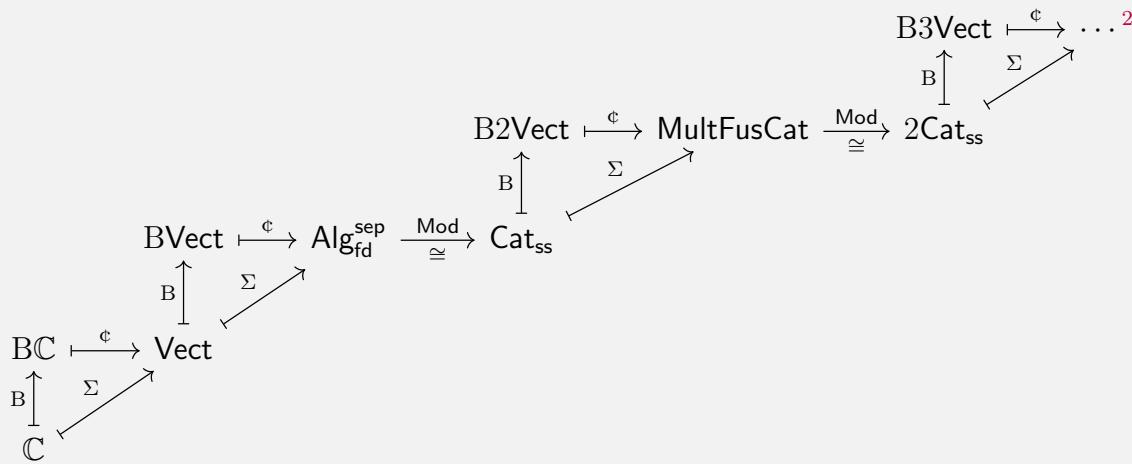


Here are 4 charts which summarize this course.

- The staircase of n -vector/Hilbert spaces [GJF19]
- The synoptic chart of tensor categories $n = 1$ and $k \leq 3$ [HPT16]¹
- The periodic table of k -tuply monoidal n -categories, $-2 \leq n \leq 2$ [BD95].
- The chart of higher categories and topological order from the 2022 AIM workshop on Higher Categories and Topological Order [Del22]

The staircase for $n\text{Vect}/n\text{Hilb}$ [GJF19]

Formal construction of $k\text{Vect}$ from $(k-1)\text{Vect}$.



Notation:

- B means take the *delooping* [BS10, §5.6], i.e., consider the monoidal k -category as a $(k+1)$ -category with one object.
- \mathbb{c} means take a unital higher Cauchy completion [GJF19].
- Σ is the composite $\mathbb{c} \circ B$, called the *suspension*.
- Mod is the equivalence given by taking the 1- or 2-category of modules for the algebra/multifusion category respectively.

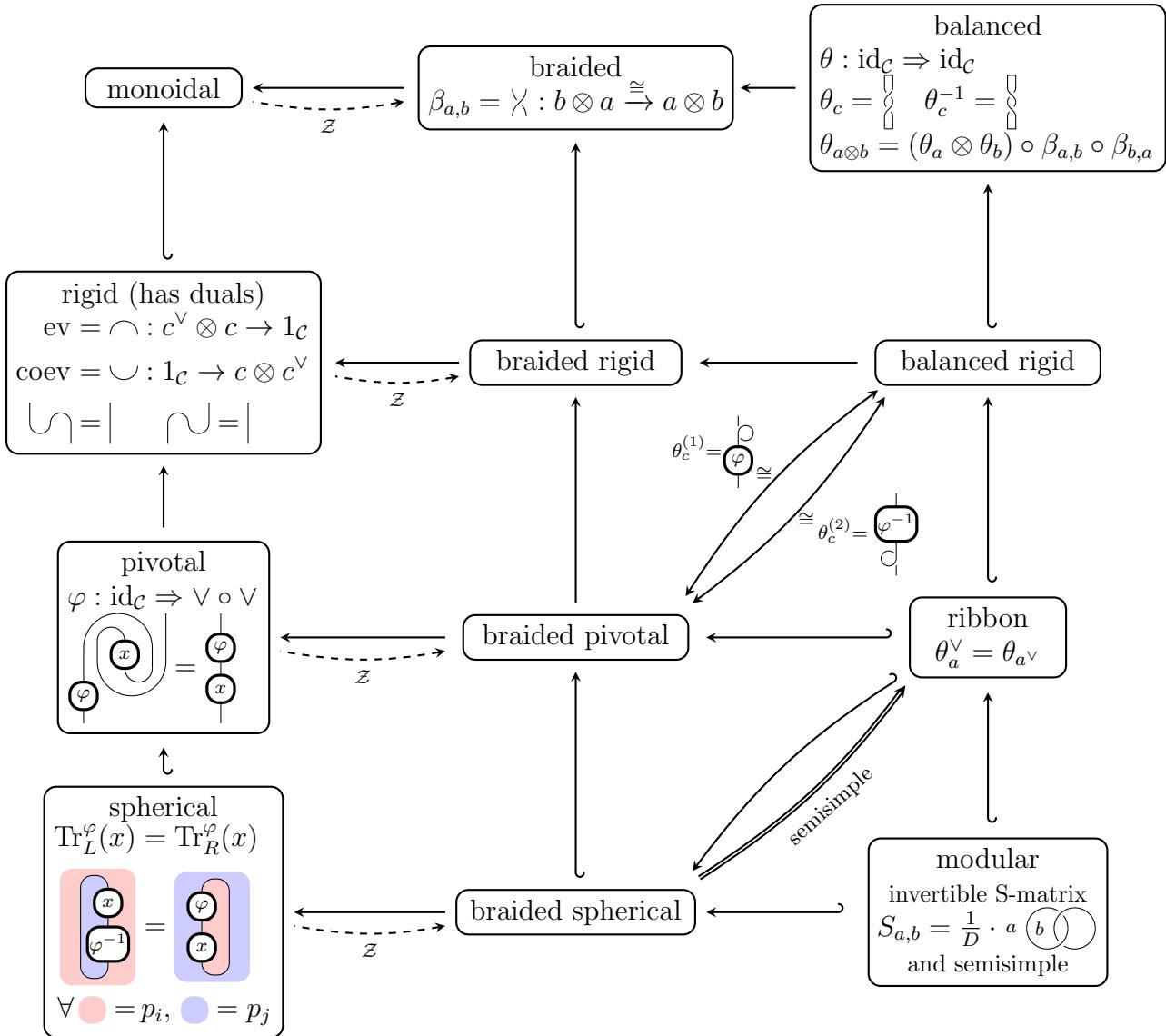
¹Here is a great research project: Do a chart for $n = 2$ and $k \leq 4$!

²Here is another research project: Show that the 4-category of multifusion 2-categories goes here.

The synoptic chart of tensor categories [HPT16]

In the chart below, which is adapted from [HPT (MR3578212, arXiv:1509.02937), §2.3],

- $\circlearrowleft \rightarrow$ indicates that B can be obtained from A by forgetting part of the data; equivalently, A can be obtained from B by adding extra structure.
- $\circlearrowleft \hookrightarrow$ indicates that A can be obtained from B by imposing extra axioms; equivalently, A is a *property* of B, and not extra structure.
- $\circlearrowleft \xrightarrow{z}$ indicates that the Drinfeld center construction goes from A to B.
- $\circlearrowleft \leftrightarrow$ indicates an equivalence between A and B.
- $\circlearrowleft \xrightarrow{P}$ indicates that A implies B assuming in addition property P.



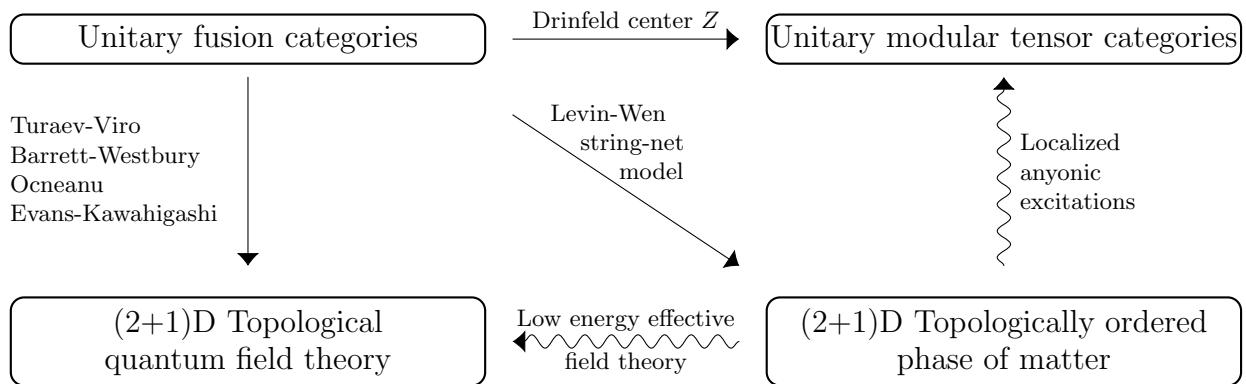
The periodic table of k -tuply monoidal n -categories [BD95, BS10]

k -tuply monoidal n -categories [BD95, BS10]. For a k -tuply monoidal n -category, being trivial at height k corresponds to extra structure on an n -category, except at height $n - 1$, which is a [property](#) of an $(n + 2)$ -tuply monoidal n -category.

	$n = -2$	$n = -1$	$n = 0$	$n = 1$	$n = 2$
$k = 0$	$* = T$	$\{T, F\}$	set	category	2-category
$k = 1$	"	$* = T$	monoid	monoidal	monoidal
$k = 2$	"	"	commutative	braided	braided
$k = 3$	"	"	"	symmetric	sylleptic
$k = 4$	"	"	"	"	symmetric
$k = 5$	"	"	"	"	"

In the chart above, we included columns for $n = -2, -1, 0$, when strictly speaking, these values of n do not give categories. It is helpful to think of these levels as ‘lower’ categories using *negative categorical thinking* [BS10].

Chart of fusion categories and topological order [Del22]



- The topological quantum field theories constructed from unitary fusion categories are fully extended.
- The unitary modular tensor categories constructed from unitary fusion categories are achiral.

REFERENCES

- [BD95] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. *J. Math. Phys.*, 36(11):6073–6105, 1995. [MR1355899](#) [arXiv:q-alg/9503002](#) [DOI:10.1063/1.531236](#).
- [BS10] John C. Baez and Michael Shulman. Lectures on n -categories and cohomology. In *Towards higher categories*, volume 152 of *IMA Vol. Math. Appl.*, pages 1–68. Springer, New York, 2010. [MR2664619](#) [arXiv:math/0608420](#).
- [Del22] Colleen Delaney. Chart of higher fusion categories and topological order, 2022. Talk from 2022 AIM workshop on Higher Categories and Topological Order.
- [GJF19] Davide Gaiotto and Theo Johnson-Freyd. Condensations in higher categories, 2019. [arXiv:1905.09566](#).
- [HBJP22] Peter Huston, Fiona Burnell, Corey Jones, and David Penneys. Composing topological domain walls and anyon mobility, 2022. [arXiv:2208.14018](#), to appear *SciPost Phys.*
- [HPT16] André Henriques, David Penneys, and James Tener. Categorified trace for module tensor categories over braided tensor categories. *Doc. Math.*, 21:1089–1149, 2016. [MR3578212](#) [arXiv:1509.02937](#).
- [KK12] Alexei Kitaev and Liang Kong. Models for gapped boundaries and domain walls. *Comm. Math. Phys.*, 313(2):351–373, 2012. [MR2942952](#) [DOI:10.1007/s00220-012-1500-5](#) [arXiv:1104.5047](#).