QUALIFYING EXAM SYLLABUS David Penneys

Committee: Vaughan Jones, Marc Rieffel, Peter Teichner (Chair), Ori Ganor (Physics) Date: August 15, 2007

Major Topic: Functional Analysis (Modern Analysis)

- Banach Spaces: Baire Category Theorem, Open Mapping Theorem, Closed Graph Theorem, Uniform Boundedness Principle, Hahn-Banach Theorem, Banach-Alaoglu Theorem, weak and weak-* topologies
- Topological Vector Spaces: seminorms, locally convex spaces, Krein-Milman Theorem
- Hilbert Spaces: sesquilinear forms, inner products, Cauchy-Schwartz inequality, Riesz Representation Theorem, orthonormal bases
- Operators on Hilbert Spaces: topologies on B(H), polar decomposition, compact operators, trace-class operators, Hilbert-Schmidt operators, normal operators
- Examples: $C_?(X)$, $B_?(H)$, $L^p(X, \mu)$

References: Pederson, Analysis Now, Chapters 2-3

Major Topic: Operator Algebras (Modern Analysis)

- Banach Algebras: spectrum, spectral radius formula, characters, maximal ideals, Gelfand transform
- C^* -Algebras: adjoining an identity, spectral permanence, commutative C^* -algebras, continuous functional calculus, approximate identities, ideals and quotients, states, GNS construction, Gelfand-Naimark Theorem
- Von Neumann Algebras: spectral theorem for normal operators; Bicommutant Theorem; Kaplansky Density Theorem; comparison of projections in factors; definitions and examples of factors of types I, II, and III; the coupling constant; index of subfactors
- Examples: $C_{?}(X)$, $B_{?}(H)$, $L^{\infty}(X, \mu) \rtimes_{\alpha} G$ (G countable and discrete)

References: Pederson, Analysis Now, Chapter 4; Davidson, C^* -Algebras by Example, Chapters 1-2.2; Jones' notes on von Neumann algebras, Chapters 2-11

Minor Topic: Algebraic Topology (Geometry and Topology)

- homotopy, fundamental group, Van Kampen's Theorem
- fiber bundles, principal G-bundles, covering spaces, classification theorem for covering spaces
- CW-complexes, Δ -complexes
- singular, simplicial, and cellular homology

References: Hatcher, Algebraic Topology, Chapters 0-2; Bredon, Topology and Geometry, Sections 2.13, 3.1-9

Here are the questions (that I can remember) from my Qualifying Exam:

Major Topic: Operator Algebras

- (1) (Rieffel) What is the GNS-construction? Here I assumed A was a C^* -algebra, which prompted:
 - filler i assumed 11 was a C -argebra, which prohipted
 - (Rieffel) What if A is just a normed *-algebra?
 - (Rieffel) What does it mean for a linear functional to be positive on a normed *-algebra?
 - (Rieffel) Where would you use the fact that A is a C^* -algebra during the constuction?
- (2) (Rieffel) Compute some examples of the GNS-construction.
 - (Rieffel) What about the non-commutative case? Try $M_n(\mathbb{C})$. I picked the trace, but Jones asked me to pick another state, so I picked a vector state.
 - (Rieffel) What else can you say about this state?
 - (Rieffel) What is a density matrix?
 - (Rieffel) Now what about computing the GNS-construction for an infinite dimensional example.
 I picked vN(S_∞).
 - (Rieffel) What do you know about $vN(S_{\infty})$?
 - (Jones) What is a factor? How do you know $vN(S_{\infty})$ is a factor?
 - (Jones) What do you get from doing the GNS-construction in this case?

Major Topic: Functional Analysis

- (1) (Teichner) Are the L^p spaces locally convex?
- (2) (Teichner) Why do we care about local convexity?
- (3) (Teichner) Is L^p (I interpreted as $L^p[0,1]$) isomorphic to l^p ?

Minor Topic: Algebraic Topology

- (1) (Teichner) Can you compute as many homotopy groups as possible of \mathbb{CP}^n as possible? I got a lot of help in this question, and it went pretty well. This question was really cool as it connected ideas in previous subjects to alegraic topology. For example, I talked about the set of rank one projections in \mathbb{C}^n in connection to \mathbb{CP}^n , and these projections give density matrices which correspond to pure states: If $P = |x\rangle\langle x|$, then $T \mapsto \operatorname{tr}(PT) = \langle Tx, x \rangle$ is a pure state (and also a vector state).
- (2) (Ganor) Can you compute the homology of the Klein Bottle?