Jones’ basic construction in finite dimensions

The exercises marked (∗) below are more advanced and can be skipped on first read through. For this handout, \(A \subset B \) will always denote a unital inclusion of finite dimensional complex multimatrix algebras.

1 Conditional expectations

Pick faithful tracial states \(\text{tr}_B \) on \(B \) and \(\text{tr}_A \) on \(A \).

Definition 1. A *conditional expectation* \(E : B \rightarrow A \) is a linear map such that

- \((A - A \text{ bilinear}) \ E(axb) = aE(x)b \) for all \(x \in B \) and \(a, b \in A \).
- \((\text{unital}) \ E(1) = 1 \), and
- \((\text{projection}) \ E^2 = E \), i.e., for all \(x \in B \), \(E(E(x)) = E(x) \).

A conditional expectation is called:

- *trace preserving* if \(\text{tr}_A(E(x)) = \text{tr}_B(x) \) for all \(x \in B \).
- *faithful* if \(E(x^*x) = 0 \) implies \(x = 0 \).

Exercise 2. Prove that \(E|_A = \text{id}_A \). Deduce that if \(E : B \rightarrow A \) is trace preserving, then \(\text{tr}_B |_A = \text{tr}_A \).

Exercise 3. Show that if \(E,F : B \rightarrow A \) are two conditional expectations such that for all \(a \in A \) and \(b \in B \), \(\text{tr}_A(aE(b)) = \text{tr}_A(aF(b)) \), then \(E = F \). Deduce that there is at most one trace preserving conditional expectation \(B \rightarrow A \).

Hint: Show that for all \(b \in B \) and \(a \in A \), \(\langle E(b)\Omega,a\Omega \rangle = \langle F(b)\Omega,a\Omega \rangle \) in \(L^2(A,\text{tr}_A) \).

Exercise 4. Suppose \(E \) is trace preserving. Show that \(E(x^*) = E(x)^* \) for all \(x \in B \).

Hint: First prove that \(\text{tr}_B(x^*) = \text{tr}_B(x) \) for all \(x \in B \). Then show \(\langle E(x^*)\Omega,a\Omega \rangle = \langle E(x)^*\Omega,a\Omega \rangle \) for all \(x \in B \) and \(a \in A \).

Exercise 5. Suppose \(E \) is trace preserving. Show that for any \(x \in B \), \(E(x^*x) \geq 0 \).

Hint: Compute \(\langle E(x^*x)a\Omega,a\Omega \rangle \) in \(L^2(A,\text{tr}_A) \).

Exercise 6. Consider the subspace \(\text{A}\Omega \subset L^2(B,\text{tr}_B) \). Let \(e_A \in B(L^2(B,\text{tr}_B)) \) be the orthogonal projection onto \(\text{A}\Omega \). Define \(E : B \rightarrow A \) by \(E(b) = a \) where \(a \in A \) is the unique element such that \(e_A(b\Omega) = a\Omega \). Prove that \(E \) is a faithful conditional expectation. Prove that \(E \) is trace preserving if and only if \(\text{tr}_B |_A = \text{tr}_A \).

Exercise 7. Continue the notation of Exercise 6.

1. Show that for all \(b \in B \), \(E(b)e_A = e_Abe_A \).
2. Show that for all \(b \in B \), we have \(b \in A \) if and only if \(e_Ab = be_A \).

Exercise 8. Compute the unique trace preserving conditional expectation for the following unital inclusions:

1. The inclusion \(M_k(\mathbb{C}) \hookrightarrow M_{nk}(\mathbb{C}) \) with the unique normalized traces.
The connected inclusion \(A = M_n(\mathbb{C}) \oplus M_k(\mathbb{C}) \hookrightarrow M_{n+k}(\mathbb{C}) = B \) with trace vector on \(A \) given by \(\frac{1}{n-k}, \frac{1}{n-k} \) and the unique normalized trace on \(B \).

Note: First verify that \(n_A \lambda_A = 1 \) where \(n_A \) denotes the dimension row vector of \(A \).

The connected inclusion \(A = \mathbb{C} \oplus \mathbb{C} \hookrightarrow M_2(\mathbb{C}) \oplus \mathbb{C} = B \) with Bratteli diagram and trace vectors for \(A \) and \(B \) given by

\[
\Lambda := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \lambda_a := (\phi^{-2}, \phi^{-1}), \quad \lambda_b := (\phi^{-2}, \phi^{-3})
\]

where \(\phi := \frac{1+\sqrt{5}}{2} \) (so \(\phi^2 = 1 + \phi \)).

Note: First verify that \(n_A \lambda_A = 1 = n_B \lambda_B \) where \(n_A, n_B \) denotes the dimension row vector of \(A, B \) respectively.

2 The basic construction

Suppose \(A \subset B \) is a unital inclusion of multimatrix algebras and \(\text{tr}_B \) is a faithful normal trace on \(B \). Define \(\text{tr}_A = \text{tr}_B \mid_A \), and let \(e_A \in B(L^2(B, \text{tr}_B)) \) be the orthogonal projection with range \(L^2(A, \text{tr}_A) = A\Omega \) as in Exercise 6. Let \(E : B \to A \) be the canonical trace-preserving conditional expectation, which is defined by \(E(b)\Omega := e_A(b\Omega) \) for all \(b \in B \).

Definition 9. The **basic construction** of \(A \subset B \) is the unital \(\ast \)-subalgebra \(\langle B, e_A \rangle \subset B(L^2(B, \text{tr}_B)) \) generated by \(B \) and \(e_A \).

Exercise 10. Prove that \(\langle B, e_A \rangle = B + Be_A B = \text{span} \{a + be_{AC}a, b, c \in B \} \subset B(L^2(B, \text{tr}_B)) \).

Define \(J : L^2(B, \text{tr}_B) \to L^2(B, \text{tr}_B) \) by \(Jb\Omega := b^*\Omega \).

Exercise 11. Prove that for all \(a, b \in B \), \(\langle Ja\Omega, b\Omega \rangle = \langle Jb\Omega, a\Omega \rangle \).

Exercise 12. Use Exercise 4 to show that \(Je_A = e_A J \) on \(L^2(B, \text{tr}_B) \).

Exercise 13. Recall \(A' = \{ x \in B(L^2(B, \text{tr}_B)) \mid xa = ax \text{ for all } a \in A \} \). Show that \(JA'J = (JAJ)' \).

Exercise 14. Show that \(\langle M, e_A \rangle = JA'J \).

Using this last exercise, we see that the basic construction algebra naturally arises as the missing algebra in the following picture.

\[
\begin{array}{ccc}
?? & \overset{A'}{\longrightarrow} \\
B & \longrightarrow & L^2(B, \text{tr}_B) & \longrightarrow & JB = B' \\
& \langle B, e_A \rangle & \leftarrow & JBJ = B' & \langle B, e_A \rangle \\
\end{array}
\]

3 The inclusion \(B \subset \langle B, e_A \rangle \)

We now compute the Bratteli diagram for the inclusion \(B \subset \langle B, e_A \rangle \) in terms of the Bratteli diagram for \(A \subset B \).

2
4 Traces on the basic construction

5 Loop algebras

6 Pimsner-Popa bases

References