spanned by string nets where exactly an even number of edges meeting each
vertex are ‘on,’ i.e., |1〉 ∈ C|0〉 ⊕ C|1〉.

Exercise 7.2.1. Show that the ground state space for Av is 2L dimensional, where L is the
number of vertices.

Now on the 2-torus, the Euler characteristic V − E + F = 0, and each edge connects to
2 vertices, and each vertex is 4-valent. Hence there are exactly L vertices, 2L edges, and L
plaquettes. Thus we may represent the space GA as the tensor product of one qubit sitting
on every plaquette as opposed to a subspace of the total Hilbert space with a qubit on every
edge.

For each qubit sitting on a plaquette, we can represent the operator Bp on GA as a Pauli
X matrix Xp. The operator C` can then be represented by ZpZq where p, q are the two
plaquettes incident to `. Thus under this change of basis, H(B) restricted to GA can be
represented by

H ′(B) = −
∑

Xp −B
∑
p∼q

ZpZq,

where p ∼ q means the plaquettes p and q are incident on the lattice. This is exactly the
2D transverse-field Ising model! We conclude that as we increase B, we force the toric code
through a quantum phase transition.

Exercise 7.2.2. Adapt the above procedure to condense the m particle of the toric code.

7.3. De-equivariantization and condensation. Recall that given a unital algebra object
(A, µ) in a fusion category C, we can form the left C-module category CA := ModC(A) of right
(unital) A-modules in C. In the presence of more structure on A, we get more structure on
the C-module category CA.
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Exercise 7.3.1 ([KO02, Fig. 4]). Recall that a right A-module is called free if it is of the
form c ⊗ A for some c ∈ C. The free module functor C → ModC(A) is given by c 7→ c ⊗ A.
Find a natural isomorphism

CA(a⊗ A→ b⊗ A) ∼= C(a→ b⊗ A).

Exercise 7.3.2. A unital algebra A in a fusion category C is called connected if dim(C(1C →
A)) = 1.

(1) Show that if A is connected, End−A(A) = C idA.
(2) Show that if A is connected and separable, then the splitting s of µ as an A − A

bimodule is unique.

Definition 7.3.3. A lift of A to Z(C) is a half-braiding σA,• for A such that the multiplication
and unit of A are morphisms in Z(C).

When A lifts to Z(C), the category CA gets a canonical C−C bimodule structure by defining
the right C-action by M � c := M ⊗ c, where the right A-action is given by

AcM

= (ρM ⊗ idc) ◦ (idM ⊗σA,c).

Moreover, observe that we can define a left A-action on M by

λM =
AM

:=
AM

= ρM ◦ σ−1
A,M .

Exercise 7.3.4. Prove that the left action λM commutes with ρM for every right A-module
M if and only if the lift of A to Z(C) is commutative, i.e.,

µ = = = µ ◦ σA,A.

Hint: Consider A as a right A-module.

Now when (A, σA,•) is a separable commutative algebra in Z(C), we can canonically equip
CA with the structure of a tensor category where the tensor product is given by splitting the
canonical separability idempotent:

pM,N :=

M N

(7.3.5)

Exercise 7.3.6. Prove that pM,N from (7.3.5) above is an idempotent.

Moreover, since CA is finitely semisimple, it is multifusion, provided we can prove it is
rigid.

Theorem 7.3.7. Suppose C is a fusion category and A is a unital algebra. The following
are equivalent.

(1) A is separable,
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(2) CA is semisimple,
(3) the category ACA of A− A bimodules in C is semisimple,
(4) A admits the structure of a special Frobenius algebra, and
(5) the category ACA of A− A bimodules in C is rigid and semisimple.

Proof. The equivalence of (1)-(3) is [DMNO13, Prop. 2.7]. For the rest of the proof, without
loss of generality, we may assume A is connected.

(1)⇒ (4): We claim that (A, µ, i) can be uniquely endowed with the structure of a special
Frobenius algebra ∆, ε, up to a scalar normalization. First, up to scalar, ε must be the
unique left inverse of i ∈ C(1 → A), which exists by semisimplicity of C. The pairing
ε ◦ m is non-degenerate by [Ost03, Prop. 3.1.ii]. There is a unique comultiplication ∆
making (A, µ, i,∆, ε) a Frobenius algebra by [FRS02, Lem. 3.7], [FS08, Prop. 8]. Finally,
A is automatically special (see [GS16, Thm. 2.6]). Indeed, since A is separable, there is a
splitting s ∈ ACA(A → A ⊗ A) ∼= C by Exercise 7.3.2. Hence ∆ = λs for some λ ∈ C× as
∆ 6= 0. Thus µ ◦∆ = λ(µ ◦ s) = λ idA.

(4)⇒ (5): Exercise left to the reader.

(5)⇒ (3): Trivial. �

Exercise 7.3.8. Extend the proof of the equivalence of (3)-(5) of Theorem 7.3.7 to the
non-connected case.
Hint: Use the following steps.

(1) Every algebra is a direct sum of simple algebras which satisfy End(AAA) = C idA.
(2) For separable algebras, every simple algebra is Morita equivalent to a connected sep-

arable algebra.
(3) The property ‘admits a special Frobenius algebra structure’ is preserved under taking

Morita equivalence and taking direct sums.

Exercise 7.3.9. Prove (4)⇒ (5) of Theorem 7.3.7.

Definition 7.3.10. Given a fusion category C and a separable unital algebra A that lifts to a
commutative algebra in Z(C), the multifusion category CA is called the de-equivariantization
of C by A.

Exercise 7.3.11. Suppose the separable algebra A lifts to a commutative algebra in Z(C).
Prove that CA is fusion if and only if EndA−A(A) = C idA. Deduce from Exercise 7.3.2 that
if A is connected, then CA is fusion.

Exercise 7.3.12. Suppose the separable algebra A lifts to a commutative algebra in Z(C).
Show how to endow the free module functor −⊗ A : C → CA with the structure of a tensor
functor. Prove −⊗A is dominant, i.e., every simple object of CA is isomorphic to a summand
of a free module.
Hint: Use that all free modules are projective.

Definition 7.3.13. Suppose C is a braided fusion category. A unital algebra A ∈ C is called
étale if it is both commutative and separable. By the above discussion, CA for a connected
étale algebra is a fusion category.

Exercise 7.3.14. Find all connected étale algebras in D(Z/2).

Exercise 7.3.15 ([BN11]). Suppose C,D are fusion categories and F : C → D is a tensor
functor. Let I : D → C be the right adjoint of F .

5



(1) Show that I(1D) has an organic unital algebra structure in C.
(2) Show that I(1D) lifts to a commutative algebra in Z(C).
(3) Assume in addition that F is dominant, i.e., every simple object in D is isomorphic

to a summand of an object of the form F (c). Construct an equivalence D ∼= CA which
takes F to the free-module functor.

Exercise 7.3.16. Suppose C is a ribbon fusion category and A ∈ C is a (connected) étale
algebra. Find a condition on A which allows us to endow CA with a spherical structure.

Example 7.3.17 (Text adapted from [BJLP19, §2.2]). Suppose ι : Rep(G) → Z(C) is a
fully faithful braided tensor functor such that the composite F ◦ ι : Rep(G)→ C is still fully
faithful, where F : Z(C) → C is the forgetful functor. (Recall such an inclusion Rep(G) ⊂
Z(C) is called a Tannakian subcategory.) Let O(G) ∈ Rep(G) denote the algebra object of
functions G → C whose multiplication is given by χg · χh = δg=hχg where χg(h) = δh=g for
g, h ∈ G. Then ι(O(G)) is an étale algebra object in Z(C) whose category of right modules
CG := Cι(O(G)) is a fusion category, called the de-equivariantization of C by G.

Now when C is a braided fusion category and A is an étale algebra, CA is multifusion but
not braided in general.

Definition 7.3.18. A right A-module (M,ρM) is called local if

ρM ◦ βM,A ◦ βA,M =

AM

=
M A

= ρM .

The full subcategory category of local right A-modules, denoted Cloc
A , is called the condensa-

tion of C by A, which is again a multifusion category. In Exercise 7.3.19 below, we will see
that the braiding β descends to Cloc

A , which is a braided multifusion category.

Exercise 7.3.19. Suppose (C, β) is a braided fusion category and A ∈ C is étale. Prove that
β gives a well-defined braiding on Cloc

A .

Theorem 7.3.20 ([DMNO13, Cor. 3.30]). Suppose C is a non-degenerate braided fusion
category and A ∈ C is connected étale. There is a canonical equivalence

Z(CA) ∼= C � (Cloc
A )rev (7.3.21)

where rev denotes the same (multi)fusion category with the reverse braiding.

Definition 7.3.22 (Text adapted from [BJLP19, §2.2]). Let C be a braided fusion category.
An invertible object g ∈ C is called a boson or simple-current if βg,g = idg⊗g.

Exercise 7.3.23. Show that if B ⊂ Inv(C) is a subgroup consisting of bosons, then the full

subcategory of C generated by B is braided equivalent to Rep(B̂), where B̂ is the dual group
of B.

Definition 7.3.24. In the case of Exercise 7.3.23, we call O(B̂) the étale algebra induced
by the group of bosons B. The condensation Cloc

O(B̂)
is also referred to as the braided tensor

category obtained by condensing the bosons B.

Definition 7.3.25. A connected étale algebra A in a non-degenerate braided fusion category
C is called Lagrangian if Cloc

A
∼= Vecfd. Observe that if A ∈ C is Lagrangian, then C ∼= Z(CA)

by (7.3.21).
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7.4. Equivariantization and gauging. This section is adapted from [BJLP19, §2.2].
The inverse process to de-equivariantization is equivariantization. Suppose C is a fusion

category. Recall that Aut⊗(C) is the 2-group (monoidal category where all objects and
morphisms are invertible) whose objects are tensor automorphisms of C and whose morphisms
are monoidal natural isomorphisms.

Notation 7.4.1. Suppose BG → Aut⊗(C) is an action, where we still denote by g the
tensor automorphism on the right hand side. We denote the tensorator of g by ψg = {ψga,b :

g(a) ⊗ g(b)
∼−→ g(a ⊗ b)}a,b∈C. We denote the tensorator by µ = {µg,h : g ◦ h → (gh)}g,h∈G,

which is a family of monoidal natural isomorphisms satisfying associativity and unitality
axioms.

By [Gal17, Thm. 1.1], one may assume that the action is strict, so that g ◦ h = gh for all
g, h ∈ G, but for the sake of generality, we will only assume strict unitality of the action:

• Each monoidal functor (g, ψg) is unital [Gal17, Prop. 3.1], i.e., for all g ∈ G, g(1C) =
1C and g(id1C) = id1C , and
• e = idC, e ◦ g = g ◦ e = g and µg,e = µe,g = idg for all g ∈ G.

Definition 7.4.2. A G-equivariant object is a pair (c, λ) where c ∈ C and λ = {λg : g(c)→
c}g∈G is a family of isomorphisms such that the following diagram commutes for all g, h ∈ G:

g(h(c)) g(c)

gh(c) X.

g(λh)

µcg,h λg

λgh

(7.4.3)

Given G-equivariant objects (c, λ), (d, κ), we call a morphism f ∈ C(c→ d) a G-equivariant
morphism if the following diagram commutes for all g ∈ G:

g(c) c

g(d) d.

λg

g(f) f

κg

(7.4.4)

The equivariantization CG is the category whose objects are G-equivariant objects and whose
morphisms are G-equivariant morphisms. The tensor product in CG is given by

(c, λ)⊗ (d, κ) := (c⊗ d, (λg ⊗ κg) ◦ (ψgc,d)
−1) (7.4.5)

and the unit object is (1C, id1C).

Remark 7.4.6. Observe that when the G-action is strictly unital, the commutativity of
(7.4.3) with g = h = e shows that any G-equivariant object (c, λ) must have λe = idc.

Fact 7.4.7. For fusion categories, equivariantization C 7→ CG and de-equivariantization D 7→
DG are mutually inverse up to equivalence; we refer the reader to [EGNO15, Rem. 8.23.5]
for more details.

We can also equivariantize a G-action on a braided fusion category by braided tensor
automorphisms.
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Exercise 7.4.8. Suppose C is a braided fusion category and BG → Autbr
⊗ (C) is a G-action

by braided tensor automorphisms. Show that the braiding on C descends to a braiding on
CG.

Even better, we can equivariantize the G-action on a G-crossed braided fusion category!

Exercise 7.4.9. Suppose C is a G-crossed braided fusion category, which is equipped with
a G-action as part of its data. Show that the G-crossed braiding descends to an honest
braiding on the equivariantization of CG.

Theorem 7.4.10 ([EGNO15, Thm. 8.24.3], following [Kir01] and [Müg04]). Equivarianti-
zation and de-equivariantization are inverse procedures between equivalence classes of:

• braided fusion categories containing a symmetric Rep(G) fusion subcategory, and
• G-crossed braided fusion categories

The inverse procedure to condensing a connected étale algebra of the form O(G) ∈
Rep(G) ⊂ C is given by gauging [CGPW16, BBCW19], which is the two step process:

(1) find a G-crossed braided extension E of C, which comes equipped with a G-aciton
BG→ Aut⊗(E), and

(2) take the equivariantization EG.

Fact 7.4.11. When C is a braided fusion category with a strict G-action (every G-action is
equivalent to a strict G-action by [Gal17, Thm. 1.1]), every G-crossed braided extension E
of C is equivalent to a strict G-crossed braided extension of C by [Gal17, Thm. 5.6]. That is,
if we only consider strict G-actions, we do not lose any G-crossed braided extensions.

Fact 7.4.12. For non-degenerately braided fusion categories, condensing O(G) and gauging
a second level categorical G-symmetry (taking the equivariantization of a G-crossed braided
extension) are mutually inverse; we refer the reader to [DGNO10, §4] and [CGPW16] for
more details.

Remark 7.4.13. As mentioned above, we can condense any étale algebra in a nondegen-
erately braided fusion category, not just one of the form O(G). It is an important open
question to find the inverse process to this more general condensation. The recent article
[CZW18] provides an interesting step in this direction.

7.5. Generalized model for spatial phase transition in Levin-Wen systems. Sup-
pose C,D are unitary fusion categories andM is a finitely semisimple unitary C−D bimodule
category. We can write down a commuting projector generalized Levin-Wen model with an
M defect wall between the C and D sides of the lattice. This gives a gapped spatial phase
transition between topological phases whose topological orders are described by Z(C) and
Z(D) respectively.

Exercise 7.5.1. Suppose C,D are fusion categories and M is a Morita equivalence C − D
bimodule category, i.e., D = EndC−(M). Show how to endow(

C M
Mop D

)
(7.5.2)

with the structure of a 2× 2 multifusion category. When C,D,M are unitary, show how to
equip (7.5.2) with a canonical unitary structure as well.
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First, we build a hexagonal 2D lattice with a 1D defect line, where the region to the left of
the defect is built from morphisms in C, and the region to the right is built from morphisms
in D as before. The nodes which meet the defect line are built from morphisms in M.

M

M

C

D

(7.5.3)

TODO: change convention from before to match this one.

v
=

⊕
a,b,c∈Irr(C)

C(a→ b⊗ c)
v

=
⊕

a,b,c∈Irr(C)

C(a⊗ b→ c) or D

v
=

⊕
m,n∈Irr(M)
c∈Irr(C)

M(m→ c� n)
v

=
⊕

m,n∈Irr(M)
d∈Irr(D)

M(m� d→ n)

As before, we have edge and plaquette terms in the C and D bulk. We modify these terms
when the edges lie in the defect or when the plaquette meets the defect. The edges in the
defect just match up the simple objects. The plaquettes which meet the defect do the same
gluing operation, but we use a fusion relation for M:

∑
m,n∈Irr(M)
c∈Irr(C)

√
dn

c m

c m

n =
√
dcdm ·

c m

(7.5.4)

Here, the dimensions dm are defined as the unique unitary spherical dimensions in the 2× 2
unitary multifusion category (

C M
Mop End−C(M)

)
. (7.5.5)

For plaquettes meeting the right hand side, we use similar formulas, replacing C with D.

Exercise 7.5.6. In this exercise, we will prove that the dimensions imposed on M from
(7.5.5) agree with those imposed on M from a similar unitary multifusion category built
with D instead of C.

(1) Suppose M is a unitary C − D bimodule category. Show that we get commuting
representations of K0(C) and K0(Dmp) on K0(M) = C[Irr(M)].

(2) We say X is a self-dual generator for C if X ∼= X∨ and every object of C is isomorphic
to a summand of a tensor power of X. Show that there exists a self-dual generator
for C.

(3) Choose self-dual generators X ∈ C and Y ∈ D. Show that [X] ∈ K0(C) and [Y ] ∈
K0(Dmp) are self-adjoint commuting matrices. Deduce they may be simultaneously
diagonalized.
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(4) Show that (dm)m∈Irr(M) ∈ C[Irr(M)] is a simultaneous eigenvector for both [X] and
[Y ]. Deduce from the Frobenius-Perron Theorem that the dimensions imposed from
C agree with the dimensions imposed from D.

Since this model is commuting projector, it is gapped. On the left of the defect, the
topological order is described by Z(C), and on the right hand side, the topological order is
described by Z(D). On the boundary, the lowest energy excitations are described by the
multifusion category EndC−D(M).

Exercise 7.5.7. Construct braided tensor functors Z(C)→ Z(EndC−D(M)) and Z(D)rev →
Z(EndC−D(M)) whose images centralize each other.

Exercise 7.5.8. Prove that Z(EndC−D(M)) ∼= Z(C)� Z(D)rev.
Hint: M is a Morita equivalence bimodule between C�Dmp and EndC=D(M), and Z(Dmp) ∼=
Z(D)rev.

By the previous exercise, we see that the C−D bimodule/C�Dmp-moduleM is equivalent
to [Z(C)�Z(D)rev]L for some Lagrangian algebra L ∈ Z(C)�Z(D)rev. The following ansatz
of Kong says that all 1D gappeddefects between 2D topological orders are described by
Lagrangian algebras.

Ansatz 7.5.9. A 1D gapped defect between 2D topological orders described by the UMTCs
C,D corresponds to a Lagrangian algebra in C �Drev.

We will see in §7.7 below that gapped 1D defects between 2D topological orders correspond
to invertible 1-morphisms in the 4-category of braided fusion categories.

Now such Lagrangian algebras in C � 1Drev have been completely classified in [DNO13,
Thm. 3.6] by the following data:

• the condensable algebras A := L ∩ C � 1Drev and B := L ∩ 1C �Drev, and
• a unitary braided equivalence Φ : Cloc

A → Dloc
B .

Hence any gapped spatial phase transition C to D is a composite of 3 phase transitions,
comprised of 2 condensations and a braided equivalence:

C

CA

ClocA

Φ

Dloc
B

DB

D
.

7.6. Generalized model for condensation in Levin-Wen systems. We now briefly
describe the construction of [CGHP] based on ideas of Corey Jones which provides a lat-
tice model to perform the critical value gapless condensation for any (connected) unitary
étale algebra A in Z(C) for a fusion category C (unitary étale means commutative unitarily
separable).

First, we augment the usual 2D hexagonal lattice by adding ‘vertical’ edges corresponding
to the algebra A, depicted in red below:
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These new edges should be viewed as emanating vertically out of the plane. The usual
vertices of the plaquette are assigned the usual hom spaces of the Levin-Wen model, and the
new trivalent vertices correspond to the Hilbert space

v
←→

⊕
a,b∈Irr(C)

C(F (A)⊗ a→ b)

where F : Z(C)→ C is the forgetful functor.
The Hamiltonian has four terms: edge, plaquette, unit, and condensation. The edge term

A` is as before, which checks simple labels agree. The plaquette term Bp is similar to before,
but now, we use the half-braiding for A with Irr(C) in order to glue the regular element into
the boundary.

The unit terms Cv at the vertices with vertical edges implement applying the adjoint F (i†)
of the unit map F (i) : 1C → F (A), which effectively chops off the vertical edges and puts
us back into the usual Levin-Wen string net model. The condensation terms Dv,w between
two ‘neighboring’ vertices v, w with vertical edges implements the canonical separability
projector µ†µ, which again uses the half-braiding for F (A) with Irr(C).

The overall Hamiltonian is then given by

H = −
∑
`

A` −
∑
p

Bp −K

(
(1− t)

∑
v

Cv + t
∑
v,w

Dv,w

)
,

where K � 1.

Remark 7.6.1. This model has been shown to produce the condensation quantum phase
transitions for the (Z/n) toric code a doubled semion models as t goes from 0 to 1. This
analysis is achieved similar to before by mapping our model onto the 2D transverse-field
Ising model. Although the total Hilbert space is larger for our model, the analysis is easier,
as we no longer need to pass to a dual lattice; simply passing to the ground state space of
the edge A` terms and the plaquette Bp terms yields exactly the 2D transverse-field Ising
model for the Z/2 toric code.

We now give two explicit examples of this model, one for condensing e in Z/2 toric code,
and one for condensing the boson m in the doubled semion model Z(Hilbfd(Z/2, ω)).

Example 7.6.2 (Z/2 toric code [CGHP]). Our system has a qubit C2 on every edge of the
following 2D lattice:

11



Our operators which comprise our local Hamiltonian are given by:

Av :=

Z

v
Z Z

Z

Z

Bp := X

X

X

X

p

Cv :=
Z

v
D` :=

X
X

`

X

or
X

X `

X

.

Our Hamiltonian is given by:

Ht := −V

(∑
v

Av +
∑
p

Bp

)
−K

(
(1− t)

∑
v

Cv + t
∑
`

D`

)
,

where V > 0 is a constant and K � V is a large constant.

Exercise 7.6.3. Adapt the above example to condense m.

Exercise 7.6.4. Adapt the above example to condense the e orm particles in Z(Hilbfd(Z/n)).

Example 7.6.5 (Doubled semion [CGHP]). Our system has a qubit C2 on every edge of
the following 2D lattice:

where by convention, there is a single qubit on the edge attached to the vertical edge. Our
operators which comprise our local Hamiltonian are given by:

Av :=
v

Z

Z

Z Bp := W

WW

W

W W

X
X

X
X

X

X
Z

·P where W :=

[
1 0
0 i

]

Cp :=
Z

D` := ` Z

X

X
,

`

Z

X

X

, or ` Z

X

X

where P is the orthogonal projection onto the +1 eigenstate of
∏
Av. Our Hamiltonian is

given by a similar formula as before.

Exercise 7.6.6. Verify the claims made in Remark 7.6.1.
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7.7. The 4-category of braided fusion categories and the Witt group. This section
is basically copied from [JMPP19, §2.3].

By [Hau17, JFS17], there is a 4-category of braided tensor categories BrTens, and the
sub-4-category BrFus of braided fusion categories is 4-dualizable by [BJS18, Thm. 1.19].
Following [BJS18, JMPP19], we describe the n-morphisms and the composition operations
of the 4-category BrFus.

• 0-morphisms are braided fusion categories.
• 1-morphisms BrFus1(A → B) are multifusion categories C together with a braided

monoidal functor FC : A � Brev → Z(C) called a central structure. Sometimes we
denote C ∈ BrFus1(A → B) by ACB.

The composite of A1CA2 and A2DA3 is defined as follows. First, we look at the
Deligne tensor product C�D, which comes equipped with a braided monoidal functor
F : Arev

2 �A2 → Z(C �D). We define C �A2 D to be (C �D)L, the category of left
L-modules in C � D, where L ∈ Arev

2 � A2 is the commutative algebra obtained by
taking I(1A2), where I is the left adjoint to the canonical tensor product functor
⊗ : Arev

2 � A2 → A2, given by ⊗(a � b) := a ⊗ b and using the braiding for the
tensorator. This algebra is commutative since ⊗ is a central functor [DMNO13,
Lemma 3.5]. If A2 is nondegenerate, this algebra is identified with the canonical
Lagrangian algebra under the standard equivalence Arev

2 �A2
∼= Z(A2).

To see that C �A2 D has the structure of a 1-morphism in BrFus1(A1 → A3),
we observe that Z((C � D)L) ∼= Z(C � D)loc

L , the L-local modules in Z(C � D) ∼=
Z(C)�Z(D) by [DMNO13, Thm. 3.20]. Since A1 centralizes FArev

2
(Arev

2 )�Z(D) and
Arev

3 centralizes Z(C)� FA2(A2) in Z(C)�Z(D), we get a braided monoidal functor
A1 �Arev

3 → Z(C �D)loc
L
∼= Z((C �D)L).

An explicit example calculation of the composite AdE8 �Fib AdE ′8 appears in
[Row19].
• 2-morphisms in BrFus2(C → D) are finitely semisimple C − D bimdodule categories
M together with natural isomorphisms ηa,m : m�FD(a)→ FC(a)�m for a ∈ A�Brev

and m ∈ M called a A � Brev-centered structure such that the following diagrams
commute (here we suppress names of arrows):

FC(a) � (c�m) (c�m) � FD(a)

(FC(a)⊗ c) �m c� (m� FD(a))

(c⊗ FC(a)) �m c� (FC(a) �m)

(7.7.1)
13



FC(a) � (m� d) (m� d) � FD(a)

(FC(a) �m) � d m� (d⊗ FD(a))

(m� FD(a)) � d m� (FD(a)⊗ d)

(7.7.2)

FC(a⊗ b) �m m� FD(a⊗ b) m� (FD(a)⊗ FD(b))

(FC(a)⊗ FC(b)) �m (m� FD(a)) � FD(b)

FC(a) � (FC(b) �m) FC(a) � (m� FD(b)) (FC(a) �m) � FD(b)

(7.7.3)

The definitions of horizontal and vertical composition of 2-morphisms are given
in [BJS18, p. 41-42]. Vertical composition is the relative Deligne tensor product

CM �D NE . As described in [BJS18, Def. Prop. 3.13], when C,D, E are equipped
with central structures FC, FD, FE respectively andM,N are equipped with A�Brev-
centered structures ηN , ηM satisfying (7.7.1), (7.7.2), (7.7.3), the C − E bimodule
category M�D N is equipped with the A� Brev-centered structure

m�D (n C FE(a)) ∼= m�D (FD(a) B n) ∼= (m C FD(a))�D n ∼= (FC(a) B m)�D n. (7.7.4)

• LetM and N be two 2-morphisms with source C and target D. Then a 3-morphism
is a bimodule functor G :M→N such that the following diagram commutes:

G(m� FD(a)) G(FC(a) �m)

G(m) � FD(a) FC(a) �G(m)

G(ηa,m)

ηa,G(m)

(7.7.5)

• 4 morphisms are bimodule natural transormations with no extra compatibility re-
quired!

Remark 7.7.6. Observe that we may consider a multifusion category C ∈ BrFus1(Vec →
Vec) where we suppress the obvious braided central functor FZ : Vec→ Z(C). In more detail,
we expect that BrFus1(Vec→ Vec) ∼= MultFusCat, the 3-category of multifusion categories.

Definition 7.7.7. Non-degenerate braided fusion categories A,B are said to be Witt equiv-
alent [DMNO13, Def. 5.1 and Rem. 5.2] if there exist multifusion categories C,D such that
A� Z(C) ∼= B � Z(D).

Theorem 7.7.8. Suppose A,B are non-degenerate braided fusion categories. The following
are equivalent.

14



(1) A and B are Witt equivalent.
(2) There is a fusion category C and a braided equivalence FC : A� Brev → Z(C).
(3) There is an invertible 1-morphism between A and B in BrFus.

Proof.
(1)⇔ (2): This follows from [DMNO13, Rem. 5.2 and Cor. 5.8].

(2)⇔ (3): This is [JMPP19, Thm. 2.18]. �

Combined with Ansatz 7.5.9, we should expect the existence of a 1D gapped defect between
two 2D topological orders if and only if they are Witt equivalent.

7.8. Generalized condensation/gauging. TODO:
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