Embedding subfactor planar algebras in graph planar algebras

NCGOA, Vanderbilt University

D. Penneys (joint work with V.F.R. Jones)

University of California, Berkeley

May 11, 2010

Main Theorem

Theorem

A finite depth subfactor planar algebra embeds in the graph planar algebra of its principal graph.

Uses

- Constructing subfactors, e.g., Haagerup [Peters '08], extended Haagerup [BMPS '10], groups [Gupta '08]
- Obstructions, e.g., classification to index 5 [JMPPS...]

- The canonical relative commutant planar algebra
 - The basic construction for strongly Markov inclusions
 - The canonical planar algebra
 - Burns' treatment of rotation
 - Uniqueness
- 2 The canonical planar algebra is isomorphic to the graph planar algebra
 - Loop algebras
- The embedding theorem for finite depth, subfactor planar algebras

Strongly Markov inclusions

Let $M_0\subset (M_1,\operatorname{tr}_1)$ be an inclusion of finite von Neumann algebras. Let $M_2=\langle M_1,e_1\rangle$ be the basic construction, and let Tr_2 be the canonical trace on M_2 , i.e., the unique extension of

$$xe_1y \mapsto \operatorname{tr}_1(xy)$$
 for all $x, y \in M_1$.

Definition

An inclusion of finite von Neumann algebras $M_0 \subset (M_1, \operatorname{tr}_1)$ is called strongly Markov if

- Tr_2 is finite with $\operatorname{Tr}_2(1)^{-1}\operatorname{Tr}_2|_M=\operatorname{tr}$, and
- $M_2 = M_1 e_1 M_1$.

In this case, we define $[M_1: M_0] = \operatorname{Tr}_2(1)$.

Iterating the basic construction

Theorem

Suppose $M_0 \subset (M_1, \operatorname{tr}_1)$ is strongly Markov, and let $\operatorname{tr}_2 = \operatorname{Tr}_2(1)^{-1}\operatorname{Tr}_2$. Then $M_1 \subset (M_2, \operatorname{tr}_2)$ is strongly Markov and

$$[M_2 \colon M_1] = [M_1 \colon M_0].$$

From here on, $M_0 \subset (M_1, \operatorname{tr}_1)$ is a strongly Markov inclusion.

The set up

For $n \geq 1$,

- Iteratively define $M_{n+1} = \langle M_n, e_n \rangle$ with normalized tr_n .
- Set $d = [M_1: M_0]^{1/2}$ and $E_n = de_n$.
- Set $v_n = E_n E_{n-1} \cdots E_1$.

Fact

For all
$$n \in \mathbb{N}$$
, $\bigotimes_{M_0}^n M_1 \cong M_n$ and $\bigotimes_{M_0}^n L^2(M_1, \operatorname{tr}_1) \cong L^2(M_n, \operatorname{tr}_n)$

via the isomorphism

$$x_1 \otimes x_2 \otimes \cdots \otimes x_n \longleftrightarrow x_1 v_1 x_2 v_2 \cdots v_{n-1} x_n.$$

We will identify these spaces from now on.

For n > 0, we set

$$P_{n,+} = M'_0 \cap L^2(M_n, \operatorname{tr}_n) \cong M'_0 \cap M_n$$

$$P_{n,-} = M'_1 \cap L^2(M_{n+1}, \operatorname{tr}_n) \cong M'_1 \cap M_{n+1}$$

Then we define an action of the planar operad on these vector spaces.

Relative commutant PA \cong with GPA Embedding PAs Basic construction PA definition Rotation Uniqueness

Tangle action

Step 1: Isotope tangle into a standard form:

Note: We allow *'s in shaded regions!

The planar algebra

Step 2: Read from bottom to top using rules locally. Think of shaded regions as elements of M_1 and unshaded regions as \otimes 's. Labelled boxes correspond to insertion of central vectors.

Tangle action

Step 2: Read from bottom to top using rules locally. Think of shaded regions as elements of M_1 and unshaded regions as \otimes 's.

Here $B = \{b\}$ is a Pimnser-Popa basis for M_1 over M_0 , i.e.,

$$\sum_{b \in B} be_1 b^* = 1.$$

Tangle action

Step 2: Read from bottom to top using rules locally. Think of shaded regions as elements of M_1 and unshaded regions as \otimes 's.

$$x \otimes y \otimes z \longmapsto dx E_{M_0}(y) \otimes z = dx \otimes E_{M_0}(y)z$$

$$x \otimes y \longmapsto xy.$$

Example

We will compute the action of

on
$$\xi = \sum_{i=1}^k x_1^i \otimes \cdots \otimes x_n^i \in M_0' \cap M_n$$
.

We start at $1_{\mathbb{C}}$:

Passing the first critical point, we have

$$1_{\mathbb{C}} \mapsto 1_M$$
.

Example

Passing the second critical point, we have

$$1_{\mathbb{C}} \mapsto 1_M \mapsto \sum_{b \in B} b \otimes b^*$$

Example

Passing the internal box, we have

$$1_{\mathbb{C}} \mapsto 1_M \mapsto \sum_{b \in B} b \otimes b^* \mapsto \sum_{b \in B} b \otimes \xi \otimes b^*$$

Relative commutant PA

with GPA Embedding PAs

Basic construction PA definition Rotation Uniqueness

Example

Passing the third critical point, we have

$$1_{\mathbb{C}} \mapsto 1_{M} \mapsto \sum_{b \in B} b \otimes b^{*} \mapsto \sum_{b \in B} b \otimes \xi \otimes b^{*}$$
$$\mapsto \sum_{b \in B} \sum_{i=1}^{k} b \otimes x_{1}^{i} \otimes \cdots \otimes x_{n-1}^{i} \otimes x_{n}^{i} b^{*}$$

Relative commutant PA \cong with GPA Embedding PAs Basic construction PA definition Rotation Uniqueness

Example

Passing the last critical point, we have

$$1_{\mathbb{C}} \mapsto 1_{M} \mapsto \sum_{b \in B} b \otimes b^{*} \mapsto \sum_{b \in B} b \otimes \xi \otimes b^{*}$$
$$\mapsto \sum_{b \in B} \sum_{i=1}^{k} b \otimes x_{1}^{i} \otimes \cdots \otimes x_{n-1}^{i} \otimes x_{n}^{i} b^{*}$$
$$\mapsto \sum_{n} \sum_{i=1}^{k} b \otimes x_{1}^{i} \otimes \cdots \otimes x_{n-1}^{i} E_{M_{0}}(x_{n}^{i} b^{*})$$

Burns' definition of rotation

Fact

For all $n \in \mathbb{N}$, $M'_0 \cap M_n$ is equal to

$$M_0'\cap L^2(M_n,\operatorname{tr}_n):=\left\{\xi\in L^2(M_n,\operatorname{tr}_n)\big|x\xi=\xi x \text{ for all } x\in M_0\right\}.$$

Definition

The rotation is given by

$$\rho(\xi) = \sum_{b \in B} \sum_{i=1}^{k} b \otimes x_1^i \otimes \cdots x_{n-1}^i E_{M_0}(x_n^i b^*) = \sum_{b \in B} L_b R_b^*(\xi).$$

Theorem (Burns)

The rotation is periodic.

Note: we don't require extremality!

Proof.

$$\langle \rho(\xi), y_1 \otimes \cdots \otimes y_n \rangle = \sum_{b \in B} \langle L_b R_b^* x, y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, R_b L_b^* y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, \underbrace{E_{M_0}(b^* y_1)}_{y_2} y_2 \otimes \cdots \otimes y_n \otimes b \rangle$$

Theorem (Burns)

The rotation is periodic.

Note: we don't require extremality!

Proof.

$$\langle \rho(\xi), y_1 \otimes \cdots \otimes y_n \rangle = \sum_{b \in B} \langle L_b R_b^* x, y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, R_b L_b^* y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \underline{E_{M_0}} (b^* y_1)^* \xi, y_2 \otimes \cdots \otimes y_n \otimes b \rangle$$

Theorem (Burns)

The rotation is periodic.

Note: we don't require extremality!

Proof.

$$\langle \rho(\xi), y_1 \otimes \cdots \otimes y_n \rangle = \sum_{b \in B} \langle L_b R_b^* x, y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, R_b L_b^* y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi \underline{E}_{M_0} (b^* y_1)^*, y_2 \otimes \cdots \otimes y_n \otimes b \rangle$$

Theorem (Burns)

The rotation is periodic.

Note: we don't require extremality!

Proof.

$$\langle \rho(\xi), y_1 \otimes \cdots \otimes y_n \rangle = \sum_{b \in B} \langle L_b R_b^* x, y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, R_b L_b^* y_1 \otimes \cdots \otimes y_n \rangle$$

$$= \sum_{b \in B} \langle \xi, y_2 \otimes \cdots \otimes y_n \otimes b E_{M_0}(b^* y_1) \rangle$$

Theorem (Burns)

The rotation is periodic.

Note: we don't require extremality!

Proof.

For all $\xi \in M_0' \cap M_n$ and all $\eta = y_1 \otimes \cdots \otimes y_n \in L^2(M_n, \operatorname{tr}_n)$,

$$\langle \rho(\xi), y_1 \otimes \cdots \otimes y_n \rangle = \sum_{b \in B} \langle L_b R_b^* x, y_1 \otimes \cdots \otimes y_n \rangle$$
$$= \sum_{b \in B} \langle \xi, R_b L_b^* y_1 \otimes \cdots \otimes y_n \rangle$$
$$= \langle \xi, y_2 \otimes \cdots \otimes y_n \otimes y_1 \rangle$$

Hence $\rho^n = id$.

Key Lemma

Suppose P_{\bullet} is a planar algebra with modulus $d \neq 0$ and $Q_{n,\pm} \subset P_{n,\pm}$ are subalgebras which are closed under the following operations:

(1) left and right multiplication by tangles

$$E_n = \bigcup_{n-1} \cdots \in P_{n+1,+} \text{ for } n \in \mathbb{N},$$

(2) The maps from $P_{n,+}$ as follows:

Uniqueness

Key Lemma

(3) the map
$$i_n^- = \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ &$$

Then the $Q_{n,\pm}$ define a planar subalgebra $Q_{\bullet} \subset P_{\bullet}$.

Proof.

Check that Q_{\bullet} is closed under all annular maps.

Uniqueness

$\mathsf{Theorem}$

Given a strongly Markov inclusion $M_0 \subset (M_1, \operatorname{tr}_1)$, there is a unique planar algebra P_{\bullet} of modulus $d = [M_1: M_0]^{1/2}$ where

$$P_{n,+} = M_0' \cap M_n \text{ and}$$

$$P_{n,-} = M_1' \cap M_{n+1}$$

such that

(1) for
$$n \in \mathbb{N}$$
, $E_n = \bigcup_{n-1} \bigcup_{n-1} \in P_{n+1,+1}$

(2) for $x \in P_{n,+}$,

Isomorphism with the graph planar algebra

Theorem

Suppose $M_0\subset (M_1,\operatorname{tr}_1)$ is a connected inclusion of finite dimensional von Neumann algebras with the Markov trace. Let Γ be the Bratteli diagram of the inclusion. Then the canonical relative commutant planar algebra is isomorphic to the graph planar algebra of Γ .

Proof.

We inductively define isomorphisms of M_n with algebras of loops on an augmented Bratteli diagram. These isomorphisms identify the relative commutants with algebras of loops on the original Bratteli diagram.

Example

Let $M_0=\mathrm{Mat}_2(\mathbb{C})\oplus\mathbb{C}\subset\mathrm{Mat}_3(\mathbb{C})\oplus\mathrm{Mat}_2(\mathbb{C})=M_1$ with Bratteli diagram

Example

Let $M_0 = \operatorname{Mat}_2(\mathbb{C}) \oplus \mathbb{C} \subset \operatorname{Mat}_3(\mathbb{C}) \oplus \operatorname{Mat}_2(\mathbb{C}) = M_1$ with Bratteli diagram

Example

 M_n is isomorphic to loops of length 2n starting at \star and passing through level n=0,1. For $i,j,k,l\in\{1,2\}$,

$$[\eta_i \eta_j^*] \cdot [\eta_k \eta_l^*] = \delta_{j,k} [\eta_i \eta_l^*].$$

Level 1

Level 0

Level -1

Example

To get isomorphisms with higher M_n 's, we reflect Γ to get more levels. Then we take loops starting at \star passing through level n.

The set up

Let Q_{\bullet} be a finite depth, subfactor planar algebra. Let s=2r be minimal such that

$$Q_{s,+} \subset Q_{s+1,+} \subset Q_{s+2,+}$$

is standard $(Q_{s+2,+})$ is the basic construction). Then the (graph underlying the) Bratteli diagram for

$$M_0 = Q_{s,+} \subset Q_{s+1,+} = M_1$$

is the principal graph of Q_{\bullet} . Set

$$P_{n,+} = M_0' \cap M_n = Q_{s,+}' \cap Q_{s+n,+} \ \text{ and }$$

$$P_{n,-} = M_1' \cap M_{n+1} = Q_{s+1,+}' \cap Q_{s+n+1,+}.$$

The embedding map

Define $\Phi\colon Q_{\bullet}\to P_{\bullet}$ by adding s=2r strings to the left for $x\in Q_{n,+}$ and adding s+1 strings to the left for $x\in Q_{n,-}$. For example, $\Phi\colon Q_{n,+}\to P_{n,+}$ is given by

Theorem

 $\boldsymbol{\Phi}$ is an inclusion of planar algebras.

The proof

Proof.

We use the Key Lemma. The only tricky part is capping off on the left.

Let $B=\{b\}$ be a Pimsner-Popa basis for $M_1=Q_{s+1,+}$ over $M_0=Q_{s,+}$. Then each $b\in B$ is an (s+1,+)-box in $Q_{s+1,+}$, so for all $x\in Q_{n,+}$, we have

$$\gamma_n^+(\Phi(x)) = \frac{1}{d} \sum_{b \in B} b\Phi(x)b^* = \frac{1}{d} \sum_{b \in B}$$

The proof

Proof.

$$=\Phi(\gamma_n^+(x))$$

as

$$\frac{1}{d} \sum_{b \in B} be_{s+1}b^* = 1_{P_{s+2}} = \begin{bmatrix} b \\ b^* \\ \vdots \\ b^* \end{bmatrix}...$$

Thank you for listening!

Slides and preprint available at:

http://math.berkeley.edu/~dpenneys/grad.html