Classifying small index subfactors
Great Plains Operator Theory Symposium

David Penneys
University of Toronto

In celebration of the 60th birthday of Vaughan Jones
May 29, 2014
Where do subfactors come from?

Some examples include:

- Groups – from $G \rtimes R$, we get $R^G \subset R$ and $R \subset R \rtimes_\alpha G$.
- finite dimensional unitary Hopf/Kac algebras
- Quantum groups – $\text{Rep}(U_q(\mathfrak{g}))$
- Conformal field theory
- endomorphisms of Cuntz C*-algebras
- composites of known subfactors

However, there are certain possible infinite families without uniform constructions.

Remark

Just as von Neumann algebras come in pairs (M, M'), subfactors come in pairs $(A \subset B, B' \subset A')$.
Theorem [Jon83]
For a II$_1$-subfactor $A \subset B$,

$$[B : A] \in \left\{ 4 \cos^2 \left(\frac{\pi}{n} \right) \mid n = 3, 4, \ldots \right\} \cup [4, \infty].$$

Moreover, there exists a subfactor at each index.

Definition
The Jones tower of $A = A_0 \subset A_1 = B$ (finite index) is given by

$$A_0 \subset A_1 \subset A_2 \subset A_3 \subset \cdots$$

where e_i is the projection in $B(L^2(A_i))$ with range $L^2(A_{i-1})$.

Two towers of centralizer algebras

\[
P_{3,+} = A_0' \cap A_3 \supset A_1' \cap A_3 = P_{2,-} \\
\quad \cup \quad \cup \\
P_{2,+} = A_0' \cap A_2 \supset A_1' \cap A_2 = P_{1,-} \\
\quad \cup \quad \cup \\
P_{1,+} = A_0' \cap A_1 \supset A_1' \cap A_1 = P_{0,-} \\
\quad \cup \\
P_{0,+} = A_0' \cap A_0
\]

These centralizer algebras are finite dimensional [Jon83], and they form a planar algebra [Jon99].
Planar algebras [Jon99]

Definition
A shaded planar tangle has

- a finite number of inner boundary disks
- an outer boundary disk
- non-intersecting strings
- a marked interval \star on each boundary disk
Composition of tangles

We can compose planar tangles by insertion of one into another if the number of strings matches up:

Definition
The shaded planar operad consists of all shaded planar tangles (up to isotopy) with the operation of composition.
Definition

A *planar algebra* is a family of vector spaces $P_{k,\pm}$, $k = 0, 1, 2, \ldots$ and an action of the shaded planar operad.

$$P_{2,-} \times P_{1,+} \times P_{1,+} \rightarrow P_{3,+}$$
Example: Temperley-Lieb

$TL_{n, \pm}(\delta)$ is the complex span of non-crossing pairings of $2n$ points arranged around a circle, with formal addition and scalar multiplication.

$TL_{3, +}(\delta) = \text{Span}_\mathbb{C} \{ \begin{array}{c} \star \otimes, \star \otimes, \star \otimes, \star \otimes, \star \otimes \end{array} \}.$

Planar tangles act on TL by inserting diagrams into empty disks, smoothing strings, and trading closed loops for factors of δ.

\[
\begin{array}{c}
\star \\
\otimes \otimes \\
\end{array}
\begin{array}{c}
\star \\
\otimes \otimes \\
\end{array} = \begin{array}{c}
\star \\
\otimes \otimes \\
\end{array} = \delta^2 \begin{array}{c}
\star \\
\otimes \otimes \\
\end{array}
\]
Subfactor planar algebras

Definition
A planar ∗-algebra P_\bullet is a subfactor planar algebra if it is:
- Finite dimensional: $\dim(P_k,\pm) < \infty$ for all k
- Evaluable: $P_{0,\pm} \cong \mathbb{C}$ by sending the empty diagram to $1_\mathbb{C}$
- Sphericality: $\text{Tr}(x) = \frac{1}{2}x \star = \star x$
- Positivity: each $P_{k,\pm}$ has an adjoint \star such that the sesquilinear form $\langle x, y \rangle := \text{Tr}(y^* x)$ is positive definite

From these properties, it follows that closed circles count for a multiplicative constant $\delta \in \{2 \cos(\pi/n) | n \geq 3\} \cup [2, \infty)$.
Principal graphs

The complex \ast-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

where the inclusion is given by

is described by its Bratteli diagram (and the trace).
Principal graphs

The complex \ast-algebras $P_{n,\pm}$ are all finite dimensional. The tower

$$P_{0,+} \subset P_{1,+} \subset P_{2,+} \subset \cdots$$

where the inclusion is given by

![Bratteli diagram](image)

is described by its Bratteli diagram (and the trace).

- The non-reflected part is the principal graph Γ_+.
- Get the dual principal graph Γ_- by looking at the Bratteli diagram for the tower $(P_{n,-})$.

Examples of principal graphs

- **index < 4**: A_n, D_{2n}, E_6, E_8. No D_{odd} or E_7.
- **index = 4**: $A_{2n-1}^{(1)}, D_{n+2}^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, A_\infty, A_\infty^{(1)}, D_\infty$
- **Graphs for $R \subset R \rtimes G$ obtained from G and $\text{Rep}(G)$.**

 \[
 \begin{array}{c}
 (\quad, 2) \\
 \end{array}
 \]

- **Haagerup 333**

 \[
 \begin{array}{c}
 (\quad, \quad) \\
 \end{array}
 \]

- **extended Haagerup 733**

 \[
 \begin{array}{c}
 (\quad, \quad) \\
 \end{array}
 \]

- **First graph is principal, second is dual principal.**
- **Leftmost vertex corresponds to $P_{0,\pm} \cong \mathbb{C}$.**
- **Red tags for duality of even vertices.**
- **Duality of odd vertices by depth and height**
Finite depth

Definition
If the principal graph is finite, then the subfactor and standard invariant/planar algebra are called finite depth.

Example: \(R \subset R \rtimes G \) for finite \(G \)
For \(G = S_3 \):

- Principal graph:

- Dual principal graph:
Supertransitivity

Definition
We say a principal graph is n-supertransitive if it begins with an initial segment consisting of the Coxeter-Dynkin diagram A_{n+1}, i.e., an initial segment with n edges.

Examples

- is 1-supertransitive
- is 2-supertransitive
- is 3-supertransitive
Invariants of subfactors

\[A \subset B \]

\[(P_+, P_-) \]

\[(\Gamma_+, \Gamma_-) \]
Known small index subfactors

- Map of known small index subfactors modified from Jones-Morrison-Snyder Bulletin AMS survey [JMS14].
The extended Haagerup subfactor

[Bigelow-Morrison-Peters-Snyder [BMPS12]]

The extended Haagerup subfactor is the unique subfactor with principal graphs

\[\begin{array}{c}
\quad \\
(,)
\end{array} \]

- Last remaining possible graph in Haagerup’s classification to \(3 + \sqrt{3} \) [Haa94] by work of Asaeda-Yasuda [AY09].
- Largest known supertransitivity outside the \(A \) and \(D \) series. High supertransitivity is exceedingly rare!
- Planar algebra constructed using Bigelow’s jellyfish algorithm.
Jellyfish relations

Theorem [Bigelow-Morrison-Peters-Snyder [BMPS12]]

The Haagerup and extended Haagerup subfactor planar algebras have a generator $S \in P_{n,+}$ where $n = 4, 8$ respectively satisfying:

$\begin{align*}
&\star \quad 2n - 1 \quad \star \\
&\quad f(2n+2) = i \frac{\sqrt{[n][n+2]}}{[n+1]} \\
\end{align*}$

$\begin{align*}
&\star \quad 2n \quad \star \\
&\quad f(2n+4) = \frac{[2][2n+4]}{[n+1][n+2]} \\
\end{align*}$

(Absorption) capping S gives zero and $S^2 = f(n) \in TL_{n,+}$.
The jellyfish algorithm

We can evaluate all closed diagrams as follows:

1. First, pull all generators to the outside using the jellyfish relations

2. Second, reduce the number of generators using the capping and absorption (multiplication) relations.
Consistency and positivity

Theorem [Jones-Penneys [JP11], Morrison-Walker]
Every subfactor planar algebra embeds in the graph planar algebra
of its principal graph.

This serves two purposes:

1. To show the planar algebra is non-zero, give a representation.
2. Graph planar algebras are always finite dimensional, spherical,
 and positive. Only need to check evaluable.
Spoke graphs

Examples of spoke principal graphs

- A_n, D_{2n}, E_6, E_8,
- $E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$,
- $A_{\infty}, A_{\infty}^{(1)}, D_{\infty}$
- Principal graphs for $R \subset R \rtimes G$, G finite (Diagram: $\rightarrow\leftarrow$, $\leftarrow\rightarrow$)
- 2221
- Haagerup 333
- 3311
- 3333
- 4442
- extended Haagerup 733
Spokes and jellyfish

Assume all generators of P_\bullet are at the same depth n.

Theorem [Bigelow-Penneys [BP14]]

- P_\bullet has 2-strand jellyfish relations \iff one graph is a spoke.

- P_\bullet has 1-strand jellyfish relations \iff both graphs are spokes.
Constructing spoke subfactors with jellyfish

Theorem [Morrison-Penneys [MP12a]]
We automate finding 1-strand relations for these subfactors:

- Izumi-Xu 2221 [Han10]
- [GdlHJ89] 3311
- Izumi $3 \mathbb{Z}/2 \times \mathbb{Z}/2$ (index $3 + \sqrt{5}$)
- 4442 (index $3 + \sqrt{5}$)

For the above, both principal graphs are the same spoke graph.

Theorem [Penneys-Peters [PP13]]
We give explicit 2-strand relations for Izumi’s $3 \mathbb{Z}/4$ subfactor

- (\quad, \quad) (index $3 + \sqrt{5}$)
Small index subfactor classification program

Focuses of the classification program:

- Enumerate graph pairs and apply obstructions.
- Construct examples when graphs survive.
- Place exotic examples into families.
Why do we care about index $3 + \sqrt{5}$?

- Standard invariants at index 4 are completely classified.
 - $\mathbb{Z}/2 \ast \mathbb{Z}/2 = D_\infty$ is amenable
- Standard invariants at index 6 are wild.
 - There is (at least) one standard invariant for every normal subgroup of the modular group $\mathbb{Z}/2 \ast \mathbb{Z}/3 = PSL(2, \mathbb{Z})$
 - There are unclassifiably many distinct hyperfinite subfactors with the same standard invariant [BNP07, BV13]

- $4 = 2 \times 2$ and $6 = 2 \times 3$ are composite indices, as is $3 + \sqrt{5} = 2\tau^2$ where $\tau = \frac{1 + \sqrt{5}}{2}$.
1-supertransitive subfactors at index $3 + \sqrt{5}$

Theorem [Liu [Liu13a]], partial proof by [IMP13]
There are exactly seven 1-supertransitive subfactor planar algebras with index $3 + \sqrt{5}$:

- (\quad , \quad) self-dual
- (\quad , \quad) and its dual
- (\quad , \quad) and its dual
- $(\quad \ldots , \quad \ldots)$ and its dual ($A_3 \ast A_4$)

These are all the standard invariants of composed inclusions of A_3 and A_4 subfactors.

Open question
How many hyperfinite subfactors have Bisch-Jones’ Fuss-Catalan $A_3 \ast A_4$ standard invariant at index $3 + \sqrt{5}$?

- $A_3 \ast A_4$ and $A_2 \ast T_2$ are not amenable [Pop94, HI98].
Theorem [Liu-Morrison-Penneys [LMP13]]

An exactly 1-supertransitive subfactor planar algebra with index at most $6 \frac{1}{5}$ either comes from a composed inclusion (and has index $3 + \sqrt{5}$ or 6), or is one of 3 self-dual planar algebras at index $3 + 2\sqrt{2}$:

- (\quad, \quad)
- (\quad, \quad) two complex conjugate

- Can push classification results above index 6!
- Could hope that the only wildness at index 6 is “group-like”
Index \((5, 3 + \sqrt{5})\)

Conjecture [Morrison-Peters [MP12b]]

There are exactly two non Temperley-Lieb subfactor planar algebras in the index range \((5, 3 + \sqrt{5})\):

<table>
<thead>
<tr>
<th>name</th>
<th>Principal graphs</th>
<th>Index</th>
<th>Constructed</th>
</tr>
</thead>
</table>
| $SU(2)_5$ | (\begin{tikzpicture}
 \draw (-0.5,0) -- (-0.5,0.5);
 \draw (-0.5,0.5) -- (-1,0.5);
 \draw (-1,0) -- (-1,0.5);
\end{tikzpicture}) | 5.04892 | [Wen90], [MP12b] |
| $SU(3)_4$ | (\begin{tikzpicture}
 \draw (-0.5,0) -- (-0.5,0.5);
 \draw (-0.5,0.5) -- (-1,0.5);
 \draw (-1,0) -- (-1,0.5);
\end{tikzpicture}) | 5.04892 | [Wen88], [MP12b] |

Theorem [Morrison-Peters [MP12b]]

There is exactly one 1-supertransitive subfactor in the index range \((5, 3 + \sqrt{5})\)
Subfactor planar algebras at index $3 + \sqrt{5}$

Conjecture [Morrison-Penneys]

At $3 + \sqrt{5}$, we have only the following subfactor planar algebras:

<table>
<thead>
<tr>
<th>name</th>
<th>Principal graphs</th>
<th>#</th>
<th>Constructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4442</td>
<td>(,)</td>
<td>1</td>
<td>[MP12a], Izumi</td>
</tr>
<tr>
<td>$3\mathbb{Z}/2\times\mathbb{Z}/2$</td>
<td>(,)</td>
<td>1</td>
<td>Izumi, [MP12a]</td>
</tr>
<tr>
<td>$3\mathbb{Z}/4$</td>
<td>(,)</td>
<td>2</td>
<td>Izumi, [PP13]</td>
</tr>
<tr>
<td>$2D2$</td>
<td>(,)</td>
<td>2</td>
<td>Izumi, [MPP]</td>
</tr>
<tr>
<td>$A_3 \otimes A_4$</td>
<td>(,)</td>
<td>1</td>
<td>\otimes</td>
</tr>
<tr>
<td>fish 2</td>
<td>(,)</td>
<td>2</td>
<td>BH</td>
</tr>
<tr>
<td>fish 3</td>
<td>(,)</td>
<td>2</td>
<td>[IMP13]</td>
</tr>
<tr>
<td>$A_3 \ast A_4$</td>
<td>(,)</td>
<td>2</td>
<td>[BJ97]</td>
</tr>
<tr>
<td>A_∞</td>
<td>(,)</td>
<td>1</td>
<td>[Pop93]</td>
</tr>
</tbody>
</table>

▶ 1-supertransitive case known by [Liu13a, IMP13, LMP13]
Methods to push classification results further

- The non-initial triple point obstruction
- Popa’s principal graph stability [Pop95, BP14]
- Liu’s virtual normalizers for 1-supertransitive subfactors [Liu13b] (pushed 1-supertransitive classification to $6\frac{1}{5}$ [LMP13])
- Afzaly’s principal graph enumerator, based on Brendan McKay’s isomorph free enumeration by canonical construction paths
- New general initial triple point obstruction [Pen13]

Theorem [Afzaly-Morrison-Penneys]
The conjectures of Morrison-Peters and Morrison-Penneys hold with at most finitely many exceptions.
Thank you for listening!
Recent articles:

▶ with Izumi and Morrison - 1-supertransitive at $3 + \sqrt{5}$ - Submitted - arXiv:1308.5723

▶ new obstruction - Submitted - arXiv:1307.5890

Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, *The classification of subfactors of index at most 5*, Bull. Amer. Math. Soc. (N.S.) 51

Scott Morrison, David Penneys, and Emily Peters, *Equivariantizations and 3333 spoke subfactors at index* $3 + \sqrt{5}$, In preparation.

