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AMS JMM Special Session on Classification problems in operator algebras

January 8, 2016



Categorical analogies

Tensor categories categorify algebras.

algebra A tensor category C
finite dimensional algebra fusion category

center Z(A) Drinfel’d center Z(C)
commutant ZB(A) of A in B commutant ZD(C) of C in D

B(H) Bim(R), all bimodules
commutant A′ := ZB(H)(A) commutant C′ := ZBim(R)(C)

von Neumann algebra A = A′′ bicommutant category C ∼= C′′

Bicommutant categories categorify von Neumann algebras.

Today, we will prove the categorified finite dimensional
bicommutant theorem.



Unitary fusion categories

We start with a unitary fusion category C ⊂ Bim(R).

I Have a system of bifinite bimodules and intertwiners
I The system is closed under

I Finite direct sum: x, y ∈ C ⇒ x⊕ y ∈ C
I Connes fusion: x, y ∈ C ⇒ x� y ∈ C
I Contragredient: x ∈ C ⇒ x ∈ C
I Taking sub-bimodules: x ⊂ y ∈ C ⇒ x ∈ C

I Finitely many isomorphism classes of irreducible bimodules.

Examples

I Start with a finite group G, and form R ⊂ RoG. The R−R
bimodules generated by L2(RoG) form Vec(G).

I Given a finite index, finite depth subfactor R ⊂M , the R−R
bimodules generated by L2(M) form a unitary fusion category.



Graphical calculus

Fix a finite set Irr(C) of representatives of irreducibles.

I Morphisms f : x⊗ y → z are represented by coupons.

I For all x, y, z ∈ Irr(C), Hom(1, x⊗ y ⊗ z) is a finite
dimensional Hilbert space with inner product 〈f, g〉 = g∗ ◦ f .

Choose dual bases:

ei ∈ Hom(1, x⊗ y ⊗ z) and ei ∈ Hom(1, z ⊗ y ⊗ x)

We represent the canonical element by colored nodes
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The canonical element is independent of choice of basis.



Important relations
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We’ll use Snyder convention and ignore all scalars.



Commutant C ′ of C in Bim(R)

The commutant C′ ⊂ Bim(R) of C ⊂ Bim(R) has:

I Objects are pairs (X, eX) where X ∈ Bim(R), and eX is a
unitary half braiding with C

eX,c =
X c

: X � c→ c�X

These half braidings must satisfy compatibility conditions.

I Morphisms f : (X, eX)→ (Y, eY ) are bimodule maps
f : X → Y which commute with the half braidings:

X c

Y

f
=

Y

cX

f

C′ is a tensor category, but it is usually not braided.



Functor Bim(R)→ C ′

We have a way to construct lots of objects in C′.

∆ : Bim(R)→ C′ ∆(Λ) = (∆(Λ), e∆(Λ)) = (∆, e∆).

∆ ∈ Bim(R) with unitary half braiding e∆,a : ∆� a→ a�∆.

∆ :=
⊕

x∈Irr(C)

x� Λ� x .

e∆,a :=
∑

x,y∈Irr(C)
Λx x a

Λy ya



Description of EndC′(∆)
The map that sends f =

(
fa : Λ� a→ a� Λ

)
a∈Irr(C) to

Tf :=
∑

a,x,y∈Irr(C)

fa

y y

x x

a

a
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Λ

: ∆→ ∆

induces an isomorphism⊕
a∈Irr(C)

HomBim(R)(Λ� a, a� Λ) ∼= EndC′(∆(Λ)).

Note Tf ∈ EndC′(∆) using the (I=H) Relation:
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Absorbing objects

Definition
An object Ω in a tensor category T is absorbing if
Ω⊗ t ∼= Ω ∼= t⊗ Ω for all t ∈ T .

I Isomorphisms are not required to be natural or canonical.

I Absorbing objects are unique up to isomorphism if they exist.

I Taking t = 1⊕ 1, we have Ω ∼= Ω⊗ (1⊕ 1) ∼= Ω⊕ Ω.

Examples

I `2(N) is absorbing in the category of separable Hilbert spaces.

I `2(G)⊗ `2(N) is absorbing in Rep(G), G a countable group

I RL
2(R)⊗ `2(N)⊗ L2(R)R is absorbing in Bim(R).



Absorbing objects of C ′

Absorbing objects of T ⊂ Bim(R) control half braidings of
T ′ ⊂ Bim(R).

Theorem
If Ω ∈ T is absorbing and (X, eX) ∈ T ′, then eX is completely
determined by eX,Ω.

When C is a unitary fusion category, C′ has absorbing objects.

Theorem
If Λ ∈ Bim(R) is absorbing, then ∆ ∈ C′ is absorbing.

I If Λ ∈ Bim(R) is absorbing, then EndC′(∆) is a factor.

I EndBim(R)(Λ) ↪→ EndC′(∆) is a subfactor!



The main theorem

Recall C is a unitary fusion category. The bicommutant C′′ allows
infinite direct sums, so C is not a bicommutant category.
Let C ⊗Vec Hilb be the category obtained from C by allowing infinite
direct sums. (This is sometimes called the ind-category of C.)

Theorem
C ⊗Vec Hilb is a bicommutant category.

This theorem categorifies the following well-known result:

I A finite dimensional ∗-algebra that can be faithfully
represented on a Hilbert space is in fact a von Neumann
algebra.

Corollary

C′ is also a bicommutant category.



Outline of the proof

There is an obvious fully faithful embedding C ⊗Vec Hilb ↪→ C′′.

The proof of essential surjectivity has 3 main steps:

1. The underlying object X of an object (X, eX) ∈ C′′ is of the
form X ∼=

⊕
c∈Irr(C) c⊗Hc for Hc ∈ Hilb.

2. Two objects (X, e1
X) and (X, e2

X) have the same half braiding
with an absorbing object Ω ∈ C′, i.e., e1

X,Ω = e2
X,Ω.

3. Absorbing objects uniquely determine half braidings.



Proof of 1.

I Start with (X, eX) ∈ C′′.
I Take Λ = L2(R)⊗ L2(R) and form ∆ =

⊕
c∈Irr(C) c⊗ c ∈ C′.

I Have a bimodule isomorphism e : X �∆→ ∆�X.

e :
⊕

c∈Irr(C)

X � c⊗ c −→
⊕

c∈Irr(C)

c⊗ c�X

I Isomorphism is R-linear for four distinct R-actions!

I Apply functor Hom3rd−R,4th−R(L2(R),−) to see

X ∼=
⊕

c∈Irr(C)

Hom3rd−R,4th−R(L2(R), X � c⊗ c)

∼=
⊕

c∈Irr(C)

Hom3rd−R,4th−R(L2(R), c⊗ c�X)

∼=
⊕

c∈Irr(C)

c⊗HomR−R(L2(R), c�X)︸ ︷︷ ︸
Hc



Thank you for listening!
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