
1 Dmitri Nikshych

Work in a field k of characteristic D, algebraically closed (e.g. k = C).
Categories are k-linear, semi-simple. Hom(X, Y ) is a k vector space, and com-

position of morphisms is a bilinear map:

Hom(X, Y )× Hom(Y, Z) −→ Hom(X,Z).

All objects are direct sums of simple objects. An object is simple if it has no
sub-objects.

Definition 1.1. A fusion category C is a category satisfying the above conditions,
along with a bifunctor ⊗ : C × C → C and a simple unit object 1 with associativity
and unit constraints.
Associator isomorphisms: aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)
Units: rX : X ⊗ 1→ X and `X : 1⊗X → X.
These satisfy the pentagon and triangle axioms.

Every object has left and right duals. Duals are defined axiomatically rather
than constructively. A left dual of an object V is an object V ∗ along with two
maps:
evaluation evV : V ∗ ⊗ V → 1
coevaluation coevV : 1→ V ⊗ V ∗
These maps should satisfy the zig-zag relation:

V
rV−1−→ 1⊗ V coev−→ (V ⊗ V ∗)⊗ V −→ V ⊗ (V ∗ ⊗ V ) −→ V

should be the identity map. In fact, if V ∗ exists, it is unique up to isomorphism.
Finally, there should be finitely many isomorphism classes of simple objects.

Example 1.2. Let C = Vec, the category of finite dimensional vector spaces. Then
(V ⊗ U)⊗W is canonically isomorphic to V ⊗ (U ⊗W ), but these objects are not
equal.

MacLane’s strictness:
We have an isomorphism for each object V ∼= kn, and linear transformations are

matrices. Then kn ⊗ km = kmn.
For duals: evV : V ∗ ⊗ V → k is the map 〈φ, v〉 = φ(v), and coevV : k → V ⊗ V ∗

is 1 7→
∑

i v ⊗ v∗i . Then v =
∑

i v
∗
i (v)vi.

Definition 1.3. Let C1, C2 be fusion categories. A tensor functor is a functor
F : C1 → C2 which respects ⊗:

µX,Y : F (X ⊗ Y ) ∼= F (X)⊗ F (Y ).

You should also have an isomorphism u : F (1C1)→ 1C2 . These isomorphisms should
be consistent. They should satisfy compatibility requirements. They should play
well with the associators from C1 and C2.
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Example 1.4. Let G be a finite group. Then Rep(G), the category of finite dimen-
sional representations of G over k is a fusion category. Associativity is the usual
one for vector spaces g(v ⊗ w) = g(v)⊗ g(w). 1 = k is the trivial representation.

Example 1.5. Let H be a semi-simple finite dimensional Hopf algebra. Then
Rep(H) is also a fusion category. The comultiplication ∆: H → H ⊗ H makes
V ⊗W a representation.

Example 1.6. Let G be a finite group. Then G-graded factor spaces VecG forms a
fusion category. V =

⊕
g∈G Vg.

(V ⊗W )g =
⊕
xy=g

Vx ⊗Wy.

The simple 1-dimensional objects are the δg. The associativity constraint is the
obvious one.

Instead of the obvious associativity constraint, we can get another fusion cate-
gory VecωG by using a 3-cocycle ω ∈ Z3(G, k×).

ω(g, h, k) : (δg ⊗ δh)⊗ δk −→ δg ⊗ (δh ⊗ δk).

The pentagon axiom means that ω : G×G×G→ k satisfies the cocycle condition:

ω(xy, z, w)ω(x, y, zw) = ω(x, yz, w)ω(x, y, z)ω(y, z, w).

Definition 1.7. VecωG is the most difficult example of a pointed fusion category,
i.e., each simple object is invertible.

Definition 1.8. Let X1, . . . , Xn be the simple objects of C. We define structure
constants Nk

i,j by

Xi ⊗Xj
∼=
⊕

Nk
i,jXk

and an involution i 7→ i∗ of {1, . . . , n} by taking duals. One gets the Grothendieck ring
K0(C) by taking the ring generated as above.

There is a unique homomorphism FPdim: K0(C)→ R such that FPdim(X) > 0
for all objects of C, X 6= 0. Here every X ∈ C determines NX : K0(C) → K0(C) by
V 7→ X ⊗ V . Since K0(C) is free of rank n, NX gives an n × n matrix with non-
negative entries. If it’s not nilpotent, then it has a strictly positive eigenvalue. It is
not nilpotent because of rigidity (X∗ ⊗ X 6= 0). Hence FPdim(X) is an algebraic
integer.

Define FPdim(C) =
∑n

i=1 FPdim(Xi)
2 (analog of size of group being the sum of

squares of sizes of irreducible representations).

Example 1.9. FPdim(Rep(G)) = |G| = FPdim(VecωG).

Proposition 1.10 (Ocneanu Rigidity). Fusion categories are not deformable, i.e.,
there are not continuous families of fusion categories.

• There are only finitely many fusion categories with a given ring for K0(C).
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• There are only finitely many fusion categories C with FPdim(C) < N , for some
N > 0.

• There are only finitely many functors between two fusion categories.

• There are only finitely many module categories of a given fusion categories.

Definition 1.11. A C-module category M is a category along with a bifunctor
⊗C ×M→M which satisfies an associativity constraint

µX,Y,M : (X ⊗ Y )⊗M −→ X ⊗ (Y ⊗M)

(these are isomorphisms that satisfy an axiom that involves 3 objects of C).

Examples 1.12.

(1) C is a regular module over itself.

(2) If L < G is a subgroup, then M = Rep(L) is a module category over Rep(G) by
restriction.

(3) Let ϕ be a 2-cocycle on L. Then projective representations Repϕ(L) gives another
module category over Rep(G). In this case, the module category is indecomposable.

Question 1.13. Given a fusion category, describe all module categories over it.

Example 1.14. Given a subfactor N ⊂ M , take for C the N −N bimodules, and
for M the N −M bimodules.

Definition 1.15. Let A be an algebra in C. Let M be the category of right A-
modules in C, i.e., there is a map

ρ : A× V → V

which satisfies some axioms. Let X ∈ C. Then

A⊗ (V ⊗X) ∼= (A⊗ V )⊗X ρ→ V ⊗X.

Then A-modules form a C-module category.

Theorem 1.16 (Ostrik). Every module category appears in this way.

Definition 1.17. A-bimodules in C can be tensored with each other. C∗A, the set
of such bimodules, is a fusion category which is Morita equivalent to C.

Proposition 1.18 (Mueger). Morita equivalence is an equivalence relation.

Example 1.19. Rep(G) ∼ VecG is a Morita equivalence.

Morita equivalence is a good approach to classification.
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2 Noah Snyder

Translating between subfactors and tensor categories

Question 2.1. Why do ⊗-categories appear in studying von Neumann algebras?

We can look at some collection of (bifinite) N − N bimodules given a von
Neumann algebra N , and these form a tensor category. So when someone says
fusion category, you can think of a finite collection of N − N bimodules, closed
under ⊗.

Example 2.2. VecG can be realized as bimodules over R, the hyperfinite II1-factor.

There are a couple things lost in translation:

• (Unitarity) The von Neumann algebra side has a ∗-structure. Hom-spaces are
Hilbert spaces instead of vector spaces. There are more examples on the fusion
category side.

• By passing to this category, you are losing information about N . Which von
Neumann algebra is N?

Remark 2.3. Semi-simplicity is automatic (from analysis). However, in general,
there can be infinitely many isomorphism classes of simple objects. The category is
a fusion category if and only if the subfactor is finite depth.

What about starting with a subfactor? Let N ⊆M be a finite index subfactor.
Then M is an N −N bimodule, and also and algebra.

Example 2.4. C[G] =
⊕

g∈G δg ∈ VecG. Need to check that multiplication is a map
in this category. This algebra object gives the crossed-product subfactor N ⊆ NoG.

Definition 2.5. The standard invariant of a subfactor N ⊆M is

C
Mod−A // A−Mod− A
A−Mod
oo

The extra ⊗ exists as Ostrik’s internal hom, denoted Hom. In the 2-category lan-
guage, we get a unitary 2-cateroy, where the extra ⊗ is just composition.

In the subfactor world:

N −Mod−N
N−Mod−M //M −Mod−M
M−Mod−N
oo

N −Mod−N is the even part.
M −Mod−M is the dual even part.
The bimodule categories N −Mod−M and M −Mod−N are the odd parts.
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Instead of an algebra A ∈ C, can think of a tensor category C, a module category
M = Mod−A, and an object X ∈M (where A = X ⊗X∗ = Hom(X,X). In fact,
X = A thought of in Mod− A). Then we can look at the alternating ⊗-powers.

Or, we can look at two tensor categories C,D and a module category between
them M.

Definition 2.6. Given X ∈ C, we can look at the fusion graph for − ⊗X. It has

vertices the simple objects in C, and NZ
Y,X edges from Y to Z

In the subfactor case, we get the 4-partite Ocneanu graph.

Here is a table:

Subfactors Tensor categories
Q-system s.s. A ∈ C, tensor category N −Mod−N
N ⊆ N oG C[G] =

⊕
g∈G δG

finite depth fusion category
N a factor 1 is simple
irreducible dim(Hom(1, A)) = 1

index FPdim(A) (note A ' X ⊗X∗)
global index global dimension FPdim(C) =

∑
V (FPdim(V ))2

depth how many X’s in X ⊗X∗ ⊗X ⊗ · · ·
until everything appears

connection 6j-symbols

The standard invariant also appears as a planar algebra. We look at the dia-
grammatic calculus. When we tune planar algebras to the subfactor setting, we pick
our particular object X, and we only allow one strand type. The odd and even part
give a checkerboard shading. This allows for looking at special structure, like the
rotation.

The standard invariant also appears as a connection on the 4-partite Ocnenu
graph. This amounts to looking at the 6j-symbols. Since 2 of the objects are
X,X∗, the number only depends on 4 numbers, and it gives a number for each loop
on the 4-partite graph. “This is a discrete version of a connection on a manifold.”
There are unitary and tetrahedral conditions, which is called biunitarity, and then
there’s a condition called flatness, which is hard.

3 Monday afternoon

Question 3.1 (Fusion categories of small global dimension). Find all fusion cate-
gories C with FPdim(C) < N (up to equivalence).

If FPdim(C) ∈ N, then this is reasonably well-understood for small number of
divisors of N .

• pn
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• paqb

• pqr

This should get us up to 60 without a problem.
For example, suppose FPdim(C) ∈ Z[

√
2]. Then it is of the form (1+

√
2)kpa11 · · · pann

Question 3.2. What if dim(C) = (1 +
√

2)k?

Proposition 3.3 (Yamagami). A unitary fusion category is spherical

So one could first classify the modular tensor categories which could be the
quantum double Z(C). But note that FPdim(Z(C)) = FPdim(C)2.

Proposition 3.4. If C ⊂ D is a tensor subcategory, and C,D are fusion categories,
then FPdim(D)/FPdim(C) is an algebraic integer.

Question 3.5 (Open questions in classifying small fusion categories).

(1) What are all the group extensions of even parts of ADE subfactors?

(2) Can you classify all fusion categories C where FPdim(C) is a unit?

(3) How about modular categories up to dimension N? After which, how do you get
fusion categories up to

√
N?

(4) For which (n,N) do we already know fusion categories with rank ≤ N and
FPdim(C) ≤ N? (What about with no ⊗-subcategories?) (What about generated
by a self-dual element?)

(5) Can we really classify all weakly integral categories up to N = 60?

(6) What can we say about near-group categories (G∪{ρ} where ρ2 = nρ⊕
⊕

g∈G g)?
(How far do Masaki’s results get us?)

4 Michael Müger

Definition 4.1 (’63, MacLane). If C is a tensor category, then a symmetry is an
isomorphism

cX,Y : X ⊗ Y → Y ⊗X

which is natural with respect to X, Y , and cY,X ◦ cX,Y = idX⊗Y for all X, Y . There
is also a hexagon axiom with the associators that must be satisfied. It allows us to
express cX⊗Y,Z in terms of cY,Z and cX,Z and the associators.

Definition 4.2 (’86-’93, Joyal-Street). A braiding is the same as above, but where
we drop the condition cY,X ◦ cX,Y = idX⊗Y , and there is another hexagon identity
that relates to the maps cX,Y⊗Z .
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If you have a symmetric tensor category, and an object X and an n ∈ N, get a
map

Sn → End(X⊗n)

If you have a braided tensor category, and an object X and an n ∈ N, get a map

Bn → End(X⊗n)

Definition 4.3. The braid category is the free braided tensor category on 1 object.
Hence the objects is Z≥0, ⊗ = +, and Hom(n,m) = Bn if m = n and empty
otherwise.

You can make this category rigid by allowing bent curves, and get the category
of tangles.

Note that given a braided tensor category, can define c̃X,Y = c−1
Y,X . Of course˜̃c = c, and c̃ = c if and only if C is symmetric.

Definition 4.4. X, Y commute if cY,X ◦ cX,Y = idX⊗Y .

Definition 4.5. If C is braided and D ⊂ C, then the centralizer of D is

CC(D) = full subcategory with objects
{
X ∈ C

∣∣cY,X ◦ cX,Y = idX⊗Y for all Y ∈ D
}
.

The symmetric center of C is
Z2(C) = CC(C).

We call X ∈ C transparent if X ∈ Z2(C). “Can pull line associated to X through
any other.” It is obvious that Z2(C) is symmetric, and C is symmetric if and only if
C = Z2(C).

Question 4.6. What are the maximally non-commutative braided tensor categories?

There are other center constructions:

cat
Z0 // ⊗− cat Z1 // braided−⊗− cat Z2 // sym−⊗− cat

Definition 4.7. If C is a category, then Z0(C) = End(C) = Fun(C → C). An action
of a tensor category C on M is just a tensor functor C → Z0(M).

Definition 4.8. The braided center Z1(C) of a strict tensor category is defined as
follows: (also called the Drinfel’d center) Given X ∈ C, a half braiding for X is a
natural family

eX : X ⊗ Y → Y ⊗X

such that
eX(Y ⊗ Z) = (idY ⊗eX(Z)) ◦ (eX(Y )⊗ idZ)

(need associators if C is not strict). Also,

eX⊗Y (Z) = (eX(Z)⊗ idY ) ◦ (idX ⊗eY (Z))
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The braided center Z1(C) is the category whose objects are pairs (X, eX), and

Hom((X, eX), (Y, eY )) =
{
s : X → Y

∣∣s is compatible with the half braidings
}

=
{
s : X → Y

∣∣(idX ⊗s) ◦ eX(Z) = eY (Z) ◦ (s⊗ idZ)
}
.

The trivial object is (1, id), and c(X,eX),(Y,eY ) = eX(Y ).

Example 4.9. If H is a finite dimensional Hopf algebra, then Z1(H − Mod) ∼=
D(H)−Mod, where D(H) is the Drinfel’d double of H.

This process can be done for sets, monoids,
We should hope that the center of a center is “trivial.” More on this later.

Definition 4.10. Let C be a braided fusion category over k. C is called pre-modular
if C is spherical (ribbon structure). C is called non-degenerate if Z2(C) is trivial, i.e.,
equivalent to Veck. C is modular if C is pre-modular and non-degenerate.

Remark 4.11. If C is spherical, we have traces, and the left trace is the right trace.
So for every pair of objects, we can define the S-matrix

SX,Y = trX⊗Y (cY,X ◦ cX,Y ) ∈ End(1) ∼= k.

Turaev defined modular as semi-simple, braided, fusion category, and {SX,Y }X,Y ∈Irr(C)
is invertible.

Fact 4.12 (Rehren ’90, Müger ’04, more). C is semi-simple braided fusion category.
Then S is invertible if and only if Z2(C) is trivial.

Examples 4.13.

(1) D(G) = D(C[G]) is modular.

(2) IfH is a finite dimensional semi-simple, co-semi-simple Hopf algebra, thenD(H)−
Mod is modular.

(3) Quantum groups at roots of unity.

Proposition 4.14. C a spherical fusion category over k, algebraically closed, and
FPdim(C) 6= 0, then Z1(C) is modular, and FPdim(Z1(C)) = (FPdim(C))2.

Some important parts of the proof. If C is a fusion category, then Z1(C) is non-
degenerate. It is easy to see if C is spherical, then Z1(C) is spherical. Z1(C) is
semi-simple. We know EndZ1(C)((X, eX)) ⊂ EndC(X), and there is a conditional
expectation which gives the semi-simplicity. Z1(C) is Morita-equivalent to C � Cop.
We find the Longo-Rehren Q-system, Q =

⊕
Xi �Xop

i .

Fact 4.15. It is not the case that every modular tensor category is the center of a
fusion category. Use the Gauss sums:

Ω±(C) =
∑
i∈I

d(Xi)
2θ±1
i .

In general, Ω+(C)Ω−(C) = dim(C). It is always the case that Ω±(Z1(C)) = dim(C),
but it is not always the case that Ω+(C) = Ω−(C).
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Algebras and module categories in BTCs

If C is symmetric and A ∈ C is a commutative algebra, then AC is symmetric, and
FA : X 7→ A⊗X is symmetric.

If C is braided and A ∈ C is commutative, then AC is a tensor category, FA is
monodial. There is a braiding on AC making FA braided if and only if A ∈ Z2(C).

FA always factors through Z1(AC). FA : C → Z1(AC)→A C.
(A, µ) an algebra. An A-module X is dyslexic if µ ◦ cX,A ◦ cA,X = µ. We set ACo

to be the full subcategory of AC of dyslexic A-modules. This category is braided.
If C is braided and A ∈ C is a commutative algebra, then FA : C → Z1(AC) is

faithful. When C is modular or non-degenerate, FA is full, so C ⊂ Z1(AC).
If C is modular, and D ⊂ C is a full modular subcategory, then C ∼= D�CC(D),

so Z1(AC) ∼= C � ÃCo.
Theorem 4.16. If C admits a commutative algebra such that ACo is trivial, then
C ∼= Z1(AC).

Conversely, Z1(C) contains a commutative, separable algebra A such that AZ1(C)o
is trivial.

Fact 4.17. Z1(C1) ∼= Z1(C2) if and only if C1 and C2 are Morita equivalent.

Definition 4.18. C1, C2 non-degenerate braided fusion categories. Then C1, C2 are
Witt-equivalent if there are fusion categories D1,D2 such that

C1 � Z1(D1) ∼= C2 � Z1(D2)

as braided tensor categories.
Witt-equivalence is an equivalence relation.
We can define Wnon−deg to be the set (actually countable!) of braided non-

degenerate fusion categories modulo Witt-equivalence. In fact it is a group, with
multiplication [C1] · [C2] = [C1 � C2], and [C]−1 = [C̃], where the braiding is flipped,
and 1W = [Vec].

[C] · [C̃] = [C � C̃] = [Z1(C)] = [Vec] = 1W .

Conjecture 4.19. Wnon−deg is generated by the Witt-classes of the quantum groups
at roots of unity.

If A ∈ C is a commutative, separable algebra, then [C] = [ACo].
If A is a conformal quantum field theory, then finite extensions of A ⊂ B are

classified by commutative separable algebras A ∈ Rep(A) such that Rep(B) ∼=A

(Rep(A))o.

5 Richard Ng

Definition 5.1. Given a fusion category over C, can define notions of pivotal struc-
ture j : idC → (−)∗∗, and pivotal trace.

ptr`(f) : 1 −→ V ⊗ V ∗ jf⊗id−→ V ∗∗ ⊗ V ∗ −→ 1

ptrr(f) : 1 −→ V ⊗ V ∗ id⊗fj−1

−→ V ∗∗ ⊗ V ∗ −→ 1
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C is spherical if ptrr = ptr`. If C is spherical, then ptr(idX) = d(X) for all X.
C is a strict pivotal category if (V ⊗W )∗ = W ∗⊗V ∗, (−)∗∗ = idC, and j : idC →

(−)∗∗ is the identity.

Theorem 5.2. Every pivotal category is equivalent to a strict pivotal category.

We will assume C is a braided, spherical fusion category over C. Let the braiding
be given by

cV,W : V ⊗W → W ⊗ V.

Now look at the trace of cW,V ◦ cV,W , looks like a Hopf link, labeled by V,W .

Definition 5.3. The S-matrix is given by

Si,j = tr(cj,i∗ci∗,j)

which is a Hopf link, where the left edge of each loop is labelled by i, j.
C is modular if S is invertible.

Remark 5.4. Note that we get a ribbon structure if C is modular. This gives a
diagonal matrix called the T matrix, where the i, i-th entry is the θi which is the
scalar corresponding to a twist in a swing from i to i (handedness?). Note that θi
is not 0, and in fact T has finite order, so θi is a root of unity.

Fact 5.5. The modular group SL(2,Z) is generated by two elements:

t =

(
1 1
0 1

)
and s =

(
0 −1
1 0

)
.

A presentation is given by 〈s, t|s2 = I and (st)3 = s2〉.

We get a projective representation ρC : SL(2,Z)→ PGL(n+1,C) by s 7→ S and
t 7→ T .

We denote the Frobenius-Schur exponent as ord(T ) = N . Then

(1) ρC factors through SL(2,Z/N), and N is the level of the congruence subgroup.

(2) Si,j ∈ O(QN) (cyclotomic integers)

In fact, ρC can be lifted to an ordinary representation. There is a map ρ : SL(2,Z)→
GL(n+ 1,C).

Theorem 5.6. Consider t, s in the image of ρ.

(1) ker(ρ) is a congruence subgroup of level m = ord(t). The map ρ factors through
SL(2,Z/m).

(2) Have renormalized s. s ∈ Qm, the cyclotomic field of degree m.

(3) Let σ ∈ Gal(Qm/Q). Then σ(s) = Gσs where Gσ is a signed permutation matrix
σ̂ ∈ Csymn+1.

In fact, σ = σa, raising the root of unity to the a-th power, where (a, n) = 1.
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(4) Gσa = tastbstas−1 where ab ≡ 1 mod n.

Definition 5.7. Suppose C is a strict, spherical fusion category over C. Let V ∈ C
and n ∈ N. Then C(1, V ⊗n) is a finite dimensional vector space. Define a map

E
(n)
V : C(1, V ⊗n)→ C(1, V ⊗n)

by rotation! Put all the string down, then rotate the left-most strand over the top.
Then νn(V ) = tr(E

(n)
V ).

Note that En = I, so νn(V ) = tr(E) ∈ O(Qn).
The Frobenius-Schur indicators are numerical invariants of a spherical fusion

category.

Examples 5.8.

(1) If C = Rep(G), and j : V → V ∗∗ is the pivotal structure, then νn(V ) is the
classical indicator.

νn(C[G]) = #
{
x ∈ G

∣∣xn = e
}
.

(2) If C = Rep(H), where H is a semi-simple Hopf algebra, j the pivotal structure,
and S2 = 1, then νn(V ) is the indicator of Linchenko-Montgomery.

(3) In rational conformal field theory, given a modular tensor category, ν2(k) is given
by Bantay’s formula.

If C is a spherical fusion category, then Z(C) is modular, so it has a T -matrix.
Then ord(T ) = N , so for each V ∈ C,

νN(V ) = d(V ) ∈ O(QN).

Then the Si,j, which are based on Nk
i,j, the θi, and the dj are in O(QN).

In fact, ord(T ) is the smallest N such that νN(V ) = d(V ) for all V ∈ C.
If C is a spherical fusion category, then ν2(V ) = 0,±1 for all simple V ∈ C, and

ν1(V ) = δ0,V . FOr a modular tensor category,

νn(Vk) =
1

dim(C)
∑
i,j

Nk
i,jdidj

θni
θnj
.

Theorem 5.9 (A version of Cauchy’s theorem). If C is an integral fusion category,
then FPdim(C) and exp(C) have the same prime factors, where exp(C) = ord(c2)
(order of the braiding) of Z(C).

6 Tuesday afternoon

Question 6.1 (Wang’s conjecture). For any fixed n ∈ N, there are finitely many
modular categories of rank n (rank is number of simple objects).
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Status:
For n ≤ 4, it is true, and there is a complete classification. (For n = 4, the only

problem is fib� fib, where the first has objects of dimension 1, τ , where ττ = −1.
For n = 5, and there is some X � X∗, it is known.
For n = 6 and integral, classified.
ENO: Wang’s conjecture holds if FPdim(C) ∈ Z.

Question 6.2. Is there a function of rank(C) which bounds rank(Z(C))?

Question 6.3. It is known that exp(Wtorr) = 32, and ord([so(2n + 1)2n+1]) = 32.
Are these distinct?

Remark 6.4. To remember conventions, just remember so(3) at level 3 is su(2) at
level 6.

Question 6.5. When is the near group category A ∪ {Y } modular, where A is a
finite abelian group?

Question 6.6. Is there a computational approach to Z(C)?

Question 6.7. What is the range of νn(V ) for V ∈ C?

7 Scott Morrison

Constructing exotic objects
Start with a fusion ring (either for a fusion category or for a subfactor), or

perhaps X ∈ Irr(C) and the multiplicities of −⊗X and −⊗X∗.
Want general purpose methods to find C.

Theorem 7.1. Every non-degenerate planar algebra embeds in its graph planar
algebra.

Definition 7.2. Gn = G(Γ)n is C-valued functions on the loops of length n on Γ.
The graph planar algebra is a linear algebra gadget which only depends on the

combinatorial data of the graph and Frobenius-Perron dimensions.

How do you find the embedding?

(1) Identify canonical elements of the planar algebra and some relations it must
satisfy, and then think of those relations as equations in the graph planar
algebra, and try to solve them. For example, if Γ is (n − 1)-supertransitive,
and excess 1, then there is a low weight rotational eigenvector S which satisfies
S2 = (r − 1)S + rf (n). Often solving these equations gives a discrete set of
solutions.

(2) P0 = C, but G0 = C#vertices. If S is in the image of the embedding map, then
tr(Sn) is inside the image of P0, which is the constants. This gives a huge
collection of polynomial constraints. For example, this rigidly determines the
embedding of the 2221 subfactor planar algebra into its graph planar algebra.
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(3) A biunitary connection gives you the flat subalgebra of G. In particular, if you
have a subfactor planar algebra to start with, it defines a biunitary connection
whose flat subalgebra coincides with that of the embedding. In general, we
start with a biunitary connection, and find flat elements with respect to it.

One solves the flatness equations and the low-weight equations which are all
linear.

Next, we look at the subalgebra Q generated by S in G. This subalgebra is
always spherical, unitary, and non-trivial! We need to know:

(1) Is Q0
∼= C? If so, we have some fusion category/subfactor planar algebra.

(2) Is it what we were looking for? Is the principal graph of Q equal to Γ?

The challenge is to show all closed networks in S are multiples of the empty
diagram. Need evaluation algorithms, e.g., D2n, jellyfish algorithm.

8 Wednesday afternoon

All known fusion categories/subfactors

8.1 “Ab initio”

• Rep(Uq(g)), e.g., sl2, sl3, etc.

(also via BMW, Hecke, TL algebras)

• Loop groups

• Cuntz algebras, e.g., 2n1 and 3n when there are solutions.

Note that 34 is at index 3 +
√

5 gives 432 by equivariantization, and one (in a
family?) between A3 ∗ A4 and A3 � A4.

more generally, adding planar generators to a category with infinitely many
objects

• Quantum subgroups of su(n), n = 2, 3, 4, 5? (commutative algebra objects)

• Bisch-Haagerup subfactors RK ⊂ RoH (quotient of Rep(K) ∗ Vec(H))

• Group theoretical, e.g., RG ⊂ RH , Rep(G), VecωG

• Asaeda-Haagerup

• Extended Haagerup

• Flat elements of graph planar algebras

• Rep(H), H a quasi-Hopf algebra

13



8.2 New from old

• Deligne tensor product �

• Free product (not fusion)

• Subcategories

• Morita-equivalence (intermediate subfactors)

• reduced subfactor construction, which is changing your favorite object

• Orbifold

• Coset

• De-equivariantization (simple current extension is the abelian case), e.g., D2n

from An.

• Centers

• Conformal inclusions (commutative algebras in Rep(Uq(G))

• G-extensions (D is G-graded with De = C)
braided G-crossed categories

• short exact sequences

• Galois actions (gives non-unitary)

• adjoints of forgetful functors, e.g., symmetrization of braided categories, braid-
ification of tensor categories

• CT , T -modules in C where T is a semi-simple Hopf monad.

9 Open problem session, Wednesday afternoon

9.1 Fusion categories

Problem 9.1. Is there a conceptual construction of the even half of 4442? The
even half of 4442 looks like a copy of the even part of affine E6 fusion category (it
is also Rep(A4)) and another copy of affine E6, but as a module category. It looks
like Rep(A4), graded by the fibonacci category.

Problem 9.2. Is there an extension theory for fusion categories extended by fusion
rings? (E.g., near group categories)

Problem 9.3 (Snyder). Is there a sense in which a randomly chosen fusion graph
doesn’t have cylotomic dimensions?
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Problem 9.4 (Snyder). Look at all spoke graphs with N > 0 arms. Are there
finitely many N -tuples (`1, . . . , `N) such that the spoke graph with N arms of lengths
`1, . . . , `N has cyclotomic norm squared?

Problem 9.5 (Davydov). Can we find all fusion categories with a given smallest
simple object (which is not invertible)?

Problem 9.6 (Wenzl). How many fusion categories have the same given fusion
rules?

Can solve for su(n). It seems you should be able to do this for all quantum
groups at roots of unity. (need braided assumption) have to look at nice examples,
or it is intractable.

Problem 9.7 (Wang). Is there an effective version of Ocneanu rigidity? Is there a
sub-exponential bound on the number of unitary fusion categories with respect to
N , the sum of all the fusion multiplicities Nk

i,j?

Problem 9.8 (Etingof-Snyder). Can you classify all algebras in fusion categories
with small Frobenius-Perron dimension (e.g., less than 3 +

√
3)?

Problem 9.9 (Snyder). Is there a way to find the Frobenius-Schur exponent of C
without computing Z(C)?

Ng: This is known for quasi-Hopf algebras.

Problem 9.10 (Gelaki). Describe functors between group-theoretical categories.
What is known for Verlinde categories? (quantum groups at roots of unity)

Problem 9.11 (Peters). Compute the center of the even half of the Asaeda-
Haagerup and Extended Haagerup subfactors.

Problem 9.12 (Gelaki). Suppose C is a finite tensor category over C with prime
Frobenius-Perron dimension. Is C fusion?

(Hence, it would be of the form Vec(Z/p, ω). This would be an extension of a
result in Hopf algebras.)

Problem 9.13 (Rowell, Property F conjecture). Given a braided, weakly integral
fusion category C, is the image of the braid group finite?

Is braided and weakly integral fusion equivalent to finite image of the braid
group?

(Interesting because you could not construct a universal quantum computer from
it. If a fusion category has property F, then can’t use braiding alone for a universal
quantum computer. )

Problem 9.14. Is there a physical model which gives infinite image for the braid
group?

Problem 9.15. Is any integral fusion category unitarizable?

Problem 9.16. Is every integral fusion category weakly group theoretical?
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Problem 9.17. Does pseudo-unitary imply unitarizable?
(Wang: Physicists are really interested in this question. Given a conformal field

theory which is not unitary, there is a negative dimension.)

Problem 9.18. Are all fusion categories pivotal? Are all fusion categories spherical?
Does it depend on the ground field (k v.s. C)?

Problem 9.19. Is FPdim(C)/FPdim(X) an algebraic integer for every X ∈ Irr(C)?

Problem 9.20 (Gelaki). How much from modular representations of finite groups
can be carried to finite tensor categories?

Problem 9.21 (Jordan). Classify module categories and Brauer-Picard groups for
known examples.

Problem 9.22 (Rowell). What values can dim(X) take in [2, 3] for X ∈ C, a braided
fusion category?

((
√

3 +
√

7)/2, (1 +
√

13)/2 do not appear in the braided case.)

Problem 9.23 (Snyder). What are all the C generated by X with FPdim(X) ≤ 2,
and X not self-dual? Are they group theoretical if dim(X) = 2?

(can do X is self-dual and unitary (this is the subfactor case), Snyder: I think I
can do it if X⊗X∗ ∼= X∗⊗X, Rowell: enough if X is self-dual and the Grotheneick
ring is commutative)

Problem 9.24. For unitary theories, can choose a gauge so the F matrices formed
by 6j symbols are unitary, and the braiding matrices are diagonal with respect to a
certain basis. Can this happen for some non-unitary fusion category?

(Is the unitarity of the F matrices equivalent to unitarity? Snyder: if F matrices
are unitary, and dimensions are positive, and maybe something about θ’s, then it is
unitary)

Problem 9.25 (Morrison). Are there any numbers which are positive real numbers
which are cyclotomic integers and are the largest amongst its Galois conjugates
which are not realized as dimensions of objects in a fusion category?

Problem 9.26. What can you say about all fusion categories C for which

#
{

dim(X)
∣∣X ∈ C} = 2?

Problem 9.27 (Jones, fusion category version of supertransitivity). In a fusion
category, is there an upper bound on the N such that X⊗N is a simple object
(where dim(X) > 1)?

(Haagerup: If the fish exist, then no!)
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9.2 Subfactors

Problem 9.28 (Jones). Is there an upper bound on the supertransitivity of a
subfactor planar algebra?

(The supertransitivity with respect to an object X with dim(X) > 2 is the
largest N such that Hom(1, X⊗n) is Temperley-Lieb.)

Supertransitivity is the analog of transitivity of group actions. Note that the
group case was solved by the classification of finite simple groups.

Problem 9.29 (Snyder). Find a non-number theoretic argument to rule out the
rest of the Haagerup family vine.

E.g., is there a diagram that evaluates in two different ways?

Problem 9.30. There are accumulation points from below for FPdim(X) for an
object in a fusion category or [M : N ] for finite depth subfactors. Are there any
accumulation points from above?

(Note that there are no accumulation points at all for FPdim(C) for a fusion
category C by Ocneanu rigidity.)

Problem 9.31 (Morrison-Peters). Is there a polymer theory of principal graphs?
What graphs can appear as subgraphs of principal graphs?

(need a bound on the rank at each depth)

10 David Jordan

G-extensions of fusion categories (results of ENO)

Definition 10.1. A fusion category D is a G-graded extension of a fusion category
C = De if

D =
⊕
g∈G

Dg

with De = C and Dg ⊗Dh ⊆ Dgh. This gives a grading on K0(D).

Examples 10.2.

(1) VecωG is a G-graded extension of Vec.

(2) VecωG is also a G/N -graded extension of Vec
ω|N
N , where N is normal.

(3) Tambara-Yamagami categories. Fix a finite group G. Want K0(TY ) = Z[G] ⊕
Z[X]. Here X ⊗ X =

⊕
g∈G g. This is the simplest near-group category. This is

weakly integral. This is a Z/2-extension of VecωG (and in fact, we will show ω is
trivial).

Their initial classification was quite intensive, and relied on computing all the
6j-symbols. This was the motivation for ENO.

We want to study D which are G-extensions of C.
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Remark 10.3. Each Dg is a C-C bimodule category. In fact, C �C Dg �C C ∼= Dg.
Dg �C Dg−1

∼= De = C, so each Dg is invertible. This is an analog to the graded-ring
case, in which each graded piece is an invertible bimodule.

Definition 10.4. The Brauer-Picard groupoid BrPic3(C) (using the subscript in-
stead of number of underlines) is as follows: The set of objects is {∗}, the 1-
mnorphisms is the set of invertible C − C bimodule categories, the 2-morphisms
are bimodule equivalences, and the 3-morphisms are natural isomorphisms.

In this 3-category, everything is invertible. Hence we can think of it as a topo-
logical space. The algebraic space |BrPic3(C)| is the classifying space of BrPic3(C).

Theorem 10.5 (ENO). There is an equivalence

{G− extensions D of C}
∼

∼= [BG, |BrPic3(C)]

where BG = K(G, 1), which is uniquely determined by π1(BG) = G and πk(BG) = 0
for all k 6= 1.

Theorem 10.6 (ENO). Let πk := πk(|BrPic3(C)|). Then π0 = {∗}, π1 = BrPic(C)
is the Brauer-Picard group of C, which is the equivalence classes of invertible bimod-
ules, π2 is the invertible objects in Z(C), π3 = C×, and πk = 0 for all k ≥ 4.

Remark 10.7. Can compute invertible objects in Z(C) without actually computing
Z(C).

This gives an algorithm for understanding G-extensions.

Corollary 10.8. Extensions D of C by G are built as follows:

(1) Give a homomorphism ρ : G→ BrPic(C), for which a certain obstruction O3(ρ) ∈
H3(G, π2) must vanish.

(2) If so, write O3(ρ) = ∂M , where M ∈ H2(G, π2).

(3) For this M , there is another obstruction O4(ρ,M) ∈ H4(G,C×) which must
vanish. If so, choose α such that α = O4, where α ∈ H3(G,C×).

Roughly, ρ corresponds to choosing the bimodule decomposition D =
⊕

g∈GDg,
M corresponds to the isomorphisms Dg �C Dh ∼= Dgh, and α corresponds to the
associativity data.

Example 10.9. C = Vec, |cD =
⊕

g∈G Vec Then π2 is the invertible objects in
Z(Vec) = Vec, which is C. Hence π2 is trivial. Hence O3(ρ) = 0 automatically. Now
O4 ∈ H4(G,C×) must vanish. Then we choose α ∈ H3(G,C×) and this gives us
VecαG.

We now outline the ENO treatment of the Tambara-Yamagami classification.

Theorem 10.10 (Tambara-Yamagami). Categorifications of the TY ring K0(TY )
are given by
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(1) ω = 0 and A is abelian.

(2) Choose a non-degenerate bilinear, symmetric bicharacter χ : A× A→ C×.

(3) Choice of sign ±1.

Proof.

(0) Assume the order of G is odd for simplicity in the Tambara-Yamagami theory.

(1) First, C = VecωG for some G,ω. We will rule out the possibility of a nonzero ω.
Now the functor g 7→ g ⊗X, where X is the new object, defines a fiber functor, so
ω = 0.

Now VecG comes with a corresponding bimodule M (the X part). If we take the
dual (VecG)∗M = Rep(G) = VecG, so G = A is abelian.

(2) We have a map ρ : Z/2 → BrPic(VecA), which is braided auto-equivalences
of Z(VecA) (by ENO). Now Z(VecA) = (VecA×A× , G) where A× is the group of
characters and Ga,b : a ⊗ b → b ⊗ a via the bicharacter 〈a, b〉 ∈ C×. Hence the
braided auto-equivalences is O(A ⊕ A×) (the split orthogonal group). Now we
choose ρ(ε) ∈ O(A⊕ A×). We write ρ(ε) as

ρ(ε) =

(
α β
γ δ

)
where α : A→ A, β : A→ A×, etc. and the transpose looks like

ρ(ε)T =

(
δT βT

γT αT

)
.

Now we have αT = δ, βT = β, γT = γ, and we can reduce to the case α = δ = 0.
Now we have

ρ(ε) =

(
0 β
γ 0

)
must square to itself, so β = γ−1, and β = β∗ is the data in (2) (the non-degenerate,
bilinear, symmetric bicharacter).

(3) Since |A| is odd, O3(ρ(ε) ∈ H2(Z/2, A ⊕ A×) = 0, so M ∈ H2(Z/2,C×) = 0.
Then O4 ∈ H4(Z/2,C×) = 0, and α ∈ H3(Z/2,C×) = Z/2, which is the choice of
sign.

Remark 10.11 (Snyder). Start with self-dual subfactor planar algebra, try to erase
shading, but this comes down to a choice of bicharacter.

Can use the same machinery to classify fusion categories of dimension pq2. ENO
have a Burnside type theorem which classifies these up to Morita equivalence.

Theorem 10.12 (Jordan-Larsen). If dim(C) = pq2, then either:

(1) C is group theoretical,

(2) p = 2 is a Tambara-Yamagami category,
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(3) p is odd, p|(q+ 1), and C is a category C(p, q, {ζ1, ζ2}, ξ) where ζi ∈ Fq2 is root of
unity, ζ1 6= ζ2, ζ1ζ2 = 1, ζpi = 1, and ξ ∈ H3(Z/p,C×) = Z/p.

Sketch of proof. First, show C is Z/p graded. The same tricks as in TY show that
O3,O4 are 0. Then ρ(ε) ∈ O((Z/q)4), and ζ1, ζ2 are eigenvalues of one block of
ρ(ε).

TODO: replace BrPic3 with BrPic

11 Sonia Natale

Exact sequences of (tensor) fusion categories.
For finite groups, if we have a short exact sequence

1→ G′ → G→ G′′ → 1,

we can recover G from G′, G′′ and cohomological data.
An exact sequence of semi-simple Hopf algebras is a sequence

k → H ′
ι−→ H

π−→ H ′′ → k.

such that π ◦ ι = ε1. Then H ′ = Hcoπ =
{
h ∈ H

∣∣(id⊗π)δ(h) = h⊗ 1
}

. (H ′′ ∼=
H/H(H ′)+ where (H ′)+ = ker(εH′))

Definition 11.1. H ′ ⊆ H is a normal Hopf subalgebra if h(1)aS(h(2)) ∈ H ′ for all
h ∈ H, a ∈ H ′.

In this case, get a short exact sequence as above, and there exists a good section
H ′′ → H which makes it possible to recover H from H ′, H ′′ and some cohomological
data in the structure of a bicrossed product.

This talk is about joint work with Alain Brueguières, which extends the notion
of short exact sequences of Hopf algebras to the fusion category setting.

Definition 11.2. GIven a finite group action ρ : G → Aut⊗(C), then the equivari-
antization CG is a fusion category, which is endowed with a natural forgetful functor
CG → C, by (X, ug) 7→ X. Have isomorphisms ug : ρg(X)→ X. In this setting, get

Rep(G)→ CG → C

Definition 11.3. Let F : C → D be a tensor functor with C,D fusion, which is
strong monodical and exact.

• F is dominant if for all Y ∈ D, there is an X ∈ C such that Y embeds in F (X).
Equivalently, F is surjective.

• F is called normal if for all simple X ∈ Irr(C) such that HomD(1, F (X)) 6= 0 we
have F (X) ∼=

⊕n 1.

Example 11.4. If G′ ⊆ G is a subgroup, get a map Rep(G)→ Rep(G′) by restric-
tion, which is always dominant. It is normal if and only if G′ is a normal subgroup.
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Definition 11.5. A sequence C ′ f−→ C F−→ C ′′ of tensor functors between fusion
categories is called an exact sequence of fusion categories if

(1) F is dominant and normal,

(2) f is a full embedding, and

(3) the essential image of f is ker(F ), where ker(F ) ⊆ C is the full subcategory whose
objects are those X ∈ C such that F (X) ∼=

⊕n 1, i.e., F (X) ∈ 〈1〉.

Definition 11.6. Suppose C ′ → C F−→ C ′′ is exact. Then F induces by restriction a
fiber functor ωF : C ′ → Veck, by X 7→ Hom(1, F (X)). Then there exists a (co-semi
simple) Hopf algebra H such that C ′ ∼= comod − H, where H = coned(ωF ). H is
called the induced Hopf algebra of the exact sequence.

(We will work with the case k = C so that H is co-semis impel and semi simple.)

Examples 11.7.

(1) Given
1→ G′ → G→ G′′ → 1

a short exact sequence of finite groups, this gives rise to an exact sequence of fusion
categories

Rep(G′′)→ Rep(G)
resG

G′−→ Rep(G′).

The induced Hopf algebra is H = kG
′′
.

(2) If ρ : G→ Aut⊗(C), then

Rep(G)→ CG U−→ C

is exact.

Proposition 11.8. If C ′ → C → C ′′ is exact, then FPdim(C) = FPdim(C ′) FPdim(C ′′).
Moreover, if C ′ → C → C ′′ is a sequence such that C ′ ⊆ ker(F ), then the sequence

is exact if and only if FPdim(C) = FPdim(C ′) FPdim(C ′′).

Definition 11.9 (Hopf monads, Bruguières, Virelizier, Lack). C a fusion category.
a monad on C is an algebra T ∈ End(C). In particular, have a multiplication
µ : T ⊗ T → T and a unit η : idC → T .

If T is a monad, then we have the category CT of T -modules in C, where objects
are (X, r) where X ∈ C and r : T (X)→ X is a morphism in C such that rT (r) = rµ
(commutative diagram)

T 2X
T (r) //

µ

��

T (X)

r

��
TX r

// X

and
X

ηX //

=

''

TX

r
��
X
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Now we have a forgetful functor U : CT → C, which has a left adjoint L.
U(X, r) = X, and L(X) = (TX, µX), where T = UL.

Definition 11.10. If we have C,D fusion categories, and F : D → C and G : C → D
are functors. Suppose G is left-adjoint to F , FG = T ∈ End(C) is a monad. Then
F is monadic if κ : D → CT is an equivalence.

(Question from Jordan: when is the right adjoint equal to the left adjoint?
Maybe: If G is left-adjoint to F , and F is left-adjoin tho R, then R(X) = G(X∗)∗.)

Fact 11.11. C,D fusion categories, F a tensor functor. Then F has adjoints and
it is monadic.

Definition 11.12. Let T be a monad on C. T is a bimonad if CT is a monodical
category and the forgetful functor U : CT → C is strong monodical. Equivalently,
T has a comonoidal structure, which is a natural transformation (not isomorphism)

T (X⊗Y )
T2(X,Y )−→ T (X)⊗T (Y ) which is natural in X, Y , and T0 : T (1)→ 1 satisfying

some conditions.
If T is a bimonad, then it is called a Hopf monad if CT is rigid.
A Hopf monad T : C → C is called normal if T (1) ∈ 〈1〉.

Examples 11.13.

(1) If H is a Hopf algebra over k, then TH = H ⊗− defines a Hopf monad on Veck,
and (Veck)

TH ∼= Rep(H).

(2) If T is normal, then T |〈1〉 is a Hopf monad on 〈1〉 = Veck by restriction, so
T〈1〉 ∼= H ⊗−, where H is the induced Hopf algebra of T .

Theorem 11.14. Suppose we have tensor categories C ′′, C ′ over k where C ′ is finite
(e.g., they are fusion categories). Then the following are equivalent:

(1) Extensions C ′ → C → C ′′ of C ′′ by C ′.
(2) Normal, faithful k-linear exact Hopf monads on C”′ with induced Hopf algebra H
endowed with an equivalence C ′ ∼= comod−H.

Proof. If T is as in (2), then we get a short exact sequence by setting C = (C ′′)T ,
and F = U : (C ′′)T → C ′′ is the forgetful functor. This is normal and dominant since
T is normal and T is faithful.

Conversely, given a short exact sequence as in (1), then the left adjoint G of F
gives a monadic adjunction, and we get an equivalences C ∼= (C ′′)T .

Example 11.15. This extends equivariantization under a finite group action. Sup-

pose ρ : G → Aut⊗(C). Then we get a short exact sequence Rep(G) → CG U−→ C.
This is a special case. Set T =

⊕
g∈G ρ

g ∈ End(C), and µ : T 2 → T by

T 2(X) =
⊕
g,h∈H

ρgρh(X)
ρ2g,h−→ T (X) =

⊕
g∈G

ρg(X)

where ρ2
g,h is given by the monodical structure of ρ. Then T is exact, normal, faithful

Hopf monad on C, and CG ∼= CT .
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Theorem 11.16. F : C → D dominant, FPind(F ) = 2, where

FPind(F ) = FPdim(C)/FPdim(D).

Then F is normal and Rep(Z/2) → C → D is exact (analog of subgroup of index 2
is normal).

Theorem 11.17. Suppose F : C → D dominant where C,D are weakly integral.
Suppose FPind(F ) = p, where p is the smallest prime dividing FPdim(C). Then F
is normal and Rep(Z/p)→ C → D is exact.

Remark 11.18. In both theorems above, both short exact sequences are equivari-
antizations.

12 Thursday afternoon

Question 12.1. Finite monodromy for modular extensions.

Question 12.2. Extensions of C by D without D being Rep(H).

Question 12.3. Izumi’s question about TY for self-dual Hopf algebras.

Question 12.4. Integral modular categories

Question 12.5. Understanding Z(C) for near group C.

Question 12.6. Frobenius-Schur exponent and planar algebras

Question 12.7. Compute center of Asaeda-Haagerup or Extended Haagerup via
class equation, etc.

Question 12.8. Fusion categories of small global dimension

13 Zhenghan Wang

IBM claims that we will probably have quantum computers in about 15 years. (Not
Wang’s answer though.)

A unitary modular category is the same as many topological quantum computers.
Any generic unitary modular category is a universal quantum computer, i.e.,

whatever you claim you can do with a quantum computer, you can do it with the
unitary modular category with at most a polynomial time slowdown.

Unitary modular categories can be realized by real physical systems (with bound-
aries).

(Bisch: That’s like saying every self-adjoint operator is a physical observable,
which is not true... Wang: This is better, and explanation will come)

There are two extremes: the Drinfel’d centers (doubles) and quantum groups
(Chern-Simons theories). The first have central charge 0, and the second (conjec-
turally) generate the Witt group, and they are maximally chiral. The second group
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seems pretty real, but it is hard to understand them in terms of Hamiltonians. But
we understand the first one completely, but we cannot construct them easily. The
quantum double of Z/2 is realized in superconductors.

Peter Shor: quantum algorithm for factoring numbers.
Alexei Kitaev: need to do topology
Start with Z/2, and take the double D(Z/2), called toric code, Z/2-gauge theory,

Z/2-spin liquid, etc.
Kitaev model/Levin-Wen model - Hamiltonian formulation of D(Z/2)/ Turaev-

Viro TQFTs.

Definition 13.1. A quantum system is a pair (L, H) of a local Hilbert space and
a Hermitian operator called a Hamiltonian. (In fact, L is finite dimensional!)

The 6j-numbers are all algebraic numbers, so they are computable. Hence this
Hamiltonian is computable. To remember H, you just need to remember an or-
thonormal basis and some numbers. Fix a certain tensor product decomposition of
L (gives a sense of locality).

Kitaev: On T2, we give a cell-ulation (or choose a square lattice on the torus).
Write down a local Hilbert space and a Hermitian operator. Define L =

⊗
C2 over

all edges in the lattice (this is electrons, one spin up, one spin down, or the group
algebra C[Z/2], which is just |0〉 and |1〉).

(Bisch: in operator algebras, would associate matrix algebras. Wang: You can
associate any finite dimensional C∗-algebras, but then you have to choose a basis.)

The Hamiltonian which measures the energy is given by

H = −
∑

verticces

Av −
∑
faces

Bp

Take a vertex v. There are 4 edges touching it, so Av =
⊗

4 edges σ
z⊗
⊗

rest id where
σz is the Pauli matrix

σz =

(
1 0
0 −1

)
.

Given a face p, the Bp =
⊗

4 edges on ∂p σ
X ⊗

⊗
rest id, where

σX =

(
0 1
1 0

)
.

It is very difficult to detect a 3-body interaction (∼ 1% of the 2-body interaction).
In this system, we have a 4-body interaction. For this Hamiltonian:

(1) All terms Av, Bp commute with each other. The only trouble is when a vertex
is touching a face, but then they share 2 edges. This means they can all be
simultaneously diagonalized.

The spectrum of H is the set of eigenvalues {λ0 < λ1 < · · · }. The eigenspace
Eλ0 is the ground-state manifold. The eigenspace Eλ1 is the first excited state.

(2) The ground state manifold on T2 is isomorphic to C4.

24



(3) The elementary excitations Eλ1 is isomorphic to D(Z/2).

This Hamiltonian is rigorously solvable (not exactly solvable, but this means some-
thing else). The dimension of Eλ0 is always equal to the rank of the TQFT. In
fact, C4 = C[H1(Σ,Z/2)] you always get the group algebra of the Z/2-homology of
the surface. We can renormalize to λ0 = 0 by shifting. What’s the next possible
eigenvalue? It is λ1 = 2.

|ψ〉 ∈ Eλ0 ⇐⇒ for all v, p, Av|ψ〉 = |ψ〉 and Bp|ψ〉 = |ψ〉.

This leads to a constraint: elementary excitation can only be created in pairs (con-
servation of physical charge). There are particles 1, e,m, em from some rules on the
torus, and looking at the braiding rules returns D(Z/2).

The above machinery works for any unitary modular category.

Theorem 13.2. For any unitary fusion category C, there exists a quantum schema
to realize the Drinfel’d center Z(C).

Here a schema is just a procedure to write something down. Given C and
an oriented surface Y with a cellulation ∆ of Y , can write down a quantum sys-
tem (LY,∆,C, HY,∆,C) so that the ground state of H is canonically isomorphic to the
Turaev-Viro Hilbert space associated to Y , and the fusion rules give the quantum
double of C.

(Bisch: What about higher eigenvaues? Wang: The ground state is stable. We
want to deal with low-energy physics, not high-energy physics which is unstable.
This relates to renormalization)

(1) The ground state manifold of (L, H) ∼= V RT
Z(C)(Y ) ∼= V TV

C (Y )

(2) The elementary excitation is D(C) ∼= Z(C).

Given a subfactor, take the even part to get all this data. The odd part gives a
module category. How does this appear? Rather than a torus, draw a disk, so we
have a lattice with a boundary. The boundary conditions are given by module cat-
egories. What is the condition to give that the module category is indecomposable?
These are the stable ones. Decomposable ones will break down quickly.

If C is a group (Rep(G)?) then we get a trivalent graph labelled by group
elements. The mapping class group changes this graph to another graph, and they
are related. If we have two triangulations of the same surface with the same number
of vertices, we can always move one to the other by the diagonal flip. If we dualize
this rule, we get the F-rule.

Mass-gap: Given an H on a finite dimensional L, the quantity λ∆
1 −λ∆

0 > 0. We
want the limit as ∆ gets more fine. Is the difference bounded below?

“su(2)2” Ising. 1, σ, ψ are the simples, with rules σ2 = 1 ⊕ ψ, ψ2 = 1, and
σψ = ψσ = σ. σ is non-abelian anyon. θψ = −1, and ψ∗ = ψ is a Majorana
fermion. This is probably already discovered in condensed matter.

Fractional quantum Hall effect. AtNe/#Flux is 1/3, this is the modular category
of Z/3. 5/2 corresponds to Ising model.
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14 Reports on small groups

14.1 Computing center of even part of Asaeda-Haagerup

Found some stuff. Some information about what possible dimensions you can have.
The global dimension is FPdim(AHeven) = 8

√
17(4 +

√
17), and the right hand side

is the fundamental unit, so not many numbers divide it. Another restriction is that
conjecturally, the dimensions of objects in the center should be sums of 1’s and sums
of (4 +

√
17)’s. This gives a limited list (of length 13) on possible dimensions of

objects. This also gives a bound on the rank of 270-something, but they guess the
rank is in the 20’s.

Theorem 14.1 (???, Osterik?). The list of dimensions of summands of the induc-
tion of 1 in the center, I(1) in Z(C), can be read off just from the Grothendeick
group of C itself via formal codegrees. They are FPdim(C)/formal codegrees.

This allows them writing down 5+ dimensions of objects in the center. There
are some heuristics to believe why the rank is somewhere in the 20s and 30s. They
know 5 non-trivial objects, and 3 of the dimensions.

Idea: look at inductions of other objects, and try Frobenius reciprocity, and this
will give a better bound on the rank.

Induction is dominant (restriction is surjective).

14.2 Classifying integral modular tensor categories of di-
mension paqb

When are these categories group theoretical?

Theorem 14.2 (Etingof, Rowell, Witherspoon). If Cis group theoretical, braided
fusion, then C has property F .

If dim(C) = pn, pq, pqr, and C is fusion, then C is group theoretical.
If dim(C) = pq2, pq3 and C modular, then C is group theoretical.
For p2q2, there are non-group theoretical where FPdim(C) = 36. There are 2 of

them of ranks 8 and 10. The one of rank 8 is “like Rep(D(S3)),” and the other is
su(3)3.

The idea is to classify by the pointed sub-categories. In each case, there are
pointed non-trivial subcategories.

For pq4, it is group theoretical unless |Cpt| = q2, and for p2q2, it is group theo-
retical unless |Cpt| = p or q.

The conjecture that the two of rank 8 and 10 are the only two non group-
theoretical categories with FPdim(C) = 36.

There is a theorem of Müger that tells us when a category is group-theoretical.
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14.3 Frobenius Schur exponents

Try calculating a simple case of this. Try calculating ord(T ) for An. Since An is
modular, can calculate ord(T ) from the f (n). In general, the following formula is
wrong, since An at q = exp(2πi/(n+ 1)) is not modular!

ord(T ) =

{
2(n+ 1) if n is odd

4(n+ 1) if n is even

At index greater than 4, only contribution to the FS-indicator are the new ro-
tational eigenvectors of Pn are n = ord(T ). For Haagerup, n = 39, and there are
roughly 45 million new linearly independent things.

15 Problems for friday

Question 15.1.

(1) Low rank modular tensor category classification

(2) Construct the connection on the graph of the missing AH subfactor

(3) Formal codegrees: what is the smallest possible?

(4) Find small dimensional objects in braided subfactors

(5) More on combinatorics of Z(AH)
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