Penneys Math 8110 Introduction to the course

Here are 4 charts which summarize this course.

e The staircase of n-vector/Hilbert spaces [GJF19]

e The synoptic chart of tensor categories n =1 and k < 3 [HPT16]*

e The periodic table of k-tuply monoidal n-categories, —2 < n < 2 [BD95].

e The chart of higher categories and topological order from the 2022 AIM workshop
on Higher Categories and Topological Order [Del22]

The staircase for nVect/nHilb [GJF19]

Formal construction of kVect from (k — 1)Vect.

B3Vect —& ...2

] >~

B2Vect —— MultFusCat 229, 2Cat,,

BT/ B

BVect —s AlgesP Meod, Cat,,

1 27

BC —<— Vect
5] %

C

Notation:

e B means take the delooping [BS10, §5.6], i.e., consider the monoidal k-category
as a (k + 1)-category with one object.

e ¢ means take a unital higher Cauchy completion [GJF19].

e Y is the composite ¢ o B, called the suspension.

e Mod is the equivalence given by taking the 1- or 2-category of modules for the
algebra/multifusion category respectively.

Here is a great research project: Do a chart for n = 2 and k < 4!
2Here is another research project: Show that the 4-category of multifusion 2-categories goes here.



The synoptic chart of tensor categories [HPT16]

In the chart below, which is adapted from [HPT (MR3578212, arXiv:1509.02937), §2.3],

° ®—> indicates that ‘B can be obtained from A by forgetting part of the data;
equivalently, A can be obtained from B by adding extra structure.

) @Q indicates that A can be obtained from B by imposing extra axioms;
equivalently, A is a property of B, and not extra structure.

° @—% indicates that the Drinfeld center construction goes from A to B.

) ®<—> indicates an equivalence between A and B.

o ®=P> indicates that A implies B assuming in addition property P.
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http://www.ams.org/mathscinet-getitem?mr=MR3578212
http://arxiv.org/abs/1509.02937

The periodic table of k-tuply monoidal n-categories [BD95, BS10]

k-tuply monoidal n-categories [BD95, BS10|. For a k-tuply monoidal n-category,
being trivial at height k corresponds to extra structure on an n-category, except at
height n — 1, which is a property of an (n + 2)-tuply monoidal n-category.
n=-2|n=-1 n=>0 n=1 n =2

k=0| x=T | {T,F} set category | 2-category

k=1 ? *=T monoid monoidal | monoidal

k=2 ” 7 commutative | braided braided

k=3 K 7 7 symmetric | sylleptic

k=4 ” 7 7 ” symmetric

k, — 5 2 2 2 2 2
In the chart above, we included columns for n = —2, —1, 0, when strictly speaking, these

values of n do not give categories. It is helpful to think of these levels as ‘lower’ categories
using negative categorical thinking [BS10].

Chart of fusion categories and topological order [Del22]
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e The topological quantum field theories constructed from unitary fusion categories are
fully extended.

e The unitary modular tensor categories constructed from unitary fusion categories are
achiral.
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