Penneys Math 8110, Higher Linear Algebra Hilbert spaces

Higher linear algebra concerns itself with higher vector/Hilbert spaces and their applica-
tions to mathematics and physics. In order to generalize ordinary linear algebra to the higher
categorical context, we begin with a solid foundation of finite dimensional linear algebra, in
particular, finite dimensional Hilbert spaces and operator algebras. It is assumed the reader
has a solid understanding of finite dimensional linear algebra. All vector spaces will be finite
dimensional unless stated otherwise, and we always work over the complex numbers.

We begin by studying finite dimensional Hilbert spaces. We do so abstractly rather than
just the concrete Hilbert space C", as many Hilbert spaces will arise in higher linear algebra
which do not exactly look like C". We study the abstract complex *-algebra B(H) of linear
operators on a Hilbert space H rather than M,,(C) for the same reason. For this reason, some
proofs may certainly be simplified by replacing B(H) with M, (C) and a ‘unitary algebra’
(finite dimensional C*-algebra) with a multimatrix algebra. However, the proofs here are
really operator algebraic in nature and many can be adapted to the infinite dimensional
setting (with more work).

1.1. Hilbert spaces.

Definition 1.1.1. A Hilbert space is a vector space H equipped with a positive definite
inner product, i.e.,
e (linear in second variable) (n|A&; + &) = A(n|&1) + (n|&e) for all n, &, & € H,

e (anti-symmetric) (n|¢) = ({|n) for all n,& € H and A € C,
e (positive definite) (n|n) > 0 for all n € H with equality if and only if n = 0.

(Since H was assumed to be finite dimensional, there is no completeness condition!) The
length of n € H is |nl| = /{nln).

Example 1.1.2. The space C" is a Hilbert space with (n|¢) = 37, 7;¢;. Under the
identification of C" = M,,,1(C), (n|¢) = n'¢.

Exercise 1.1.3. A sesquilinear form on a complex vector space V' is a function (-|-) : V? — C
which is linear in the second variable and anti-linear in the first variable, i.e.,

(A +m216) = X(m!é“) + (m2]€) Vn,m, & € Hand A\ € C.

Prove that every sesquilinear form satisfies the polarization identity

3
4(ulv) = Zz’k(v—i—ikulv—i-iku). (1.1.4)
k=0

Remark 1.1.5. In a Hilbert space H, n = 0 if and only if (n|¢) = 0 for all £ € H.

Theorem 1.1.6 (Cauchy-Schwarz). For all n,& € H, |(n|&) < |0l - ||E|l with equality if and
only if n, & are proportional.

Proof. We may assume ||£]| # 0 and that (n|{) € R by multiplying n by a phase. The real
non-negative polynomial

p(t) = {n — t&n — t&) - Inll* = 2t¢nle) + 1€



achieves its minimum at to = (n|€)/||€]|?, at which

0 <p(to) = lInll* = @E*/IEI> = 0l&) <l - €]l
Equality holds if and only if p(ty) = 0, so that n = t¢€. O

Definition 1.1.7. An orthonormal basis (ONB) for H is a finite set {e;}}_; C H such that

e (linearly independent) ) Aje; = 0 implies A\; = 0 for all j,

e (spans) every n € H can be written as a linear combination n = > Aje; for some
scalars Aq,...,\, € H, and

1 iti=y

0 else.

e (orthonormal) (e;le;) = 6= = {

Each element e; of an ONB is a unit vector, meaning it has unit length.

Example 1.1.8. The computational basis for C" is {|0),...,|n— 1)}, where |i) is the vector
which is one in the (i 4+ 1)-st coordinate and zero in every other coordinate.

Exercise 1.1.9. If {e;}7_, C H is an ONB, then n = "

Jj=1

(ejlm)e; for allm e H.
Proposition 1.1.10. An orthonormal basis exists for every Hilbert space.

Proof. We use the Gram-Schmidt algorithm. We assume we have a basis {vy,...,v,} of H.
Set e; = v /||v1||, and then inductively set wy, == vy, — Zf Hejlv)e; and ey, = wk/||wk|| O

Corollary 1.1.11. Each Hilbert space H is isomorphic as a Hilbert space to C™ where
n=dim(H).

Proof. Let {ey,...,e,} be an ONB for H. The coordinate map [-] : n = ()\;)j=; where n =
> i1 Ajej is the desured isomorphism. One checks that this map satisfies (n|&) g = ([1]/[{])cn
for all n,§ € H.

RS

Definition 1.1.12. Given a Hilbert space H, the conjugate space H is the set of symbols
{77|ln € H} with vector space structure given by

n+&=n+¢ and ANT=X7

and inner product given by (7|€) = (£|n).
The dual space is the space of linear functionals H — C.

Theorem 1.1.13 (Riesz Representation). The dual space H is canonically isomorphic as
a vector space to H.

Proof. Every n € H gives a linear functional (n| : H — C by (n|{ := (n|£). We claim the map
7 — (| is the desired isomorphism. First, (A + &| = A(n| + (£|, so this map is linear and
thus well-defined. If (n| = (0|, then (n|¢) =0 for all £ € H, so n = 0. Finally, if f: H — C
is a non-zero linear functional, pick an ONB {e;}"_, of H, and observe that f is completely
determined by f(e1), ..., f(en). It is readily checked that f =", f(e;){e;l. O

Using the above proposition, we endow H" canonically with an inner product by

{{nl[{¢] >2¢= {€ln)-



1.2. Operators. Given Hilbert spaces H, K, we denote the linear operators H — K by
B(H — K), and we write B(H) = B(H — H).

Definition 1.2.1. Given a linear map x : H — K, observe that the map H 3> n — ({|xn)
is a linear functional in H" for every ¢ € K. Hence there is some vector z7¢ € H such
that the above map is equal to (z7¢]. It can be verified that the adjoint map = — 27 is a
conjugate-linear map B(H — K) — B(K — H) such that:

e When z,y are composable operators, (xy)" = 321, and

e 2T = 2 for all operators z.

We call z' the adjoint of .

Exercise 1.2.2. Show the polarization identity for operators:
3
daly = iz + iy (z +i*y).
k=0

Given ONBs {e;}_; for H and {fi};L, for K, we have a canonical isomorphism B(H —

K) = M,y (C) by
z— [z] = ((filze;))iy-

Here, the columns correspond to the ONB of the source, and the rows correspond to the
ONB of the target. Under this isomorphism, composition of linear operators corresponds to
matrix multiplication, and the adjoint corresponds to the conjugate transpose, also denoted
7. That is, the following diagrams commute:

/_\
(H,{e;}"_1) —=— (K, {fu}1) —— (L, {a:}"_) (K, {filpy) —2 (H, {ej}i1)
lm lm lu lm |
o d, om W o cm AN
wlie)

Thus studying operators between Hilbert spaces and operations between them is studying
matrices and their operations. Below, we use the abstract language of Hilbert spaces, but
the reader may safely replace B(H) with M,,(C) if they choose.

Definition 1.2.3. Gien n € H and { € K, the rank one operator [£)(n| : H — K is given
by ¢ = (nl¢)¢.

Remark 1.2.4. If x € M, (C) commutes with all y € M, (C), then x = A1 for some A € C.
This can be easily seen by looking at rank one operators of the form y = |e;)(e;| for some
ONB.

Definition 1.2.5. An operator z € B(H) is called:

e normal if ot = ziz

self-adjoint if ¥ = x

positive if ({|x€) > 0 for all £ € H (denoted x > 0)
a projection if 22 = x = o

An operator u € B(H — K) is called:



e a partial isometry if u'u is a projection.
e a unitary if u is invertible with v ="' = uf.

Example 1.2.6. Given an orthonormal set S = {ej,...,ex} C H, we get an orthogonal
. k
projection onto span(S) by >, [e;){e;].

Exercise 1.2.7. Prove that the projection Zle le;) (e;] is independent of the choice of ONB
of span(.9).

Example 1.2.8. Given an orthonormal set {ej,...,e,} C H and another orthonormal set
{f1,..., fe} C K of the same size, we get a partial isometry by Zle le;) (fil-

Example 1.2.9. Suppose x is an invertible operator on H. Define a second inner product on
H by (n|€). = (zn|z), and let H, denote H with this second inner product. The operator
H, — H given by n — xn is unitary.

Example 1.2.10. A system of matriz units in B(H) is a collection of operators {e;;} sat-
isfying

(SMUl) €ijChe = 5j:k€i£7

(SMU2) > ej; =1, and

(SMU?)) 61-]- = €j;
for all 4,7, k,¢. Observe that each e;; is a partial isometry and each e; is an orthogonal
projection. What sizes of systems of matrix units can occur in M, (C)?

Lemma 1.2.11. For all € M,,»,(C), ker(z) = ker(x'z). In particular, x'x = 0 implies
x=0.

Proof. Clearly zn = 0 implies z'zn = 0. Conversely, if z'xn = 0, then ||zn||* = (y|zfzn) =0,
so xn = 0. For the final statement, observe 'z = 0 if and only if ker( ) =ker(zfz) =C". O

Lemma 1.2.12 (Vector states separate points). An operator x : H — H is zero if and only
if (n|xn) =0 for alln € H.

Proof. Suppose (n|zn) = 0 for all n € H. Consider the sesquilinear form (n|€) = (n|z€). By
(1.1.4),

3

3
Anlag) = A(nl€) =Y iF(E+iFnle+itn) = iF(E+ifnle(E+i*n) =0 Vi, &€ H.
k=0

k=0

Thus (n]z&) = 0 for all n,§ € H, so 2§ =0 for all £ € H, and x = 0. The other direction is
trivial. 0

Corollary 1.2.13. Positive operators are self-adjoint.
Proof. Observe that

(€l2'e) = (atele) = (o) = (€lag) > 0 vEe H

whenever > 0. Hence (£|(x — 21)¢) = 0 for all £ € H, and thus * = z' by Lemma
1.2.12. [
4




Exercise 1.2.14. We say two projections p,q € B(H) are (Murray-von Neumann) equiva-
lent, denoted p =2 ¢, if there is a partial isometry u € B(H) such that uu* = p and u*u = q.
Prove that = is an equivalence relation on P(B(H)), the set of projections of B(H). Then
describe the set of equivalence classes P(M,,(C))/ ~.

Proposition 1.2.15. There is a bijective correspondence between orthogonal projections in
B(H) and subspaces of H given by p — pH and H O K Z?:l le;)(e;| where {e;}¥_, is
an ONB of K.

Proof. Note that the second map is well-defined by Exercise 1.2.7. Given an ONB {e; ;?:1
of K, im <Z?=1 ]ej)(ej\) = K. Given a projection p and an ONB {e;}"_, of pH, pn =

k k .
> i—ileslpme; = 375 lej){ejln by Exercise 1.1.9. O
Corollary 1.2.16. Suppose p € B(H) is a projection and x € B(H) is an operator.

(1) pH is invariant for x if and only if xp = pxp.

(2) pH is invariant for x and x' if and only if xp = pa.
Proof. To prove (1), observe that pH invariant for = means that pxpn = xpn for all n € H,
and thus prp = xp. Conversely, if prp = zp, then zpH C pH.

To prove (2), observe that if pH invariant for x and z' is equivalent to zp = prp and
2'p = pxfp. Hence pr = (27p)" = (px'p)! = pap = xp. Conversely, zp = px implies both
xp = prp and zfp = pafp. 0
Remark 1.2.17. Given an operator x € B(H) and a projection p € B(H), we can view «
as matrix with operator entries

oo | PP p(l —p)
(1 =pzp (1 —p)z(l-p)
acting on pH & (1 — p)H = H. Under this identification,

10 0 0
pZ{O O} and 1—p:{0 1}.

Thus (1) of Corollary 1.2.16 above is equivalent to = being upper triangular, and (2) of
Corollary 1.2.16 above is equivalent to x being diagonal.

Proposition 1.2.18. Show that the following are equivalent for u € B(H):
(1) w is a partial isometry.
(2) u = uulu.
(3) ul = uluu'.
(4) u' is a partial isometry.
Proof.
(1) = (2): Observe that
(u — wu'u) (v — vulu) = (uf — uluu’) (v — vu'u) = u'u — 2uluuu + uluuTuutu = 0,
so u — uu'u = 0 by Lemma 1.2.11.
(2) = (1): Multiply both sides on the left by u' to see u'u = u'uutu, which is self-adjoint.

(1) < (2): Just take adjoints.
5



(3) & (4): Apply (1) = (2) and (2) = (1) to ul. O

Remark 1.2.19. Proposition 1.2.18 above gives a geometric interpretation about what it
means to be a partial isometry. Indeed, v : H — K restricts to a unitary isomorphism
from u'uH onto uul K with inverse u'. Every partial isometry is of this form; that is, given
projections p € B(H) and ¢ € B(K) and a unitary isomorphism v : pH — ¢K, we can
extend u to an operator in B(H — K) satisfying uu = p and uu' = ¢ by defining u on
(1 — p)H to be zero.

Definition 1.2.20. Define a partial order on B(H) by x <y if y —x > 0.
Exercise 1.2.21. Show that if z <y and z € B(H), then zfzz < 2Tyz.
Exercise 1.2.22. Prove that for projections, p < ¢ if and only if pH C ¢H.

Exercise 1.2.23. Show that if py, ..., p, are projections such that ) p; =1, then p;p; =0
when i # j. Deduce that (SMU1L) can be replaced with e;je;, = e for all 4, j, k.

Definition 1.2.24. A non-zero projection p € B(H) is called minimal if pB(H)p = Cp.

Exercise 1.2.25. Show that the following are equivalent for a non-zero projection p.
(1) p is minimal.
(2) 0 < g < pimplies ¢ = or ¢ = p.
(3) pH is 1-dimensional (rank(p) = 1).
(4) p = |€)(&]| for some unit vector £ € H.

Proposition 1.2.26. The complex x-algebra B(H) has no non-trivial 2-sided ideals. Hence
any *x-algebra map from M, (C) into another complex x-algebra is either injective or the zero
map.

Proof. Suppose [ is a 2-sided ideal, and let * € I be non-zero. Pick a unit vector £ € H
such that x€ # 0, and set 1 := x&/||x€||. Then |n)(n|-x-[£)(&| € I is non-zero, so I contains
the rank one operator |n)(¢| and the minimal projection |£)(&|.

Extend § to an ONB {ey,...,e,} of H with e; = £ Observe that |e;)(e;| = |e;){e1] -
ler)(en] - ler)(e;] € I for all j, so 1 =37, |ej)(e;] € I.

The last statement follows by analyzing the kernel of such a map together with the iden-
tification M,,(C) = B(C™). O

1.3. Direct sum and tensor product.

Definition 1.3.1. Given two Hilbert spaces H, K, their direct sum is defined as a Hilbert
space H @ K together with isometries iy : H — H @& K and ix : K — H & K which satisfy

’LHZL + ZK’L}( = 1. By Proposition 1.2.18 and Exercise 1.2.23, it follows that iLiK = 0 and

z}(zH = 0. By Remark 1.2.17, operators on H & K can be viewed as matrices of operators:

. iy i B(H — H) B(K — H)
—ibzig ilzig B(H—K) B(K—K)|"

Given a second direct sum H &' K with isometries jg : H > H®' K and jx : K - H®' K

satisfying jHjL + jKj}( = 1, there is a canonical unitary isomorphism u = sz'L + sz'J}( :
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H® K — H &' K which is compatible with iy, ix and jy, jix in the sense that the following
diagram commutes.

Hi—H>H®K<LK
Ho' K

This map is canonical in the sense that the canonical isomorphisms between H & K, H &'
K,H @&" K for a second and third choice of direct sum fit in the following commutative
diagram.

1%

Ho K > Hd" K

1%
1%

Hae' K
Thus models for H & K form a contractible space.

Exercise 1.3.2. Prove that the direct sum of Hilbert spaces is simultaneously a product
and coproduct in the category of Hilbert spaces.

Definition 1.3.3. Given two Hilbert spaces H, K, their tensor product is the Hilbert space
H ® K, which can be defined in a number of ways. The easiest is in terms of choosing ONBs
{e;} of H and {f;} of K. The tensor product H ® K then has ONB the formal symbols
{e; ® fi}. Thus dim(H ® K) = dim(H) ® dim(X).

It can be readily checked that if we chose different ONBs {e} of H and {f;} of K,
there is a canonical isomorphism of Hilbert spaces from the Hilbert space H ® K with ONB
{e; ® fi} to the Hilbert space H @ Kwith ONB {€}® f;}. This map is canonical in the sense
that given a third choice {€7} of H and {f}'} of K, the canonical isomorphisms between
H® K H® K,H®" K fit in the following commutative diagram.

1%

Ho K s HR! K

1%
1%

H® K
Thus models for H ® K form a contractible space.
Example 1.3.4. The computational basis for C"™ ® C" is usually denoted by
{lij)|i=0,...,m—1and j=0,...,n—1}.

Exercise 1.3.5. Show that the choices of ONBs for H, K give a canonical isomorphism
B(H® K) = B(H) ® B(K).

One can also define the tensor product via universal property. Any object which satisfies
the universal property is unique up to unique isomorphism.

Definition 1.3.6. The tensor product Hilbert space of H, K is a Hilbert space H @ K

together with a bilinear map ® : H x K — H ® K which satisfy the universal property that
7



for every Hilbert space L and every bilinear map T': H x K — L, there is a unique linear
map 1" : H ® K — L such that the following diagram commutes.

Ho K T s L
x‘ 7

H®K

Exercise 1.3.7. Use the universal property above to prove that the tensor product Hilbert
space (H® K,® : H x K — H ® K) is unique up to unique isomorphism.

1.4. Spectral theory.

Definition 1.4.1. The spectrum of an operator x € B(H) is
spec(x) == {\ € C|\ — z is not invertible} .

~Y

This set is the same as the set of eigenvalues of x after identifying B(H) = M,,(C), which
is also the set of roots of the characteristic polynomial y,(A) = det(A — z). Recall that
spec(xz) # @ by the Fundamental Theorem of Algebra (every complex polynomial has a
root).

Exercise 1.4.2. Suppose x € B(H) is normal. Prove that ||zn| = [|zTy| for all n € H.
Deduce that if A\ € spec(z) with corresponding eigenvector n € H, then A € spec(z') with
corresponding eigenvector 7.

Theorem 1.4.3 (Spectral). The following are equivalent x € M, (C).

(1) There is an ONB of C" consisting of eigenvectors for x.
(2) There is a unitary u € M, (C) such that u'zu is diagonal.
(3) = is normal.

Proof.
(1) = (2) : Let {e;} be such an ONB of eigenvectors for z, and set

u = [61 en].
The eigenvalue equation implies xu = ud where
d = diag(Ay, ..., \p)

is the diagonal matrix whose entries are the corresponding eigenvalues of . Then w is unitary
as its columns are orthonormal, so ufzu = d.
(2) = (3) : When d = ulzu is diagonal,

rir = udtufudu' = udtdu’ = udd'v' = udutud'v' = z2t.

(3) = (1) : Suppose x is normal and let A € spec(x) with eigenvector n € C". By Exercise

1.4.2, n is also an eigenvector of z' with eigenvalue A € spec(z'). Hence Cn is invariant for

r and zf. By Corollary 1.2.16, zp = pxr where p = |n)(n|. By Remark 1.2.17, z is diagonal

with respect to the direct sum decomposition C" = im(p) @ im(1 — p). We now replace = by

(1 —p)z = x2(1 —p) (which is again normal) acting on im(1 —p) C C" (which has dimension

n — 1) and repeat the above procedure to obtain the desired ONB of eigenvectors. 0]
8



Definition 1.4.4 (Functional calculus). Suppose x € M, (C) is normal. For A\ € spec(z)
let £, C C™ denote the corresponding eigenspace, and let py € M, (C) be the orthogonal
projection onto . We call the p, the spectral projections of x, and we note that they are
mutually orthogonal (pyp, = 0 for A # p in spec(z)) and sum to 1.

Note that _
xr= Z AP and zh = Z Apa

as both operators agree on an orthonormal basis of C", namely the orthonormal basis con-
sisting of eigenvectors for z from the Spectral Theorem 1.4.3. For f : spec(z) — C, we
define
f@) =Y [(pr € M,(C).
A€spec(x)
Observe that spec(f(z)) = f(spec(x)), as f(x) is a diagonal operator with respect to the
projections py.

Theorem 1.4.5 (Gelfand). Suppose x € M, (C) is normal, and let C(spec(x)) denote the
unital x-algebra of C-valued functions on spec(z). The map C(spec(a)) > f — f(z) € M,(C)
15 an injective unital x-algebra homomorphism onto the unital x-algebra generated by x.

Proof. Tt is straightforward to verify that f +— f(z) is a unital *-algebra map by checking the
action of f(x) on the ONB of eigenvectors of x from the Spectral Theorem 1.4.3. Injectivity
follows as f # g on spec(x) implies that f(A)py # g(A)py for some A € spec(z). Since the
image contains 1, z, and z! by construction, it is onto the unital x-algebra generated by
T. U

Exercise 1.4.6. Use the functional calculus to prove that every positive x € M,,(C) has a
unique positive square root. That is, if x > 0, there is a unique positive operator /z € M, (C)
such that /z° = z.

Proposition 1.4.7. Suppose x,y € M, (C) with x normal and vy = yx. Then f(x)y = yf(z)
for every f € C(spec(x)).

Proof. Since spec(z) is a finite set, there is a polynomial p such that p = f on spec(x). Since
™y = yx™ for every n, p(x)y = yp(zr), and the result follows. 0

Proposition 1.4.8. The following are equivalent for x € M,(C).
(1) x> 0.

(2) z is normal and all eigenvalues of x are non-negative.

(3) There is ay € M,(C) such that y'y = x.

(4) There is ay € Myxi(C) for some k € N such that y'y = .

Proof.

(1) if(Z) : Positive implies self-adjoint by Corollary 1.2.13, and self-adjoint clearly implies

normal. If 7 is an eigenvector of x with eigenvalue A, 0 < (n|xn = A(n|n), so A > 0.

(2) = (3) : Use the functional calculus to define /x € M, (C) as in Exercise 1.4.6 above.

Observe 1/ is self-adjoint and satisfies \/z° = .

(3) = (1) : Trivial.

(4) = (1) : Observe that for all n € C*, (n|zn)cn = M|y'yn)ce = (ynlyn)er > 0. O
9



Definition 1.4.9. For an operator « € M, (C) its support projection is supp(z) = 1 — Prer(a)
where pier(z) is the orthogonal projection onto ker(x). Observe that x = xsupp(z).

Remark 1.4.10. When z is normal, x = xsupp(z) = supp(x)z, and supp(z) is the sum
of all spectral projections of x except for py if 0 € spec(x). Thus supp(z) is well-defined
independent of the action of M,(C) on C".

Definition 1.4.11 (Polar decomposition). Suppose © € M,,x,(C). Using functional cal-
culus, we define |z| := Vatz. The map u : |z[§ — z€ on supp(x)C" and and u = 0 on
(1 — supp(z))C™ is an isometric linear operator and thus well-defined:

lzl€? = (lzle | 2]€) = (€ [12P€) = (2T2€, ) = (x€[2€) = [|l=€]*.
Hence we may write © = ul|z| where u is a partial isometry and |z| > 0; this is called the
polar decomposition of x.

Remark 1.4.12. When z € M,(C), the partial isometry u constructed above commutes
with all unitaries v € M,(C) which commute with z and z'. Indeed, such a v commutes
with #'z, and thus with |z| and supp(|z|) by Proposition 1.4.7. This means v = 0 on
(1 — supp(z))C"™ and on supp(z)C",

vuv®|z|§ = vulx|v € = vaev*§ = x€.
Thus vuv* = u, so vu = uw.

Exercise 1.4.13. In this exercise, we will prove the uniqueness of the polar decomposition.
(1) Show that |z| is the unique positive operator that squares to x'z.
(2) Prove that u is the unique partial isometry such that = u|z| and ker(u) = ker(x).
(3) Deduce that u is the unique partial isometry such that with x = wu|z| and ulu =

supp(|z|). In this sense, the polar decomposition is independent of the action of
M5, (C) on C™.

The following lemma was worked out with David Reutter and Jan Steinebrunner.

Lemma 1.4.14. Suppose v € M+, (C), and let x = ulx| be its polar decomposition.
(1) ulu = supp(z) and vu' = supp(x'), and
(2) u'z = |z| and x = |zt|u, and
(3) the polar decomposition of x' is given by u'|xT].

Proof.

(1): First, since ker(u) = ker(x), u'u = 1 — prer(z) = supp(x).

Second, since ' = |z|ul, ker(u') C ker(a"). If n € ker(z'), then 0 = x'n = |x|u'y, so
u'n € ker(|z]) = ker(u). Hence uu'n = 0, so n € ker(uu') = ker(u') by Lemma 1.2.11. Thus
ker(x') = ker(u'), so uu’ =1 — Prer(zt) = supp(xh).

(2): Since ker(z) = ker(|z|), supp(|z|) = u'u by (1). Thus u'z = ulu|z| = supp(|z|)|z| = |z|
by Remark 1.4.10.
Since uu'|zf| = |27] and |z|ufu = ||,
(uf|z'|u)? = uf |zt uu'|2T|u = ul|2Pu = ulzaTu = |2)? = 2T
Hence uf|zf|u = |z| by uniqueness of the positive square root (Exercise 1.4.6). Hence

z = ulz| = vu'|z"|u = supp(|z'|)|2"|u = |2'|u.
10



(3): Taking t in the second equation in (2) gives 2 = uf|zT|. Since we showed ker(u')

ker(x') in (1), it is indeed the polar decomposition. O
Corollary 1.4.15. For x € M,,«,(C), the following are equivalent.

(1) x has a left inverse.
(2) x'x is invertible.
(3) In the polar decomposition x = ulz|, u is an isometry.

Dually, x has a right inverse if and only if zx' is invertible if and only if u is a coisometry.

Proof. Since ker(z) = ker(z'x), z has a left inverse if and only if ker(z'x) = ker(z) = 0 if
and only if 2Tz is invertible (by the Rank-Nullity Theorem). Moreover, ker(z) = 0 if and
only if ufu =1 — Pker(z) = 1.

The dual statement for (1) < (2) follows formally by considering fT. The dual statement
for (2) & (3) follows as uu' = supp(f7) = 1 — ker(f7) = 1 — ker(f f1). O

1.5. Complex x-algebras and states.

Definition 1.5.1. A complex algebra is a complex vector space equipped with a compatible
associative multiplication satisfying
e (distributive) (a+0b)-c=a-c+b-cand a-(b+c)=a-b+a-cforall a,b,c € A, and
e (compatibility with scalars) (Aa) - (ub) = (Au)(a - b) for all a,b € A and A\, u € C.
These conditions just say that - : A2 — A is bilinear. We assume that complex algebras are
finite dimensional unless stated otherwise.
A complex *-algebra is a complex algebra A equipped with an anti-linear involution * :
A — A satisfying (ab)* = b*a* and a™* = a for all a,b € A.

Lemma 1.5.2. Every algebra automorphism of M, (C) is inner, i.e., if 0 : M, (C) — M,(C)
is a complex algebra isomorphism, then there is an invertible h € M, (C) such that 0(z) =
h=tzh for all x € M,(C).

Proof. Let {e;} be an ONB for C". Then {|e;)(e;|} is a system of matrix units (see Example
1.2.10) for M,(C). Since 0 is an algebra map, {p;; = 0(|e;)(e;|)} is a collection of rank
one operators satisfying (SMU1) and (SMU2), i.e., pijpre = 0j—pie and Zj p; = 1. Pick
fi € im(pyq) and set f; == p; f1 for all j > 1. Note that

Pij [k = Pijprrf1 = 0j=kpir f1 = Oj=r.[i- (1.5.3)
Now define h € M,,(C) by hf; == e;. Then since fj, = py fi for all &,

h™ea)(ejlhfie = h™ ei)(ejlen = dj—rh™ e = 8j-vf; 15y Pk = Olei)(e; ) fi  Vij.k.

Since {|e;)(e;|} is a basis for M, (C) and {f;} is a basis for C", the result follows. O

Theorem 1.5.4.
(1) Any involution * on M, (C) is of the form z* = ha'h™! for some invertible h € M,,(C)
such that h = h'.
(2) We have an isomorphism (M, (C),*) = (M, (C),T) as complex *-algebras if and only

if the corresponding h for x is positive or negative definite.
11



Proof. To prove (1), observe that x +— z*T is an automorphism of M, (C), and is thus inner
by Lemma 1.5.2. Thus there is an k& € M, (C) such that z*7 = k~'zk. Taking adjoints and
setting h = kf, we have 2* = haTh~!. The condition that z** = x for all € M,,(C) is then

=" = (ha'h™)* = h(h")tzhth™ = chth™ = hTh 'z V€ M,(C).
Thus hTh~=! € Z(M,(C)) = C1, so h! = Ah for some A € C. Taking adjoints,
h = Ah' = |A]%h,

so A € U(1), the unimodular complex scalars. Replacing h by A'/2h which does not affect
conjugation by h, we may assume h = h'.

To prove (2), first suppose h is positive or negative definite. We may assume h is positive
definite by replacing h with —h if necessary. The map x — h~Y2zh'/? is the desired -
algebra isomorphism (M, (C),*) — (M, (C), 7). Conversely, if 0 : (M,(C),*) — (M,(C),T)
is a *-algebra isomorphism, then 6 is an algebra automorphism, so there is a k € M,,(C) such
that 6(z) = k~'xk. Similar to above, the x-algebra isomorphism condition then reduces to
h='kk' € Z(M,(C)), so h = Akk' for some A € C*. Since h = h', A € R*, so h is positive
or negative definite as claimed. 0

Definition 1.5.5. Let A be a unital complex *-algebra. We call a linear functional ¢ : A —
C:

e a trace or tracial if p(ab) = p(ba) for all a,b € A.

e positive if p(a*a) > 0 for all a € A.

e a state if ¢ is positive and ¢(1) = 1.

e faithful if ¢ is positive and p(a*a) = 0 implies a = 0.
Example 1.5.6. The trace on M, (C) given by tr(z) = >

=1 Lj; 1s a tracial state.
Lemma 1.5.7. The complex x-algebra (M,(C),t) has a unique normalized trace.

Proof. Suppose ¢ : M, (C) — C is another trace with ¢(1) = 1. Then

p(lea(eil) = e(le el - lej)el) = wllej) (el - |ei){es]) = p(lej)(e;]) Vi, J,
and
olletes]) = wlle e lesies)) = wllesesHedtes) = (esledollene) =0 Vi)
The result follows. U

Exercise 1.5.8. Suppose ¢ is a state on M, (C) such that ¢(|e;)(e;]) = < for all ¢; in an
ONB of C". Show that ¢ = tr.

Exercise 1.5.9. For n,& € C", show that tr(|n)(&|) = (&|n).

Exercise 1.5.10. Suppose ¢ : A — C is a linear functional on a unital complex x-algebra.
Use Exercise 1.2.2 to prove that ¢ is a trace if and only if ¢(a*a) = p(aa*) for all a € A.

Exercise 1.5.11. Let A = C? with coordinate-wise multiplication and (a,b)* := (b,a).

Prove that A has no states.
12



Definition 1.5.12. Suppose ¢ is a faithful state on a (finite dimensional) complex x-algebra
A. Then (alb), = ¢(a*b) defines a positive definite inner product on A (thought of as a
C-vector space). We denote the corresponding Hilbert space by L?*(A, ¢); this is called the
GNS-Hilbert space.

We denote the image of 1 € A in L%(A4, ) by Q, so af is the image of a € A.

Proposition 1.5.13. For any state ¢ on M, (C), there exists a unique d € M, (C) withd > 0
and tr(d) = 1 (called the density matrix of ¢) such that p(a) = tr(da) for all a € M,(C).
Moreover, ¢ is a faithful if and only if d is invertible.

Proof. Since tr is a state by Lemma 1.5.7, L?(M,(C), tr) is a Hilbert space. By the Riesz-
Representation Theorem 1.1.13, every linear map M,,(C) — C can be uniquely expressed as
(d| for some d € M, (C) for the trace inner product. Thus there is a unique d € M, (C) such
that p(x) = tr(diz) for all x € M, (C). Taking z = [£) (€] for a unit vector £ € H, we have

0 < p(IE)(€]) = tr(d" - [€)(E]) = tr(l€)(€] - d" - &) () = (€ld"e) tr(l€)(€l) £ld'e),

sod=d" > 0. Clearly 1 = ¢(1) = tr(d). O

(Exer._1.5.9) n

Proposition 1.5.14. Suppose ¢ is a faithful state on A. For a € A, the map given by
b2 — abf) defines a left multiplication operator N\, € B(L?*(A,p)). The adjoint of this
operator is Mg« given by b§2 — a*b).

Proof. We compute that
(A c8Y), = (B2ac), = p(b"ac) = o((a*b)*c) = (a™b82|cf2),,.
It follows that A\l = A,-. ]

Exercise 1.5.15. Prove that if a € A, the map given by b2 — baf) defines a right multipli-
cation operator p, € B(L?(A, p)). Calculate the adjoint of p,. When does pi = p«?

Remark 1.5.16. If f : A — A commutes with right multiplication in A, then f is left
multiplication by an element of A. That is, End(A4) = A. Thus M = {\Ja € A} C
B(L*(A, ¢)) is the set of all operators which commute with pA = {p,|a € A}.

1.6. Operator algebras. We now have all the background material necessary to study
finite dimensional operator algebras. For this section, A is a unital complex *-algebra (always
assumed to be finite dimensional).

Definition 1.6.1. We call A a C*-algebra if there exists a norm || - || on A which is submul-
tiplicative (||ab|| < ||a|| - ||b]|) such that
la*al| = ||al|? Vae A (1.6.2)

Example 1.6.3. On M, (C) , define

|zl = sup |lznl,
Inll=1

and observe that ||z£|| < ||z|| - [|£]] for all £ € H (divide both sides by ||£|| assuming & # 0).

One verifies this defines a norm. Submultiplicativity follows from the fact that

lzynll < 2l - [lynll < N[l - ly[l - 7] v € H.
13



To prove the C*-axiom 1.6.2, First note that

lenll* = (wnlan) = (nla'an) < Inll - latenll < flatell - Il Vn € H.
auchy-Schwarz)
Thus ||z|*> < ||27z|| < ||z] - [|2T]]. Similarly, ||27]|? < ||Jz2T]| < ||z]| - [|=T||. These two sets of
inequalities together imply ||z|| = ||7||, and thus these inequalities are all equalities.

Lemma 1.6.4. All norms on C" are equivalent. That is, if || - |1, || - |2 are two norms on
Cn, there is a C > 0 such that C7|| - |la < || - |1 < CJ| - ||

Proof. Without loss of generality, we may assume that || - ||2 is our favorite norm on C". We
fix our favorite for which we know that the unit ball is compact. (Mine is || - ||oo, for which
the unit ball is [—1,1]".) Then the unit sphere (the x € C" such that ||z|s = 1) is also
compact. Pick C' > 0 such that both

ct< Hn”nn |zl  and max, |zl < C.
2=1

Then whenever x € C" is non-zero,

X

[E41P

<C = CMal< 2l < Cllal. m

1

C—lg‘

Proposition 1.6.5. The only C* norm on C" = C({1,...,n}) is || flle = max}_, [ f;].

Proof. We leave it to the reader to verify || - |« is a C* norm.

Suppose || - || is another C* norm. By (1.6.2), || - || is completely determined by its values
on elements of the form ff, which only take positive values.

First, observe that for an orthogonal projection p € C", ||p|| = |lp*pll = |pl? so

Ipll € {0,1}. Consider a positive function f = (f1,..., fn). By replacing f with fj_lf =
(f1/fi, -, fa/f;) where f; = max(f), we may assume that f; < 1 for all 7, and at least one f;
is equal to 1. The C* axiom (1.6.2) tells us that HfQH = ||fII?, and iterating, || f2"|| = || f|I*"
for all n. Ifr < 1, 7" — 0 as n — oo, so f2° converges point-wise (and thus in some
norm!) to some non-zero orthogonal projection p. Since all norms are equivalent on C" by

Lemma 1.6.4, ||f]|*" = ||f*"|| — llp|| = 1. This is only possible if || f|| = 1. We conclude that
/]I = maxj_, f;. 0

Theorem 1.6.6 (Fundamental Theorem of finite dimensional operator algebras). The fol-
lowing conditions are equivalent for a finite dimensional unital complex x-algebra A.

(C*1) A is a C*-algebra.

(C*2) (multimatriz) There exists a x-isomorphism A = @F | M,,(C) where each summand
has the usual conjugate transpose T operation.

(C*3) (matrixz T-subalgebra) There exists an injective unital x-homomorphism A — M, (C)
for some n € N, where M,,(C) has the usual conjugate transpose t operation.

(C*4) (3 faithful state) There exists a faithful state ¢ : A — C, i.e., p(a*a) > 0 for all
a€ A, and p(a*a) =0 implies a = 0.

(C*5) (x-definite) For every a € A, a*a = 0 implies a = 0.

14



Proof. We prove the following implications:

(C*2) (C*5)
| en™
(C*3) (0*2)

The interesting part is proving (C*5) = (C*2).

(C*2) = (C*3): Set n == Y_F | a; and embed A as block-diagonal matrices.

(C*3) = (C*1): By Example 1.6.3, M,,(C) is a C*-algebra, so we may restrict its norm to the
image of A.

C*3) = (C*4): Take ¢ = tr from Example 1.5.6.

C*1) = (C*5): If a*a = 0, then by 1.6.2, ||a||* = ||a*al| = 0, so a = 0.

C4) = (C *’) If a*a = 0, then p(a*a) =0, s0o a = 0.

C*5) = (C*2): We proceed in 4 steps.

Step 1: Recall that one description of the Jacobson radical of A is

J(A) = {b € A|l + abe is invertible Va,c € A}.

||

We first show every element of J(A) is nilpotent.

Proof. Suppose b € J(A). Since A is finite dimensional, eventually a™ is a linear
combination of the a* for k < n. Thus there is a polynomial of the form

p(z) = 2" + A1+ A+ o
such that p(b) = 0. If j is minimal such that A; # 0, then

1
= —p(b
0 Ajp()
1 A, Aoy .
= b T DL gy
Aj Aj Aj
. by A . 1 -
— B (1 4+ Dty Dty —b"J> .
Aj Aj Aj

-
invertible as b € J(A)

Since b € J(A), the the term on the right hand side is invertible, and thus & = 0, so
b is nilpotent. 0

Step 2: A is semisimple. Thus by the Artin-Wedderburn Theorem, A is a finite direct sum
of matrix algebras, i.e., a multimatrix algebra.

Proof. We must prove that J(A) = 0. Suppose for contradiction that b € J(A) and
b # 0. Since the Jacobson radical is an ideal, if b € J(A), b*b € J(A), and b*b # 0 by
(C*5). So we may assume our original b is self-adjoint.

By Step 1 above, b is nilpotent. Pick k& > 1 minimal such that b* = 0. If k is even,
then 0 = b* = ¢*c where ¢ = b*/2. If k is odd, then 0 = b**! = ¢*c where ¢ = bE+1/2,
But both k/2 and (k + 1)/2 are strictly less than k& when k£ > 1, a contradiction. O

Step 3: Each full matrix algebra summand M, (C) of A is preserved under .
15




Step 4:

Proof. We know that A 2= @)% | M, (C). Consider the k mutually orthogonal central
projections py, ..., pr where p; corresponds to the unit of M, (C). Then pj,...,p;
are also mutually orthogonal central projections, so p; = p; for some j = 1,...,n.
Since each p; # 0, we also have pip; # 0 by (C*5), so pj = p; for all j. O
Restricting * to a full matrix algebra summand M,,(C) of A, by Theorem 1.5.4, there
is a self-adjoint h € M, (C) such that z* = hz'h~! for all x € M, (C). We show h

~Y

is positive or negative definite, which proves (A, %) = (@le M,,(C), T> as complex
x-algebras.

Proof. If h is not positive or negative definite, choose —oco < r < 0 < s < oo such
that r, s € spec(h), and pick unit length eigenvectors 7, € C" for h corresponding
to r, s respectively. Observe that 7, ¢ are also eigenvectors of h~! corresponding to
eigenvalues %,% respectively. Since 7, are eigenvectors corresponding to distinct

eigenvalues, n L £, i.e., (n|§) = 0. Setting

z=[/=rn+s§ 0 - 0] € M,(C),

we have
V= 4+ /5T
0
hath=lr = b . Bl [ /2 + /56 0 - ()]
L 0 |
(V=" + /51
0
—h | el 0 - )
L 0 _
[~ +2 0 0
0 0 --- 0
=h . .| =0.
0 0 --- 0
Thus z*x = ha'h~'z = 0, contradicting (C*5). O

Definition 1.6.7. A unitary algebra is a finite dimensional unital complex x-algebra that
satisfies the equivalent conditions of Theorem 1.6.6. Note that unitary algebras are more
commonly called finite dimensional C*-algebras.

Corollary 1.6.8. Fvery unitary algebra A has a unique C* norm.

Proof.

By (1.6.2), every C* norm is completely determined by its values on positive operators.

Suppose a € A is positive, and consider A unitally x-embedded in M,(C) from (C*3).
The Gelfand Theorem 1.4.5 says that the unital x-algebra generated by a is isomorphic to
C'(spec(a)), so it suffices to prove the result for C*-algebras of the form C'(X) for X C C
a finite set. Since C'(X) = C™ as a unital complex *-algebra, the result now follows from
Proposition 1.6.5. O

We now prove that every finite dimensional C*-algebra A is also a von Neumann algebra,
which means we can perform polar decomposition internal to A.
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Proposition 1.6.9. Every unitary algebra A is closed under the functional calculus and
polar decomposition.

Proof. Identify A with a x-closed subalgebra of M, (C). If a € A is normal and f : spec(a) —
C, then f(a) is in the unital x-algebra generated by a and a', which again lies in A.

Next, identifying A & @Y | M,,,(C), each a € A corresponds to a tuple (z;) € @}, M, (C).
Then a; = w;|a;| is the polar decomposition in M, (C), and a = u|a| where u = (u;) and
lal = (Jaa]). O

Exercise 1.6.10. Suppose A is a unitary algebra and a € A.

(1) Show that a can be written uniquely as Re(a) + i Im(a) where both Re(a), Im(a) € A
are self-adjoint.

(2) Show that if a is self-adjoint, then a can be written uniquely as a = a; — a_ where
a4,a_ are both positive and a,a_ = 0.

(3) Show that if a is self-adjoint, then a < ||a||, i.e., [|a|| —a > 0.

(4) Show that if a is self-adjoint, then a can be written as a linear combination of two
unitaries in A.

Hint: if ||a|| < 1, consider u = a +iv/1 — a®.
Definition 1.6.11. For a subset S C B(H), the commutant of S is
S":={x € B(H)|xs = sx for all s € S}.
Exercise 1.6.12. Show that if S C T'C B(H), then 7" C S’, S C §”, and S’ = 5"

Definition 1.6.13. Let A C B(H) be a x-closed subalgebra. For k € N, we define the
k-amplification of H is the Hilbert space @?:1 H. The algebra A acts on the amplified

Hilbert space @le H by diagonal operators. That is, as in Remark 1.2.17, we may think of
B (@k H ) as k X k matrices over B(H ). The A-action is given by

=1
m am a nm
Y Mk al LMk
Exercise 1.6.14. Suppose S C B(H) is a subset, and let « : B(H) — M,(B(H)) be the
amplification

T +—

Prove that:
(1) a(S) = M,(5"), and
(2) If 0,1 € S, then M, (S) = a(5’).
(3) Deduce that when 0,1 € S, a(S)" = a(S").

Theorem 1.6.15 (von Neumann Bicommutant). If A C B(H) is a unital *-subalgebra, then
A=A".
17



Proof. Our proof follows [Jon15, Thm. 3.2.1]. Consider the n-amplification P}_, H where
n = dim(H) which carries the diagonal A-action o : A — M, (B(H)). Let {e;} be an ONB
of H, and consider the vector

e

1 n
n=|:|cPH.
€n j=1
i.e., n is the j-th standard basis vector in the j-th summand of the amplified Hilbert space.
Consider the subspace K = a(A)n C @)_, H, and let px € B (@?:1 H) be the projection
onto K. Since A is *-closed, px € a(A) = M, (A’) by Exercise 1.6.14.

If v € A”, then a(x) € M,(A’)" and thus commutes with px. Thus a(z)K C K. Since A

is unital, there is an a € A such that a(x)a(1)n = a(a)n. In particular, ze; = ae; for all j,
sox=a€ A Hence A” C A, s0o A=A". O

Unital x-subalgebras A C B(H) such that A = A” are called von Neumann algebras. By
Exercise 1.6.12, A’ is also a von Neumann algebra, von Neumann algebras always come in
pairs: A and A’. Combining Theorems 1.6.6 and 1.6.15, we immediately have the following
corollary

Corollary 1.6.16. Unitary algebras are the same thing as finite dimesional von Neumann
algebras.

Although the following corollary was already proven in Proposition 1.6.9 above, we provide
a second von Neumann algebraic proof.

Corollary 1.6.17. Suppose A C B(H) is a unitary algebra. For a € A, let a = ula| be the
polar decomposition from Definition 1.4.11. Then |a| and u are again in A.

Proof. We know |a| = v/a*a € A by Proposition 1.6.9. Recall that the u constructed in
Definition 1.4.11 commutes will all unitaries v which commute with a. This means that
u commutes with all unitaries v € A’. Since A’ is a unitary algebra, it is spanned by its
unitaries by Exercise 1.6.10. This means u commutes with all of A’, so u € A” = A. O
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