Jones' basic construction in finite dimensions

The exercises marked (*) below are more advanced and can be skipped on first read through. For this handout, $A \subset B$ will always denote a unital inclusion of finite dimensional complex multimatrix algebras.

1 Conditional expectations

Pick faithful tracial states tr_B on B and tr_A on A.

Definition 1. A conditional expectation $E: B \to A$ is a linear map such that

- $(A A \text{ bilinear}) \ E(axb) = aE(x)b \text{ for all } x \in B \text{ and } a, b \in A.$
- (unital) E(1) = 1, and
- (projection) $E^2 = E$, i.e., for all $x \in B$, E(E(x)) = E(x).

A conditional expectation is called:

- trace preserving if $\operatorname{tr}_A(E(x)) = \operatorname{tr}_B(x)$ for all $x \in B$.
- faithful if $E(x^*x) = 0$ implies x = 0.

Exercise 2. Prove that $E|_A = \mathrm{id}_A$. Deduce that if $E: B \to A$ is trace preserving, then $\mathrm{tr}_B|_A = \mathrm{tr}_A$.

Exercise 3. Show that if $E, F : B \to A$ are two conditional expectations such that for all $a \in A$ and $b \in B$, $\operatorname{tr}_A(aE(b)) = \operatorname{tr}_A(aF(b))$, then E = F. Deduce that there is at most *one* trace preserving conditional expectation $B \to A$.

Hint: Show that for all $b \in B$ and $a \in A$, $\langle E(b)\Omega, a\Omega \rangle = \langle F(b)\Omega, a\Omega \rangle$ in $L^2(A, \operatorname{tr}_A)$.

Exercise 4. Suppose E is trace preserving. Show that $E(x^*) = E(x)^*$ for all $x \in B$. Hint: First prove that $\operatorname{tr}_B(x^*) = \overline{\operatorname{tr}_B(x)}$ for all $x \in B$. Then show $\langle E(x)^*\Omega, a\Omega \rangle = \langle E(x^*)\Omega, a\Omega \rangle$ for all $x \in B$ and $a \in A$.

Exercise 5. Suppose E is trace preserving. Show that for any $x \in B$, $E(x^*x) \ge 0$. Hint: Compute $\langle E(x^*x)a\Omega, a\Omega \rangle$ in $L^2(A, \operatorname{tr}_A)$.

Exercise 6. Consider the subspace $A\Omega \subset L^2(B, \operatorname{tr}_B)$. Let $e_A \in B(L^2(B, \operatorname{tr}_B))$ be the orthogonal projection onto $A\Omega$. Define $E: B \to A$ by E(b) = a where $a \in A$ is the unique element such that $e_A(b\Omega) = a\Omega$. Prove that E is a faithful conditional expectation. Prove that E is trace preserving if and only if $\operatorname{tr}_B|_A = \operatorname{tr}_A$.

Exercise 7. Continue the notation of Exercise 6.

- (1) Show that for all $b \in B$, $E(b)e_A = e_Abe_A$.
- (2) Show that for all $b \in B$, we have $b \in A$ if and only if $e_A b = b e_A$.

Exercise 8. Compute the unique trace preserving conditional expectation for the following unital inclusions:

(1) The inclusion $M_k(\mathbb{C}) \hookrightarrow M_{nk}(\mathbb{C})$ with the unique normalized traces.

- (2) The connected inclusion $A = M_n(\mathbb{C}) \oplus M_k(\mathbb{C}) \hookrightarrow M_{n+k}(\mathbb{C}) = B$ with trace vector on A given by $(\frac{1}{n+k}, \frac{1}{n+k})$ and the unique normalized trace on B. Note: First verify that $n_A \lambda_A = 1$ where n_A denotes the dimension row vector of A.
- (3) The connected inclusion $A = \mathbb{C} \oplus \mathbb{C} \hookrightarrow M_2(\mathbb{C}) \oplus \mathbb{C} = B$ with Bratteli diagram and trace vectors for A and B given by

$$\Lambda := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 $\lambda_a := (\phi^{-2}, \phi^{-1})$
 $\lambda_b := (\phi^{-2}, \phi^{-3})$

where $\phi := \frac{1+\sqrt{5}}{2}$ (so $\phi^2 = 1+\phi$). Note: First verify that $n_A \lambda_A = 1 = n_B \lambda_B$ where n_A, n_B denotes the dimension row vector of A, B respectively.

$\mathbf{2}$ The basic construction

Suppose $A \subset B$ is a unital inclusion of multimatrix algebras and tr_B is a faithful normal trace on B. Define $\operatorname{tr}_A = \operatorname{tr}_B|_A$, and let $e_A \in B(L^2(B,\operatorname{tr}_B))$ be the orthogonal projection with range $L^2(A, \operatorname{tr}_A) = A\Omega$ as in Exercise 6. Let $E: B \to A$ be the canonical trace-preserving conditional expectation, which is defined by $E(b)\Omega := e_A(b\Omega)$ for all $b \in B$.

Definition 9. The basic construction of $A \subset B$ is the unital *-subalgebra $\langle B, e_A \rangle \subset B(L^2(B, \operatorname{tr}_B))$ generated by B and e_A .

Exercise 10. Prove that $\langle B, e_A \rangle = B + Be_A B = \operatorname{span} \{ a + be_A c | a, b, c \in B \} \subset B(L^2(B, \operatorname{tr}_B)).$

Define $J: L^2(B, \operatorname{tr}_B) \to L^2(B, \operatorname{tr}_B)$ by $Jb\Omega := b^*\Omega$.

Exercise 11. Prove that for all $a, b \in B$, $\langle Ja\Omega, b\Omega \rangle = \langle Jb\Omega, a\Omega \rangle$.

Exercise 12. Use Exercise 4 to show that $Je_A = e_A J$ on $L^2(B, \operatorname{tr}_B)$.

Exercise 13. Recall $A' = \{x \in B(L^2(B, \operatorname{tr}_B)) | xa = ax \text{ for all } a \in A\}$. Show that JA'J = (JAJ)'.

Exercise 14. Show that $\langle M, e_A \rangle = JA'J$.

Using this last exercise, we see that the basic construction algebra naturally arises as the missing algebra in the following picture.

The inclusion $B \subset \langle B, e_A \rangle$ 3

We now compute the Bratteli diagram for the inclusion $B \subset \langle B, e_A \rangle$ in terms of the Bratteli diagram for $A \subset B$.

- 4 Traces on the basic construction
- 5 Loop algebras
- 6 Pimsner-Popa bases

References