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A finite depth subfactor planar algebra embeds in the graph planar
algebra of its principal graph.

v
Uses

e Constructing subfactors, e.g., Haagerup [Peters '08], extended
Haagerup [BMPS '10], groups [Gupta '08]
@ Obstructions, e.g., classification to index 5 [JMPPS.. ]
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@ The canonical relative commutant planar algebra
@ The basic construction for strongly Markov inclusions
@ The canonical planar algebra
@ Burns' treatment of rotation
@ Uniqueness

© The canonical planar algebra is isomorphic to the graph planar
algebra
@ Loop algebras

© The embedding theorem for finite depth, subfactor planar
algebras
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Strongly Markov inclusions

Let My C (Mjy,tr1) be an inclusion of finite von Neumann
algebras. Let My = (Mj,e1) be the basic construction, and let Try
be the canonical trace on Mo, i.e., the unique extension of

zery — tri(xy) for all z,y € M.

Definition

An inclusion of finite von Neumann algebras My C (M, try) is
called strongly Markov if

@ Try is finite with T‘I‘Q(l)il Tro ‘M = tr, and
(] M2 = M1€1M1.
In this case, we define [M;: My] = Tra(1).

D. Penneys (joint work with V.F.R. Jones) The SFPA embedding theorem



Relative commutant PA Basic construction PA definition Rotation Uniqueness

Iterating the basic construction

Suppose My C (M, try) is strongly Markov, and let
trg = Tro(1)~! Tro. Then My C (Mo, tra) is strongly Markov and

[Mg: Ml] = [Mll Mo]

From here on, My C (M, try) is a strongly Markov inclusion.
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The set up

Forn > 1,
o lteratively define M, 1 = (M, e,) with normalized tr,,.
@ Setd=[M: M0]1/2 and E,, = de,.
e Setwv, =E,E,_1---FE.

For all n € N, ®M1 M,, and ®L (M, tr1) = L23(M,,, try,)
MU MO
via the isomorphism

1 RT2 X -+ Q Ty < T1V1T2V2 - * - Up—1Tnp.

We will identify these spaces from now on.
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The planar algebra

For n > 0, we set

P, = Myn L*(M,, tr,) = M, n M,
P = M{ N L*(Myy1,tr,) = M0 Mg

Then we define an action of the planar operad on these vector
spaces.
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Tangle action

Step 1: Isotope tangle into a standard form:

Note: We allow x*'s in shaded regions!
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The planar algebra

Step 2: Read from bottom to top using rules locally. Think of
shaded regions as elements of M7 and unshaded regions as ®'s.
Labelled boxes correspond to insertion of central vectors.

L1 - T - - -F1-
ce MinM, ||| ||¢ e MjnM,||| TRy rREDY
[] [] Tl

n € MiNM, ||| |||n€ MnM, T TN =N
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Tangle action

Step 2: Read from bottom to top using rules locally. Think of
shaded regions as elements of M7 and unshaded regions as ®'s.

U %U TRY—TcR1IRQy
U —>'U s d Y wbeb =d Y bebs

- - - : beB beB

Here B = {b} is a Pimnser-Popa basis for M; over My, i.e.,

Zbelb* =1.

beB
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Tangle action

Step 2: Read from bottom to top using rules locally. Think of
shaded regions as elements of M7 and unshaded regions as ®'s.

ﬂ — m TRY®zr— deEy, (y) @ z = dx @ Ey, (y)z
m — m QY r— Y.
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Example

We will compute the action of

oné=> 2@ @), € MyN M,.
=1

D. Penneys (joint work with V.F.R. Jones) The SFPA embedding theorem



Relative commutant PA Basic construction PA definition Rotation Uniqueness

Example

We start at 1¢:
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Example

Passing the first critical point, we have

1c — 1.
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Example

Passing the second critical point, we have

1@»—>1M|—>Zb®b*
beB
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Example

Passing the internal box, we have

o Iy Y bRV > bR b
beB beB
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Example

Passing the third critical point, we have

1C'_>1M'_>Zb®b*'_>zb®g®b*
beB beB
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Example

Passing the last critical point, we have

1c'—>1M'—>Zb®b*'—>Zb®§®b*

beB beB
HZZb@l‘l @zt Qb
beB i=1
= Zzb®l‘1 - @ ),y Eagy (27,b7)
beB i=1
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Burns' definition of rotation

For all n € N, M N M,, is equal to

My N L*(My, tr,) == {€ € L*(My, try) |26 = &z for all z € Mo} .

The rotation is given by

k
=Y ) b®ai®- -2l 1 Eypy(2hb*)= > LyR;(&)

beB i=1 beB

A
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Burns' proof of periodicity

Theorem (Burns)

The rotation is periodic.
Note: we don't require extremality!

Proof.
Forallé € M{N M, and all n =y ® - - - @ yp, € L*(Mp, tr,),

(P&, @ Qyn) = Z(LbRZOC, Y1 Q- DY)

beB

=Y &Ry ® - Q)
beB

= Z<§7 E]\/f()(b*yl)y2 K- & Yn ® b>
beB
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Burns' proof of periodicity

Theorem (Burns)

The rotation is periodic.
Note: we don't require extremality!

Proof.
Forallé € M{N M, and all n =y ® - - - @ yp, € L*(Mp, tr,),

(&), ® - Dyn) =Y (LoRiz, 11 © - @ yn)

beB

=Y (&, RLiy @ - ® )
beB

= Z<EM[>(b*y1)*£, Y2 ® - QYp D b)
beB
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Burns' proof of periodicity

Theorem (Burns)

The rotation is periodic.
Note: we don't require extremality!

Proof.
Forallé € M{N M, and all n =y ® - - - @ yp, € L*(Mp, tr,),

(&), ® - Dyn) =Y (LoRiz, 11 © - @ yn)

beB

=Y (&, RLiy @ - ® )
beB

= Z<§EM()(b*y1>*a Y2 Q- QYn ® b>
beB
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Burns' proof of periodicity

Theorem (Burns)

The rotation is periodic.
Note: we don't require extremality!

Proof.
Forallé € M{N M, and all n =y ® - - - @ yp, € L*(Mp, tr,),

(P&, @ Qyn) = Z(LbRZOC, Y1 Q- DY)

beB

=Y &Ry ® - Q)
beB

- Z<§7y2 Q- RQYn ® bE]W()(b*yl»
beB
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Burns' proof of periodicity

Theorem (Burns)

The rotation is periodic.
Note: we don't require extremality!

Proof.
Forallé € M{N M, and all n =y ® - - - @ yp, € L*(Mp, tr,),

beB

=Y (& ReLiyn ® - @ y)
beB

=1 QY ®y1)

Hence p" = id. O
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Uniqueness

Suppose P, is a planar algebra with modulus d # 0 and
Qn.+ C P, + are subalgebras which are closed under the following

operations:
(1) left and right multiplication by tangles
N
En = N L € Pn+1’+ for n € N,
n—1 ~

(2) The maps from P, ; as follows:

(I) Ay = 8 Pn7+ = Pn_17+,
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Uniqueness
|
(i) Bns1= : Py = Poyay,
[ -
N ]
(i) v = :Pp+ — Py, and
| {
|
(3) the map ZT_L = 8 Pm_ — Pn+17+.
[ ssc ||
Then the @), + define a planar subalgebra Qs C P.

Check that Qe is closed under all annular maps. O
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Uniqueness

Given a strongly Markov inclusion My C (M, tr1), there is a
unique planar algebra P, of modulus d = [M : Mo]'/? where
P.i= M('] N M, and
Po_ =M, N My

such that
.. U
(1) formeN, E, =| 1 L € P14,
S
(2) forz € P, 4,
[ [ ]
(i) x =dEy,_,(z),
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Uniqueness

[[ - l
(II) T =T € Pn+1,
| II S ‘
(iif) - = dE,f(z)= é 3" bab*, and
beB
]
]
(3) forz € P, _, x =z € P+
]
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= with GPA Loop algebras

Isomorphism with the graph planar algebra

Suppose My C (Mj,try) is a connected inclusion of finite
dimensional von Neumann algebras with the Markov trace. Let I'
be the Bratteli diagram of the inclusion. Then the canonical
relative commutant planar algbera is isomorphic to the graph
planar algebra of T'.

We inductively define isomorphisms of M,, with algebras of loops
on an augmented Bratteli diagram. These isomorphisms identify
the relative commutants with algebras of loops on the original
Bratteli diagram. Ol
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= with GPA Loop algebras

Loop algebras

Let My = Matg((C) e CC Matg((C) @ Matso ((C) = M with
Bratteli diagram

Level 1 3 2
e1 eg €3
&4
Level 0 2 1
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= with GPA Loop algebras

Loop algebras

Let My = Matg((C) e CC Matg((C) @ Matsg (C) = M7 with
Bratteli diagram
Level 1 3 2
€1 £2 €3
€4
Level O 2 N 1
N \\ 2 Y 4
i \\ N 7 n3
Level -1 Sk
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= with GPA Loop algebras

Loop algebras

M, is isomorphic to loops of length 2n starting at x and passing
through level n = 0,1. For 4, j,k,1l € {1,2},

[mim;] - [weni’] = 6;.klming |-

Level 1 3 2
VN
€4
Level 0 2 N 1
N ™ 2 , s
m \\ N 7 n3
Level -1 S %
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= with GPA Loop algebras

Loop algebras

To get isomorphisms with higher M,,’s, we reflect I' to get more
levels. Then we take loops starting at x passing through level n.
Level 2 3 7
el & \\52
Level 1 3 2
€1 €2 €3
€4
Level O 2 1
D \\ 2 Y 4
m \\ 7/ n3
N
Level -1 *
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Embedding PAs
The set up

Let Qo be a finite depth, subfactor planar algebra. Let s = 2r be
minimal such that

Qs+ C Qs1,+ C Qsy2+

is standard (Qs+2,+ is the basic construction). Then the (graph
underlying the) Bratteli diagram for

My = Qs+ C Qst14 =M
is the principal graph of QQs. Set

Pn7+ = M(/) N Mn = Q;,-i- N Qs-i-n,—i- and
Pp =M N Mpy1 = Qgiy 4 N Qsynii g

D. Penneys (joint work with V.F.R. Jones) The SFPA embedding theorem



The embedding map

Define ®: Q¢ — P, by adding s = 2r strings to the left for
€ Qn,+ and adding s + 1 strings to the left for x € ), —. For
example, ®: Q,, + — P, 4 is given by

X ? X
N——— N—~—T" N———
n s=2r n

® is an inclusion of planar algebras.
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Embedding PAs
The proof

Proof.

We use the Key Lemma. The only tricky part is capping off on the
left.

Let B = {b} be a Pimsner-Popa basis for M; = Q411 4 over

My = Qs+. Theneach b€ Bisan (s+1,+)-box in Qs41,4, S0
for all x € @y, 4, we have

[T---TT1
b
1 1 T~
T (B(2)) = y D bRt == ° T
beB beB “l——\/—/
b*
[T-TT1
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Embedding PAs
The proof
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Embedding PAs

Thank you for listening! ]

Slides and preprint available at:
http://math.berkeley.edu/~dpenneys/grad.html
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