Exactly 1-3T subfactors w/ index at most 6.2.

Goals:
1. SFTs + invariants
2. SF classification program - 1-3T case.
3. Examples - braided + “6-braided” categories.

Big picture:

\[\begin{array}{ccc}
B & \rightarrow & P_0 \\
\downarrow & & \uparrow \\
A & \leftarrow & (C_+, P_-)
\end{array} \]

Subfactors:
ACB until inclusion of II_1-factors

- A factor \(ACB(H) \) is a vNa \((A=A') \) w/ trivial center \((A',A)\approx Z(A)=C_1 \).
- A factor is type II_1 if it is separable and has a trace.
- Can think of it as a complex \(* \)-algebra, simple.

Index: finite if \(\text{index} \) is a finite proj. module.

\[\text{Index: finite if } \text{index} \text{ is a finite proj. module.} \]

\[[B:A] = n + m([B] \in K_0(CA)^+) \]

\[= n + m(p) \text{ where } A \cong \bigoplus A_i \oplus A_{p} \text{ (fractional point).} \]

Standard invariant: unitary 2-category “rep theory of SF”

Objects: \(A, B \)

1-maps: \(\otimes B \), split into simple \(A-A, A-B, B-A, B-B \)

“Semi-simplicity comes from analysis”

2-maps: intertwiners. \(\text{Hom}(P, Q) \) is divided
rigid structure: dual of bimodule is contragredient.
- have evaluation, coevaluation, pivotality
unitary structure: intertwiners are bimod maps
- there is an adjoint intertwiner
- also from analysis.

- a unitary 2-category + choice of 1-morphism
(for us it is \(\mathcal{B}_B \)) gives a planar algebra
via the usual diagrammatic calculus.
- gives a generators + relations approach to constructing subfactors.

Principal graphs:
"induction-restriction graphs"

\(P^- \) biparte graphs
\(P^+ \):
- even vertices: simple \(A \rightarrow A \) bimods / \(\alpha \)
- odd vertices: simple \(A \rightarrow B \) bimods / \(\alpha \)
- edges: \(\dim(\text{Hom}(P \otimes B, Q)) \) edges from simple \(P \rightarrow Q \)
- \(\beta \)

\(P^- \):
restriction graphs: \(B \rightarrow B \) to \(B \rightarrow A \) by \(\otimes R \).

\(\ast \) rigid structure gives duality
\(A \rightarrow A \rightarrow A \rightarrow A \)
\(B \rightarrow B \rightarrow B \rightarrow B \)
\(A \rightarrow B \rightarrow B \rightarrow B \)

SF classification program
i) enumerate graph pairs \((P^+, P^-)\), apply obstructions.
ii) construct examples when graphs survive.
iii) fit exotic/exceptional examples into families.
recent survey of Jones-Harrison-Snyder in Bull. AMS.
- complete classification of standard invariants to 5
- some results above 5, not many!

Supertransitivity: P_E is k-supertransitive (ST) if

- A_n is k-ST $\iff k > 0$
- D_n is $(2n-3) - ST$, not $(2n-2) - ST$

- Morrison-Peters classified 1-ST w/ index below $3+\sqrt{5}$
- Liu classified at $3+\sqrt{5}$, partial proof by Iani-Harrison-Penneys (project during last ANU visit)
- in joint work w/ Liu + Morrison, we classify up to index 6.2 [except at index 6]

Intermediates: exactly 1-ST if:

- $+B_3$ irreducible
- $A_4 \cong A_4 \oplus [B_4 A_4]$ reducible

- if 3 intermediate SF: $A C D C B$, then $B_4 A_4$ is reducible. $B \cong A \oplus [B_4 A_4] \oplus [B_3 D_4]$
- index multiplicative. If 3 nontrivial intermediate, index ≤ 6.2, $(C D: A_7, C B: D_7) = (2, 2), (2, 7^2), (2, 3)$
- $2 = 15/3$.

Table:

<table>
<thead>
<tr>
<th>Step</th>
<th>Index < 4</th>
<th>$= 4$</th>
<th>> 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>ADE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii)</td>
<td>no Dade on E_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Composite standard invariants at $2^{\times} = 4$ and $2^{\times} = 3 + \sqrt{5}$ are completely classified.
- At index 0, they are wild. "No $\mathbb{Z}_2 \times \mathbb{Z}_3$"
- All 1-\text{st} std. inv. at index 0 are composite.

Thm (Liu-Monton-Pereyra): If a standard invariant is exactly 1-\text{st} w/o intermediate, index in $(3 + \sqrt{5}, 0.27)$, then it is one of 3 or index $3 + 2\sqrt{5}$.

Map of 1-\text{st} SF's:

- 3 examples at $3 + 2\sqrt{5}$ are actually unitary fusion cats.

1. Rep($SO(3)_E$) or $SU(2)_E$ on $(g, \nu, S) = (SU(2), V, \nu)$
 - generated by a "quadratic breaking"

- satisfying the following relations:
\(\binom{11}{2} \quad \frac{1}{n} = \frac{1}{n} \quad \text{and} \quad \frac{1}{n} = u \)

2. unit \(/ R1 \)
\(n = a \quad \frac{1}{n} = a \quad \frac{1}{n} = a \quad \text{at C} \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix} \)

3. rotate \(\alpha = x \quad \alpha = x \quad \text{needs } g + \text{lower order terms} \)

4. twist \(/ R2 \)
\(6 \quad \alpha = x \quad 6 \quad 6 \)

5. quadratic \(\phi \quad \text{span } \{ 11, \frac{1}{n}, x \} \quad 3 \)

- Can evaluate closed diagrams via skein-template algorithm \(\text{"also a Hecke alg. argument"} \)

\[\Rightarrow 3 \text{ at most 1 category with these relms.} \]

6. \(\text{"6-braided" / twisted variations. } 6 = \pm i \)

- Sprinkle in some 6's in above relations.

- Again, at most 1 category for \(6 = \pm i \).

\(\text{\"do these also come from quantum groups?\"} \quad \text{\"yes, Lue's current work\"} \)

To show existence, find representation in a graph planar algebra (GPA)

To show uniqueness, show that the GPA repin of a planar algebra by graph \(\begin{array}{c} \text{\.de} \end{array} \) is one of above 3 examples.