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Welcome to the course!

Overview. We will cover the following topics:

I Monoidal categories
II Higher categories
III Higher vector spaces
IV Topological quantum field theory
V Quantum information

Practical. On Tuesday and Wednesday afternoons, we will use the
proof assistant homotopy.io to work directly with higher structures.

Bring a laptop with Chrome. If you don’t have internet access in the
room, pre-load homotopy.io in a few browser tabs beforehand.
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Part I
Monoidal categories



4 / 104I.1 Motivation for monoidal categories

Category theory describes systems and processes:

• physical systems, and physical processes governing them;

• data types, and algorithms manipulating them;

• algebraic structures, and structure-preserving functions;

• logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:

• independent physical systems evolve simultaneously;

• running computer algorithms in parallel;

• products or sums of algebraic or geometric structures;

• using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).
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5 / 104I.1 Motivation for monoidal categories

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A⊗ B)⊗ C A⊗ (B⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S× T)× U 6= S× (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A⊗ B and B⊗ A?
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6 / 104I.2 Definition of monoidal category
Definition 1. A monoidal category is a category C equipped with the
following data:

• a tensor product functor

⊗ : C× C −→ C;

• a unit object
I ∈ Ob(C);

• a family of associator natural isomorphisms

(A⊗ B)⊗ C
αA,B,C A⊗ (B⊗ C);

• a family of left unitor natural isomorphisms

I ⊗ A λA A;

• and a family of right unitor natural isomorphisms

A⊗ I ρA A.
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7 / 104I.2 Definition of monoidal category
This data must satisfy the triangle and pentagon equations, for all
objects A, B, C and D:

(A⊗ I)⊗ B A⊗ (I ⊗ B)

A⊗ BρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A⊗ B)⊗ C

)
⊗ D

(
A⊗ (B⊗ C)

)
⊗ D A⊗

(
(B⊗ C)⊗ D

)
A⊗

(
B⊗ (C ⊗ D)

)
(A⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 2 (Coherence for monoidal categories). If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses.

Exercise. Use the triangle and pentagon equations to prove λI = ρI.
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8 / 104I.2 Definition of monoidal category

The monoidal structure on Set is given by Cartesian product.

Definition 3. The monoidal structure on the category Set, and also
by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};
• associators (A× B)× C

αA,B,C A× (B× C) are the functions
given by

(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A× I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

It is a categorical product, so it really arises as a property.
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9 / 104I.2 Definition of monoidal category

Definition 4. The category Hilb has objects given by Hilbert spaces,
and morphisms given by bounded linear maps. The subcategory
FHilb is its restriction to finite-dimensional Hilbert spaces.

Definition 5. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb×Hilb −→ Hilb is the tensor product
of Hilbert spaces;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗ K
αH,J,K H ⊗ (J ⊗ K) act on product

elements as (u⊗ v)⊗ w 7→ u⊗ (v⊗ w);

• left unitors C⊗ H λH H act in product elements as 1⊗ u 7→ u;

• right unitors H ⊗C ρH H act on product elements as u⊗ 1 7→ u.

Again, this tensor product arises from our understanding of physical
reality. However, it is not a categorical product; it is extra structure.

We can similarly define Vectk and FVectk, with vector spaces as objects.
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10 / 104I.2 Definition of monoidal category

Monoidal categories satisfy the interchange law, which governs the
interaction between composition and tensor product.

Theorem 6 (Interchange). Any morphisms A f B, B g C, D h E and
E j F in a monoidal category satisfy the interchange law:

(g ◦ f)⊗ (j ◦ h) = (g⊗ j) ◦ (f ⊗ h)

Proof. This holds because of properties of the category C× C, and
from the fact that ⊗ : C× C −→ C is a functor:

(g ◦ f)⊗ (j ◦ h) ≡ ⊗(g ◦ f , j ◦ h)

= ⊗
(
(g, j) ◦ (f , h)

)
(composition in C× C)

=
(
⊗(g, j)

)
◦
(
⊗(f , h)

)
(functoriality of ⊗)

= (g⊗ j) ◦ (f ⊗ h)

Remember the functoriality property: F(g ◦ f) = F(g) ◦ F(f).
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11 / 104I.3 Graphical calculus

Ordinary 1-categories have a graphical calculus, a geometrical
notation which helps us to work with them.

A morphism f : A −→ B can be
depicted as a box, with an input
wire of type A, and an output
wire of type B.

A

B
f

A composite chain of morphisms
f : A −→ B, g : B −→ C, h : C −→ D
can be depicted by stacking them
vertically.

A

B

C

D

f

g

h

This representation is intrinsically 1-dimensional.

It is also nontrivial, because associativity and identity have been
trivialized by the geometry of the line.
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We can extend this graphical calculus to monoidal categories, in the
following way.

For morphisms A f B and C g D, we draw their tensor product
A⊗ C f⊗g B⊗ D like this:

f g
B

A

D

C

The idea is that f and g represent distinct processes taking place at
the same time.

This representation is intrinsically 2-dimensional.
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The monoidal unit object I is drawn as the empty diagram:

The left unitor I ⊗ A λA A, the right unitor A⊗ I ρA A and the
associator (A⊗ B)⊗ C

αA,B,C A⊗ (B⊗ C) are also not depicted:

A A A B C

λA ρA αA,B,C

The coherence of α, λ and ρ is essential for the graphical calculus to
function. Since there can only be a single morphism built from their
components of any given type, it doesn’t matter that their graphical
calculus encodes no information.
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Now let’s look at the interchange law:

(g ◦ f)⊗ (j ◦ h) = (g⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D

=

f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.

The apparent complexity of the theory of monoidal categories—
α, λ, ρ, coherence, interchange—was in fact complexity of the
geometry of the plane. So when we use this notation, this complexity
is absorbed, and becomes easy to handle.
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Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper
boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh iso
=

f

g

h

not
iso
6=

f

g
h

We will allow heights of the diagrams to change, and allow input
and output wires to slide horizontally along the boundary, although
they must never change order.
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We can now state the correctness theorem.

Theorem 7 (Correctness of the graphical calculus for monoidal
categories). A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g)⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g)⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.
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Definition 8. In a monoidal category, the scalars are Hom(I, I).

Theorem 9. In a monoidal category, the scalars are commutative.

Proof (i).

We can argue
as follows:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a⊗ idI idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI

Here is an easier proof.

Proof (ii).

a

b

=
b

a
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18 / 104I.4 States

In a category, we cannot ‘look inside’ an object to inspect its
elements. We have to express everything in terms of the morphisms.

Definition 10. In a monoidal category, a state of an object A is a
morphism I −→ A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A
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Example 11. Let’s examine the states in our example categories.

• In Hilb, states of a Hilbert space H are linear functions C −→ H,
which correspond to elements of H by considering the image of
1 ∈ C.

• In Set, states of a set A are functions {•} −→ A, which
correspond to elements of A by considering the image of •.
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A morphism I c A⊗ B is a joint state of A and B. We depict it
graphically in the following way.

c

BA

Definition 12. A joint state I c A⊗ B is a product state when it is of
the form I

λ−1
I I ⊗ I a⊗b A⊗ B:

c

BA

=
a b

BA

Definition 13. A joint state is entangled when it is not a product
state.
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Example 14. Let’s investigate joint states, product states, and
entangled states in our example categories.

• In Set:
• joint states of A and B are elements of A× B;
• product states are elements (a, b) ∈ A× B;
• entangled states don’t exist.

• In Hilb:
• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.

In this way, a central property of quantum reality can be seen in the
behaviour of the monoidal structure.
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22 / 104I.5 Dagger structure
Our earlier definition of Hilb ignored the inner products.
These allow us to construct adjoint linear maps, as follows:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

We can recover the inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = 〈1|v†(w(1))〉 = 〈v|w〉

So † and 〈−|−〉 encode equivalent information.

This inspires the following abstract definition.

Definition 15. A dagger structure on a category C is an involutive
contravariant functor † : C −→ C that is the identity on objects. A
dagger category is a category equipped with a dagger structure.

Definition 16. In a dagger category, a morphism f : A −→ B is
unitary when f ◦ f † = idB and f † ◦ f = idA.

Definition 17. A monoidal dagger category is a monoidal category
with a dagger structure, such that (f ⊗ g)† = f † ⊗ g† and α, λ, ρ unitary.
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In many settings, the systems A⊗ B and B⊗ A can be considered
essentially equivalent. Developing this idea gives rise to braided and
symmetric monoidal categories.

Definition 18. A braided monoidal category is a monoidal category
equipped with a natural isomorphism

A⊗ B
σA,B B⊗ A

satisfying the following hexagon equations:

(A⊗ B)⊗ C

A⊗ (B⊗ C) (B⊗ C)⊗ A

B⊗ (C ⊗ A)

(B⊗ A)⊗ C B⊗ (A⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A⊗ (B⊗ C)

(A⊗ B)⊗ C C ⊗ (A⊗ B)

(C ⊗ A)⊗ B

A⊗ (C ⊗ B) (A⊗ C)⊗ B
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24 / 104I.6 Braiding and symmetry

We include the braiding in our graphical notation like this:

A⊗ B
σA,B B⊗ A B⊗ A

σ−1
A,B A⊗ B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional.

Invertibility takes the following graphical form:

= =
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25 / 104I.6 Braiding and symmetry

Naturality has the following graphical representation:

f g =
g f

f g =
g f

The hexagon equations look like this:

= =

So braiding with a tensor product of two objects is the same as
braiding with one then the other separately.
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26 / 104I.6 Braiding and symmetry
Braided monoidal categories have a sound and complete graphical
calculus, as established by the following theorem.

Theorem 19 (Correctness of graphical calculus for braided
monoidal categories). A well-formed equation between morphisms in
a braided monoidal category follows from the axioms if and only if it
holds in the graphical language up to 3-dimensional isotopy.

The coherence theorem is very powerful. For example, the
following equations hold:

= =

The second equation is called the Yang–Baxter equation, which plays
an important role in the mathematical theory of knots.
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27 / 104I.6 Braiding and symmetry

Let’s consider this structure for our example categories.

Definition 20. The monoidal categories Hilb and Set can all be
equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a⊗ b 7→ b⊗ a for all a ∈ H and b ∈ K.

• In Set, A× B
σA,B B× A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.
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28 / 104I.6 Braiding and symmetry
In Hilb and Set, the braidings satisfy an extra property.

Definition 21. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 22. In a symmetric monoidal category σA,B = σ−1
B,A, with the

following graphical representation:

:= =
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Part II
Higher categories



30 / 104II.1 Introduction to 2-categories

Definition 23. A 2-category C consists of the following data:

• a collection Ob(C) of objects;

• for any two objects A,B, a category C(A,B), with objects called
1-morphisms drawn as A f B, and morphisms µ called
2-morphisms drawn as f µ g, or in full form as follows:

B A

g

f

µ
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• for 2-morphisms f µ g and g ν h, an operation called vertical
composition given by their composite as morphisms in C(A,B):

B A
g

f

h

µ

ν

• for any triple of objects A,B,C a horizontal composition functor:

◦ : C(A,B)× C(B,C) −→ C(A,C)

C A

j ◦ g

h ◦ f

ν ◦ µ ≡ C B A

j

h

ν

g

f

µ
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32 / 104II.1 Introduction to 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows from analogs of the
triangle and pentagon equations.

Definition 24. A 2-category is strict just when every λf , ρf , αh,g,f is
an identity morphism.
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33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category

Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms

Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms

Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition

Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition

Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



33 / 104II.1 Introduction to 2-categories

Monoidal categories can now be understood in a new way.

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.



34 / 104II.1 Introduction to 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition of C B A

J

H

ν

G

F

µ

is (ν ◦ µ)A := νG(A) ◦ H(µA) = J(µA) ◦ νF(A).
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is (ν ◦ µ)A := νG(A) ◦ H(µA) = J(µA) ◦ νF(A).
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We can extend the graphical calculus to 2-categories.

Objects are represented by regions, 1-morphisms by vertically-
oriented lines, and 2-morphisms by vertices:

B A

g
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µ  

f

g

B Aµ

The graphical calculus is the dual of the traditional pasting diagram
notation given on the left.
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Horizontal and vertical composition is represented like this:

C B A

j

h

ν

g

f

µ  

h

j

C

f

g

B Aν µ = ν ◦ µ

A B
g

f

h

µ

ν

 

f

g

h

A B

µ

ν

= ν · µ



37 / 104II.2 Graphical calculus for 2-categories

When using the graphical notation, as for monoidal categories, the
structures λ, ρ and α are not depicted.

There is also a correctness theorem, as we would expect.

Theorem. (Correctness of the graphical calculus for a 2-category)
A well-formed equation between 2-morphisms in a 2-category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.

If we have only a single object A, we may as well denote this by a
region coloured white. Then the graphical calculus is identical to
that of a monoidal category.
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We can use the graphical calculus to define a notion of equivalence.

Definition 25. In a 2-category, an equivalence is a pair of 1-morphisms
A F B and B G A, and 2-morphisms G ◦ F α idA and idB

β F ◦ G:

α β

They must satisfy the following equations:

α-1

α
=

α

α-1
=

β

β-1
=

β-1

β
=
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Definition 26. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem 27. In Cat, a duality F a G is exactly an adjunction F a G
between F and G as functors.
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40 / 104II.3 Equivalence and duality

We now prove a nontrivial theorem relating equivalences and duals.

Theorem 28. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still yield an equivalence.
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We now demonstrate that the adjunction equations are satisfied.

The first adjunction equation takes following form:

α

β′

def
=

β

α-1

β-1

α
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=
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β

β-1

α-1
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The second is demonstrated as follows:
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43 / 104II.4 Monoidal 2-categories
Monoidal 2-categories are hard to define. A definition is known, but
it is complex to work with.

To work around this, we will introduce monoidal 2-categories
directly in terms of their graphical calculus.

Recall the 2d graphical calculus for 2-categories:
• objects correspond to planes;
• 1-morphisms correspond to wires;
• 2-morphisms correspond to vertices.

For monoidal 2-categories, we extend this into 3d.

Tensor product. Given 2-morphisms f µ g and h ν j, the their
tensor product 2-morphism µ� ν is depicted like this:

µA
B

C
D

f

gg

h

j

ν
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Interchange. Components can move freely in their separate layers,
with the order of 1-morphisms in separate sheets being interchanged:

x x x x

This process itself gives a 2-morphism, which is called an interchanger.

These two interchangers are inverse to each other.

Unit object. A monoidal 2-category has a unit object I, represented
by a ‘blank’ region.
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Something interesting happens when we consider interchangers in
the context of the unit object.

Consider the interchanger diagram, but with all 4 planar regions
labelled by the unit object:

x x

 

We obtain the graphical representation of a braiding.
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46 / 104II.5 The periodic table

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We have now also seen the intuition for the following.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.
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Definition 29. A k-tuply monoidal n-category is an (n + k)-category
which is trivial (i.e. has a unique element) in the first k levels.

Set

Monoid Commutative
monoid

· · ·

1-Category Monoidal
category

Braided
monoidal
category

Symmetric
monoidal
category

· · ·

2-Category Monoidal
2-category

Braided
monoidal
2-category

Sylleptic
monoidal
2-category

Symmetric
monoidal
2-category

· · ·

Truth
value

Point · · ·

Point · · ·−2

−1

0 1 2 3 4 5

k

0 1 2 3 4 5

k

0

1

2

n

Conjecture (String Diagram Hypothesis.) String diagrams of
n-dimensional structures in (n + k)-dimensional space give a sound
and complete calculus for k-tuply monoidal n-categories.
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Part III
Higher vector spaces



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C

C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·

Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



50 / 104III.1. 2–vector spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Vect

Vect3

Vect2

· · ·

2Vect

2Vect2

2Vect2

2Vect2

2Vect



51 / 104III.1. 2–vector spaces

Let k be an algebraically closed field of characteristic zero.
Let Vectk be the category of finite-dimensional k-vector spaces.

Definition 30. A k-linear category is finite semisimple if it is
equivalent to a Cartesian product Vectn

k for some n ∈ N.

Several more ‘coordinate-independent’ definitions of semisimplicity:
For example, a k-linear category is finite semisimple if it is abelian,
every object is a finite direct sum of simple objects and there are
only finitely many isomorphism classes of simple objects.
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We think of a finite semisimple category as a ‘2–vector space’.

There are many analogies between 1– and 2–vector spaces:

I every finite-dimensional vector space is of the form kn up to
isomorphism, while every finite-dimensional 2–vector space is
of the form Vectn

k up to equivalence;

I vector spaces have zero elements, while 2–vector spaces have
zero objects;

I vector spaces have sums of elements v + w, while 2–vector
spaces have biproducts A⊕ B;

I in a vector space we can multiply a vector by any element of
the field k, while in a 2–vector space we can multiply an object
by any vector space.
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Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



53 / 104III.1. 2–vector spaces
Definition 31. The symmetric monoidal 2-category 2Vectk is built
from the following structures:

I 0-cells are finite semisimple k-linear categories;

I 1-cells are k-linear functors, meaning F(λf + g) = λF(f) + F(g);

I 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary vector spaces.

Definition 32. The symmetric monoidal 2-category Mat(Vectk) is
built from the following structures:

I 0-cells are natural numbers;

I 1-cells are matrices of finite-dimensional vector spaces;

I 2-cells are matrices of linear maps.

The canonical 2-functor Mat(Vectk) −→ 2Vect is an equivalence.



54 / 104III.1. 2–vector spaces

 V11 · · · V1n
...

. . .
...

Vm1 · · · Vmn




V11
φ11−−→ V′11 . . . V1n

φ1n−−→ V′1n
...

. . .
...

Vm1
φm1−−→ V′m1 . . . Vmn

φmn−−→ V′mn


(a) A 1-cell V : n −→ m (b) A 2-cell φ : V =⇒ V′

Vertical composition of 2-cells:
entry-wise composition of linear maps

Composition of 1-cells:
matrix product with (+, ·) replaced by (⊕,⊗)

The dual of a 1-cell F:
‘conjugate transpose’ with conjugate (−) replaced by dual (−)∗

Monoidal product of 1-cells:
Kronecker product with · replaced by ⊗
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A direct perspective on 2Vectk.

indexing set
i ∈ S

vector space
V

family of vector
spaces Vi,j

linear map
F : V −→ W

family of linear maps
Fi,j : Vi,j −→ Wi,j

F

A

C

E F

B

D

P

M

N

A (composed) linear map
L : E⊗ F −→ A
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56 / 104III.2. 2–Hilbert spaces
2-Hilbert spaces are the ‘dagger’ versions of 2-vector spaces.

Definition 33. A finite-dimensional 2-Hilbert space is a C-linear
dagger category equivalent to Hilbn for some n ∈ N.

Again, there are more coordinate-independent definitions.

Definition 34. The symmetric monoidal dagger 2-category 2Hilb is
built from the following structures:
I 0-cells are finite-dimensional 2-Hilbert spaces;

I 1-cells are C-linear dagger functors;

I 2-cells are natural transformations.
The dagger of a natural transformation η : F =⇒ G is the natural
transformation with components (η)†A = η†A.

The forgetful functor 2Hilb −→ 2VectC is a symmetric monoidal
equivalence (but not a dagger equivalence).

There is an equivalent matrix calculus Mat(Hilb) with matrices of
finite-dimensional Hilbert spaces.
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57 / 104III.3. 2Vect & graph planar algebras
The following three structures are equivalent:
• isomorphism classes of 1-cells in 2Vect;
• matrices of natural numbers Λ;

• (undirected) bipartite graphs
(

0 Λ
Λt 0

)
.

Let Γ be a bipartite graph with corresponding 1-cell [Γ] : n −→ m.

[Γ]a,b ∼= k〈edges between a and b〉 ∼= k〈paths a b of length one〉

More generally,

([Γ]∗◦[Γ]◦ · · · ◦[Γ]∗◦[Γ])a,b
∼=
⊕

x1,...,x2n

[Γ]∗x1,a⊗[Γ]x1,x2⊗· · ·⊗[Γ]∗x2n,x2n−1
⊗[Γ]x2n,b

∼= k〈paths a b of length 2n〉

⇒ The full sub-2-category TΓ of 2Vect generated from [Γ] and [Γ]∗

is the graph planar algebra associated to Γ (after a choice of a
pivotal structure on TΓ).
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58 / 104III.4. . . . towards higher vector spaces

There is yet another perspective on 2-vector spaces:

Proposition 35. Every finite semisimple k-linear category is the
category of finite-dimensional modules of a finite-dimensional
semisimple k-algebra.

More generally, there is a symmetric monoidal equivalence
f.d. semisimple algebras

f.d. bimodules
bimodule maps

 Rep−−→

{ finite semisimple categories
linear functors

natural transformations

}

For 2-Hilbert spaces, we replace f.d. semisimple algebras by
finite-dimensional C∗-algebras and bimodules by Hilbert bimodules.



58 / 104III.4. . . . towards higher vector spaces

There is yet another perspective on 2-vector spaces:

Proposition 35. Every finite semisimple k-linear category is the
category of finite-dimensional modules of a finite-dimensional
semisimple k-algebra.

More generally, there is a symmetric monoidal equivalence
f.d. semisimple algebras

f.d. bimodules
bimodule maps

 Rep−−→

{ finite semisimple categories
linear functors

natural transformations

}

For 2-Hilbert spaces, we replace f.d. semisimple algebras by
finite-dimensional C∗-algebras and bimodules by Hilbert bimodules.



58 / 104III.4. . . . towards higher vector spaces

There is yet another perspective on 2-vector spaces:

Proposition 35. Every finite semisimple k-linear category is the
category of finite-dimensional modules of a finite-dimensional
semisimple k-algebra.

More generally, there is a symmetric monoidal equivalence
f.d. semisimple algebras

f.d. bimodules
bimodule maps

 Rep−−→

{ finite semisimple categories
linear functors

natural transformations

}

For 2-Hilbert spaces, we replace f.d. semisimple algebras by
finite-dimensional C∗-algebras and bimodules by Hilbert bimodules.



58 / 104III.4. . . . towards higher vector spaces

There is yet another perspective on 2-vector spaces:

Proposition 35. Every finite semisimple k-linear category is the
category of finite-dimensional modules of a finite-dimensional
semisimple k-algebra.

More generally, there is a symmetric monoidal equivalence
f.d. semisimple algebras

f.d. bimodules
bimodule maps

 Rep−−→

{ finite semisimple categories
linear functors

natural transformations

}

For 2-Hilbert spaces, we replace f.d. semisimple algebras by
finite-dimensional C∗-algebras and bimodules by Hilbert bimodules.



59 / 104III.4. . . . towards higher vector spaces
objects

k elements of k

Vect f.d. vector spaces linear maps

2Vect

f.d. semisimple
algebras

f.d. bimodules intertwiners

finite semisimple
categories

linear functors natural
transformations

3Vect

multifusion
categories

finite semisimple
bimodule categories

intertwining
functors

natural
transformations

finite semisimple
2-categories

linear 2-functors pseudonatural
transformations

modifications

4Vect multifusion
2-categories

finite semisimple
bimodule 2-categories

intertwining
2-functors

pseudonatural
transformations

modifications

For n=1,2,3, nVect is a symmetric monoidal n-category with duals.

3Vect(I, I) ∼= 2Vect 2Vect(I, I) ∼= Vect Vect(I, I) = k

[Douglas, R., arXiv:1812.11933]: Semisimple & fusion 2-categories

Conjecture: 4Vect is a symmetric monoidal 4-category with duals.
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An emerging big picture on nVect:

Definition 36. The idempotent completion Ĉ of a category C has

• objects: idempotents p : A −→ A in C;
• morphisms (p : A −→ A) −→ (q : B −→ B): morphisms f : A −→ B

such that fp = f = qf .
Exm: Algebra A category BA with one object ∗ and End(∗) = A.
⇒ ΣA := B̂A is the category of idempotents in A.

Central ingredient in the definition of semisimple 2-category:
a categorified ‘2-idempotent completion’ (or ‘2-Karoubi envelope’)

Generalized to arbitary n in [Gaiotto, Johnson-Freyd,
arXiv:1905.09566]

2Vect = ΣVect and (conjecturally) 3Vect = Σ2Vect = Σ2Vect.

Conclusion:
Studying nVect is about studying ‘higher idempotents’ in Vect.
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Part IV
Dualizability and

topological quantum field theory



62 / 104IV.1 Outline and motivation

In physics, a quantum field theory in n-dimensions allows us to
evaluate a “partition function” Z on a closed n-manifold M, to
obtain a complex number Z(M).

In other words, a quantum field theory is a function like this:

Z : Mann −→ C

We also want a quantum field theory to be local, meaning that Z
actually depends somehow on the manifold structure.

A topological quantum field theory (TQFT) is a quantum field theory
which is well-defined on diffeomorphism classes of manifolds.

We will focus on TQFTs, as it’s these theories for which higher
category theory plays a really critical role.

André Henrique’s course next week will look at conformal field
theories, which adds further geometrical structure.
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63 / 104IV.1 Outline and motivation
To enforce some degree of locality,
we can imagine cutting n-manifolds
along codimension-1 boundaries,
illustrated here for n = 2:

This inspires the following definitions.

Definition 37. The symmetric monoidal category Bordor
1,2 of

once-extended 2-dimensional oriented bordisms is defined as follows:
• objects are closed oriented 1-manifolds (i.e. tuples of circles);
• morphisms are diffeomorphism classes of compact oriented

2-manifolds, possibly with boundary;
• composition is gluing, and tensor product is disjoint union.

Definition 38. A once-extended 2d oriented TQFT is a symmetric
monoidal functor of the following type:

Z : Bordor
1,2 −→ Hilb

This sends the circle to a Hilbert space of boundary conditions.
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64 / 104IV.1 Outline and motivation
We can do this more generally, as follows.

Definition 39. For natural numbers n ≥ k, the k-category BordSn−k,...,n
of k-extended S-structured n-bordisms is defined as follows:

• objects are closed (n− k)-manifolds;

• 1-morphisms are (n− k + 1)-manifolds with boundary;

• 2-morphisms are (n− k + 2)-manifolds with 2-boundaries;

• · · ·
• k-morphisms are diffeomorphism classes of n-manifolds with

k-boundaries.

Definition 40. For natural numbers n ≥ k, a k-extended n-dimensional
S-structured TQFT is a symmetric monoidal functor as follows:

Z : BordSn−k,...,n −→ nVectk

Plan. Show BordSn−k,...,n is sometimes free on some structure.
TQFTs are then just instances of this structure in nVectk.
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65 / 104IV.2 Duals in a monoidal category

Definition 41. An object L is left dual to an object R, and R is right
dual to L, written L a R, when there is a unit morphism I η R⊗ L
and a counit morphism L⊗ R ε I such that:

L L⊗ I L⊗ (R⊗ L)

L I ⊗ L (L⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R⊗ L)⊗ R

R R⊗ I R⊗ (L⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR
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66 / 104IV.2 Duals in a monoidal category
We draw an object L as a wire with an upward-pointing arrow, and
a right dual R as a wire with a downward-pointing arrow.

L R

The unit I η R⊗ L and counit L⊗ R ε I are drawn as bent wires:

R L

L R

This notation is chosen because of the attractive form it gives to the
duality equations:

= =

They are also called the snake equations.
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67 / 104IV.2 Duals in a monoidal category

The monoidal category FHilb has all duals. Every finite-
dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.

The counit H ⊗ H∗ ε C is defined like this:

ε : |φ〉 ⊗ 〈ψ| 7→ 〈ψ|φ〉

The unit C η H∗ ⊗ H is defined like this, for any orthonormal basis |i〉:

η : 1 7→
∑

i

〈i| ⊗ |i〉

This is an entangled state of H∗ ⊗ H.

So category theory can express important logical properties of linear
algebra, which we can use to study quantum information.
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Duality is a property-like structure, in the following sense.

Lemma 42. In a monoidal category with L a R, then L a R′ if and
only if R ' R′. Similarly, if L a R, then L′ a R if and only if L ' L′.

Proof. If L a R and L a R′, define maps R −→ R′ and R′ −→ R as follows:

R

L

R′

R′

L

R

The snake equations imply that these are inverse. Conversely, if
L a R and R f R′ is invertible, we can construct a duality L a R′:

L R′

R
f -1

LR′

R
f
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If the monoidal category has a braiding then a duality L a R gives
rise to a duality R a L, as the next lemma investigates.

Lemma 43. In a braided monoidal category, L a R ⇒ R a L.

Proof. Construct a new duality as follows:

I η′ L⊗ R R⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.



69 / 104IV.2 Duals in a monoidal category
If the monoidal category has a braiding then a duality L a R gives
rise to a duality R a L, as the next lemma investigates.

Lemma 43. In a braided monoidal category, L a R ⇒ R a L.

Proof. Construct a new duality as follows:

I η′ L⊗ R R⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.



69 / 104IV.2 Duals in a monoidal category
If the monoidal category has a braiding then a duality L a R gives
rise to a duality R a L, as the next lemma investigates.

Lemma 43. In a braided monoidal category, L a R ⇒ R a L.

Proof. Construct a new duality as follows:

I η′ L⊗ R R⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.



70 / 104IV.2 Duals in a monoidal category

We can use dual objects to characterize the oriented bordism
categories in dimension 1.

Theorem 44. The symmetric monoidal category Bordor
0,1 is equivalent

to the free symmetric monoidal category on an object with a right dual.

As a consequence, 1-dimensional oriented TQFTs

Z : Bordor
0,1 −→ Hilb

are given up to isomorphism by Hilbert spaces that have duals.

These are exactly the finite-dimensional Hilbert spaces.

If we choose a Hilbert space H and a compact oriented 1-manifold
M, then we obtain Z(M) = dim(H)components(M), which is
diffeomorphism-invariant as required.
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Definition 45. In a monoidal 2-category, an object L has a right
dual R when it can be equipped with 1-morphisms called folds

R L

L R

and invertible 2-morphisms called cusps:
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The invertibility equations look like this:

= =

= =

These are equations we would expect to be satisfied by surfaces
embedded in R3!
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Definition 46. In a monoidal 2-category, a duality of objects L a R
is coherent when it satisfies the four swallowtail equations.

Here are two of them:

= =

There are 2 more which are similar.

Note the interchangers playing a key role in these equations.
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Theorem 47 (Pstragowski). In a monoidal 2-category, every dual
pair of objects gives rise to a coherent dual pair.

Proof. We redefine one of the cusps as
the following composite: =

112
X
2

Y
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4
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11

We then argue as follows:
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Let’s go further and imagine a duality of 1-morphisms like this:

R L

a
R L

It has a unit and counit, which we could draw like this:

The snake equations for the duality would then look like this:

= =

This gives all of the structure of framed 2-manifolds.
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We have motivated the following result.

Theorem 48 (Schommer-Pries). The symmetric monoidal 2-category
Bordfr

0,1,2 is equivalent to the symmetric monoidal 2-category freely
generated by one object with all coherent left and right duals, such
that the cups and caps also have left and right duals.

As a result, symmetric monoidal functors

Z : Bordfr
0,1,2 −→ C

are given by objects in C with a coherent right dual, for which the
cup and cap also have right duals.

By Theorem 47, however, we don’t need to check coherence.
In principle, this makes such TQFTs much easier to find.

However, beware the following:
• We still need “coherent” in the statement of Theorem 48.
• Computing an actual topological invariant still requires a

coherent duality structure on our chosen object in C.
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77 / 104IV.4 The cobordism hypothesis

We now generalize this idea to arbitrary dimension, and give a
statement of the cobordism hypothesis, one of the most exciting
ideas in higher category theory.

We begin with a coinductive definition of equivalence in n-categories.

Definition 49. In an n-category, k-morphisms F,G : A −→ B are
equivalent, written F ' G, just when:

• if k = n, then F = G;

• if k < n, then there are (k + 1)-morphisms P : F −→ G and
Q : G −→ F with Q ◦ P ' idG and P ◦ Q ' idF.

The equivalences form the core of the n-category.

Definition 50. Given an n-category C, its core, written Core(C), is
the sub-n-groupoid containing all the objects and all the
equivalences.
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We can also give a general coinductive definition of duality.

Definition 51. In an n-category, given k-morphisms F : A −→ B and
G : B −→ A with k < n, a duality F a G comprises (k + 1)-morphisms
called the unit η : idA −→ G ◦ F and counit ε : F ◦ G −→ idB, satisfying
the snake equations up to equivalence:

' '

By the periodic table, extend this to objects of monoidal n-categories.

This agrees with the definitions we have already seen for dual
objects in monoidal 1- and 2-categories.
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We now strengthen the idea of duality as follows.

Definition 52. In an n-category, a k-morphism F : A −→ B is fully
dualizable when k = n, or there is an infinite chain of k-morphisms

· · · a ∗∗F a ∗F a F a F∗ a F∗∗ a · · ·

for which all the units and counits are fully dualizable.

By the periodic table, extend this to objects of monoidal n-categories.

The cobordism hypothesis of Baez and Dolan (arXiv:q-alg/9503002)
then says the following.

Theorem 53 (Lurie, arXiv:0905.0465). For any symmetric monoidal
n-category C, the following are equivalent, up to equivalence:
• symmetric monoidal functors Bordfr

0,...,n −→ C;
• a fully dualizable object in C.

This makes fully-extended TQFTs relatively easy to find.

However, they are still hard to evaluate.

http://arxiv.org/abs/q-alg/9503002
http://arxiv.org/abs/0905.0465
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0,...,n −→ C;
• a fully dualizable object in C.

This makes fully-extended TQFTs relatively easy to find.

However, they are still hard to evaluate.

http://arxiv.org/abs/q-alg/9503002
http://arxiv.org/abs/0905.0465
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To describe oriented bordisms we need some extra structure.

Theorem 54 (Schommer-Pries, arXiv:1112.1000). The symmetric
monoidal 2-category Bordor

0,1,2 is equivalent to the free symmetric
monoidal 2-category on the following data:
• an object X with a coherent right dual X∗, and hence a

coherent left dual by Lemma 43;
• equipped with the following duality structures:

a
`

a
`

• such that the cusp flip holds, along with flipped variants:

=

https://arxiv.org/abs/1112.1000
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82 / 104IV.5 Oriented bordisms

Correctness of the previous theorem means that we should be able
to establish these axioms just from the oriented duality structure.

The only nontrivial proof is commutativity.

Proposition 55. The pants bordism is commutative.

Proof. We argue graphically as follows:

s’tail
= 1 2 3 4

iso
= 12

3

4 5

6

78

9

10 11

12

cusp
flip
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3

4 5

6
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inv
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213
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3
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6
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9
15

10 11

1617
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1
2

3

4
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1
2
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4
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6

7
1
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4
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83 / 104IV.5 Oriented bordisms

This motivates the following result.

Theorem 56 (Ambrose). The symmetric monoidal category Bordor
1,2

is equivalent to the free symmetric monoidal category on a
commutative Frobenius algebra object.

Corollary 57. Symmetric monoidal functors Z : Bordor
1,2 −→ Hilb

correspond up to equivalence to commutative Frobenius algebras.

The following can also be shown.

Theorem 58 (Bartlett, Douglas, Schommer-Pries, V, arXiv:1411.0945).
The symmetric monoidal 2-category Bordor

1,2,3 is equivalent to the free
symmetric monoidal 2-category on a modular Frobenius structure.

Theorem 59 (Bartlett,Douglas,Schommer-Pries,V,arXiv:1509.06811).
Symmetric monoidal functors Z : Bordor

1,2,3 −→ 2Hilb correspond up to
equivalence to modular multifusion categories equipped with a square
root of the global dimension in each factor.

http://arxiv.org/abs/1411.0945
http://arxiv.org/abs/1509.06811
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85 / 104V.1. Quantum teleportation in 2-categories

Higher categories also prove useful in quantum information theory.

For example, consider the quantum teleportation protocol.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

We can make this precise using 2-categories.
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86 / 104V.1. Quantum teleportation in 2-categories
From now on, we exclusively work in 2Hilb.

Definition 60. A dagger pivotal structure on a dagger 2-category C
is a choice of right dual for every 1-cell, such that the induced dual
functor (−)∗ : C −→ Ccoop

α 7→ α

is a dagger 2-functor (i.e. it fulfills (α†)∗ = (α∗)† and has unitary
coherence isomorphisms).

2Hilb inherits a canonical dagger pivotal structure from Hilb.

This leads to a very flexible graphical calculus:

η =

η
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87 / 104V.1. Quantum teleportation in 2-categories

Classical information can be copied and spread through space.
We therefore model classical systems by objects in 2Hilb.

Consider interactions between quantum and classical systems.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

Since copying classical information is a commutative operation, we
may also model this interaction as a 012 TQFT with defects.
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Here is the heuristic quantum teleportation diagram:

CORRECT

MEASURE

ENTANGLED

= RANDOM

We make it rigorous with this 2-categorical equation.
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We can use the 2-categorical formalism to prove interesting things.
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Theorem 61. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C
=

classical information

quantum informationcreation of an
entangled state

quantum
measurement

initial
quantum state

measurement
result

controlled
operation

undisturbed
quantum information

uniformly-distributed
classical data

( 1
0
0
1

)
(

1√
2

 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

)
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1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

) )T
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1 0
0 1

) )

( ( 1 1 1 1 )T )

This is exactly the data that would appear in a quantum
information textbook.

In the rest of this lecture, we investigate these solutions in 2Hilb.
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99 / 104V.2. Biunitaries as quantum structures
Corollary 63. Biunitaries in 2Hilb of type

U (1)

correspond to teleportation protocols.

Definition 64. A unitary error basis (UEB) is a family of n2 unitary
n× n-matrices {Ui}1≤i≤n2 such that

Tr(U†i Uj) = nδi,j

Theorem 65. Biunitaries of type (1) in 2Hilb are UEBs.
Proof. Next slide.

Corollary 66. Quantum teleportation protocols are classified by
UEBs.

In conventional quantum information theory this is originally due
to Werner. We have just seen a 2-categorical proof.
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Other biunitaries also play important roles in quantum information.

complex Hadamard matrices

n× n-matrix {Hi,j}1≤i,j,≤n

|Hi,j|2 = 1 H†H = n1

H

Play key roles in quantum information ... but hard to construct.

Only a handful of known constructions, for example:

Hadamard + Hadamard + Hadamard UEB

(Uab)c,d =
1√
n

Aa,dBb,cCc,d

Why do they work? Where do they come from?

How can we find them?
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P

H

Q

1

2

3

4

6

5

7 8

1011

9

V

W

Q

Uabc,de,fg=Hb,c
a,egPc,g

e,b,f Qc,g,d

X

Uabc,def,gh:=
∑

r Vb,c
a,rf,gQc

b,r,dWrc,e,h

X

Q

VH

P

P

CK

D

Q

H

A

B

Uabc,de,fg=
∑

r Hb,c
a,rPc,r,dQr,b,f Vr,e,g

X

Uabcd,ef,gh= 1
n

∑
r,s Af,hBs,f Cr,hDs,rHd

a,sKc
b,rQd,s,ePr,c,g

X
Thanks for listening!
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