Markov sequences of von Neumann algebras

1 Markov sequences

Definition 1. A Markov sequence consists of a sequence \((M_n, tr_n)_{n\geq 0}\) of finite dimensional von Neumann algebras with faithful normal tracial states such that \(tr_{n+1}|_{M_n} = tr_n\) for all \(n \geq 0\), and a sequence of Jones projections \(e_n \in M_{n+1}\) for all \(n \geq 1\) such that:

- the projections \((e_n)\) satisfy the Temperley-Lieb-Jones relations:
 1. \(e_i^2 = e_i = e_i^*\) for all \(i\),
 2. \(e_ie_j = e_je_i\) for \(|i - j| < 1\), and
 3. there is a fixed constant \(d > 0\) such that \(e_i e_{i \pm 1} e_i = d^{-2} e_i\) for all \(i\).

- for all \(x \in M_n, e_n xe_n = E_n(x)e_n\) where \(E_n : M_n \to M_{n-1}\) is the canonical faithful trace-preserving conditional expectation.

- (pull down) for all \(n \geq 1\), \(M_{n+1}e_n = M_ne_n\).

Exercise 2. Prove that the pull down condition is equivalent to \(M_ne_nM_n\) is a 2-sided ideal in \(M_{n+1}\) for all \(n \geq 1\).

2 Elementary properties of Markov sequences

Markov sequence satisfies the following elementary properties for \(n \geq 1\).

(A) The map \(M_n \ni y \mapsto ye_n \in M_{n+1}\) is injective.

(B) For all \(x \in M_{n+1}\), \(d^2 E_{n+1}(xe_n)\) is the unique element \(y \in M_n\) such that \(xe_n = ye_n\) [PP86, Lem. 1.2].

(C) The traces \(tr_{n+1}\) satisfy the following Markov property with respect to \(M_n\) and \(e_n\): for all \(x \in M_n\), \(tr_{n+1}(xe_n) = d^{-2} tr_n(x)\).

(D) \(e_nM_{n+1}e_n = M_{n-1}e_n\).

(E) \(X_{n+1} = M_ne_nM_n\) is a 2-sided ideal of \(M_{n+1}\), and \(M_{n+1}\) splits as a direct sum of von Neumann algebras \(X_{n+1} \oplus Y_{n+1}\). (In [GdlHJ89, Thm. 4.1.4 and Thm. 4.6.3], \(Y_{n+1}\) is the so-called ‘new stuff’.) By convention, we define \(Y_0 = M_0\) and \(Y_1 = M_0\), so that \(X_0 = (0)\) and \(X_1 = (0)\).

(F) The map \(ae_n b \mapsto ap_n b\) gives a *-isomorphism from \(X_{n+1} = M_ne_nM_n\) to \(\langle M_n, p_n \rangle = M_np_nM_n\), the Jones basic construction of \(M_{n-1} \subseteq M_n\) acting on \(L^2(M_n, tr_n)\).

(G) Under the isomorphism \(X_{n+1} \cong M_np_nM_n\), the canonical non-normalized trace \(Tr_{n+1}\) on the Jones basic construction algebra \(M_np_nM_n\) satisfying \(Tr_{n+1}(ap_n b) = tr_n(ab)\) for \(a, b \in M_n\) equals \(d^2 tr_{n+1}|_{X_{n+1}}\).

(H) If \(y \in Y_{n+1}\) and \(x \in X_n\), then \(yx = 0\) in \(M_{n+1}\). Hence \(E_{n+1}(Y_{n+1}) \subseteq Y_n\). (“The new stuff comes only from the old new stuff” [GdlHJ89].)
(1) If $Y_n = (0)$, then $Y_k = (0)$ for all $k \geq n$.

Exercise 3. Prove Elementary Properties (A) – (I) above for $n \geq 1$.

Exercise 4. Show that for $n \geq 1$, the Bratteli diagram for the inclusion $M_n \subset M_{n+1}$ consists of the reflection of the Bratteli diagram for the inclusion $M_{n-1} \subset M_n$, together with possibly some new edges and vertices corresponding to simple summands of Y_{n+1}. Moreover, show that the new vertices at level $n + 1$ only connect to the vertices that were new at level n.

Definition 5. The principal graph of the Markov sequence (M_n, tr_n) with Jones projections (e_n) consists of the new vertices at every level n of the Bratteli diagram, together with all the edges connecting them.

The sequence is said to have finite depth if the principal graph is finite.

Exercise 6. Show that the Markov sequence has finite depth if and only if there is an $n \in \mathbb{N}$ such that $Y_n = (0)$ as in Elementary Property (I).

Exercise 7. Suppose our Markov sequence has finite depth. Let $n \in \mathbb{N}$ such that $Y_n = (0)$ as in the previous exercise. Show that for all $k \geq n$, the Bratteli diagram for the inclusion $M_{k-1} \subset M_k$ can be canonically identified with the principal graph.

Exercise 8. Show that the Temperley-Lieb algebras of modulus $d \geq 2$ with the usual Jones projections form a Markov sequence.

3 Example from unitary multifusion categories

Let \tilde{C} be a 3×3 unitary multifusion category where $1_{\tilde{C}} = 1_1 \oplus 1_2 \oplus 1_3$, and let C be the (non-unital) 2×2 unitary multifusion subcategory with $1_C = 1_1 \oplus 1_2$. We get a unitary right C-module category by considering $\mathcal{M} = C_{31} \oplus C_{32}$.

$$\mathcal{M} = \begin{pmatrix} C_{31} & C_{32} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \subset \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} = \tilde{C}$$

Fix a simple object $x \in C_{12}$.

Notation 9. For $n \in \mathbb{N}$, we define the n-fold alternating tensor product of x by

$$x^{\text{alt} \otimes n} := \underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text{ tensorands}},$$

where $x^? = x$ if n is even and x if n is odd. Similarly, we write

$$\overline{x}^{\text{alt} \otimes n} := \underbrace{\overline{x} \otimes \overline{x} \otimes \cdots \otimes \overline{x}}_{n \text{ tensorands}},$$

where $\overline{x}^? = x$ if n is even and \overline{x} if n is odd.

Since C is indecomposable as a multifusion category, we see that every object of C_{11} or C_{12} is isomorphic to a direct summand of $x^{\text{alt} \otimes n}$ for some $n \in \mathbb{N}$. In this sense, we say x generates C.

Now fix any simple $m \in C_{31} \subset \mathcal{M}$. Since \tilde{C} is indecomposable as a multifusion category, every object of \mathcal{M} is isomorphic to a direct summand of $m \otimes x^{\text{alt} \otimes n}$ for some $n \in \mathbb{N}$.
Notation 10. We read our string diagrams bottom to top. We denote a morphism $f : a \rightarrow b$ by a coupon

```
\begin{array}{c}
  \text{a} \\
  \text{f} \\
  \text{b}
\end{array}
```

Composition of morphisms corresponds to vertical stacking of coupons, and tensor product of morphisms corresponds to horizontal juxtaposition of coupons.

Definition 11. Let $A_n := \text{End}_C(m \otimes x^{\text{alt} \otimes n})$ equipped with the multiplication

```
\begin{array}{c}
  f \\
  g
\end{array}
```

$fg =

```
\begin{array}{c}
  f \\
  g \\
  n
\end{array}
```

where the red strand stands for m, the label n stands for the object $x^{\text{alt} \otimes n}$, and the label \overline{n} stands for the object $\overline{x}^{\text{alt} \otimes n}$. This is a finite dimensional von Neumann algebra. It comes with a faithful tracial state $\text{tr}_n : A_n \rightarrow \mathbb{C}$ given by

$$
\text{tr}_n(f) := \frac{1}{\text{dim}_C(m) \text{dim}_C(x)^n} \cdot \text{tr}_C(f) = \frac{1}{\text{dim}_C(m)} \cdot \frac{1}{d^n} \cdot \left(\overline{m} \begin{array}{c} \overline{f} \end{array} \overline{n} \right)
$$

where $d := \text{dim}(x) = \text{dim}(\overline{x})$. Further down, a black strand with label 1 stands for either x or \overline{x}.

We have inclusions $A_n \rightarrow A_{n+1}$ compatible with the traces given by

```
\begin{array}{c}
  f \\
  n
\end{array}
```

$\rightarrow

```
\begin{array}{c}
  f \\
  \overline{n}
\end{array}
```

(2)

and trace preserving conditional expectations $E_n : A_n \rightarrow A_{n-1}$ given by

```
\begin{array}{c}
  f \\
  n
\end{array}
```

$\rightarrow

```
\begin{array}{c}
  1 \\
  n
\end{array}
```

(3)

where $\overline{n} := \text{dim}(x) = \text{dim}(\overline{x})$. Further down, a black strand with label 1 stands for either x or \overline{x}.

The Jones projection for the inclusion $A_{n-1} \subset A_n$ is given by

$$
e_n = \frac{1}{d} \cdot \left(\bigcup_{n-1}^{1} \right) \in A_{n+1}.
$$

(4)

Exercise 12. Explain why the diagram in (1) can be viewed as a scalar in \mathbb{C}.

Hint: Recall $m \in C_{31}$ is simple.

Exercise 13. Show that for all $n \geq 1$, prove that

(1) For all $a, b \in A_{n-1}$ and $x \in A_n$, $E_n(axb) = aE_n(x)b$.

(2) $\text{tr}_n = \text{tr}_{n-1} \circ E_n$.

(3) $\text{tr}_n |_{A_{n-1}} = \text{tr}_{n-1}$, where we identify A_{n-1} with its image in A_n under the inclusion map (2).

Exercise 14. Prove that the sequence (A_n, tr_n) with Jones projections (e_n) is Markov.

Exercise 15. Prove that the Markov sequence (A_n, tr_n) with Jones projections (e_n) has finite depth.

References
