
Subfactors, tensor categores, module categories,

and algebra objects in tensor categories

These notes were taken by Dave Penneys at Noah Snyder’s talk on 2/20/10 at the
Subfactor Tahoe Retreat. The material is mostly taken from:

• Mueger’s “From Subfactors to Categories and Topology I” (arXiv:math/0111204)

• Ostrik’s “Module categories, weak Hopf algebras and modular invariants”
(arXiv:math/0111139)

• Kirillov and Ostrik’s “On q-analog of McKay correspondence and ADE clas-

sification of ŝl2 conformal field theories” (arXiv:math/0101219 )

Remark 1. Our tensor categores are assumed to have duals and a trivial object 1.

Module and tensor categories from a subfactor

Let N ⊂ M be a finite index II1-subfactor. We get four categories of bimodules:

NModN ,NModM ,MModN ,MModM . The objects are the bimodules which occur as
submodules of an iterated basic construction of N ⊂ M , and the morphisms are
bimodule intertwiners, i.e., bimodule maps.

Fact 2. NModN ,MModM are tensor categories. They are fusion categories if N ⊂M
is finite depth.

Note that there is a functor

⊗N : NModN ⊗ NModM −→ NModM

satisfying associativity axioms. Heuristically, one should think of this functor as a
categorification of a ring action on a module, e.g., λ : A⊗X → X. The associativity
of the action means the following diagram commutes:

A⊗ A⊗X m⊗idX //

idA⊗λ
��

A⊗X
λ

��
A⊗X λ // X

where m : A⊗A→ A is the multiplication map. This means we have to have some
type of associator isomorphisms in the categorified version.

Definition 3. A left module category over a tensor category C is a category M and
a functor C⊗M→ M satisfying some associativity axioms up to an associator.
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Fact 4. A finite index II1-subfactor gives two tensor categories and two module
categories over them:

NModN

NModM

""
MModM

MModN

bb

Remark 5. We can hide the right half of the above diagram by using the notion of
the dual. It turns out that if M is a module category over a tensor category C, we
can form the dual tensor category C∗M of C with respect to M. If C = NModN and
M = NModM , then C∗M

∼= MModM , and the opposite category Mop ∼= MModN gives
the other module category.

Algebra objects and subfactors

A complex algebra is a complex vector space A with a map m : A ⊗ A → A such
that the following diagram commutes:

A⊗ A⊗ A m⊗idA //

idA⊗m
��

A⊗ A
m

��
A⊗ A m // A.

Definition 6. An algebra object in a tensor category C is an object A ∈ C and a
map m : A⊗ A→ A satisfying the associativity axiom up to the associator.

An algebra object A ∈ C is called a Frobenius algebra object if it comes with a
map tr : A→ 1 satisfying a certain nondegeneracy axiom (the categorified “bilinear
form” A⊗ A∗ → has a biadjoint) where 1 ∈ C is the trivial object

Examples 7.

(1) Let G be a finite group. Let C be the category of G-graded vector spaces, i.e.,
vector spaces V which are the direct sum of vector spaces Vg for each g ∈ G:

V =
⊕
g∈G

Vg.

C is a tensor category where ⊗ is given by

(V ⊗W )g =
⊕
hk=g

Vh ⊗C Wk.

The group algebra CG is an algebra object in this category.

(2) NMN ∈ NModN is a Frobenius algebra object.

Exercise 8. Show that the multiplications induce the algebra object structures in
the above examples.
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Theorem 9. If X ∈ NModN is a simple Frobenius algebra object, then X comes
from a factor P where N ⊂ P . Moreover, any unitary tensor category with simple
1 can be realized as a category of bimodules over a factor N (see Yamagami). This
means every algebra object can be realized as a subfactor.

Remark 10. The index of the subfactor coming from an algebra object in a tensor
category is the Frobenius-Perron dimension of the object, not the square of the
dimension.

Algebra objects and module categories

Given an algebra object A ∈ C, we can make a left module category as follows: set
M equal to the category of right A-module objects, i.e., those objects X ∈ C with a
map ρ : X ⊗ A→ X satisfying the associativity axiom up to an associator:

X ⊗ A⊗ A idX ⊗m //

idA⊗ρ
��

X ⊗ A
ρ

��
X ⊗ A ρ // X

Note that if X is a right A-module object and Y ∈ C, then Y ⊗ X is also a right
A-module object with the map idY ⊗ρ.

Conversely, the internal Hom construction of Ostrik gives algebra objects from
a module category. Heuristically, internal Hom is a way of creating objects in a
category in a natural way from two given objects. In the category of vector spaces,
Hom(X, Y ) is a complex vector space.

Definition 11. Given a module category M, internal Hom is a bifunctor Hom: M⊗
M→ C such that for each X, Y, Z ∈ M, the composition axiom holds up to isomor-
phism:

Hom(X, Y )⊗ Hom(Y, Z) ∼= Hom(X,Z)

where the isomorphism is natural.

Example 12.

(1) Let G be a finite group. The category Rep(G) of finite dimensional complex
representations of G thought of as G−{e}-bimodules where {e} is the trivial group
is a module category over G-graded vector spaces, and Hom(X, Y ) = Y ⊗X∗.

(2) If X, Y ∈ NModM , then Hom(X, Y ) = Y ⊗X∗.

Fact 13. Given a module category M over C and an object X ∈ M, Hom(X,X) is
an algebra object in C.

Remarks 14.

(1) In the subfactor setting, we want X ∈ M to be a simple object.

(2) Just as NMM is the preferred object in the module category NModM , if we have
an algebra object A ∈ C, the preferred object in the left module category of right
A-module objects is A as a right A module.
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Summary so far

The following three things are basically the same (up to unitarity and simplicity
assumptions):

1. A subfactor

2. An algebra object in a tensor category

3. A tensor category with a module category over it and a fixed choice of object
in the module category

GHJ subfactors

So what if I have a tensor category and a module category over it, but I haven’t
fixed a choice of object in the module category? Then I have lots of possible choices,
each of which will give me a (possibly) different subfactor! In particular, you can
perform the following switcheroo: pick a tensor category C and an algebra object
A ∈ C that yields a module category M where you can then pick whichever simple
object X you like and get a new algebra object Hom(X,X). Subfactors constructed
in this way are called Goodman-de la Harpe-Jones subfactors, or GHJ subfactors.

If you have a tensor category C and a module category M over it, and you have
a favorite object V ∈ C (this is different from subfactors which give you a favorite
object in M) then you can ask about the fusion graph for tensoring with V in M.
For a Temperley-Lieb tensor category your favorite object is the single strand, and
module categories over Temperley-Lieb at special values of d (less than 2) exactly
correspond to the ADE Dynkin diagrams.

Example 15. E6 is a module category over A11. Take the middle vertex X in E6.
The algebra object A = Hom(X,X) gives the GHJ subfactor of index 3 +

√
3.

Now we notice something confusing, the GHJ that we constructed corresponding
to the module category E6 has principal graph that isn’t E6! So what on earth is
the actual E6 subfactor? The confusing thing is that the usual E6 subfactor is not
part of the whole story I’ve been telling so far. See the next subsection for how they
appear.

Remark 16. The fact that the Dodd subfactors don’t exist comes from the fact that
the algebra object coming from the sum of the first and last vertices of A4n−1 is not
commutative. The Dodd’s do exist as module categories.

Commutative algebra objects

If A is a commutative ring, then we can also make a tensor category out of all
A-modules, instead of looking at left, right, and bi- modules.
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Definition 17. A commutative algebra object in a braided tensor category C is an
algebra object where the following diagram commutes:

A⊗ A m //

σ

%%KKKKKKKKK A

A⊗ A

m

;;xxxxxxxxx

where σ is the braiding.

Fact 18. If A ∈ C is a commutative algebra object, then the category of A-modules
is a tensor category, not just a module category.

Fact 19. The ADE subfactors all can be realized as the category of A-modules for A
a commutative algebra object in Temperley-Lieb. In fact, all of Ocneanu’s “quantum
subgroups” arise as the category of A-modules for A a commutative algebra object
in
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