
Categorified Morita equivalence

These notes were compiled from the following sources:

• Rieffel’s “Morita Equivalence for C∗-algebras and W ∗-algebras”

• Mueger’s “From subfactors to categories and topology I” (arXiv:math/0111204)

• Ostrik’s “Module categories, weak Hopf algebras and modular invariants”
(arXiv:math/0111139)

• Etingof, Nikshych, and Ostrik’s “Fusion categories and homotopy theory”
(arXiv:math/0909.3140)

• Noah Snyder’s talk on 2/20/10 at the Subfactor Tahoe Retreat

Morita equivalence of rings

Let R, S be rings.

Definition 1. R, S are Morita equivalent if there are bimodules SPR and RQS and
isomorphims

SP ⊗
R
QS
∼= SSS and RQ⊗

S
PR ∼= RRR.

Theorem 2. R, S are Morita equivalent if and only if there is an additive equiva-
lence of categories RMod ∼= SMod.

Sketch of Proof. If R, S are Morita equivalent, then we have additive functors

RMod→ SMod by RM 7→ SP ⊗
R
M and

SMod→ RMod by SN 7→ RQ⊗
S
N

and the two ways of composing them are clearly naturally isomorphic to identity
functors.

Suppose there is an equivalence of categories RMod ∼= SMod where F : RMod→
SMod is one of the functors of the equivalence. Then F is right exact, and by a
theorem of Homological algebra, there is a bimodule SPR such that F is naturally
isomorphic to SP ⊗

R
−.

Remark 3. Keeping the picture

R
P

S
Q

in mind, we can hide half the diagram as follows: If R and S are Morita equivalent
via bimodules SPR and RQS, then S ∼= EndR(PR) and Q ∼= Hom(PR, RR).

Example 4.
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(1) Let R be a ring. Then R is Morita equivalent to Mn(R) for all n ∈ N via the
bimodule Rn where isomorphims are given by inner and outer products.

(2) Suppose N ⊂M is a II1-subfactor. Recall that the trace tr on M is unique. Let
e ∈ B(L2(M, tr)) be the projection onto L2(N, tr |N). Then E = e|M is the unique
ultraweakly continuous trace-preserving conditional expectation E : M → N such
that E(1) = 1 and E(amb) = aE(m)b for all a, b ∈ N and m ∈ M . In fact, E is a
Banach space projection of norm 1. The basic construction of N ⊂ M is the von
Neumann algebra M1 = 〈M, e〉 ⊂ B(L2(M, tr)). If N ⊂M is finite index, then

M1 = MeM ∼= M ⊗
N
M ∼= EndN(MN).

Hence N is Morita equivalent to M1 as rings via NMM1 .

Strong Morita equivalence of C∗-algebras

Let A,B be C∗-algebras.

Definition 5. A left pre-C∗ B-module BX is a complex vector space X which is a
left B-module together with a positive, antisymmetric B-valued sesquilinear form

〈−,−〉B : X ×X → B,

i.e.,

(i) 〈bx+ y, z〉B = b〈x, z〉B + 〈y, z〉B

(ii) 〈x, y〉∗B = 〈y, x〉B, and

(iii) 〈x, x〉B ≥ 0

for all b ∈ B and x, y, z ∈ X.
A right pre-C∗ A module is defined similarly, except (i) above is changed to

〈x|y + za〉A = 〈x|y〉A + 〈x|z〉Aa.

A pre-C∗ B − A-bimodule is both a left pre-C∗ B-module and a right pre-C∗

A-module such that

〈x, y〉Bz = x〈y|z〉A for all x, y, z ∈ X.

A left C∗ B-module is full if span(im(〈−,−〉B)) is dense in B. If B is a von
Neumann algebra, we require density in the ultraweak topology. Similarly we define
full right pre-C∗-modules and full pre C∗-bimodules.

Remark 6. 〈−,−〉B is B-linear in the first variable and conjugate linear in the
second. 〈−|−〉A is A-linear in the second variable and conjugate linear in the first.
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Remark 7. Given a left pre-C∗ B-module BX, we can define a seminorm by

‖x‖2B = ‖〈x, x〉B‖.

Similarly for right pre-C∗ A-modules. If BXA is a pre-C∗ B − A bimodule, then
‖ − ‖A = ‖ − ‖B.

Definition 8. A left pre-C∗ B-module BX is called a left C∗ B-module if 〈−,−〉B
is definite and X is complete for ‖ − ‖B. Similarly, we define right C∗-modules and
C∗-bimodules. Fullness is defined accordingly.

Remark 9. If A,B are von Neumann algebras, we require the maps

B → A by b 7→ 〈x|by〉A and

A→ B by a 7→ 〈ax, y〉B

to be normal, i.e., ultraweakly continuous.

Definition 10. A,B are strongly Morita equivalent if there are full C∗-bimodules

BXA and AYB such that

BX ⊗
A
YB ∼= BBB and AY ⊗

B
XA
∼= AAA

(isomorphic as C∗-bimodules). Note that this tensor product requires completion
after defining

〈x1 ⊗ y1, x2 ⊗ y2〉B = 〈〈x2, x1〉By1, y2〉B and

〈x1 ⊗ y1|x2 ⊗ y2〉B = 〈x1〈y1|y2〉B|x2〉B,

and similarly for Y ⊗A X.

Definition 11. Suppose BXA is a C∗-bimodule. The contragredient or dual C∗-
bimodule is given by

AXB = BXA =
{
x
∣∣x ∈ X} and a · x · b = b∗xa∗ for all a ∈ A, b ∈ B.

Definition 12. Given x, y ∈ XA, a right C∗-module, we can define the “A-finite
rank” operator

|x〉〈y| : XA → XA by |x〉〈y|z = x〈y|z〉.
Then |x〉〈y|∗ = |y〉〈x| (A-finite rank operators are adjointable), and we let End0

A(XA)
denote the norm closure of the span of A-finite rank operators. Then End0

A(XA)
is a C∗-algebra. We let EndA(XA) be the von Neumann algebra of all adjointable
operators.

Remark 13. If A,B are Morita equivalent via X, Y , once more we can hide half of
the diagram

A
X

B
Y

by noting that B ∼= End0
A(XA) and Y ∼= X (if A,B are von Neumann algebras, then

B ∼= EndA(XA)).
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Definition 14. If A is a C∗-algebra, let AHilb is the category of left A-Hilbert
modules (HIlbert spaces with a left nondegenerate ∗-representation of A). If A is a
von Neumann algebra, we require these representations to be normal (ultraweakly
continuous).

Definition 15. Suppose BXA is a C∗-bimodule and AH ∈A Hilb. We form the
relative tensor product BX ⊗AH as the completion of the algebraic tensor product
(over A) completed in the norm induced by the inner product defined by the linear
extension of

〈x1 ⊗ ξ1, x2 ⊗ ξ2〉 = 〈〈x2|x1〉Aξ1, ξ2〉H .

Similarly, we may define K ⊗B XA for KB ∈ HilbB where the inner product is given
by

〈η1 ⊗ x1, η2 ⊗ x2〉 = 〈η1, η2〈x2, x1〉B〉K .

Theorem 16. Suppose A,B are Morita equivalent via BXA. Then AHilb ∼=B Hilb
via

AH 7→ BX ⊗
A
H.

Example 17. Suppose N ⊂ M is a finite index II1-subfactor. Recall there is an
anti-linear unitary J : L2(M, tr) → L2(M, tr) given by the extension of xΩ 7→ x∗Ω
where Ω is the image of 1 in L2(M, tr). Then Je = eJ and M1 = JN ′J . For x ∈M1,
we define the right action ξx = Jx∗Jξ for ξ ∈ L2(M, tr). One easily computes for
m ∈M that

mΩ(xey) = Jy∗ex∗JmΩ = E(mx)yΩ.

On NMΩM1 , define (obviously surjective) maps

〈xΩ, yΩ〉N = E(xy∗) and 〈xΩ|yΩ〉M1 = x∗ey.

Then NMΩM1 is a C∗-bimodule which gives a Morita equivalence between N and
M1 as

〈xΩ, yΩ〉NzΩ = E(xy∗)zΩ = xΩ(y∗ez) = xΩ〈yΩ|zΩ〉M1 .

Categorification of rings to tensor catgories

Categorification is the process of replacing sets, functions, and equations with cate-
gories, functors, and natural isomorphims such that when one decategorifies, usually
by taking the Grothendieck group K0, we get back the sets, functions, and equations.

Remark 18. We require our categories to be skeletally small, i.e., the collection of
isomorphism classes of objects in our category is a set.

Definition 19. The Grothendieck group of a category C is K0(C) =
{

[x]
∣∣x ∈ C

}
,

the set of isomorphism classes of objects.

Remark 20. If C has more structure, then so does K0(C). For example,

(1) If C is abelian, then K0(C) is an abelian group with [x] + [y] = [x⊕ y]
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(2) If C is also a tensor category, then K0(C) is a ring with [x] · [y] = [x⊗ y].

(3) If C is also braided (a chosen collection of isomorphisms BX,Y for each X, Y ∈ C
which satisfy the (Yang-Baxter) braid relation), then K0(C) is a commutative ring.

(4) If C is also rigid (C has left and right duals) and pivotal (C has “nice” duals, i.e.,
there are natural isomorphisms ∗X ∼= X∗ and X∗∗ ∼= X for all X ∈ C), then K0(C)
is a ∗-ring.

(5) If C is semisimple (every object is a finite direct sum of simple objects) and
also has finitely many isomorphism classes of simple objects, then K0(C) is finitely
generated.

Definition 21. A fusion category over a field k is a rigid, semisimple tensor category
enriched over k-vector spaces with only finitely many isomorphism classes of simple
objects such that End(1) ∼= k.

Remark 22. For simplicity, we will assume our fusion categories are pivotal. In
general, this is an open problem.

Examples 23. The following are fusion categories:

(1) f.d.Vectk, the category of finite dimensional k-vector spaces.

(2) Rep(G), the category of representations of a finite group or finite dimensional
quantum group.

(3) The subcategory in NModN (respectively MModM) generated by taking sum-
mands of (finite) tensor products of NMN over N (respectively MM ⊗N MM over
M) if N ⊂M is a finite index, finite depth II1-subfactor.

Categorified Morita Equivalence of Fusion Categories

All categories mentioned from here on will be abelian, semisimple, enriched over
k-vector spaces (k algebraically closed), and have finite dimensional Hom spaces.
Let C,D be fusion categories.

Definition 24. A left module category over a tensor category C is a category CM
and an exact bifunctor ⊗ : C×M→ M satisfying some unit and associativity axioms
up to an associator.

Remark 25. Heuristically, one should think of this functor as a categorification of
a ring action on a module, e.g., λ : A ⊗ X → X. The associativity of the action
means the following diagram commutes:

A⊗ A⊗X m⊗idX //

idA⊗λ
��

A⊗X
λ

��
A⊗X λ // X

where m : A⊗A→ A is the multiplication map. This means we have to have some
type of associator isomorphisms in the categorified version.
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Remark 26. Given a right C-module category MC and a left C-module category CN
we can form an abelian category

M �
C

N ∼= FunC(Mop,N).

If M and N are bimodule categories, then so is M �
C

N.

Definition 27. A bimodule category DMC is invertible if one of the following equiv-
alent conditions holds:

(1) M �
C

Mop ∼= DDD as D− D-bimodule categories,

(2) Mop �
D

M ∼= CCC as C− C-bimodule categories,

(3) The functor D→ Fun−C(M,M) given by X 7→ (M 7→ X ⊗M) is an equivalence,
and

(4) The functor C→ FunD−(M,M) given by Y 7→ (M 7→M ⊗ Y ) is an equivalence.

Definition 28. Let C and D be fusion categories. C,D are Morita equivalent if
there is an invertible bimodule category DMC.

Definition 29. If M is a left C-module category, the dual fusion category of C with
respect to M is C∗M = FunC−(M,M).

Remark 30. Note that CM is a right C∗M-module category, so C is Morita equivalent
to C∗M.

Example 31. In the subfactor case, C∗M = MModM .

Algegra objects from module categories

Remark 32. A complex algebra is a complex vector spaceA with a mapm : A⊗A→
A such that the following diagram commutes:

A⊗ A⊗ A m⊗idA //

idA⊗m
��

A⊗ A
m

��
A⊗ A m // A.

Definition 33. An algebra object in a fusion category C is an object A ∈ C and a
map m : A⊗A→ A satisfying the unit and associativity axioms up to the associator.

An algebra object A ∈ C is called a Frobenius algebra object if it comes with a
map tr : A→ 1 satisfying a certain nondegeneracy axiom (the categorified “bilinear
form” A⊗ A∗ → has a biadjoint).

Examples 34.
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(1) Let G be a finite group. Let C be the category of G-graded vector spaces, i.e.,
vector spaces V which are the direct sum of vector spaces Vg for each g ∈ G:

V =
⊕
g∈G

Vg.

C is a tensor category where ⊗ is given by

(V ⊗W )g =
⊕
hk=g

Vh ⊗C Wk.

The group algebra CG is an algebra object in this category.

(2) NMN ∈ NModN is a Frobenius algebra object.

Exercise 35. Show that the multiplications induce the algebra object structures in
the above examples.

Remark 36. Given an algebra object A ∈ C, we can make a left module category
as follows: set M equal to the category of right A-module objects, i.e., those objects
X ∈ C with a map ρ : X ⊗ A → X satisfying the associativity axiom up to an
associator:

X ⊗ A⊗ A idX ⊗m //

idA⊗ρ
��

X ⊗ A
ρ

��
X ⊗ A ρ // X

Note that if X is a right A-module object and Y ∈ C, then Y ⊗ X is also a right
A-module object with the map idY ⊗ρ.

Inner hom

Osterik’s internal Hom construction gives algebra objects from a module category.
Heuristically, internal Hom is a way of creating objects in a category in a natural way
from two given objects. In the category of vector spaces, Hom(X, Y ) is a complex
vector space.

Definition 37. Given M1,M2 ∈ M, the contravariant functor

hM1,M2 : C→ f.d.Vectk by X 7→ Hom(X ⊗M1,M2)

is exact. By abstract nonsense and the Yoneda Lemma, there is a unique object
Hom(M1,M2) ∈ C up to unique isomorphism representing hM1,M2 , and Hom(−,−)
is a bifunctor.

Examples 38.

(1) If C = M = f.d.Vectk, then Hom(X, Y ) = Y ⊗k X∗.
(2) Let G be a finite group. The category Rep(G) of finite dimensional complex
representations of G thought of as G−{e}-bimodules where {e} is the trivial group
is a module category over G-graded vector spaces, and Hom(X, Y ) = Y ⊗C X

∗.
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(3) Let N ⊂M be a finite depth, finite index II1-subfactor. Let C be the subcategory
of NModN generated by taking summands of (finite) tensor products of X =N MN

over N . Let M be be subcategory of NModM generated by taking summands of
X =N MM , X ⊗X∗ ⊗X, . . . Then Hom(Y, Z) = Y ⊗M Z∗.

Lemma 39. Let M be a left C-module category. Given X ∈ C and M1,M2 ∈ M,
there are natural isomorphisms

(1) Hom(X ⊗M1,M2) ∼= Hom(M1,M2)⊗X∗ and

(2) Hom(M1, X ⊗M2) ∼= X ⊗ Hom(M1,M2).

There is also a canonical multiplication map

Hom(M2,M3)⊗ Hom(M1,M2)→ Hom(M1,M3)

which is natural in each variable.

Fact 40. Given a module category M over C and an object M ∈ M, Hom(M,M) is
an algebra object in C.

Remarks 41.

(1) In the subfactor setting, we want M ∈ M to be a simple object.

(2) Just as NMM is the preferred object in the module category NModM , if we have
an algebra object A ∈ C, the preferred object in the left module category of right
A-module objects is A as a right A module.

Subfactors from algebra objects

Theorem 42. If X ∈ NModN is a simple Frobenius algebra object, then X comes
from a factor P where N ⊂ P . Moreover, any unitary tensor category with simple
1 can be realized as a category of bimodules over a factor N (see Yamagami). This
means every algebra object can be realized as a subfactor.

Remark 43. The index of the subfactor coming from an algebra object in a tensor
category is the Frobenius-Perron dimension of the object, not the square of the
dimension.
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