
Algebras, module categories, and planar algebras

Let (A,µ, i) be an algebra object in a tensor category 1 C. By an argument similar to [KO02,
Fig. 4], we have canonical isomorphisms

HomA−Mod(A→ A)

HomA−Mod−A(A⊗A→ A) HomC(1→ A)

HomMod−A(A→ A)

∼=

∼=

∼=

∼=
(1)

We call (A,µ, i):

• connected if the morphism spaces in (1) above are one dimensional.

• separable if µ splits as an A − A bimodule map, i.e., there is an A − A bimodule map
s : A → A ⊗ A such that µ ◦ s = idA. In this case, by [HPT16, Props. 2.5 and 2.6]2 and
[Ost03, Prop. 3.1.i], Mod−A, A−Mod, and A−Mod−A are all semisimple categories.

Lemma 1. Suppose (A,µ, i) is a connected separable algebra object in a tensor category C. There
are unique morphisms ∆ ∈ HomA−Mod−A(A→ A⊗A) and ε ∈ HomC(A→ 1) for which (A,µ, i,∆, ε)
is a normalized 3 special 4 Frobenius algebra.

Proof. Up to scalar, εmust be the unique left inverse of i ∈ C(1→ A), which exists by semisimplicity
of C. The pairing ε◦m is non-degenerate by [Ost03, Prop. 3.1.ii]. There is a unique comultiplication
∆ making (A,µ, i,∆, ε) a Frobenius algebra by [FRS02, Lem. 3.7], [FS08, Prop. 8]. Finally, A is
automatically special (see [GS16, Thm. 2.6]). Indeed, since A is separable, there is a splitting
s ∈ HomA−Mod−A(A → A ⊗ A) ∼= C as in (1). Hence ∆ = λs for some λ ∈ C× as ∆ 6= 0. Thus
µ◦∆ = λ(µ◦s) = λ idA. Finally, normalize (A,µ, i,∆, ε) by picking an appropriate scaling of ε.

Remark 2. When C is pivotal and dimC(A) 6= 0,5 (A,µ, i,∆, ε) is automatically symmetric 6 by
[FRS02, Cor. 3.10] (see also [Sch13, Lem. 2.9] and the footnote therein). In this case, by [Sch13,
Main Thm. or §4.1], up to scaling, there is a unique way to endow the indecomposable semisimple
C-module category M := ModC(A) with a pivotal trace.7

Question 3. If (A,µ, i) is a connected separable algebra object in a unitary tensor category 8 C, is
A an irreducible Q-system 9? This question has the following two equivalent formulations:

1Following [EGNO15], a tensor category is a semisimple rigid monoidal category with simple unit object.
2Use [DMNO13, Prop. 2.7] when C is fusion.
3There are 3 equivalent definitions of normalized: (1) ε ◦ i = id1; (2) m ◦ ∆ = idA; and (3) ε ◦ i = λ id1 and

µ ◦∆ = λ idA. We use (3) as in [Müg03, Def. 3.13 and Prop. 5.8] and [BKLR15, Def. 3.2 and 3.8].
4A Frobnius algebra is called special if µ ◦∆ is a non-zero scalar multiple of idA [FRS02, Def. 3.4.i].
5The condition dimC(A) 6= 0 is automatic when C is a spherical fusion category or a unitary tensor category; see

Footnote 8 for the definition of unitary tensor category.
6A Frobenius algebra (A,µ, i,∆, ε) in a pivotal category is called symmetric if [(ε ◦µ)⊗ idA∨ ] ◦ (idA⊗A⊗ coevA) =

[idA∨ ⊗(ε ◦ µ)] ◦ (ϕA ⊗ idA) ◦ (coevA∨ ⊗ idA) where ϕA ∈ C(A→ A∨∨) is the pivotal structure [Sch13, Def. 2.7].
7See [Sch13] for the definition of a pivotal trace for a C-module category. In the unitary setting, we call such a

trace unitary if it gives us a positive definite inner product in the usual GNS way.
8A unitary tensor category is a rigid C∗ tensor category which is Karoubi complete with simple unit object. A

unitary tensor category has a canonical spherical structure by [Yam04, Thm. 4.7] and [BDH14, §4].
9A C∗ Frobenius algebra in a unitary tensor category is an algebra object (A,µ, i) such that (A,µ, i, µ∗, i∗) is a

Frobenius algebra. We call a C∗ Frobenius algebra standard or a Q-system if i∗ ◦µ and µ∗ ◦ i are standard solutions to
the conjugate equations. In this case, µ ◦ µ∗ =

√
dimC(A) idA, i∗ ◦ i =

√
dimC(A) id1C , and i∗ ◦ µ ◦ µ∗ ◦ i = dimC(A).

A Q-system is called irreducible if the underlying algebra object is connected.
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• Is ∆ from Lemma 1 proportional to µ∗?

• Is µ∗ automatically an A−A bimodule map?

This question motivates the following definition:

Definition 4. An algebra object (A,µ, i) in a unitary tensor category is called unitarily separable 10

if µ ◦ µ∗ = λ idA for some λ > 0. We further say (A,µ, i) is normalized if µ ◦ µ∗ =
√
dA idA.

Corollary 5. A connected normalized unitarily separable algebra (A,µ, i) in a unitary tensor cat-
egory is an irreducible Q-system.

Proof. That A is a C* Frobenius algebra from [BKLR15, Lem. 3.7]. That A is standard follows
from [Müg03, Rem. 5.6.3].

Now assume that C is a pseudounitary fusion category or a unitary tensor category.11

Theorem 6. There is a canonical bijection 12 between equivalence classes of:

(1) 2-shaded subfactor planar algebras with dim(P1,±) = 1 and principal even part equivalent to C.

(2) indecomposable 2×2 spherical multifusion / unitary multitensor 13 categories D such that 1D ∼=
11 ⊕ 12 and C ∼= 11 ⊗D ⊗ 11, with chosen simple m ∈ 11 ⊗D ⊗ 12 which generates D.

(3) pointed 14 indecomposable C-module C∗ categories (M,m) with normalized unitary pivotal trace.

(4) pointed indecomposable C-module C∗ categories (M,m).

(5) connected normalized unitarily separable algebra objects (A,µ, i) ∈ C which generate 15 C.

(6) connected normalized separable symmetric Frobenius algbera objects (A,µ, i,∆, ε) ∈ C / irre-
ducible Q-systems (A,µ, i) ∈ C which generate C.

Sketch of the proof.

(1)⇔ (2) : This is a rewording of the main result of [Gho11].

(2)⇒ (3) : Take M = 11 ⊗D ⊗ 12 and basepoint m.

(3)⇒ (4) : Forget the trace.

(4)⇒ (5) : TakeA := EndC(m). ThenM∼= ModC(A) as C-module categories [EGNO15, Thm. 7.10.1].
Then A is connected by [EGNO15, Lem. 7.8.12] and separable by [DMNO13, Prop. 2.7]. In the
unitary setting, A can be endowed with the structure of an irreducible Q-system such that M is
dagger equivalent to the C-module C∗ category ModC(A) by [NY17, Thm. A.1].

(5)⇒ (6) : This is Lemma 1. In the unitary setting, this is Corollary 5.

10For a C* Frobenius algebra, this property is called being special as in Footnote 4; we reserve this terminology for
Frobenius algebras.

11We use this hypothesis to ensure that dimC(A) 6= 0. This is not always true in a spherical semisimple tensor
category; there is a counter-example in the free product of the rank 2 Fibonacci and Yang-Lee categories.

12One can probably extend this to an equivalence of categories.
13Here, multitensor means semisimple rigid monoidal, but not necessarily simple unit object. We say 2 × 2 to

indicate that 1D decomposes into two distinct simples: 1D ∼= 11 ⊕ 12.
14A basepoint for a semisimple C-module category M is a distinguished object m ∈ M. A pointed C-module

category is a pair (M,m) where M is a semisimple C-module category and m ∈M is a simple basepoint.
15We say A generates C if every object of C is isomorphic to a an object obtained from A via direct sums, tensor

products, subobjects, and duals.
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(6)⇒ (2) : This is an adaptation of [Müg03, Thm. 5.12].16 For irreducible Q-systems, we use

[Müg03, Prop. 5.5] and [Müg03, Thm. 5.16].17

Remarks 7. Here are some further equivalences:

• The non-unitary proof of (1)⇔ (4) follows from [Sch13, Main Thm.].

• There is a notion of C*-algebra object in the ind-category of a rigid C*-tensor category from
[JP17a]. The main result of [JP17b] gives an equivalence of categories between irreducible
Q-systems in C from (6) in Theorem 6 and connected C*-algebra objects in C\, the fusion
category obtained from C by forgetting the dagger structure.

References

[BDH14] Arthur Bartels, Christopher L. Douglas, and André Henriques, Dualizability and index of subfactors,
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