DEFINITION OF (RATIONAL) CHIRAL SEGAL CFT

(1a) For every closed (compact, smooth, oriented) 1-manifold S, a category $\mathcal{C}(S)$, isomorphic to $\operatorname{Vec}_{\mathrm{f.d.}}^{\oplus r}$ for some $r \in \mathbb{N}$ which depends on S.

[Think: There is a certain group or algebra associated to S, and C(S) is the category of representations of that group or algebra (r = number of irreps.)]

For every pair of 1-manifolds S_1 , S_2 there is a bilinear functor $\mathcal{C}(S_1) \times \mathcal{C}(S_2) \rightarrow \mathcal{C}(S_1 \sqcup S_2) : (\lambda, \mu) \mapsto \lambda \otimes \mu$ which induces an equivalence of categories

$$\mathcal{C}(S_1) \otimes \mathcal{C}(S_2) \xrightarrow{\cong} \mathcal{C}(S_1 \sqcup S_2).$$

Here, given two linear categories C and D isomorphic to $\operatorname{Vec}_{\mathrm{f.d.}}^{\oplus r}$, their tensor product $C \otimes D$ has objects of the form $\bigoplus c_i \otimes d_i$ for $c_i \in C$ and $d_i \in D$, and hom-spaces given by $\operatorname{Hom}_{\mathcal{C}\otimes\mathcal{D}}(\bigoplus c_i \otimes d_i, \bigoplus c'_j \otimes d'_j) = \bigoplus_{ij} \operatorname{Hom}_{\mathcal{C}}(c_i, c'_j) \otimes \operatorname{Hom}_{\mathcal{D}}(d_i, d'_j).$

We also have an equivalence $\operatorname{Vec}_{f.d.} \xrightarrow{\cong} \mathcal{C}(\emptyset) : \mathbb{C} \mapsto 1$.

There is an associator $(\lambda \otimes \mu) \otimes \nu \xrightarrow{\cong} \lambda \otimes (\mu \otimes \nu)$, unitors $1 \otimes \lambda \xrightarrow{\cong} \lambda$ and $\lambda \otimes 1 \xrightarrow{\cong} \lambda$, and a braiding $\lambda \otimes \mu \xrightarrow{\cong} \mu \otimes \lambda$ [we omit the isomorphisms $(S_1 \sqcup S_2) \sqcup S_3 \cong S_1 \sqcup (S_2 \sqcup S_3)$, $\emptyset \sqcup S \cong S, S \sqcup \emptyset \cong S$, and $S_1 \sqcup S_2 \cong S_2 \sqcup S_1$] which are natural (i.e. for any morphisms $\lambda \to \lambda', \mu \to \mu', \nu \to \nu'$ the following diagrams commute

and subject to the well-known pentagon, triangle, hexagon, and symmetry axioms (the same axioms which appear in the definition of a symmetric monoidal category):

(1b) For every closed 1-manifold S, a faithful functor $U : \mathcal{C}(S) \to \text{TopVec}$ which equips $\mathcal{C}(S)$ with the structure of a concrete category.

If $\mathcal{C}(S) \cong \operatorname{Vec}_{\mathrm{f.d.}}^{\oplus r}$, so that an object can be written as an *r*-tuple of finite dimensional vector spaces, then the U functor is always of the form $(V_1, \ldots, V_r) \mapsto \bigoplus V_i \otimes W_i$, where the W_i are typically infinite dimensional.

The forgetful functor satisfies $U(\lambda \otimes \mu) = U(\lambda) \otimes U(\mu)$ and $U(1) = \mathbb{C}$, naturally in λ and μ , and compatibly with the associator, unitors, and braiding:

$U((\lambda \otimes \mu) \otimes \nu) =$	$(U(\lambda) \otimes U(\mu)) \otimes U(\nu)$	$U(1) \otimes U(\lambda) =$	$= U(1 \otimes \lambda)$	$U(\lambda) \otimes U(1) =$	= $U(\lambda \otimes 1)$	$U(\lambda \otimes \mu) =$	$U(\lambda) \otimes U(\mu)$
\downarrow	\downarrow		\downarrow	П	\downarrow	\downarrow	\downarrow
$U(\lambda \otimes (\mu \otimes \nu)) =$	$U(\lambda) \otimes (U(\mu) \otimes U(\nu))$	$\mathbb{C} \otimes U(\lambda)$ —	$\longrightarrow U(\lambda)$	$U(\lambda) \otimes \mathbb{C}$ —	$\rightarrow U(\lambda)$	$U(\mu \otimes \lambda) =$	$U(\mu)\otimes U(\lambda)$

(2a) For every complex cobordism with thin parts Σ from S_1 to S_2 , a linear functor $F_{\Sigma} : \mathcal{C}(S_1) \to \mathcal{C}(S_2)$.

If Σ and Σ' are complex cobordisms from S_1 to S_2 , then for every biholomorphic map $\phi : \Sigma \xrightarrow{\cong} \Sigma'$ such that $\phi|_{S_1} = \text{id}$ and $\phi|_{S_2} = \text{id}$, we have an invertible natural transformation $F_{\Sigma} \cong F_{\Sigma'}$, compatible with composition of maps.

We also have invertible natural transformations $F_{\mathbf{1}_S} \cong \operatorname{id}_{\mathcal{C}(S)}, F_{\Sigma_1 \cup \Sigma_2} \cong F_{\Sigma_1} \circ F_{\Sigma_2}$, and $F_{\Sigma_1 \sqcup \Sigma_2} \cong F_{\Sigma_1} \otimes F_{\Sigma_2}$. They are natural with respect to biholomorphic maps of complex cobordisms, and make the following diagrams commute:

(These diagrams are a bit sloppy as the functors being compared don't always have the same domain/codomain. Fixing them is not difficult, but would make them bulky.)

(2b) For every complex cobordism with thin parts Σ from S_1 to S_2 and every object $\lambda \in \mathcal{C}(S_1)$, a continuous linear map $Z_{\Sigma} : U(\lambda) \to U(F_{\Sigma}(\lambda))$.

The maps Z_{Σ} are natural in λ . They're also natural in Σ , meaning that for every biholomorphic map $\phi : \Sigma' \to \Sigma$ fixing S_1 and S_2 and every $\lambda \in \mathcal{C}(S_1)$, we have a commutative diagram

$$\begin{array}{ccc} U(\lambda) & & & Z_{\Sigma} & & & U(F_{\Sigma}(\lambda)) \\ & & & & & & \\ \| & & & & \| \mathbb{R} \\ & & & & U(\lambda) & & & & & U(F_{\Sigma'}(\lambda)) \end{array}$$

We also have $Z_{1_{S}} = id_{U(\lambda)}$, $Z_{\Sigma_1 \cup \Sigma_2} = Z_{\Sigma_1} \circ Z_{\Sigma_2}$, and $Z_{\Sigma_1 \cup \Sigma_2} = Z_{\Sigma_1} \otimes Z_{\Sigma_2}$. (Some isomorphisms have been omitted for better readability. For example, the last equality should say that the following diagram is commutative:

$U(\lambda \otimes \mu) \xrightarrow{Z_{\Sigma_1 \sqcup \Sigma_2}} U(F_{\Sigma_1 \sqcup \Sigma_2}(\lambda \otimes \mu))$	A central ext. $0 \to \mathbb{C}^{\times} \times \mathbb{Z}$ – of the semigroup of annuli	$\rightarrow \operatorname{Ann}(S) \rightarrow \operatorname{Ann}(S) \rightarrow 0$ with ∂ parametrized by S.
$\ \mathcal{Q}\ $ $U(F_{\Sigma_1}(\lambda) \otimes F_{\Sigma_2}(\mu))$	The extension depends on	the central charge $c \in \mathbb{Q}$.
$U(\lambda) \otimes U(\mu) \xrightarrow{Z_{\Sigma_1} \otimes Z_{\Sigma_2}} U(F_{\Sigma_1}(\lambda)) \otimes U(F_{\Sigma_2}(\mu))$)	

(3a) For every circle S, annulus $A \in Ann(S)$, and every lift $\tilde{A} \in (\mathbb{C}^{\times} \times \mathbb{Z})$. $Ann_c(S)$, a trivialization $T_{\tilde{A}} : F_A(\lambda) \xrightarrow{\cong} \lambda$. [Think: 'the map $\Sigma \mapsto F_{\Sigma}$ is topological.']

These should satisfy $T_{\mathbf{1}_S} = \operatorname{id}$ and $T_{\tilde{A}_1 \cup \tilde{A}_2} = T_{\tilde{A}_1} \circ T_{\tilde{A}_2}$ (omitting the isomorphism $F_{A_1 \cup A_2} \cong F_{A_1} \circ F_{A_2}$ for better readability). Moreover, the central \mathbb{C}^{\times} should act in the standard way: $T_{z\tilde{A}} = z \cdot T_{\tilde{A}}$ for every $z \in \mathbb{C}^{\times}$.

(3b) For every circle S and every object $\lambda \in \mathcal{C}(S)$, the map

$$\begin{array}{ccc} (\mathbb{C}^{\times} \times \mathbb{Z}). \operatorname{Ann}_{c}(S) & \longrightarrow & \operatorname{End}(U(\lambda)) \\ & & & & \\ & & & \\ & & \tilde{A} & \mapsto & \left(U(\lambda) \xrightarrow{Z_{A}} & U(F_{A}(\lambda)) \xrightarrow{U(T_{\tilde{A}})} & U(\lambda) \right) \end{array}$$

is holomorphic (holomorphic in the interior, and strong-continuous all the way to the boundary) [Think: 'the map $A \mapsto Z_A$ is holomorphic.']