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Chapter 1

Introduction

These notes are being prepared during the Autumn 2018 semester at The Ohio State University
for a topics course on Quantum Algebra. In lieu of an introduction, for the time being, we provide
the proposed syllabus for the course.

In this course, we will learn the main tools, techniques, and examples in the field of Quantum
Algebra. A good functional definition of Quantum Algebra is ‘the mathematics derived from the
Jones polynomial.’ Topics may include:

• diagrammatic quantum algebras (Examples: Temperley-Lieb-Jones algebras, Hecke algebras,
Planar rook algebras, annular variants; Techniques: Jones-Wenzl idempotents, Jones’ index
rigidity theorem, Markov traces on towers of algebras)

• tensor categories (Examples: Vec(G,ω), Rep(H) for a Hopf algebra, Construction and clas-
sification of the type An categories from the TLJ algebras, Tambara-Yamagami; Techniques:
idempotent completion, projection categories of an algebra, inclusions of multi-matrix alge-
bras and the basic construction)

• properties and structures of tensor categories (Examples: rigid, pivotal, spherical, braided,
balanced, ribbon, fusion, modular; Techniques: graphical calculus and planar algebras, Drin-
feld center/quantum double construction)

• knot polynomials (Examples: Jones polynomial, Kauffman bracket, HOMFLY; Techniques:
skein theory, R-matrices, Khovanov homology)

• topological field theory (Examples: Turaev-Viro, Reshetikhin-Turaev; Techniques: 6j and
theta symbols)

• algebras in tensor categories (Examples: construction of the D2n and E6, E8 tensor categories
from type Ak categories; Techniques: (de)equivariantization, boson condensation)

• unitary tensor categories (Examples: unitary versions of previous examples; Techniques: finite
dimensional operator algebras, positivity)

• topological phases of matter (Examples: Toric code, bosonic topological orders; Techniques:
Levin-Wen string net models, string-net condensation)
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Part of the allure for teaching this course will be to prepare my own lecture notes and make them
publicly available online.

Target audience

This course targets graduate students from mathematics or physics with an interest in tensor cate-
gories, quantum groups, hopf algebras, operator algebras, skein theory, knot theory, representation
theory, topological field theory, or mathematical physics. This course may also be suitable for
extremely advanced undergraduate students.

Prerequisites

No prerequisites are required beyond a (deep) understanding of basic linear algebra and finite
dimensional inner product spaces. Familiarity with categories will be very useful, although not
absolutely necessary.
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Chapter 2

Temperley-Lieb (TL)

We will try to stay as example-focused as possible in the course. A fundamental example in
Quantum Algebras is Temperley-Lieb (TL), which is sometimes referred to as Temperley-Lieb-
Jones. One might mean many things by TL:

• a tower of finite dimensional (C∗/von Neumann) algebras

• a sequence of diagrammatic algebras of (oriented?) string diagrams

• a(n idempotent complete?) tensor (C∗) category

• a pivotal tensor (C∗) category

• the pivotal tensor (C∗) category Rep(Uq(su2))

• a (C∗) 2-category

• a (subfactor) planar algebra

So when someone says “Temperley-Lieb,” your first question should be, “What do you mean by
that?”

2.1 The TL algebras

In this section, we start with the TL algebras, which are finite dimensional ∗-algebras.

2.1.1 Jones’ algebraic Temperley-Lieb algebras

The following abstract ∗-algebras were defined in [Jon83].

Definition 2.1.1. For n ≥ 0 and d = [2] = q + q−1 which uniquely determines q ∈ Q ∪ −Q by
Exercise 4.1.2, we define Jones’ algebraic TL algebra TLJn(d) as the unital ∗-algebra generated by
1, e1, . . . , en−1 subject to the following relations:

(J1) e2
i = ei = e∗i for all i = 1, . . . , n− 1

(J2) eiej = ejei for all |i− j| > 1, and

(J3) eiei±1ei = d−2ei.
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Exercise 2.1.2. Use the relations (J1) – (J3) to prove that any word in e1, . . . , en is equal to a
word with at most one en.

Exercise 2.1.3. Prove that dim(TLJn(d)) ≤ 1
n+1

(
2n
n

)
, the n-th Catalan number.

Hint: Use Exercise 2.1.2.

2.1.2 Kauffman’s diagrammatic Temperley-Lieb algebras

In his skein-theoretic description of the Jones polynomial [Kau87], Kauffman provided a diagram-
matic description of the Temperley-Lieb-Jones algebras.

Definition 2.1.4. For n ≥ 0 and d = [2] = q + q−1 which uniquely determines q ∈ Q ∪ −Q by
Exercise 4.1.2, we define TLKn(d) to be the complex vector space whose standard basis is the set
of non-intersecting string diagrams (up to isotopy) on a rectangle with n boundary points on the
top and bottom. For example, the basis for TLK3(d) is given by{

, , , ,

}
.

On TLKn(d), we define a multiplication by (the bilinear extension of) stacking boxes, removing the
middle line segment, and smoothing the strings, and removing any closed loops and multiplying by
a factor of d, e.g.

· = = d . (2.1)

We define an involution by (the anti linear extension of) reflection about a horizontal line, e.g.

∗
= . (2.2)

The multiplication and the adjoint make TLKn(d) a complex ∗-algebra.

Exercise 2.1.5. Prove that dim(TLKn(d)) = 1
n+1

(
2n
n

)
, the n-th Catalan number.

Exercise 2.1.6. Prove that for i = 1, . . . , n− 1, the elements

Ei := · · · · · ·

i

∈ TLKn(d)

satisfy the following relations:

(K1) E2
i =

· · · · · ·

· · · · · ·
= d · · · · · · = dEi = dE∗i ,

(K2) EiEj =
· · · · · ·

· · · · · ·

· · ·

· · ·
=

· · · · · ·

· · · · · ·

· · ·

· · ·
= EjEi if |i− j| > 1, and
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(K3) EiEi±1Ei =

· · · · · ·

· · · · · ·

· · · · · ·

= · · · · · · = Ei.

Compare these relations with (J1) – (J3).

2.1.3 Isomorphism between algebraic TLJ and diagrammatic TLK

We now construct for n ≥ 0 and d = [2] = q + q−1 a ∗-algebra isomorphism TLJn(d) ∼= TLKn(d).
Note that by Exercise 2.1.6, the map ei 7→ d−1Ei extends to a well-defined unital ∗-algebra ho-
momorphism Φn : TLJn(d) → TLKn(d), since the relations (J1) – (J3) are satisfied by dEi for
i = 1, . . . , n− 1.

Proposition 2.1.7. The Φn : TLJn(d)→ TLKn(d) are unital ∗-algebra isomorphisms.

Proof. By Exercises 2.1.3 and 2.1.5, we have dim(TLJn(d)) ≤ dim(TLKn(d)) = 1
n+1

(
2n
n

)
. By the

Rank-Nullity theorem, it suffices to show that Φn is surjective. We proceed by strong induction on
n. The base case n = 0 is trivial. Suppose that Φk is surjective for all 0 ≤ k < n. Let x ∈ TLKn(d)
be a standard basis element.

Case 1: Suppose x has a through string, i.e., a string which connects the i-th lower boundary point
to the j-th upper boundary point. Notice that i ≡ j mod 2; without loss of generality, we assume
i < j. Performing isotopy on the diagram x, we divide it up as follows:

x = .. .

j

i

· · ·

· · ·x1

x2

Notice that the part in red, denoted x1, is a diagrammatic basis element in TLKj−1(d), and the
part in blue, dentoed x2, is a diagrammatic basis element in TLKn−i(d). Since i, j ≥ 1, by the
induction hypothesis, both x1 and x2 can be expressed as products of the Ek. Then x2 shifted by i
strings to the right is exactly the product of those Ek shifted by i, i.e., Ek+i. Since x is the product
of x1 and x2 shifted by i strings to the right, and both of these latter diagrammatic basis elements
are products of the Ek, so is x. Thus x ∈ im(Φn).

Case 2: Suppose x has no through strings. By applying isotopy, we pull all the outermost cups and
caps on the top and bottom toward the center of the diagram, and wiggle the strings as in Case
1 to divide the diagram into the product of three diagrams x1, x2, and x3, where x1 and x3 are
each a horizontal concatenation of basis elements in TLKi(d) for i strictly smaller than n, and x2
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is visibly a product of the odd Ek. We provide an explicit example below:

;

x1

x2

x3

; .

Applying isotopy again to shift the smaller basis elements which are horizontally concatenated
within x1 and x3 up and down as in the rightmost diagram above, we can express each of x1 and
x3 as products of the Ek, and thus x is a product of the Ek. We conclude x ∈ im(Φn), and we are
finished.

Notation 2.1.8. From this point forward, we simply write TLn(d) to denote either TLJn(d) or
TLKn(d), which we identify under the unital ∗-algebra isomorphisms Φn.

2.1.4 Planar operations on TL algebras

As the TL algebras afford a diagrammatic description, we get a powerful planar calculus.

Definition 2.1.9 (Linear operations). The right inclusion tangle is a unital, injective ∗-algebra
homomorphism

in :=

· · ·

· · ·

: TLn(d)→ TLn+1(d).

The conditional expectation tangle is a surjective ∗-map of C-vector spaces

En+1 :=

· · ·

· · ·

: TLn+1(d)→ TLn(d).

The trace tangle is a linear ∗-map of C-vector spaces

Trn := · · · : TLn(d)→ TL0(d). (2.3)

Note that TL0(d) ∼= C as a ∗-algebra via the map which sends the empty diagram to 1C. Using
Trn, we can define a sesquilinear form on TLn(d) by 〈x, y〉n := Trn(xy∗).

Of course, the identity map idn : TLn(d)→ TLn(d) is given by the following diagram:

· · ·

· · ·
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Definition 2.1.10 (Quadratic operations). We already saw that multiplication was given by ver-
tically stacking diagrams. We can also draw a tangle for multiplication as follows:

· · ·

· · ·

· · ·

: TLn(d)× TLn(d)→ TLn(d).

The tensor product tangle takes elements which may live in distinct TL algebras and horizontally
concatenates them

· · ·

· · ·

· · ·

· · ·

: TLm(d)× TLn(d)→ TLm+n(d).

Notation 2.1.11. When we apply one of these operations to an x ∈ TLn(d) (or possibly two
elements from two distinct TL algebras), we denote the output by labeling the tangle with the
input(s). For example,

in(x) =

· · ·

· · ·

x ∈ TLn+1(d) xy =

· · ·

· · ·

· · ·

y

x

∈ TLn(d) y⊗x =

· · ·

· · ·

· · ·

· · ·

y x ∈ TLm+n(d).

Exercise 2.1.12. Prove the following relations amongst the maps in, En+1, Trn, and idn by drawing
diagrams.

(1) En+1 ◦ in = d idn,

(2) Trn+1 = Trn ◦En+1,

(3) (in ◦ in−1 ◦ En(x))En = Enin(x)En for all x ∈ TLn(d),

(4) Trn(xy) = Trn(yx) for all x, y ∈ TLn(d),

(5) (Markov property) Trn+1(in(x) · En) = Trn(x) for all x ∈ TLn(d), and

(6) Trn(En+1(x) · y) = Trn+1(x · in(y)) for all x ∈ TLn+1(d) and y ∈ TLn(d).

2.2 The Kauffman bracket

We now show how the Temperley-Lieb algebras can be used to construct a polynomial invariant of
knots and links. We begin by defining the Kauffman bracket for knot projections [].

Recall that a knot is an embedding S1 ↪→ R3, and a link is an embedding
∐n
i=1 S

1 ↪→ R3 where
n ∈ N. A knot/link projection is the image in R2 under a generic regular projection, which avoids
various bad behaviors, like triple intersections and kinks.

To define the Kauffman bracket and the Jones polynomial, we will use the following theorems
of Reidemeister and Markov.
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2.2.1 Reidemeister moves

Theorem 2.2.1 (Reidemeister [Rei27]). Two knot/link projections represent isotopic knots in R3

if and only if they are related by a finite number of the Reidemeister moves:

(R1) ↔

(R2) ↔

(R3) ↔

2.2.2 The Kauffman bracket

Exercise 2.2.2.

(1) Prove that for each d ∈ R \ {0}, there is a unique q ∈ C with non-negative imaginary part
such that q + q−1 = d.

(2) Prove that for each q ∈ C with non-negative imaginary part, there is a unique A ∈ C with
non-negative imaginary part such that A2 = q.

(3) Deduce that for each d ∈ R \ {0}, there is a unique A ∈ C with non-negative imaginary part
such that d = A2 −A−2.

Definition 2.2.3. Suppose d = −A2 −A−2. Define the crossings β±1 in TL2 by

β = := A +A−1 β−1 = := A−1 +A . (2.4)

Exercise 2.2.4. Prove that ββ−1 = β−1β = id2 := ∈ TL2.

Exercise 2.2.5. Prove that

β

β

β =

β

β

β .

Definition 2.2.6. Given a link `, we define an element 〈`〉K ∈ TL0(d) called the Kauffman
bracket of ` by replacing the crossings by β±1 as in (2.4).1 Here, we identify TL0(d) = C[A,A−1],
polynomials in A and A−1. By Exercises 2.2.4 and 2.2.5, we see that 〈`〉K is invariant under
applying (R2) and (R3) to ` anywhere locally. Thus the Kauffman bracket is almost an invariant
of knots and links, modulo (R1).

1This differs from Kauffman’s original definition of the bracket polynomial by a normalization. Kauffman nor-
malized so that the uknot has bracket equal to 1, whereas we normalize so that the unknot has bracket equal to
δ.
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Example 2.2.7. We calculate the Kauffman bracket of a trefoil knot as follows:

〈 〉
K

= A3 + 3A + 3A−1 + A−3 = −A−9 +A−1 +A3 +A7.

This proves a trefoil is not isotopic to its mirror image.

2.2.3 The writhe factor

Exercise 2.2.8. Show that β±1 = −A±3 . Deduce that 〈`〉K is not invariant under (R1).

Definition 2.2.9. Let ~̀ be an oriented link. For each crossing in a projection of ~̀, we define the
sign of the crossing as follows:

sign

( )
:= 1 sign

( )
:= −1

We define the writhe factor wr(~̀) to be the number of crossings, counted with their signs.

Exercise 2.2.10. Let ~̀ be an oriented link and let ` be the link obtained from forgetting the
orientation. Show that

V~̀(A) := d−1(−A)−3 wr(~̀) · 〈`〉K (2.5)

is invariant under (R1), (R2), and (R3).

Definition 2.2.11. The Jones polynomial of ~̀ is V~̀(A), as defined in Exercise 2.2.10.

2.3 Jones’ construction of his polynomial

We now go through Jones’ original approach to his knot polynomial using Markov traces on
Temperley-Lieb algebras [Jon85].

2.3.1 Artin’s braid groups

Definition 2.3.1. The algebraic braid group ABn is the group generated by β1, . . . , βn−1 subject
to the relations

(B1) βiβj = βjβi for |i− j| > 1 and

(B2) βiβi±1βi = βi±1βiβi±1.

Exercise 2.3.2. Show that AB2 is isomorphic to Z, but that AB3 contains a group isomorphic to
the free group F2.

Definition 2.3.3. The diagramamtic braid groupDBn is the group whose elements consist of string
diagrams with n boundary points on the lower and upper sides of a rectangle, and the lower points
are paired to the upper points by smooth strings which only intersect at a finite number of points,
where we indicate which string passes over the other as in a knot/link projection. Moreover, the
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strings are not allowed to have any critical points. All such diagrams are considered up to isotopy
and Reidemeister moves (R2) and (R3). For example, the following elements of DB3 are equal:

=

We multiply in DBn by stacking boxes and smoothing out strings, similar to multiplication in TLn,
which is manifestly associative.

Exercise 2.3.4. Prove that DBn is a group under the above multiplication. That is, find the
identity element, and show every element has an inverse.

Exercise 2.3.5. Consider the distinguished elements of DBn given by

bi := · · · · · ·

i

.

Prove that the elements b1, . . . , bn−1 ∈ DBn satisfy Relations (R2) and (R3). Deduce there is a
well-defined group homomorphism Φn : ABn → DBn.

Exercise 2.3.6. Show that every element of Bn can be written as a product of b1, . . . , bn−1 from
Exercise 2.3.5. Deduce that Φn from Exercise 2.3.5 is surjective.

We will not prove the following theorem as it would take us too far afield.

Theorem 2.3.7 (Artin [Art25]). The group homomorphism Φn : ABn → DBn from Exercise 2.3.5
is an isomorphism.

Notation 2.3.8. From this point forward, we simply write Bn to denote either ABn or DBn,
which we identify under the group isomorphisms Φn.

Exercise 2.3.9. Show that the map Ψ : Bn → TLn(d) given by

e 7→ 1 βi 7→ A idn +A−1Ei β−1
i 7→ A−1 idn +AEi

where d = −A2 − A−2 (which uniquely determines A by Exercise 2.2.2) preserves (B1) and (B2).
Deduce that Ψ extends to a well-defined unital ∗-algebra homomorphism Ψ : C[Bn] → TLn(d),
where the ∗ on the group algebra is the conjugate-linear extension of inversion.

Exercise 2.3.10. Determine when Ψ(βi) is a unitary in U(TLn(d)) for i− 1, . . . , n− 1.

2.3.2 Markov’s theorem

Given a braid b, we obtain a link ` by closing/capping/tracing the braid to the right. For example,
we can represent a trefoil knot as follows:

Tr


 = .
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Theorem 2.3.11 (Markov [Mar35]). Every link is the closure of a braid. Moreover, two braids
give the same link under closure if and only if they are related by a finite number of the following
two moves:

(M1) If b ∈ Bn, we can swap b↔ aba−1 for some braid a ∈ Bn.

(M2) If b ∈ Bn, we can swap b↔ bβ±1
n , the n-th generator of Bn.

Exercise 2.3.12. Prove that we get the same link under taking the closure of a braid under either
(M1) or (M2).

2.3.3 Construction of the Jones polynomial

We now construct the Jones polynomial as follows.

Definition 2.3.13. Suppose ~̀ is an oriented link. Write ~̀= Tr(~b) for some braid b ∈ Bn where ~b
is obtained from b by orienting all strands from bottom to top. Define

V~̀(A) := d−1(−A3)− exp(b) · TrTLn(d)(Ψ(b)) (2.6)

where d = −A2−A−2, exp(b) is the exponent sum of b as a word in β1, . . . , βn−1, and Ψ : C[Bn]→
TLn(d) the unital ∗-algebra homomorphism from Exercise 2.3.9.

Exercise 2.3.14. Show that exp(b) is exactly the writhe factor of Tr(~b).

Proposition 2.3.15. The formula (2.6) for V~̀ is well-defined, i.e., it does not depend on the choice
of b. Moreover, it agrees with (2.5).

Proof. It is sufficient to show (2.6) agrees with (2.5), which is straightforward. However, for the
sake of pedagogy, we will show that (2.6) is well-defined by showing it is invariant under the Markov
moves (M1) and (M2).

(M1): This is immediate from exp(a) = − exp(a−1) for all a ∈ Bn, together with the facts that Ψ is
a homomorphism and Tr is a trace:

Tr(Ψ(aba−1)) = Tr(Ψ(a)Ψ(b)Ψ(a)−1) = Tr(Ψ(a)−1Ψ(a)Ψ(b)) = Tr(Ψ(b)).

(M2): We prove that Bn 3 b ↔ bβn ∈ Bn+1 does not change (2.6), and the proof for b ↔ bβ−1
n is

similar. Note that exp(bβn) = 1 + exp(b). Expanding Ψ(βn) = A idn +A−1En, we have

(−A3)− exp(bβn) · TrTLn+1(d)(Ψ(bβn)) = (−A3)−1−exp(b) · (ATrTLn+1(d)(Ψ(b)) +A−1 TrTLn(d)(Ψ(b)En))

= (−A3)−1−exp(b) · (Ad+A−1) · TrTLn(d)(Ψ(b))

= (−A3)−1−exp(b) · (A3) · TrTLn(d)(Ψ(b))

= (−A3)− exp(b) · TrTLn(d)(Ψ(b)).

This completes the proof.
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Chapter 3

Towers of algebras

3.1 Finite dimensional multimatrix and von Neumann algebras

One of the main techniques in the untiary viewpoint of Quantum Algebra is towers of algebras.
The next two sections provide the prerequisites.

3.1.1 Basic facts about Mn(C)

For this section, ∗ denotes the conjugate transpose operation on Mn(C).

Exercise 3.1.1. Show that if a ∈ Mn(C) commutes with all b ∈ Mn(C), then a = λ1 for some
λ ∈ C.

Exercise 3.1.2. Suppose p ∈Mn(C) is a minimal projection, i.e., pMn(C)p = Cp. Show that there
are v1, . . . , vn ∈Mn(C) such that

∑n
i=1 vipv

∗
i = 1. Show that in addition, we may choose v1, . . . , vn

so that v∗i vi = p for all i = 1, . . . , n, so that the vi are partial isomertries.

Exercise 3.1.3. Prove that Mn(C) has no non-trivial 2-sided ideals.

Exercise 3.1.4. Use Exercise 3.1.3 to show that any (not necessarily unital) ∗-algebra map out of
Mn(C) into another complex ∗-algebra is either injective or the zero map.

The matrix algebra Mn(C) acts on the inner product (Hilbert) space Cn with inner product
given by 〈η, ξ〉 :=

∑n
j=1 ηjξj .

Definition 3.1.5. An element a ∈Mn(C) is called normal, if aa∗ = a∗a.

Exercise 3.1.6 (Spectral Theorem). Show that the following are equivalent for a ∈Mn(C).

(1) a is normal.

(2) There is an orthonormal basis of Cn consisting of eigenvectors for a.

(3) There is a unitary u ∈Mn(C) (uu∗ = u∗u = 1) such that u∗au is diagonal.

Definition 3.1.7 (Functional calculus). Suppose a ∈ Mn(C) is normal. Let Spec(a) denote the
spectrum of a, which is the set of eigenvalues. For λ ∈ Spec(a), let Eλ ⊂ Cn denote the correspond-
ing eigenspace, and let pλ ∈Mn(C) be the orthogonal projection onto Eλ. Note that

a =
∑

λ∈Spec(a)

λpλ,
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as both operators agree on an orthonormal basis of Cn, namely the orthonormal basis consisting
of eigenvectors for a from Exercise 3.1.6. For f : Spec(a)→ C, we define

f(a) :=
∑

λ∈Spec(a)

f(λ)pλ ∈Mn(C).

Exercise 3.1.8. Suppose a ∈Mn(C) is normal, and let C(Spec(a)) denote the unital ∗-algebra of
C-valued functions on Spec(a).

(1) Show that C(Spec(a)) 3 f 7→ f(a) ∈Mn(C) is a unital ∗-algebra homomorphism.

(2) (Spectral mapping) Prove that Spec(f(a)) = f(Spec(a)).

Definition 3.1.9. An element a ∈ Mn(C) is called positive, denoted a ≥ 0, if for every ξ ∈ Cn,
〈aξ, ξ〉 ≥ 0.

Exercise 3.1.10. Show that the following are equivalent for a ∈Mn(C).

(1) a ≥ 0.

(2) a is normal (aa∗ = a∗a) and all eigenvalues of a are non-negative.

(3) There is a b ∈Mn(C) such that b∗b = a.

(4) There is a b ∈Mn×k(C) for some k ∈ N such that b∗b = a.

Exercise 3.1.11 (∗∗, [Pal01, Thm. 9.1.45]).

(1) Show that any involution † on Mn(C) is of the form a† = ha∗h−1 for some invertible h ∈
Mn(C) such that h = h∗.

(2) Show that (Mn(C), †) ∼= (Mn(C), ∗) as involutive algebras if and only if the corresponding h
for † is positive or negative definite.

3.1.2 Finite dimensional complex multimatrix algebras

In this section, A will always denote a finite dimensional complex ∗-algebra.

Definition 3.1.12. A linear functional ϕ : A→ C is called:

• a trace or tracial if ϕ(ab) = ϕ(ba) for all a, b ∈ A.

• positive if ϕ(a∗a) ≥ 0 for all a ∈ A.

• a state if ϕ is positive and ϕ(1) = 1.

• faithful if ϕ is positive and ϕ(a∗a) = 0 implies a = 0.

Exercise 3.1.13. Prove that Mn(C) has a unique trace such that tr(1) = 1. In this case, prove
that tr is positive (so tr is a state) and faithful.

Exercise 3.1.14. Let A = C2 with coordinate-wise multiplication and (a, b)∗ := (b, a). Prove that
A has no states.
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Exercise 3.1.15 (∗). Prove that for any state ϕ on Mn(C), there exists d ∈ Mn(C) with d ≥ 0
and tr(d) = 1 such that ϕ(a) = tr(da) for all a ∈Mn(C). Prove that ϕ is a faithful if and only if d
is also invertible.
The matrix d is called the density matrix of ϕ with respect to tr.

Exercise 3.1.16. Suppose tr is a trace on a multimatrix algebra. Show that:

(1) tr is positive if and only if tr(p) ≥ 0 for all projections p ∈ A (p = p∗ = p2).

(2) tr is positive and faithful if and only if tr(p) > 0 for all projections p ∈ A.

Definition 3.1.17. A finite dimensional complex ∗-algebra A is called a multimatrix algebra if it
is ∗-isomorphic to a ∗-algebra of the form

Mn1(C)⊕ · · · ⊕Mnk
(C).

The row vector nA := (n1, . . . , nk) is called the dimension row vector of A. For 1 ≤ i ≤ k, we
denote by pi ∈ A the minimal central projection corresponding to the summand Mni(C), so that
piApi ∼= Mni(C).

Exercise 3.1.18. Assume the notation of Definition 3.1.17. Suppose p ∈ A is an orthogonal
projection. The central support z(p) of p is the smallest central projection such that p ≤ z(p).
Show that z(p) is the sum of the pi such that ppi 6= 0.

Exercise 3.1.19. Find a bijective correspondence between faithful tracial states on a finite di-
mensional complex multimatrix algebra with dimension row vector nA = (n1, . . . , nk) and column
vectors λ ∈ (0, 1)j such that nAλ = 1. Under this correspondence, what does the entry λi signify?

3.1.3 Finite dimensional operator algebras (∗)

Let H denote a finite dimensional inner product (Hilbert) space. Denote by B(H) the unital
∗-algebra of linear operators on H, where ∗ is the adjoint operation.

Exercise 3.1.20. Show that a choice of orthonormal basis of H gives a unitary linear map u :
H → Cn (uu∗ = idCn and u∗u = idH) such that x 7→ uxu∗ is a unital ∗-algebra isomorphism
B(H)→Mn(C), where the ∗ on the latter is conjugate transpose.

Exercise 3.1.21 (∗). Show that a finite dimensional unital ∗-algebra is a C∗ algebra if and only if
it has a faithful tracial state. Deduce that a multimatrix algebra is a C∗ algebra.

Definition 3.1.22. Suppose H is a finite dimensional inner product (Hilbert) space, and denote
by B(H) the linear operators on H. For a subset S ⊂ B(H), the commutant of S is S′ :=
{x ∈ B(H)|xs = sx for all s ∈ S}

Exercise 3.1.23. Show that if S ⊂ T ⊂ B(H), then T ′ ⊂ S′.

Exercise 3.1.24. Show that if S ⊂ B(H), then S′ = S′′′.

Exercise 3.1.25 (∗∗). Show that if A ⊂ B(H) is a unital ∗-subalgebra, then A = A′′.
Hint: See [Jon15, Thm. 3.2.1].

Exercise 3.1.26 (∗∗).

(1) Show that a finite dimensional von Neumann algebra is a multimatrix algebra.
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(2) Show that a finite dimensional C*-algebra is a multimatrix algebra.

Exercise 3.1.27 (∗). Suppose A is a finite dimensional unital complex ∗-algebra. In this exercise,
we will show that A being a C*-algebra is equivalent to the condition

a∗a = 0 =⇒ a = 0. (3.1)

(1) Recall that the Jacobson radical of A is

J(A) = {b ∈ A|1 + abc is invertible ∀a, c ∈ A} .

Show that every element of J(A) is nilpotent.
Hint: If a ∈ A, there is a polynomial p ∈ C[x] such that p(a) = 0.

(2) Show that if there is a non-zero a ∈ J(A), then there is a non-zero b ∈ J(A) such that b∗b = 0.
Hint: Reduce to the case a = a∗ and use part (1).

(3) Use the Artin-Wedderburn Theorem to deduce that (3.1) implies A is a multimatrix algebra.

(4) Show that (3.1) implies each full matrix algebra summand of A is preserved under ∗.
Hint: Consider the minimal central idempotents {pi}ni=1. Show that {p∗i }ni=1 are also minimal
central idempotents, so p∗i = pj for some j = 1, . . . , n. Then apply (3.1).

(5) Consider the involution of A restricted to a single full matrix algebra summand Mn(C) of A.
By Exercise 3.1.11, there is a self-adjoint h ∈Mn(C) such that x∗ = hx†h for all x ∈Mn(C),
where † denotes the usual conjugate-transpose in Mn(C). Show that (3.1) implies h is positive
or negative definite.
Hint: If h is not positive or negative definite, choose −∞ < r < 0 and 0 < s < ∞ such
that r, s ∈ Spec(h), and pick eigenvectors v, w ∈ Cn for h corresponding to r, s respectively.
Then find a non-zero x ∈ Mn(C) such that hx†h−1x = 0. (For example, take x to have one
non-zero column, which is a linear combination of v, w.)

(6) Prove A is a C*-algebra if and only if (3.1) holds.

3.1.4 The GNS construction

Suppose A is a multimatrix algebra and ϕ is a faithful state.

Exercise 3.1.28. Show that 〈a, b〉 := ϕ(b∗a) defines a positive definite inner product on A (thought
of as a C-vector space).

Definition 3.1.29. We define L2(A,ϕ) to be A as an inner product (Hilbert) space with the inner
product from Exercise 3.1.28. We denote the image of 1 ∈ A in L2(A,ϕ) by Ω, so aΩ is the image
of a ∈ A.

Exercise 3.1.30. Prove that if a ∈ A, the map given by bΩ 7→ abΩ defines a left multiplication
operator λa ∈ B(L2(A,ϕ)). Prove that the adjoint of this operator is λa∗ given by bΩ 7→ a∗bΩ.

Exercise 3.1.31. Prove that if a ∈ A, the map given by bΩ 7→ baΩ defines a right multiplication
operator ρa ∈ B(L2(A,ϕ)). Calculate the adjoint of ρa. When does ρ∗a = ρa∗?

Exercise 3.1.32. Suppose ϕ is a faithful state on Mn(C). Prove that the commutant of the left
Mn(C) action on L2(Mn(C), ϕ) is the right Mn(C) action.
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Exercise 3.1.33. Suppose 〈 · , · 〉 is a positive definite inner product on the vector space Mm×n(C).
Prove that the commutant of the left Mm(C) action on Mm×n(C) is the right Mn(C) action.

Exercise 3.1.34. Suppose ϕ is a faithful state on A. Use Exercise 3.1.33 to prove that the
commutant of the left A acting on L2(A,ϕ) is the right action of A on L2(A,ϕ).

Exercise 3.1.35 (∗). Show that a finite dimensional complex ∗-algebra is a multimatrix algebra
if and only if it has a faithful state.
Hint: For the forward direction, use Exercise 3.1.19. For the reverse direction, if A has a faithful
state, then the image of A inside the linear operators on L2(A,ϕ) is a unital ∗-subalgebra, and thus
a finite dimensional von Neumann algebra by Exercise 3.1.25. The result now follows by (1) of
Exercise 3.1.26.

3.1.5 Inclusions of multimatrix algebras

Definition 3.1.36. Consider a multimatrix algebra B and a ∗-subalgebra A ⊂ B such that A is
also a multimatrix algebra (so A is unital). We call the inclusion A ⊂ B unital if the unit of A is
also the unit of B.

Exercise 3.1.37. Give examples of unital and non-unital inclusions of multimatrix algebras.

Exercise 3.1.38 (∗). Show that Mk(C) isomorphic to a unital ∗-subalgebra of Mn(C) if and only
if k | n. Then show that up to unitary conjugation in Mn(C), the isomorphism above is given by

Mk(C) 3 x 7→

x . . .

x

 ∈Mn(C)

where x is repeated on the diagonal j times where jk = n.

Consider a unital inclusion of multimatrix algebras A ⊂ B. Suppose B has dimension row vector
nB = (n1, . . . , n`) and A has dimension row vector mA = (m1, . . . ,mk). Denote the minimal central
projections of A by p1, . . . , pk and the minimal central projections of B by q1, . . . , q`. Consider for
1 ≤ i ≤ k and 1 ≤ j ≤ ` the ∗-homomorphism ϕij : Mmi(C)→Mnj (C) given by

Mmi(C) ↪→ A ↪→ B �Mnj (C).

x 7→ pix = pix 7→ piqjx.

That is, ϕij(x) := piqjx ∈ B. Note that ϕij need not be unital, but note that by Exercise 3.1.4,
ϕi,j is either injective or zero.

Exercise 3.1.39. Show that if we consider ϕij as a map piA → piqjBpiqj , then ϕij is a unital
∗-homomorphism.

Definition 3.1.40. By Exercises 3.1.38 and 3.1.39 there is a non-negative integer Λij ∈ N≥0

such that up to unitary conjugation in B, ϕij(x) consists of Λij copies of x along the diagonal of
piqjBpiqj . We define the inclusion matrix of A ⊆ B by ΛBA := (Λi,j) ∈ Mk×`(C). When there is
only one inclusion, we suppress the sub- and superscripts and simply write Λ.

Exercise 3.1.41. Show that since A ⊂ B is a unital inclusion of multimatrix algebras (1B ∈ A),
we must have mAΛBA = nB.
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Exercise 3.1.42. Show that if A ⊆ B ⊆ C are all unital inclusions of multimatrix algebras, then
ΛCA = ΛBAΛCB.

Definition 3.1.43. The Bratteli diagram of the inclusion A ⊂ B is the bipartite graph Γ with:

• k even vertices labelled by the integers m1, . . . ,mk,

• ` odd vertices labelled by the integers n1, . . . , n`, and

• Λij edges from the i-th even vertex to the j-th odd vertex.

That is, Γ is the bipartite graph with adjacency matrix ΛBA whose even and odd vertices are labelled
by the entries of the dimension row vectors of A and B respectively.

Exercise 3.1.44 (∗). Let B be a multimatrix algebra. Prove that up to unitary conjugation in B,
any unital ∗-subalgebra A ⊂ B is completely determined by its Bratteli diagram.

Exercise 3.1.45. Suppose λA and λB are trace column vectors for A and B satisfying mAλA =
nBλB respectively as in Exercise 3.1.19. Assume the entries of λA and λB are all strictly positive.
Denote by trA and trB the corresponding faithful tracial states on A and B. Prove that trB |A = trA
if and only if ΛλB = λA.

3.1.6 Connected inclusions

We continue the notation of the previous section for an inclusion A ⊂ B with dimension row vectors
mA = (m1, . . . ,mk) and nB = (n1, . . . , n`) respectively.

Definition 3.1.46. The inclusion A ⊂ B is called connected if the graph Γ is connected.

Exercise 3.1.47 (∗). Prove that Γ is connected if and only if Z(A) ∩ Z(B) = C.

Exercise 3.1.48 (∗). Show that if A ⊂ B is connected, there is a unique d > 0 and unique trace
vector λB such that mBλB = 1 and ΛTΛλB = d2λB. Then deduce:

(1) If λA := ΛλB, then ΛTλA = d2λB.

(2)

(
0 Λ

ΛT 0

)(
λA
dλB

)
= d

(
λA
dλB

)
.

Hint: Use the Frobenius-Perron Theorem.

Definition 3.1.49. If A ⊂ B is connected, the scalar d from Exercise 3.1.48 is called the Frobenius
Perron eigenvalue. The trace vector λB is called a Frobenius Perron eigenvector.

Exercise 3.1.50. Compute the Frobenius-Perron eigenvalue and an associated eigenvector for the
following graphs:

(1) 1

2

3

n

...

(2)
1 2 n− 1 n· · ·
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Exercise 3.1.51. Show that if Λ is a proper subgraph of the finite graph Γ, then the Frobenius-
Perron eigenvalue of Λ is strictly less than the Frobenius-Perron eigenvalue of Γ.
Hint: Use the Rayleigh quotient for the adjacency matrix, which is self-adjoint.

Exercise 3.1.52. Use Exercise 3.1.51 to classify all connected bipartite graphs with Frobenius-
Perron eigenvalue strictly less than 2.
Hint: See [AMP15, p.11].

3.2 Jones’ basic construction in finite dimensions

For this section, A ⊂ B will always denote a unital inclusion of finite dimensional complex multi-
matrix algebras.

3.2.1 Conditional expectations

Pick faithful tracial states trB on B and trA on A.

Definition 3.2.1. A conditional expectation E : B → A is a linear map such that

• (A−A bilinear) E(axb) = aE(x)b for all x ∈ B and a, b ∈ A.

• (unital) E(1) = 1, and

A conditional expectation is called:

• trace preserving if trA(E(x)) = trB(x) for all x ∈ B.

• faithful if E(x∗x) = 0 implies x = 0.

Exercise 3.2.2. Prove that E|A = idA and E2 = E, i.e., for all x ∈ B, E(E(x)) = E(x). Deduce
that if E : B → A is trace preserving, then trB |A = trA.

Exercise 3.2.3. Show that if E,F : B → A are two conditional expectations such that for all
a ∈ A and b ∈ B, trA(aE(b)) = trA(aF (b)), then E = F . Deduce that there is at most one trace
preserving conditional expectation B → A.
Hint: Show that for all b ∈ B and a ∈ A, 〈E(b)Ω, aΩ〉 = 〈F (b)Ω, aΩ〉 in L2(A, trA).

Exercise 3.2.4. Suppose E is trace preserving. Show that E(x∗) = E(x)∗ for all x ∈ B.
Hint: First prove that trB(x∗) = trB(x) for all x ∈ B. Then show 〈E(x)∗Ω, aΩ〉 = 〈E(x∗)Ω, aΩ〉
for all x ∈ B and a ∈ A.

Exercise 3.2.5. Suppose E is trace preserving. Show that for any x ∈ B, E(x∗x) ≥ 0.
Hint: Compute 〈E(x∗x)aΩ, aΩ〉 in L2(A, trA).

Exercise 3.2.6. Consider the subspace AΩ ⊂ L2(B, trB). Let eA ∈ B(L2(B, trB)) be the orthog-
onal projection onto AΩ. Define E : B → A by E(b) = a where a ∈ A is the unique element
such that eA(bΩ) = aΩ. Prove that E is a faithful conditional expectation. Prove that E is trace
preserving if and only if trB |A = trA.

Exercise 3.2.7. Continue the notation of Exercise 3.2.6.

(1) Show that for all b ∈ B, E(b)eA = eAbeA.
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(2) Show that for all b ∈ B, we have b ∈ A if and only if eAb = beA.

Exercise 3.2.8. Compute the unique trace preserving conditional expectation for the following
unital inclusions:

(1) The inclusion Mk(C) ↪→Mnk(C) with the unique normalized traces.

(2) The connected inclusion A = Mn(C)⊕Mk(C) ↪→Mn+k(C) = B with trace vector on A given
by ( 1

n+k ,
1

n+k ) and the unique normalized trace on B.
Note: First verify that nAλA = 1 where nA denotes the dimension row vector of A.

(3) The connected inclusion A = C ⊕ C ↪→ M2(C) ⊕ C = B with Bratteli diagram and trace
vectors for A and B given by

Λ :=

(
1 0
1 1

)
λA :=

(
φ−2

φ−1

)
λB :=

(
φ−2

φ−3

)

where φ := 1+
√

5
2 (so φ2 = 1 + φ and φn+2 = φn + φn+1 for all n ∈ Z).

Note: First verify that nAλA = 1 = nBλB where nA, nB denotes the dimension row vector of
A,B respectively.

3.2.2 The basic construction

Suppose A ⊂ B is a unital inclusion of multimatrix algebras and trB is a faithful normal trace
on B. Define trA = trB |A, and let eA ∈ B(L2(B, trB)) be the orthogonal projection with range
L2(A, trA) = AΩ as in Exercise 3.2.6. Let E : B → A be the canonical trace-preserving conditional
expectation, which is defined by E(b)Ω := eA(bΩ) for all b ∈ B.

Exercise 3.2.9. Show that eAbeA = E(b)eA for all b ∈ B.

Definition 3.2.10. The basic construction ofA ⊂ B is the unital ∗-subalgebra 〈B, eA〉 ⊂ B(L2(B, trB))
generated by B and eA.

Exercise 3.2.11. Prove that 〈B, eA〉 equalsB+BeAB := span {a+ beAc|a, b, c ∈ B} ⊂ B(L2(B, trB)).

Exercise 3.2.12 (**). Prove that 〈B, eA〉 equals BeAB := span {aeAb|a, b ∈ B} ⊂ B(L2(B, trB)).
Note: We will try to use Exercise 3.2.11 instead of this exercise as much as possible.

Definition 3.2.13. The modular conjugation is the map J : L2(B, trB)→ L2(B, trB) given by the
anti-linear extension of JbΩ := b∗Ω.

Exercise 3.2.14. Prove that for all a, b ∈ B, 〈JaΩ, bΩ〉 = 〈JbΩ, aΩ〉.

Exercise 3.2.15. Use Exercise 3.2.4 to show that JeA = eAJ on L2(B, trB).

Exercise 3.2.16. Recall A′ =
{
x ∈ B(L2(B, trB))

∣∣xa = ax for all a ∈ A
}

. Show that JA′J =
(JAJ)′.

Exercise 3.2.17. Show that 〈B, eA〉 = JA′J .
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Using this last exercise, we see that the basic construction algebra naturally arises as the missing
algebra in the following picture.

?? A′

B L2(B, trB) JBJ = B′

A JAJ

Exercise 3.2.18. Show that A ⊆ B is connected if and only if B ⊆ 〈B, eA〉 is connected.

3.2.3 Morita equivalence

[[todo.]]

3.2.4 The inclusion B ⊂ 〈B, eA〉

For this section, A ⊆ B is a unital inclusion of multimatrix algebras whose dimension row vectors are
given respectively by nA = (nA1 , . . . , n

A
k ) and nB = (nB1 , . . . , n

B
` ), and ΛBA is the inclusion matrix.

We denote the minimal central projections of A and B by p1, . . . , pk and q1, . . . , q` respectively.
Let λA, λB be the trace column vectors for A and B respectively, which satisfy the normalization
condition nAλA = 1 = nBλB. This means the i-th entry of λA is the trace of a minimal projection
in piA, and similarly for B. Since trB |A = trA, we have λA = ΛBAλ

B. Using either Exercise 3.1.25
or 3.2.17, Jones’ basic construction 〈B, eA〉 is a finite dimensional von Neumann algebra, and thus
a multimatrix algebra by Exercise 3.1.26.

Theorem 3.2.19. The inclusion matrix for B ⊆ 〈B, eA〉 can be canonically identified with (ΛBA)T .

We give three separate proofs of this important, non-trivial theorem. Each proof develops
and expands the ideas in the previous proof making fewer assumptions. The first is a very quick
K-theoretic proof which uses Exercise 3.2.12. The second translates the first proof into operator
algebras, which gives a conceptual explanation of the proof that appears in [JS97, Lem. 3.2.2(iv)].
The third is a bare-bones approach based on ideas provided to us by Srivatsa Srinivas during his
undergraduate research project Summer 2018.

Proof 1 of Thm. 3.2.19. It follows from Exercise 3.2.12 that the unital ∗-algebras A and 〈B, eA〉
are Morita-equivalent via the Morita-equivalence bimodule 〈B,eA〉BA. Hence there is a canonical
isomorphism Z(〈B, eA〉) ∼= Z(A). We denote the minimal central projections of 〈B, eA〉 by r1, . . . , rk
which respectively correspond to the minimal central projections p1, . . . , pk of A.

Now (ΛBA)ij is the number of summands of piBqj as an A − B bimodule. Tensoring with

〈B,eA〉BA, we see this is the same number of summands of

〈B,eA〉BA ⊗A piBqj ∼= ri〈B, eA〉qj

as a 〈B, eA〉 − B bimodule. By taking the conjugate bimodule, we have that (ΛBA)ij is equal to
the number of summands of qj〈B, eA〉ri as a B − 〈B, eA〉 bimodule, which is exactly the entry

(Λ
〈B,eA〉
B )ji.
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Proof 2 of Thm. 3.2.19. First, since 〈B, eA〉 = JA′J on B(L2(B, trB)), we see that the map z 7→
JzJ gives a canonical isomorphism Z(A) → Z(〈B, eZ〉). Now in operator algebraic language, the
can identify endomorphism space of piBqj = piqjB as an A−B bimodule as

EndA−B(piqjB) ∼= (piqjA)′︸ ︷︷ ︸
(left A-action)′

∩ piqjBpiqj︸ ︷︷ ︸
(right B-action)′

⊂ B(L2(piqjB)),

where the faithful tracial state on piqjB is given by x 7→ trB(piqjx)/ trB(piqj). Since this endomor-
phism algebra is a full matrix algebra corresponding to the A−B isotypic component of piqjB in B,
the number of summands is given by taking the square root of the dimension of the endomorphism
algebra:

(ΛBA)ij = dim(EndA−B(piqjB))1/2 = dim((piqjA)′ ∩ piqjBpiqj)1/2.

By symmetry, we have

(Λ
〈B,eA〉
B )ji = dim(EndB−〈B,eA〉(qjJpiJB))1/2 = dim((qjJpiJB)′ ∩ qjJpiJ〈B, eA〉qjJpiJ)1/2.

Now both (piqjA)′∩piqjBpiqj and (qjJpiJB)′∩qjJpiJ〈B, eA〉qjJpiJ are von Neumann subalgebras
of B(L2(B, trB)), and we see that the unital ∗-algebra anti-homomorphism Ad(J) : B → B′ = JBJ
given by x 7→ Jx∗J satisfies

J
(
(piqjA)′

)
J = (JpiqjAJ)′ = (JpiJqjJAJ)′ = JpiJqj〈B, eA〉JpiJqj

J (piqjBpiqj) J = JpiJqj(JBJ)qjJpiJ = JpiJqj(B
′)qjJpiJ = (qjJpiJB)′.

Hence Ad(J) provides a unital ∗-algebra anti-isomorphism

EndA−B(piqjB) ∼= EndB−〈B,eA〉(qjJpiJB)

viewed as von Neumann subalgebras of B(L2(B, trB)), and thus they have the same dimension.

We conclude (ΛBA)ij = (Λ
〈B,eA〉
B )ji.

Proof 3 of Thm. 3.2.19. Fix a unital ∗-isomorphism

α : MnA
1

(C)⊕ · · · ⊕MnA
r

(C)
∼=−→ A. (3.2)

Without loss of generality, we may assume the inclusion A ⊆ B is block diagonal on the summands
of α−1(A) such that all copies of MnA

i
(C) appear before any copies of MnA

i′
(C) if i < i′.

Denote the row vectorm := (m1, . . . ,mk) := nB(ΛBA)T , and note that nB(nB)T = nB(ΛBA)T (nA)T =

m(nA)T , which implies
∑`

j=1(nBj )2 =
∑k

i=1 n
A
i mi. Let H =

⊕k
i=1MnA

i ×mi
(C) with inner product

〈(xi)ki=1, (yi)
k
i=1〉H :=

k∑
i=1

λAi
nAi

Tr(xiy
∗
i ), [[probably incorrect!]]

where Tr denotes the non-normalized trace on each summand α(MnA
i

(C)) ⊆ A. Notice that A has

a faithful left action on H given by πa(xi) := (aixi)
k
i=1 where ai := α−1(a)i ∈ MnA

i
(C). Moreover,

by Exercise 3.1.33, the commutant π(A)′ ∩ B(H) of the left A-action on H is the right action of⊕k
i=1Mmi(C).
Now fix 1 ≤ i ≤ k. For j = 1, . . . , `, piqjB can be viewed as Λij matrices of dimension nAi ×nBj .

Denote these matrices by (piqjB)k, 1 ≤ k ≤ Λij . We concatenate these matrices horizontally
indexing lexicographically over 1 ≤ j ≤ ` and 1 ≤ k ≤ Λij :

Hi :=
(
(piq1B)1 · · · (piq1B)Λi1 (piq2B)1 · · · (piq2B)Λi2 (piq`B)1 · · · (piq`B)Λi`

)
.
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That is, Hi is equal to MnA
i ×mi

(C) as a vector space.

For the explicit inclusion M3(C)⊕M2(C)⊕M1(C)
∼=
↪→ A ⊆ B = M7(C)⊕M5(C)⊕M3(C) with

inclusion matrix

ΛBA =

1 2 0
0 2 1
0 1 2

 ,

we can visualize H1, H2, H3 graphically as follows:

↪→

(p1q1B)1

{
(p2q1B)1

{
(p2q1B)2

{ (p2q2B)1
{

(p2q2B)2
{

(p3q2B)1{
(p2q3B)1

{
(p3q3B)2{

; H1

{
H2

{
H3{

We now define a linear transformation u : L2(B, trB)→ H component-wise by

[u(bΩ)]i :=
(
(piq1b)1 · · · (piq1b)Λi1 · · · (piq`b)1 · · · (piq`b)Λi`

)
∈ Hi.

is a unitary operator which intertwines the left A-actions: uabΩ = πa ·ubΩ for all a ∈ A and b ∈ B.
Hence the commutant A′ ∩ B(L2(B, trB)) is unitally ∗-isomorphic to

⊕k
i=1Mmi(C). Now H also

carries a right B-action given by

ρc ·
(
(piq1b)1 · · · (piq`b)Λi`

)
:=
(
(piq1bc)1 · · · (piq`bc)Λi`

)
,

which commutes with the left A-action by construction. Moreover, u : L2(B, trB)→ H is manifestly
right B-linear, i.e., u is an A−B bilinear unitary. Hence we have a unital ∗-isomorphism

B(L2(B, trB)) ⊇ A′ ∩B Ad(u)−−−−→ π(A)′ ∩ ρ(B) ⊆ B(H).

But we calculated earlier that

π(A)′ =

k⊕
i=1

1nA
i
⊗Mmi(C) ⊆

k⊕
i=1

MnA
i

(C)⊗Mmi(C) = B(H),

[[finish.]]

We get the following strengthening of Exercise 3.2.18.

Corollary 3.2.20. The Bratteli diagram for B ⊆ 〈B, eA〉 is the reflection of the Bratteli diagram
for A ⊆ B.

We now investigate the topic of compatible traces on 〈B, eA〉. Suppose tr〈B,eA〉 is a faithful

state on 〈B, eA〉 with corresponding trace vector λ〈B,eA〉. By Exercise 3.1.45 and Theorem 3.2.19,

we know that tr〈B,eA〉 |B = trB if and only if Λ
〈B,eA〉
B λ〈B,eA〉 = (ΛBA)Tλ〈B,eA〉 = λB.

Now suppose the inclusion A ⊆ B is connected, so that the inclusion B ⊆ 〈B, eA〉 is also
connected. We still assume that trB |A = trA so ΛBAλ

B = λA.
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Proposition 3.2.21 ([Jon83, Thm. 3.3.2]). The following are equivalent for d > 0:

• (Markov property) tr〈B,eA〉(xeA) = d−2 trB(x) for all x ∈ B, and

• (Frobenius-Perron property) λ〈B,eA〉 = d−2λA

Thus by Exercise 3.1.48, the unique Frobenius-Perron eigenvalue d gives the unique λ〈B,eA〉 satis-
fying the above conditions.

Proof. Recall the minimal central projections of 〈B, eA〉 are given by JpiJ , i = 1, . . . , k. We claim
that if ri is a minimal projection in piA, then eAri is a minimal projection in JpiJ〈B, eA〉. Indeed,
rieA is easily seen to be a projection which commutes with JpiJ , and we calculate for all x ∈ B,

rieAJpiJ(xΩ) = rieAxpiΩ = riE(xpi)Ω = riE(x)piΩ = riE(x)Ω = rieA(xΩ).

To see minimality of rieA, we calculate for x, y ∈ B that

(rieA)x(rieA) = riE(x)rieA ∈ CrieA and (rieA)xeAy(rieA) = riE(x)e(y)rieA ∈ CrieA

by minimality of ri ∈ A.
Suppose tr〈B,eA〉 satisfies the Markov property. Then for each 1 ≤ i ≤ k,

λ
〈B,eA〉
i = tr〈B,eA〉(rieA) = d−2 trA(ri) = d−2λAi

where ri ≤ pi ∈ A is a minimal projection. Hence λ〈B,eA〉 = d−2λA.
Conversely, suppose λ〈B,eA〉 = d−2λA. Then the Markov property tr〈B,eA〉(aeA) = d−2 trA(a)

folds for every minimal projection in A, and thus for every element of A. Then for all x ∈ B, we
have

tr〈B,eA〉(xeA) = tr〈B,eA〉(eAxeA) =
(Ex. 3.2.9)

tr〈B,eA〉(E(x)eA) = d−2 trA(E(x)) = d−2 trB(x).

The last equality holds since E is the unique trace-preserving conditional expectation.

3.3 Markov towers

In this section, we study a tower of finite dimensional tracial von Neumann algebras called a Markov
tower. The definition of a Markov tower can obtained from the definition of Popa’s λ-sequences of
commuting squares from [Pop95] by forgetting one of the towers, analogous to the way one defines
a module for an algebraic object by replacing one argument of the algebraic operation with an
element from the module.

3.3.1 Markov towers and their elementary properties

Definition 3.3.1. A Markov tower M• = (Mn, trn, en+1)n≥0 consists of a sequence (Mn, trn)n≥0

of finite dimensional von Neumann algebras, such that Mn is unitally included in Mn+1, each Mn

has a faithful normal tracial states such that trn+1 |Mn = trn for all n ≥ 0, and there is a sequence
of Jones projections en ∈Mn+1 for all n ≥ 1, such that:

(M1) The projections (en) satisfy the Temperley-Lieb-Jones relations (J1) – (J3) for a fixed constant
d > 0 called the modulus of the Markov tower.
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(M2) For all x ∈ Mn, enxen = En(x)en, where En : Mn → Mn−1 is the canonical faithful trace-
preserving conditional expectation from Exercise 3.2.6.

(M3) For all n ≥ 1, En+1(en) = d−2.

(M4) (pull down) For all n ≥ 1, Mn+1en = Mnen.

We call a Markov tower connected if dim(M0) = 1.

Remark 3.3.2. One should think of the preceding definition as obtained from Popa’s definition of
λ-sequence [Pop95] and removing one of the two sequences of algebras, together with the commuting
square condition. Compare the existence of Jones projections, (M1), and (M2) with (1.3.2), and
(M3) and (M4) with (1.3.3’) from [Pop95] respectively.

Remark 3.3.3. Observe that MnenMn is a 2-sided ideal in Mn+1 for all n ≥ 1 if and only if
the pull down condition holds. Indeed, if the pull down condition holds, then Mn+1MnenMn ⊆
Mn+1enMn = MnenMn; the same argument holds on the right by first taking adjoints. Conversely,
if MnenMn is a 2-sided ideal, then Mn+1en = (Mn+1en)en ⊆ (MnenMn)en = Mnen.

Exercise 3.3.4. Prove that a Markov tower satisfies the following elementary properties for n ≥ 1.

(EP1) The map Mn 3 y 7→ yen ∈Mn+1 is injective.

(EP2) For all x ∈ Mn+1, d2En+1(xen) is the unique element y ∈ Mn such that xen = yen [PP86,
Lem. 1.2].

(EP3) The traces trn+1 satisfy the following Markov property with respect to Mn and en: for all
x ∈Mn, trn+1(xen) = d−2 trn(x).

(EP4) enMn+1en = Mn−1en.

(EP5) Xn+1 := MnenMn is a 2-sided ideal of Mn+1, and thus Mn+1 splits as a direct sum of von
Neumann algebras Xn+1 ⊕ Yn+1. (In [GdlHJ89, Thm. 4.1.4 and Thm. 4.6.3], Yn+1 is the
so-called ‘new stuff’.) By convention, we define Y0 = M0 and Y1 = M1, so that X0 = (0) and
X1 = (0).

(EP6) The map aenb 7→ apnb gives a ∗-isomorphism from Xn+1 = MnenMn to 〈Mn, pn〉 = MnpnMn,
the Jones basic construction of Mn−1 ⊆Mn acting on L2(Mn, trn).

(EP7) Under the isomorphism Xn+1
∼= MnpnMn, the canonical non-normalized trace Trn+1 on the

Jones basic construction algebra MnpnMn satisfying Trn+1(apnb) = trn(ab) for a, b ∈ Mn

equals d2 trn+1 |Xn+1 .

(EP8) If y ∈ Yn+1 and x ∈ Xn, then yx = 0 in Mn+1. Hence En+1(Yn+1) ⊆ Yn. (“The new stuff
comes only from the old new stuff” [GdlHJ89].)

(EP9) If Yn = (0), then Yk = (0) for all k ≥ n.

Remark 3.3.5. The foregoing observations all hold in the case where the Mn are arbitrary tracial
von Neumann algebras. In this section, we restrict our attention to the finite dimensional case to
obtain a principal graph for a Markov tower.
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Notice that by (EP6), the Bratteli diagram for the inclusion Mn ⊂ Mn+1 consists of the
reflection of the Bratteli diagram for the inclusion Mn−1 ⊂ Mn, together with possibly some new
edges and vertices corresponding to simple summands of Yn+1. By (EP8), the new vertices at level
n+ 1 only connect to the vertices that were new at level n. This leads to the following definition.

Definition 3.3.6. The principal graph of the Markov tower M• consists of the new vertices at
every level n of the Bratteli diagram, together with all the edges connecting them. A Markov tower
is said to have finite depth if the principal graph is finite.

It follows that a Markov tower has finite depth if and only if there is n ∈ N such that Yn = (0),
as in (EP9). Let M• be a Markov tower with finite depth, and take the minimal integer n ∈ N such
that Yn = (0). Notice that for k < n, the Bratteli diagram of Mk ⊆ Mk+1 contains the reflection
of the Bratteli diagram of Mk−1 ⊆Mk, along with additional vertices and edges which are part of
the principal graph. At the base, all of the Bratteli diagram for M0 ⊆ M1 is part of the principal
graph. We can therefore ‘unravel’ the Bratteli diagram for Mn ⊆ Mn+1 to obtain the principal
graph for the Markov tower M•.

Exercise 3.3.7. Show that if a Markov tower M• has finite depth and n ∈ N is such that Yn = (0),
then for k ≥ n, there is a canonical graph isomorphism between the principal graph of M• and the
Bratteli diagram for Mk ⊆Mk+1.

Definition 3.3.8. The principal graph Γ of a Markov tower M• has a quantum dimension function
dim : V (Γ)→ R>0 given as follows. Let v ∈ V (Γ), and let p ∈Mk be a minimal projection with k
minimal corresponding to the vertex v. We define dim(v) := dk trk(p), and we note this dimension
is independent of the choice of p ∈Mk representing v. Moreover, the quantum dimension function
dim satisfies the Frobenius-Perron property

d · dim(v) =
∑
w∼v

dim(w) (3.3)

where we write w ∼ v to mean w is connected to v, and the above sum is taken with multiplicity.
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Chapter 4

Jones’ modulus rigidity theorem

Recall that the TL ∗-algebras TLn(d) had distinguished traces Trn. Using these traces, the adjoint,
and the multiplication, we get sesquilinear forms on the TLn(d) defined by

〈x, y〉n := Trn(y∗x).

In this section, we prove the following surprising result from [Jon83], which was expressed in the
language of index for subfactors.

Theorem 4.0.1 (Jones’ modulus rigidity). The sesquilinear forms 〈 · , · 〉n are positive semi-definite
for all n ≥ 0 if and only if

d ∈ {2 cos(π/k)|k ≥ 3}︸ ︷︷ ︸
semi−definite

∪ [2,∞)︸ ︷︷ ︸
definite

. (4.1)

We will prove this result in three steps. First, we prove the forward direction which proves the
modulus restriction in Theorem 4.1.11. Second, we will start at the special moduli and show the
forms are positive semi-definite in Theorem 4.2.2. Finally, we will sketch the proof that the forms
are positive definite in the generic range in Theorem 4.3.3.

Exercises and sections marked (∗) below are more advanced and can be skipped on first read
through. Exercises and sections marked (∗∗) are even more advanced, and they are very difficult
relative to the exposition!

4.1 The modulus restriction

In this section, we will show that if the sesquilinear forms are all positive definite, then d satisfies
(4.1).

4.1.1 Quantum Integers

Here is some cursory information on quantum integers. Since we will mostly present a unitary
viewpoint in the course, of great importance is the adjoint, which means we will work only with
particular loop parameters for TL.

Definition 4.1.1. Consider Q :=
{
eiθ
∣∣θ ∈ (0, π2 )

}
∪ [1,∞)

· · ·
1
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For q ∈ Q ∪ −Q, we define quantum n by

[n] = [n]q :=
qn − q−n

q − q−1
.

Exercise 4.1.2. Prove that q 7→ [2] = q+ q−1 is a bijective map Q∪−Q→ R \{0}. Hence writing
d := [2] = q + q−1 uniquely determines q ∈ Q ∪ −Q.

Exercise 4.1.3. Prove that the quantum integers satisfy the following relations:

• [1] = 1

• [2][1] = [2] = q + q−1

• [2][n] = [n+ 1] + [n− 1].

Exercise 4.1.4. Show that the map q 7→ −q fixes all even quantum integers [2n] and negates all
odd quantum integers [2n+ 1].

Exercise 4.1.5. Show that:

• If q = eiθ, then [2] = q + q−1 = 2 cos(θ).

• [n] = 0 if and only if q is a (2n)-th root of unity.

The following lemma will be very important for the modulus restriction in Theorem 4.1.11.

Lemma 4.1.6. Suppose q = eiθ for some θ ∈ (0, π2 ), where θ 6= 2π
2n for some n ≥ 3, i.e., q is not a

primitive (2n)-th root of unity for some n ≥ 3. Let k ≥ 2 be minimal such that θ > 2π
2(k+1) . Then

[1], [2] . . . , [k] > 0, but [k + 1] < 0.

Proof. Note that since q = eiθ,

[j] =
eijθ − e−ijθ

eiθ − e−iθ
=

sin(jθ)

sin(θ)
.

Since sin(θ) > 0, we only care about sin(jθ). Since π
k > θ > π

k+1 , we have that sin(1θ), . . . , sin(kθ) >
0, but sin((k + 1)θ) < 0.

4.1.2 The Jones-Wenzl projections

The following idempotents were first defined in [Jon83]. The recurrence relation first appeared in
[Wen87].

Definition 4.1.7. Let f (0) ∈ TL0(d) be the empty diagram. Let f (1) ∈ TL1(d) be the strand, i.e.,

f (1) = . If [n+ 1] 6= 0, we inductively define the (n+ 1)-th Jones-Wenzl projection

f (n+1) = in(f (n))− [n]

[n+ 1]
in(f (n))Enin(f (n)) =

· · ·

· · ·

f (n) − [n]

[n+ 1]

· · ·

· · ·

· · ·

f (n)

f (n)

.
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Proposition 4.1.8. Suppose n ≥ 0 and [1], · · · , [n + 1] 6= 0 so that f (0), f (1), . . . , f (n+1) are well-
defined. Then f (n+1) satisfies the following properties:

(JW1) f (n+1) is an orthogonal projection, i.e., f (n+1) = (f (n+1))∗ = (f (n+1))2,

(JW2) En+1(f (n+1)) =

· · ·

· · ·

f (n+1) =
[n+ 2]

[n+ 1]
f (n),

(JW3) (in(f (n)))f (n+1) =

· · ·

· · ·

· · ·

f (n)

f (n+1)

= f (n+1)(in(f (n)) =

· · ·

· · ·

· · ·

f (n+1)

f (n)

= f (n+1).

Proof. We proceed by induction on n. The base case n = 0 is straightforward as f (1) is the strand
and f (0) is the empty diagram. Suppose the result holds for f (n).

(JW1): That (f (n+1))∗ = f (n+1) follows from the fact that (f (n))∗ = f (n) by (JW1) for f (n), which

holds by the induction hypothesis. We now calculate using (JW2) and (JW3) for f (n), which hold
by the induction hypothesis, that f (n+1) = (f (n+1))2.

(JW2): By (JW1) for f (n), which holds by the induction hypothesis, we see that

En+1(f (n+1)) =

· · ·

· · ·

f (n+1) =

(
[2]− [n]

[n+ 1]

)
f (n) =

[n+ 2]

[n+ 1]
f (n).

(JW3): By the definition of f (n+1), this property follows directly from (f (n))2 = f (n) by (JW1) for

f (n), which holds by the induction hypothesis.

Exercise 4.1.9. Deduce that when f (0), . . . , f (n) are well-defined, f (n) is rectangularly uncappable,
that is, capping any two strings on the top or bottom of f (n) gives zero, e.g.,

f (4) = f (4) = f (4) = f (4) = f (4) = f (4) = 0.

Exercise 4.1.10. Deduce that when f (0), . . . , f (n) are well-defined, trn(f (n)) = [n+ 1].

4.1.3 Proof of the modulus restriction

Theorem 4.1.11 (Jones’ modulus restriction). Suppose 〈·, ·〉j is positive semidefinite for all j ≥ 0.
Then either q ≥ 1, or q is a primitive (2n)-th root of unity for some n ≥ 3. Hence

d = [2] = q + q−1 ∈
{

2 cos
(π
n

)∣∣∣n ≥ 3
}
∪ [2,∞).

Proof. If q is not of this form, then let k be as in Lemma 4.1.6. We see that since [1], [2], . . . , [k] 6= 0,
f (k) is well-defined. However,

〈f (k), f (k)〉k = Trk(f
(k)) =

Ex. 4.1.10
[k + 1] < 0,

which is a contradiction.
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4.2 Representations of TL algebras via towers of algebras

Starting with a connected inclusion A0 ⊆ A1 of multimatrix algebras with dimension row vectors
n0, n1, trace column vectors λ0, λ1, and inclusion matrix Λ := ΛA1

A0
satisfying

n0λ0 = 1 = n1λ1 n0Λ = n1 Λλ1 = λ0,

we saw that the Jones basic construction A2 := 〈A1, e1〉 is another multimatrix algebra with
dimension row vector n2, and the inclusion A1 ⊂ A2 has inclusion matrix ΛT . If moreover λ0 and
λ1 are the unique trace column vectors such that(

0 Λ
ΛT 0

)(
λ0

dλ1

)
= d

(
λ0

dλ1

)
where d > 0 is the unique Frobenius-Perrion eigenvalue, we get a trace column vector λ2 := d−2λ0

satisfying
n1λ1 = 1 = n2λ2 n1ΛT = n2 ΛTλ2 = λ1.

We may take another Jones basic construction to obtain the multimatrix algebra A3 := 〈A2, e2〉
with dimension row vector n3, and the inclusion A2 ⊂ A3 has inclusion matrix Λ. We may again
take the Frobenius-Perron trace column vector λ3 := d−2λ1.

Iterating this process, we obtain the Jones tower of multimatrix algebras (An)n≥0, each equipped
with a faithful tracial state trn such that trn |An−1 = trn−1, and An+1 = 〈An, en〉 = JnA

′
n−1Jn ⊂

B(L2(An, trn)) is the Jones basic construction of An−1 ⊂ An.

A0 ⊂ A1
e1⊂ A2

e2⊂ A3
e3⊂ A4

e4⊂ · · ·

Observe that since trn corresponds to the Frobenius-Perron trace vector, for every n ∈ N we have

trn+1(xen) = d−2 trn(x)⇐⇒ En+1(en) = d−2 (4.2)

where En+1 : An+1 → An is the unique trace preserving conditional expectation by Exercise 3.2.3.

Theorem 4.2.1. The projections e1, . . . , en−1 satisfy the Temperley-Lieb-Jones relations (J1) –
(J3).

Proof. Clearly (J1) holds as all the ei are defined to be orthogonal projections. Suppose 2 ≤ i+1 <

j. Then ei ∈ Ai+1 ( Aj ⊂ Aj+1 3 ej , and ejxej = E
Aj

Aj−1
(x)ej for all x ∈ Aj . In particular, ej

commutes with Ai+1 3 ei by Exercise 3.2.7, and (J2) holds.
For n ≥ 1, we have en+1enen+1 = En+1(en)en+1 = d−2en by (4.2) as en+1 implements En+1 by

Exercise 3.2.9. We calculate for all x, y ∈ An,

enen+1en(xΩ) = enen+1(enxΩ) = enEn+1(enx)Ω = enEn+1(en)xΩ = d2en(xΩ) and

enen+1en(xenyΩ) = enen+1(En(x)enyΩ) = enEn+1(En(x)eny)Ω

= enEn(x)En+1(en)yΩ = d−2enEn(x)yΩ = d−2en(xenyΩ).

Since An+1 = An+AnenAn by Exercise 3.2.11, we conclude enen+1en = d−2en, and (J3) holds.

By Theorem 4.2.1, for every n ∈ N, we have a unital ∗-algebra homomorphism Ψn : TLn(d)→
An ⊂ B(L2(An, trn)). Moreover, these homomorphisms are easily seen to commute with the inclu-
sions TLn(d) ↪→ TLn+1(d) and An ↪→ An+1.

TL0(d) TL1(d) TL2(d) TL3(d) TL4(d) · · ·

A0 A1 A2 A3 A4 · · ·

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4
(4.3)
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Theorem 4.2.2 (Jones’ TL positivity theorem, discrete range). Suppose A0 ⊂ A1 is an inclusion
of multimatrix algebras with Bratteli diagram

Λn :=
1 2 n− 1 n· · · (4.4)

where n ≥ 2, so the Frobenius-Perron eigenvalue of Λ is d = 2 cos(π/(n + 1)) by Exercise 3.1.50.
Let (An, trn)n≥0 be the Jones tower corresponding to the Frobenius-Perron traces on A0 ⊂ A1. For
all n ≥ 0, trAn ◦Ψn = d−n Trn, where Trn was defined in (2.3) on TLn(d). Hence 〈 · , · 〉n is positive
on TLn(d) for all n ≥ 0.

Proof. We proceed by induction on n. Note that TL0 = C1 ↪→ C1A0 , and both traces are normal-
ized, so they must agree. Suppose the result holds for n ≥ 0. To avoid confusion, we will work
with the diagrammatic version of TLn+1(d) with Kauffman’s diagrammatic generators E1, . . . , En
from Exercise 2.1.6, and we reserve e1, . . . , en for the Jones projections in An+1. Fix a word
w ∈ TLn+1(d) in E1, . . . , En. By Exercise 2.1.2, there are x, y ∈ TLn(d) such that w = xEny. We
now calculate that

(trn+1 ◦Ψn+1)(w) = trn+1(Ψn(x)Ψn+1(En)Ψn(y)) = d trn+1(Ψn(x)enΨn(y))

= d trn+1(Ψn(y)Ψn(x)en) =
(4.2)

d−1 trn+1(Ψn(y)Ψn(x))

= d−1(trn ◦Ψn)(yx) =
(IH)

d−n−1 Trn(yx) =
(Ex. 2.1.12)

d−n−1 Trn+1(yxEn)

= d−n−1 Trn+1(xEny) = d−n−1 Trn+1(w),

where the (IH) denotes where we used the induction hypothesis. Hence trAn+1 ◦Ψn+1 = d−n−1 Trn+1

by linearity. We are finished.

[[kernel of the form?]]

4.3 Subfactors and the generic range (∗∗)
In this section, we sketch the proof of the TL positivity theorem for the generic theorem using II1

factors. We provide as parsimonious an exposition as possible.

Definition 4.3.1. A II1 factor is an infinite dimensional von Neumann algebra M with a nor-
mal faithful tracial state trM such that Z(M) = M ′ ∩ M = C1M . A II1 subfactor is a unital
inclusion N ⊂ M of II1 factors. The index [M : N ] of N ⊂ M is the von Neumann dimension
dimN−(L2(M, trM )).

Here are some of the most useful properties of II1 (sub)factors:

• A II1 factor has a unique trace.

• They have no minimal projections.

• Two projections p, q ∈ M are (Murray-von Neumann) equivalent1 if and only if they have
the same trace.

• The trace of a projection can take any value in [0, 1], and all values are obtained.

1Projections p, q ∈M are equivalent if there is a v ∈M such that vv∗ = p and v∗v = q.
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• Given a finite index subfactor N ⊆ M , the unique trace on the basic construction 〈M, eN 〉
satisfies the Markov property tr〈M,eN 〉(xeN ) = d−2 trM (x) for all x ∈M where d2 = [M : N ].

• Iterating the Jones basic construction for a finite index II1 subfactor M0 ⊂M1 gives a Jones
tower of II1 factors (Mn, trn) with Jones projections en ∈Mn+1 which satisfy the Temperley-
Lieb-Jones relations (J1) – (J3).

Definition 4.3.2. The hyperfinite II1 factor is R := (C[S∞])′′ ⊂ B(`2S∞) where S∞ is the group
of finite permutations of N. The II1 factor R has the property that for every projection p ∈ R\{0},
there is an isomorphism of von Neumann algebras pRp ∼= R.

Recall that the map t 7→ t−1 + (1 − t)−1 gives a homeomorphism [1/2, 1) → [2,∞). Thus
given d ≥ 2, there is a projection p ∈ R such that tr(p) = t and d = t−1 + (1 − t)−1. Picking N
isomorphism θ : pRp→ (1− p)R(1− p), the subfactor

M0 :=∼=
{(

x 0
0 θ(x)

)∣∣∣∣x ∈ R} ⊂ R =: M1

has index d2 ≥ 4. Taking the Jones tower (Mn, trn), we get injective unital ∗-homomorphisms
Ψn : TLn(d)→Mn as in (4.3) for all n ≥ 0. [[explain why it’s injective?]]

Repeating the proof of Theorem 4.2.2 mutatis mutandis proves the following theorem.

Theorem 4.3.3 (Jones’ TL positivity theorem, generic range). Suppose d ≥ 2, and let M0 ⊆ M1

be a (hyperfinite) II1 subfactor of index d2. For all n ≥ 0, trAn ◦Ψn = d−n Trn, where Trn was
defined in (2.3) for TLn(d). Hence 〈 · , · 〉n is positive definite on TLn(d) for all n ≥ 0.

4.4 Temperley-Lieb forms a Markov tower

Exercise 4.4.1. Prove that the Temperley-Lieb algebras TL†n(d) where d is as in (4.1) with the

usual Jones projections and Markov traces form a Markov tower TL†•(d).

Exercise 4.4.2. Show that if q = exp(2πi/(2(n+ 1))) for n ≥ 2 so d = 2 cos(π/(n+ 1)), then the

principal graph TL†•(d) is Λn from (4.4).
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Chapter 5

Linear categories

Recall that a category C has a collection of objects a, b, c, . . . , and between any two objects, a
collection of morphisms C(a→ b). Given three objects a, b, c ∈ C and two morphisms f ∈ C(a→ b)
and g ∈ C(b→ c), there is a composite morphism g ◦ f ∈ C(a→ c). Composition is required to be
associative, and for every a ∈ C, there is a distinguished identity morphism ida ∈ C(a → a). The
identities are required to satisfy f ◦ ida = f = idb ◦f for all f ∈ C(a→ b).

In this section, our categories are linear, i.e., for a, b ∈ C, C(a→ b) is a complex vector space.

5.1 The TL category

Definition 5.1.1. The TL category T L(d) has objects the non-negative integers n ≥ 0. The
morphism space T L(d)(m → n) is the C vector space whose standard basis is the set of string
diagrams (up to isotopy) on a rectangle with m boundary points on the bottom and n boundary
points on the top. For example, the basis for T L(d)(4→ 2) is given by{

, , , ,

}
.

Composition is defined similarly to the multiplication in TLK(d); we stack boxes, smooth strings,
and remove closed loops for multiplicative factors of d as in (2.1). For all m,n ≥ 0, there is an
antilinear map † : T L(d)(m → n) → T L(d)(n → m) given by the antilinear extension of vertical
reflection about a horizontal line as in (2.2).

Notice that we have a canonical unital ∗-algebra isomorphism T L(d)(n→ n) ∼= TLn(d).

Exercise 5.1.2. Show that

dim(T L(d)(m→ n)) =

{
0 if m 6≡ n mod 2

Cm+n
2

if m ≡ n mod 2

where Ck = 1
k+1

(
2k
k

)
is the k-th Catalan number.

Definition 5.1.3. For x, y ∈ T L(d)(m → n), we define 〈x, y〉m→n := Trm(y† ◦ x), as y† ◦ x ∈
T L(d)(m→ m) ∼= TLm(d). The set of negligibles of the form 〈 · , · 〉m→n is given by

Nm→n := {x ∈ T L(d)(m→ n)|〈x, x〉m→n = 0} .
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Exercise 5.1.4. Show that for all x ∈ T L(d)(m→ n), y ∈ T L(d)(n→ p), and z ∈ T L(d)(m→ p),
we have

〈y, z ◦ x†〉n→p = 〈y ◦ x, z〉m→p = 〈x, y† ◦ z〉m→n.
Thus the forms 〈 · , · 〉m→n equip the category T L(d) with a 2-Hilbert space structure [Bae97].

Exercise 5.1.5. Show that if n = m+2k so m+k = (m+n)/2, then for all x, y ∈ T L(d)(m→ n),
we have

〈x, y〉m→n = Trm+k

 x

y

m+ k

k

k

m

m

 .

Exercise 5.1.6. Prove that 〈 · , · 〉m→n is positive for all m,n ≥ 0 if and only if d is as in (4.1), i.e.,

d ∈ {2 cos(π/k)|k ≥ 3} ∪ [2,∞).

For the remainder of this section, we assume that d is as in (4.1) so that 〈 · , · 〉m→n is positive
for all m,n ≥ 0 by Exercise 5.1.6.

Exercise 5.1.7. Show that for any positive sesquilinear form 〈 · , · 〉 on a vector space V , the
Cauchy-Schwarz inequality holds:

|〈u, v〉| ≤ 〈u, u〉 · 〈v, v〉. (5.1)

Proposition 5.1.8. If x ∈ T L(d)(` → m), y ∈ Nm→n, and z ∈ T L(d)(n → p), then y† ∈ Nn→m
and z ◦ y ◦ x ∈ N`→p.

Proof. First, we calculate

〈y†, y†〉n→m = Trn(y ◦ y†) =
(Ex. 5.1.4)

Trm(y† ◦ y) = 〈y, y〉m→n = 0,

so y† ∈ Nn→m. Next, we calculate that

0 ≤ 〈z ◦ y ◦ x, z ◦ y ◦ x〉`→p =
(Ex. 5.1.4)

〈z† ◦ z ◦ y ◦ x ◦ x†, y〉m→n

≤
(5.1)
〈z† ◦ z ◦ y ◦ x ◦ x†, z† ◦ z ◦ y ◦ x ◦ x†〉m→n · 〈y, y〉m→n = 0.

Hence z ◦ y ◦ x ∈ N`→p.

Definition 5.1.9. We define TL†n(d) := TLn(d)/Nn→n. Notice that trn := d−n Trn is a faithful

tracial state on TL†n(d), which is a finite dimensional C∗/W∗/multimatrix algebra by Exercise
3.1.35.

Exercise 5.1.10 (∗). Compute how TL†n(d) decomposes as a sum of multimatrix algebras. Then

compute the Bratteli diagram for the tower of algebras (TL†n(d))n≥0.

Definition 5.1.11. Let T L†(d) be the category whose objects are the non-negative integers n ≥ 0
and whose morphism spaces T L†(d)(m → n) are the spaces T L(d)(m → n)/Nm→n. We define
composition as follows. For x + Nm→n ∈ T L†(d)(m → n) and y + Nn→p ∈ T L†(d)(n → p), we
define (y + Nn→p) ◦ (x + Nm→n) := y ◦ x + Nm→p. For x + Nm→n ∈ T L†(d)(m → n), we define
(x+Nm→n)† := x† +Nn→m ∈ T L†(d)(n→ m).

Exercise 5.1.12. Use Proposition 5.1.8 to show that T L†(d) is a well-defined linear †-category.

36



5.2 C∗ categories

Definition 5.2.1. An involution † on a (linear) category C is a conjugate-linear map † : C(a →
b)→ C(b→ a) for all a, b ∈ C such that

• For all x ∈ C(a→ b) and y ∈ C(b→ c), (y ◦ x)† = x† ◦ y†, and

• For all x ∈ C(a→ b), x†† = x.

The pair (C, †) is called a (linear) dagger category or a †-category.

Exercise 5.2.2. Prove that an involution † on a linear category C satisfies id†a = ida for all a ∈ C.

Definition 5.2.3. A dagger category (C, †) is called a C∗ category if

(C*) For all a, b ∈ C, the linking algebra [GLR85]

L(a, b) :=

(
C(a→ a) C(b→ a)
C(a→ b) C(b→ b)

)
is a C∗ algebra where multiplication is given by(

w1 x1

y1 z1

)
·
(
w2 x2

y2 z2

)
:=

(
w1 ◦ w2 + x1 ◦ y2 w1 ◦ x2 + x1 ◦ z2

y1 ◦ w2 + z1 ◦ y2 y1 ◦ x2 + z1 ◦ z2

)
and adjoint is the †-tranpose.1

Exercise 5.2.4. Show that if (C, †) is a C∗ category, then for any c1, . . . , cn ∈ C, the linking algebra

L(c1, . . . , cn) :=

n⊕
i=1

C(ci → cj)

with the obvious †-algebra structure is a unital C∗ algebra.

Proposition 5.2.5. When (C, †) is a dagger category with finite dimensional hom spaces, then
(C, †) is C∗ if and only if the following two conditions hold:

(C*1) For all a ∈ C, C(a→ a) is a unital C∗ algebra with involution †.

(C*2) For all x ∈ C(a→ b), there is a y ∈ C(a→ a) such that x† ◦ x = y† ◦ y.

Proof. It is clear that (C*) implies both (C*1) and (C*2). Suppose (C*1) and (C*2) hold. Since
we assumed the endomorphism spaces are finite dimensional, by (C*1) and Exercise 3.1.21, there
are faithful tracial states tra and trb on C(a→ a) and C(a→ b) respectively. We claim that

tra,b :=
1

2
tra +

1

2
trb

is a faithful tracial state on the linking algebra L(a, b). We calculate

tra,b

((
w† y†

x† z†

)
·
(
w x
y z

))
= Tra,b

((
w† ◦ w + y† ◦ y w† ◦ x+ y† ◦ z
x† ◦ w + z† ◦ y x† ◦ x+ z† ◦ z

))
= tra(w

† ◦ w) + tra(y
† ◦ y) + trb(x

† ◦ x) + trb(z
† ◦ z) (5.2)

1Being a C∗ algebra is a property of a unital complex ∗-algebra, and not extra structure. When the hom spaces
of C are finite dimensional, this is exactly the condition that L(a, b) is a multimatrix algebra under its involution by
Exercises 3.1.21 and 3.1.26.
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Now for x ∈ C(b → a) and y ∈ C(a → b), there are u ∈ C(b → b) and v ∈ C(a → a) such that
x† ◦ x = u† ◦ u and y† ◦ y = v† ◦ v by (C*2). Hence (5.2) is equal to

tra(w
† ◦ w) + tra(v

† ◦ v) + trb(u
† ◦ u) + trb(z

† ◦ z) ≥ 0,

and this quantity equals zero if and only if w = v = 0 and u = z = 0. Notice that u = 0 if and
only if x = 0 and v = 0 if and only if y = 0. Hence tra,b is a faithful tracial state, and L(a, b) is a
C∗ algebra by Exercise 3.1.21.

Proposition 5.2.6. When d is as in (4.1), the †-category T L†(d) is C∗.

Proof. Note that d−n Trn is a faithful tracial state on the finite dimensional unital †-algebra
T L†(d)(n → n), which is a C∗ algebra by Exercise 3.1.21; hence (C*1) holds. Suppose now
that x + Nm→n ∈ T L†(d)(m → n), where we may assume x 6= 0 so m ≡ n mod 2. Suppose
z +Nm→m ∈ T L†(d)(m→ m) is arbitrary. We calculate the GNS-inner product using the faithful

tracial state d−m Trm on T L†(d)(m→ m) = TL†m:

〈x† ◦ x ◦ z +Nm→m, z +Nm→m〉 = 〈x† ◦ x ◦ z, z〉m→m =
Ex. 5.1.4

〈x ◦ z, x ◦ z〉m→n ≥ 0.

We conclude that x† ◦ x + Nm→m is a positive operator in B(T L†(d)(m → m), d−m Trm), and is
thus of the form y† ◦ y + Nm→m for some y ∈ T Lm→m by the existence of a square root for a
positive operator in a C∗ algebra together with (C*1).

Remark 5.2.7. In the event that m = n+ 2k for k ≥ 0, notice that we can add k cups to the top
of x ∈ T L(d)(m→ n) to obtain a morphism in T L(d)(m→ m). Thus setting

y := d−k x

· · ·
2k︷ ︸︸ ︷

n

m = n+ 2k

we have y† ◦ y = x† ◦ x.

5.3 Functors and natural transformations

Just as linear maps are the functions between vector spaces which preserve vector space structure,
functors are maps between categories which preserve categorical structure.

Definition 5.3.1. Suppose C and D are two categories. A functora F : C → D consists of

• an assignment of an object F (c) ∈ D to each object c ∈ C, and

• an assignment of a morphism F (f) ∈ D(F (a) → F (b)) for each f ∈ C(a → b) such that
F (ida) = idF (a) for all a ∈ C and F (g ◦ f) = F (g) ◦F (f) for composable morphisms f, g in C.

Definition 5.3.2. If C and D are linear categories, a functor F : C → D is called linear if for all
a, b ∈ C, the map C(a→ b)→ D(F (a)→ F (b)) given by f 7→ F (f) is a linear transformation.

Exercise 5.3.3. Suppose F : C → D and G : D → E are (linear) functors. Define the composite
(linear) functor G ◦ F : C → E . Then show that composition of functors is associative.

38



Remark 5.3.4. In Exercise 5.3.3, we denote composition of functors as composition of functions,
which is read right to left. We will see later in Exercises 5.3.6 and 5.3.7 that it is more advantageous
to denote the composite as F ⊗G : C → E reading left to right.

Definition 5.3.5. Suppose F,G : C → D are two functors. A natural transformation θ : F ⇒ G
consists of a morphism θc ∈ D(F (c)→ G(c)) for each c ∈ C such that for every a, b ∈ C and every
f ∈ C(a→ b), the following diagram commutes:

F (a) F (b)

G(a) G(b).

F (f)

θa θb

G(f)

(5.3)

Exercise 5.3.6. Suppose F,G,H : C → D are functors and θ : F ⇒ G and φ : G⇒ H are natural
transformations. Show that φ ◦ θ : F ⇒ H given by (φ ◦ θ)c := φc ◦ θc gives a well-defined natural
transformation. We call φ ◦ θ the vertical composite of φ and θ.

Exercise 5.3.7. Suppose F,H : C → D and G,K : D → E are functors and θ : F ⇒ H and
φ : G⇒ K are natural transformations. Show that θ ⊗ φ : F ⊗G⇒ H ⊗K given by

(θ ⊗ φ)c := φH(c) ◦G(θc) = K(θc) ◦ φF (c)

gives a well-defined natural transformation. We call θ ◦ φ the horizontal composite of θ and φ.

Exercise 5.3.8. Show that (φ1 ⊗ φ2) ◦ (θ1 ⊗ θ2) = (φ1 ◦ θ1)⊗ (φ2 ◦ θ2) whenever these expressions
type-check.

Exercise 5.3.9. Show that categories, functors, and natural transformations forms a 2-category.

5.3.1 Adjoint functors

[[todo]]

5.3.2 Linear †-functors and bounded natural transformations for C∗ categories

[[todo]]

5.4 Cauchy completion

In this section, we discuss the notions of direct sums, idempotent completion, and Cauchy comple-
tion for linear categories. We also discuss the notions of finite orthogonal direct sums, projection
completion, and C∗ Cauchy completion for C∗ categories.

5.4.1 Universal properties of coproduct, product, biproduct, and direct sum

Suppose C is a linear category.

Definition 5.4.1. Given a collection of objects {ci}i∈I , an object
∐
i∈I ci together with morphisms

ιj : cj →
∐
i∈I ci for all j ∈ I is called the coproduct of {ci}i∈I if for any d ∈ C and morphisms

39



ji : ci → d for i ∈ I, there is a unique morphism f :
∐
i∈I ci → d such that the following diagram

commutes for all i ∈ I:

ci
∐
i∈I ci

d

ιi

ji ∃!f (5.4)

Exercise 5.4.2. Why do we call (
∐
i∈I ci, (ιj)j∈I) the coproduct of {ci}i∈I?

Exercise 5.4.3. Reverse the arrows in Definition 5.4.1 to give the definition of what it means for
(
∏
i∈I ci, (πj)j∈I) to be the product of {ci}i∈I . Why do we call it the product?

Definition 5.4.4. Given a finite collection of objects c1, . . . , cn, an object
⊕n

i=1 ci with morphisms
ιj : cj →

⊕n
i=1 and πj :

⊕n
i=1 ci → cj is called the direct sum of c1, . . . , cn if

(⊕1) πi ◦ ιj = δi=j idcj for all i, j = 1, . . . , n, and

(⊕2)
∑n

j=1 ιj ◦ πj = id⊕n
i=1 ci

.

Exercise 5.4.5. Suppose that (
⊕n

i=1 ci, (ιj)
n
j=1, (πj)

n
j=1) is the direct sum of c1, . . . , cn. Show that

(
⊕n

i=1 ci, (ιj)
n
j=1) is the coproduct of c1, . . . , cn and (

⊕n
i=1 ci, (πj)

n
j=1) is the product of c1, . . . , cn.

Exercise 5.4.6. Given a finite collection of objects c1, . . . , cn, an object �ni=1ci with morphisms
ιj : cj → �ni=1ci and πj : �ni=1ci → cj is called the biproduct of c1, . . . , cn if (�ni=1ci, (ιj)

n
j=1) is the

coproduct and (�ni=1ci, (πj)
n
j=1) is the product of c1, . . . , cn respectively.

• Let V be a finite dimensional vector space with basis {π1, . . . , πn}, and define ιj : C→ V by
λ 7→ λvj . Fix a basis {π1, . . . , πn} for V ∨ = Hom(V → C). Show that (�ni=1ci, (ιj)

n
j=1, (πj)

n
j=1)

is the biproduct of c1, . . . , cn.

• Show that (�ni=1ci, (ιj)
n
j=1, (πj)

n
j=1) is the direct sum if and only if {π1, . . . , πn} is the dual

basis of {π1, . . . , πn}.

• Show that for every biproduct (�ni=1ci, (ιj)
n
j=1, (πj)

n
j=1), we can find ι′j : cj → �ni=1ci such

that (�ni=1ci, (ι
′
j)
n
j=1, (πj)

n
j=1) is the direct sum.

• Instead of changing the ιj , change the πj to get a direct sum.

Exercise 5.4.7. Suppose that (
⊕n

i=1 ci, (ιj)
n
j=1, (πj)

n
j=1) is the direct sum of c1, . . . , cn. Find a

canonical isomorphism

C

 n⊕
i=1

ci →
n⊕
j=1

cj

 ∼= n⊕
i,j=1

C(ci → cj), (5.5)

where the direct sum on the right hand side is in the category of C vector spaces. The right hand
side carries the obvious matrix-multiplication composition.
Hint: write an element f of the left hand side of (5.5) as

∑n
i,j=1 πj ◦ (ιj ◦ f ◦ πi) ◦ ιi. Notice that

(fij := ιj ◦ f ◦ πi) defines an element of the right hand side of (5.5).

Exercise 5.4.8. Suppose C,D are linear categories and c, a1, . . . , an ∈ C. Use Exercise 5.4.7 to
show that the property c ∼=

⊕n
i=1 ai is preserved by all linear functors F : C → D.

Exercise 5.4.9. Find a linear functor F : C → D such that c ∼=
∐n
i=1 ai, but F(c) �

∐n
i=1F(ai).

What additional condition could you impose on F to make sure that c ∼=
∐n
i=1 ai is preserved by

all linear functors F : C → D?
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Exercise 5.4.10. Repeat Exercise 5.4.9 for products.

Definition 5.4.11. Given a linear category C, the additive envelope of C is the linear category
Add(C) whose objects are formal finite direct sums

⊕n
i=1 ai for a1, . . . , an ∈ C, and whose morphism

sets are given by matrices of operators:

Add(C)

 n⊕
j=1

bj →
m⊕
i=1

ai

 := {(xij)|xij ∈ C(bj → ai)} (5.6)

where composition is given by (xij) ◦ (yjk) := (
∑

j xij ◦ yjk).
Observe that c 7→ (c) for c ∈ C and x 7→ (x) for x ∈ C(a → b) is a fully faithful linear functor

C ↪→ Add(C).

Exercise 5.4.12. Suppose C,D are linear categories, and assume D admits all finite direct sums.
Show that any linear functor F : C → D factors uniquely through Add(C), i.e., there is a unique
linear functor Add(F) : Add(C)→ D such that the following diagram commutes:

Add(C)

C D

∃!Add(F)

F

(5.7)

Exercise 5.4.13. Use Exercise 5.4.12 to show that if C admits all finite direct sums, then C is
equivalent to Add(C).

[[say something about infinite direct sums?]]

5.4.2 Finite orthogonal direct sums in C∗ categories

Let C be a C∗ category. In this section, we restict our attention to finite orthogonal direct sums to
avoid talking about convergence.

Definition 5.4.14. Given {c1, . . . , cn} ⊂ C, an object
⊕n

i=1 ci together with morphisms ιj : cj →⊕
i∈I ci for 1 ≤ j ≤ n is called the orthogonal direct sum of c1, . . . , cn if (

⊕n
i=1 ci, (ιj)

n
j=1, (ι

†
j)
n
j=1)

is the direct sum of c1, . . . , cn, which holds if and only if the following two conditions hold:

(⊥⊕1) ι†j ◦ ιj = idcj for all 1 ≤ j ≤ n , i.e., each ιj is an isometry, and

(⊥⊕2)
∑n

j=1 ιj ◦ ι
†
j = id⊕n

i=1 ci
, i.e., the ιj ◦ ι†j are mutually orthogonal projections in End(

⊕n
i=1 ci)

which sum to id⊕n
i=1 ci

.

Exercise 5.4.15. Suppose C is either a W∗ category or a C∗ category with finite dimensional
morphism spaces. Suppose (

⊕n
i=1 ci, (ιj)

n
j=1, (πj)

n
j=1) is the direct sum of c1, . . . , cn. Find isometries

υj : cj →
⊕n

i=1 ci such that (
⊕n

i=1 ci, (υj)
n
j=1) is the orthogonal direct sum of c1, . . . , cn.

Exercise 5.4.16. Prove that any two orthogonal direct sums of c1, . . . , cn are uniquely unitarily
isomorphic.

Exercise 5.4.17. Suppose that (
⊕n

i=1 ci, (ιj)
n
j=1) is the orthogonal direct sum of c1, . . . , cn. Find

a canonical unital †-isomorphism

C

 n⊕
i=1

ci →
n⊕
j=1

cj

 ∼= n⊕
i,j=1

C(ci → cj). (5.8)
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Exercise 5.4.18. Suppose C,D are C∗ categories and c, a1, . . . , an ∈ C. Show that the property
that c is unitarily isomorphic to

⊕n
i=1 ai is preserved by all †-functors F : C → D.

Definition 5.4.19. Given a C∗ category (C, †), we define Add†(C) to be the dagger category whose
objects are finite orthogonal direct sums, whose morphism spaces and compostion are defined
analogously to (5.6), and with dagger structure (xij)

† := (x†ji). There is an analogous obvious

†-functor C ↪→ Add†(C).

Exercise 5.4.20 (Roberts’ 2 × 2 trick [GLR85]). Show that if (C, †) is a dagger category with
orthogonal direct sums, then (C, †) is a C∗ category if and only if for all a ∈ C, C(a→ a) is a unital
C∗ algebra with involution †.

Exercise 5.4.21. Suppose (C, †) is C∗. Use Exercise 5.2.4 and (5.8) to show that Add†(C) is C∗.

Exercise 5.4.22. Formulate and prove the universal property for Add†(C) analogous to (5.7) for
†-functors from C to a C∗ category D which admits finite orthogonal direct sums.

Exercise 5.4.23. Use Exercise 5.4.22 to show that if C admits finite orthogonal direct sums, then
C is dagger equivalent to Add†(C).

Exercise 5.4.24 (∗∗). Define the notion of an infinite orthogonal direct sum in a W∗ category.

5.4.3 Idempotent and Cauchy completions

Let C be a linear category.

Definition 5.4.25. An idempotent in C is a pair (c, e) where c ∈ C and e ∈ C(c → c) such that
e ◦ e = e. A splitting for an idempotent (c, e) is an triple (a, r, s) where a ∈ C, r ∈ C(c→ a) called
a retract, and s ∈ C(a → c) such that s ◦ r = e and r ◦ s = ida. A linear category C is called
idempotent complete if every idempotent admits a splitting.

Exercise 5.4.26. Suppose (a, ra, sa), (b, rb, sb) are two splittings of (c, e). Show that there is a
unique isomorphism f : a→ b which is compatible with (ra, sa) and (rb, sb).

Exercise 5.4.27. Suppose C,D are linear categories.

• Show that the property that the idempotent (c, e) admits a splitting is preserved by all
functors F : C → D.

• Show that the property of being idempotent complete is preserved by all functors F : C → D.

Definition 5.4.28. The idempotent completion Idem(C) is the linear category whose objects are
pairs (c, e) where c ∈ C and e ∈ C(c→ c) is an idempotent. The morphism spaces are given by

C((a, e)→ (b, f)) := {x ∈ C(a→ b)|x = f ◦ x ◦ e} .

Observe that C((a, e)→ (b, f)) ⊆ C(a→ b) is a linear subspace, and if x ∈ C((a, e)→ (b, f)), then
x = x◦e = f◦x. Composition of morphisms is exactly composition in C, i.e., if x ∈ C((a, e)→ (b, f))
and y ∈ C((b, f)→ (c, g)), then y ◦ x ∈ C((a, e)→ (c, g)).

There is an obvious faithful inclusion functor C ↪→ Idem(C) given by c 7→ (c, idc).

Exercise 5.4.29. Show that Idem(C) is idempotent complete.

42



Exercise 5.4.30. Suppose C is a linear category and D is an idempotent complete linear category.
Show that any linear functor F : C → D factors uniquely through Idem(C). That is, show there is
a linear functor Idem(F) : Idem(C)→ D such that the following diagram commutes:

Add(C)

C D

∃!Idem(F)

F

(5.9)

and prove the functor Idem(F) is unique up to unique natural isomorphism (using Exercise 5.4.26).

Exercise 5.4.31. Use Exercise 5.4.30 to show that if C is idempotent complete, then C is equivalent
to Idem(C).

Definition 5.4.32. A linear category C is called Cauchy complete if it admits all finite direct sums
and it is idempotent complete. The Cauchy completion of a linear category C is C := Idem(Add(C)).
Observe that C is Cauchy complete by Exercise 5.4.29, and c 7→ (c, idc) gives a faithful linear functor
C ↪→ C.

Exercise 5.4.33. Suppose C is a linear category and D is a Cauchy complete linear category. Show
that any linear functor F : C → D factors uniquely through C, i.e., there is a unique linear functor
F : C → D such that the following diagram commutes:

C

C D

∃!F

F

(5.10)

Exercise 5.4.34. Use Exercise 5.4.33 to show that if C is Cauchy complete, then C is equivalent
to C.

Exercise 5.4.35. Find an example of a linear category C such that Add(Idem(C)) is not equivalent
to Idem(Add(C)).
Hint: Use an algebra without non-trivial idempotents with projective modules which are not free,
e.g., C(S2).

Example 5.4.36. The Temperley-Lieb category T L(d) is not idempotent complete. For example,
f (2) is an idempotent which does not split unless d = 1.

Proposition 5.4.37. Suppose [1], . . . , [k + 1] 6= 0, so that f (k) exists and has non-zero trace. For
every idempotent e ∈ TLk(d) such that e(TLk(d))e = Ce, there is an n ∈ {1 . . . , k} such that
(k, e) ∼= (n, f (n)) in Idem(T L(d)).

Proof. [[todo]]

Exercise 5.4.38 (**). A colimit in a (linear) category is called absolute if it is preserved by every
(linear) functor.

• Show that the absolute colimits in an ordinary category are split idempotents.

• Show that the absolute colimits in a linear category are split idempotents and direct sums.
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5.4.4 Projection and C∗ Cauchy completions

Suppose now that C is a C∗ category.

Definition 5.4.39. A projection in C is a pair (c, p) where c ∈ C and p ∈ C(c → c) such that
p ◦ p = p = p†. An orthogonal splitting for a projection (c, p) is a pair (a, v) where a ∈ C,
v ∈ C(a → c) is an isometry such that v† ◦ v = ida and v ◦ v† = p. A C∗ category C is called
projection complete if every projection admits an orthogonal splitting.

Exercise 5.4.40. Suppose (a, ba), (b, vb) are two orthogonal splittings of (c, p). Show that there is
a unique unitary isomorphism u : a→ b which is compatible with va, vb.

Exercise 5.4.41. Suppose C,D are C∗ categories.

• Show that the property that the projection (c, p) admits an orthogonal splitting is preserved
by all †-functors F : C → D.

• Show that the property of being projection complete is preserved by all †-functors F : C → D.

Definition 5.4.42. The projection completion Proj(C) is the †-category whose objects are projec-
tions (c, p) in C, and whose morphism spaces are

C((a, p)→ (b, q)) := {x ∈ C(a→ b)|x = q ◦ x ◦ p} .

Composition and † are just composition and † in C. There is an obvious faithful dagger functor
C ↪→ Proj(C).

Exercise 5.4.43. Prove that Proj(C) is C∗ and projection complete.

Exercise 5.4.44. Formulate and prove the universal property for Proj(C) analogous to (5.9) for
†-functors from C to a projection complete C∗ category D. (Use Exercise 5.4.40 for the uniqueness.)

Exercise 5.4.45. Use Exercise 5.4.44 to show that if C is projection complete, then C is dagger
equivalent to Proj(C).

Definition 5.4.46. A C∗ category is called C∗ Cauchy complete if it admits finite orthogonal
direct sums and is projection complete. The C∗ Cauchy completion of C is C := Proj(Add†(C)).
By Exercise 5.4.43, C is C∗ Cauchy complete. Again, there is an obvious faithful dagger functor

C ↪→ C†.

Exercise 5.4.47. Formulate and prove the universal property for C† analogous to (5.10) for †-
functors from C to a C∗ Cauchy complete category D.

Exercise 5.4.48. Use Exercise 5.4.47 to show that if C is C∗ Cauchy complete, then C is dagger

equivalent to C†.

Again, T L†(d) is not idempotent complete, but we have the following proposition.

Proposition 5.4.49. Suppose d is as in (4.1) and [1], . . . , [k + 1] 6= 0, so that f (k) exists and has

strictly positive trace. For every minimal projection p ∈ TL†k(d) such that p(TL†k(d))p = Cp, there
is an n ∈ {1 . . . , k} such that (k, e) ∼= (n, f (n)) in Proj(T L(d)).

Proof. [[todo: use Exercise 4.4.2]]
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5.5 Semisimplicity

In this section, we give a functional definition of semisimplicity for linear categories following
[Müg03]. We also give a criterion in the spirit of Roberts’ 2 × 2 trick [GLR85] which ensures
semisimplicity of the (C∗) Cauchy completion.

5.5.1 Semisimplicity for linear categories

Let C be a linear category.

Definition 5.5.1. An object c ∈ C is called simple if EndC(c) = C idc. Two simple objects a, b ∈ C
are called distinct if C(a→ b) = (0).

Definition 5.5.2 ([Müg03]). We call C semisimple if

(SS1) C admits (finite) direct sums,

(SS2) C is idempotent complete, and

(SS3) there is a set of pairwise distinct simple objects {ci}i∈I where I is some index set such that
for any a, b ∈ C, the composition map⊕

i∈I
C(a→ ci)⊗C C(ci → b) −→ C(a→ b) (5.11)

is an isomorphism. (The direct sum in (5.11) is the direct sum in the category of finite
dimensional complex vector spaces.)

We call C finitely semisimple if in addition C has finitely many isomorphism classes of simple objects.

Definition 5.5.3. Suppose C is semisimple. We call a ∈ C isotypic if there is a single distinct
simple object c such that the composition map

C(a→ c)⊗C C(c→ a)→ C(a→ a) (5.12)

is an isomorphism.

Lemma 5.5.4. Every isotypic object is isomorphic to a finite direct sum of the same simple object.

Proof. Suppose a ∈ C is isotypic. By (SS3) and (5.12), there are non-zero morphisms ιj : c → a
and πj : a → c for j = 1, . . . , n such that

∑n
j=1 ιj ◦ πj = ida, so (⊕2) holds. We claim that (⊕1)

also holds. For all x ∈ C(a→ a),

x =

(
n∑
i=1

ιi ◦ πi

)
◦ x ◦

 n∑
j=1

ιj ◦ πj

 =

n∑
i,j=1

xij(ιi ◦ πj)

where each xij ∈ C is defined by xij idc = πi ◦ x ◦ ιj ∈ C(c→ c) = C idc. We calculate

(x ◦ y)ik idc = πi ◦ x ◦ y ◦ ιk =
n∑
j=1

πi ◦ x ◦ ιj ◦ πj ◦ y ◦ ιk =
n∑
j=1

xijyjk idc,

so the map C(a→ a)→Mn(C) by x 7→ (xij)
n
i,j=1 is a unital algebra isomorphism. Hence πi ◦ ιj =

δi=j idc, and (⊕1) holds.
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Theorem 5.5.5. Suppose C is semisimple. Every object c ∈ C is isomorphic to a direct sum of
simple objects.

Proof. By (SS3), there are c1, . . . , cn pairwise distinct simples and non-zero morphisms (ιij : cj →
c)
kj
i=1, (π

i
j : c→ cj)

kj
i=1 such that

idc =
n∑
j=1

kj∑
i=1

ιij ◦ πij ,

i.e., (⊕2) holds. Since the only map between pairwise distinct simples is the zero map, we have

πij ◦ ιi
′
j′ = 0 unless j = j′. Notice that for each j = 1, . . . , n, ej :=

∑kj
i=1 ι

i
j ◦ πij is an idempotent

in C(c → c). By (SS2), (c, ej) splits, so there is an isotypic object aj ∈ C with aj ∼=
⊕kj

i=1 cj by
Lemma 5.5.4, vj : aj → c, and wj : c → aj such that wi ◦ vj = δi=j idaj and

∑n
j=1 vj ◦ wj = idc.

Hence

c ∼=
n⊕
j=1

aj ∼=
n⊕
j=1

kj⊕
i=1

cj ,

and (⊕1) holds.

Definition 5.5.6. Suppose C is semisimple and {ci}i∈I is a list of pairwise distinct simples from
the factorization axiom (SS3). By Theorem 5.5.5, every object c ∈ C can be expressed as a direct
sum of isotypic objects

c ∼=
n⊕
j=1

aj

where aj ∼=
⊕kj

i=1 cj . We call aj the j-th isotypic component of c.

Exercise 5.5.7. Suppose C is a Cauchy complete linear category whose isomorphism classes of
objects form a set. Show that the following conditions are equivalent.

(1) C is semisimple.

(2) For all a, b ∈ C, the linking algebra

L(a, b) := EndC(a⊕ b) =

(
C(a→ a) C(b→ a)
C(a→ b) C(b→ b)

)
with composition as in (C*) is a finite dimensional complex semisimple algebra.

(3) For all n ∈ N and all a1, . . . , an ∈ C, the linking algebra

L(a1, . . . , an) := EndC

(
n⊕
i=1

ai

)

with the obvious algebra structure is a finite dimensional complex semisimple algebra.

(4) Every object in C is a isomorphic to a finite direct sum of simple objects.

Example 5.5.8. The category Vecfd of finite dimensional vector spaces is finitely semisimple.
Indeed there is only one isomorphism class of simple objects.
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Example 5.5.9. Let S be a set. The category Vecfd(S) of finite dimensional S-graded vector
spaces is semisimple. Here, objects are of the form

V =
⊕
s∈S

Vs

where Vs ∈ Vecfd for each s ∈ S, and Vs = (0) for all but finitely many elements of S. The
morphisms are S-graded linear maps, i.e., if f : V →W , then

f = {fs : Vs →Ws}s∈S .

Example 5.5.10. The Temperley-Lieb category T L(d) is not semisimple. [[todo: finish]]

Exercise 5.5.11 (∗). Show that a linear category C is finitely semisimple if and only if it is
equivalent to Vecfd

n for some n ∈ N.

Exercise 5.5.12 (∗∗). Show that a linear category C is semisimple and the isomorphism classes of
simple objects of C form a set if and only if it is equivalent to Vecfd(S) for some set S.

Exercise 5.5.13 (∗∗). Show that a linear category C is semisimple if and only if it is abelian, has
finite dimensional hom spaces, and every exact sequence in C splits.

5.5.2 Unitary categories

The following exercises explore semisimplicity for C∗ categories.

Exercise 5.5.14. Suppose C is a semisimple C∗ category. Show that C admits finite orthogonal
direct sums and C is projection complete.

Exercise 5.5.15. Suppose C is a semisimple C∗ category. Prove that every object c ∈ C is unitarily
isomorphic to a finite orthogonal direct sum of simple objects.

Exercise 5.5.16. Suppose C is a C∗ category with finite dimensional morphism spaces. Show that
the C∗ Cauchy completion of C is semisimple.

Definition 5.5.17. A dagger category (C, †) is called a unitary category if (C, †) is C∗ and the
underlying linear category C is semisimple.
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Chapter 6

Tensor categories

6.1 Tensor categories

We now define tensor categories as linear monoidal categories. We do not use the terminology from
[EGNO15].

Definition 6.1.1. A tensor category is a linear category C together with the following additional
data:

• A linear bifunctor −⊗− : C × C → C,

• A distinguished object 1C ∈ C,

• assocaitor isomorphisms αa,b,c : a⊗ (b⊗ c)
∼=−→ (a⊗ b)⊗ c for all a, b, c ∈ C, separately natural

in all components, and

• unitor natural isomorphisms λa : 1C ⊗ a
∼=−→ a and ρa : a⊗ 1C

∼=−→ a for all a ∈ C,

and this data must satisfy the following axioms:

• (pentagon) for all a, b, c, d ∈ C, the following diagram commutes:

a⊗ (b⊗ (c⊗ d)) (a⊗ b)⊗ (c⊗ d)

((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d) (a⊗ (b⊗ c))⊗ d

αa,b,c⊗d

ida⊗αb,c,d

αa⊗b,c,d

αa,b⊗c,d
αa,b,c⊗idd

(D)

• (triangle) for all a, b ∈ C, the following diagram commutes:

a⊗ (1C ⊗ b) a⊗ b

(a⊗ 1C)⊗ b

ida⊗λb

αa,1C ,b ρa⊗idb

(M)

A tensor category (C,⊗, 1C , α, λ, ρ) is called strict if for every a, b, c ∈ C, a⊗(b⊗c) = (a⊗b)⊗c and
1C ⊗ a = a⊗ 1C = a, and the natural isomorphisms αa,b,c, λa, and ρa are all identity morphisms.
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Remark 6.1.2. Removing linearlity from above definition mutatis mutandis, we obtain the defi-
nition of a monoidal category.

Definition 6.1.3. We endow T L(d) with the structure of a strict tensor category as follows. On
objects, we define m⊗n := m+n. For string diagrams x ∈ T L(d)(m→ n) and y ∈ T L(d)(p→ q),
we define x ⊗ y ∈ T L(d)(m + p → n + q) to be the horizontal concatenation of x and y. For an
explicit example,

⊗ := .

We then extend −⊗− : T L(d)× T L(d)→ T L(d) bilinearly in each argument.

Exercise 6.1.4. Verify that this tensor product endows T L(d) with the structure of a struct tensor
category. That is, verify (D) and (M) hold using only identity morphisms.

Exercise 6.1.5. Suppose C is a tensor category. Endow the following linear categories with tensor
product structures which are compatible with the fully faithful inclusion of C:

• the additive envelope Add(C),

• the idempotent completion Idem(C), and

• the Cauchy completion C.

6.1.1 Tensor functors and monoidal natural transformations

[[todo.]]

6.1.2 Semisimple multitensor categories

Definition 6.1.6. A semisimple multitensor category is a tensor category whose underlying linear
category is semisimple. If in addition 1C is simple, we call C a semisimple tensor category

Definition 6.1.7. Let Irr(C) denote a set of representatives for the isomorphism classes of C. For
a, b, c ∈ Irr(C), we define the fusion coefficeint

N c
a,b := dim(Hom(a⊗ b→ c)).

We call C multiplicity free if N c
a,b ∈ {0, 1} for all a, b, c ∈ Irr(C).

Exercise 6.1.8. Show that for all a, b, c, d ∈ Irr(C),∑
e∈Irr(C)

N e
a,bN

d
e,c =

∑
f∈Irr(C)

Nd
a,fN

f
b,c.

Definition 6.1.9. Suppose C is a semisimple tensor category. The fusion graph of c ∈ C has
vertices the set Irr(C) and dim(Hom(a⊗ c→ b)) oriented edges between the vertices a, b ∈ Irr(C).

Exercise 6.1.10. Suppose d = exp(2πi/(2k)) for k ≥ 3. Show that the fusion graph for the strand
X ∈ T L†(d) is the Ak−1 Coxeter-Dynkin diagram.

Exercise 6.1.11. Suppose G is a finite group. Show that the fusion graph of C[G] ∈ Vec(G) is the
graph with vertices labelled by g ∈ G and one edge from g to h for every g, h ∈ G.

[[todo.]]
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6.2 Tensor C∗ categories

For this section, let (C, †) be a (linear) dagger category.

Definition 6.2.1. A morphism u ∈ C(a→ b) is called unitary if u† ◦ u = ida and u ◦ u† = idb.

Definition 6.2.2. A tensor dagger category is a tensor category (C,⊗1C , α, λ, ρ) with a dagger
structure † such that (C, †) is a dagger category, −⊗− : C×C → C is a dagger bifunctor ((x⊗y)dag =
x† ⊗ y† for all morphisms x ∈ C(a → b) and y ∈ C(c → d)), and all assocaitor and unitor natural
isomorphisms are unitary.

A tensor dagger category is called a tensor C∗ category if the underlying dagger category (C, †)
is a C∗ category.

Exercise 6.2.3. Show that the tensor structure for T L(d) from Definition 6.1.3 makes T L(d) a
tensor dagger category.

Exercise 6.2.4. Suppose x ∈ T L(d)(m → n) and y ∈ T L(d)(p → q). Show that if x or y is
negligible, then so is x⊗ y.

Exercise 6.2.5. Show that (x+Nm→n)⊗ (y +Np→q) := x⊗ y +Nm+p→n+q endows T L†(d) with
the structure of a strict tensor C∗ category.

6.2.1 Unitary tensor categories

Definition 6.2.6. A tensor C∗ category whose underlying C∗ category is unitary (semisimple) is
called a unitary multitensor category. If in addition 1C is simple, we call C a unitary tensor category.

[[todo: expand]]

6.3 Examples from groups and cohomology

We now present more examples of tensor (C∗) categories coming from groups. We begin with some
basics on cocycles.

Definition 6.3.1. Let G be a group, A an abelian group, and π : G→ Aut(A) a group homomor-
phism (a.k.a. an action of G on A). We define the space of n-cochains as Cn(G;A) := {f : Gn → A}.
Given an n-cochain ω ∈ Cn(G;A), for 0 ≤ i ≤ n+ 1, we define di(ω) ∈ Cn+1(G;A) by

d0(ω)(g0, . . . , gn) := πg0 · ω(g1, . . . , gn)

di(ω)(g0, . . . , gn) := ω(g0, . . . , gi−2, gi−1gi, gi+1, . . . , gn) ∀1 ≤ i ≤ n
dn+1(ω)(g0, . . . , gn) := ω(g0, . . . , gn−1).

We define d :=
∑n

i=0(−1)idi. An n-cochain ω is called:

• an n-cocycle if d(ω) = 0, and

• an n-cochain is called an n-coboundary if it is in the image of d : Cn−1(G;A)→ Cn(G;A).

We denote the space of n-cocycles and n-coboundaries by Zn(G;A) and Bn(G;A) repsectively.

Exercise 6.3.2. Prove that di ◦ dj = dj−1 ◦ di for i < j. Deduce that d ◦ d = 0.
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Exercise 6.3.3. Show that Cn(G;A), Zn(G,A), and Bn(G;A) are abelian groups under pointwise
addition of functions valued in A.

Definition 6.3.4. The n-th cohomology of G with values in (A, π) is the abelian group

Hn(G;A) := Zn(G;A)/Bn(G;A).

Two cocycles ω, υ ∈ Zn(G;A) are called cohomologous if ω + Bn(g;A) = υ + Bn(g;A), i.e., they
induce the same cohomology class in Hn(g;A).

Exercise 6.3.5. Suppose A = C× and π : G → Aut(C×) is the trivial action. Show that if G is
finite, any ω ∈ Zn(G;C×) is cohomologous to a cocycle which only takes values in U(1), the unit
circle.

6.3.1 Categorical 1-groups

Example 6.3.6. Let G be a group. The category G has objects the elements of G and only
identity morphisms, i.e., Hom(g, h) = δg=h idg. Hence composition is trivial. We define a strict
tensor structure by g ⊗ h := gh.

Example 6.3.7. Let G be a group and ω ∈ Z3(G;C×), where the action of G → Aut(C×) is
trivial. The category G(C×, ω) has objects the elements of G and Hom(g, h) = δg=hC× idg, where
composition is given by multiplication. We define a tensor structure by g ⊗ h := gh, tensor
product of morphisms is just multiplication, αg,h,k := ω(g, h, k) idghk, λg := ω(g, 1, 1) idg, and
ρg := ω(1, 1, g)−1.

Exercise 6.3.8. Show that the pentagon axiom (D) for Example 6.3.7 is exactly the 3-cocycle
condition for ω ∈ Z3(G;C×). Then show that the triangle axiom (M) holds for Example 6.3.7 by
analyzing dω(g, 1, 1, h).

Exercise 6.3.9. Show that if ω, υ ∈ Z3(G;C×) are cohomologous, then G(C×, ω) is monoidally
equivalent to G(C×, υ).

The previous examples are special cases of the following.

Example 6.3.10. Suppose G is a group, A is an abelian group, π : G → Aut(A) is a group
homomorphism , and ω ∈ Z3(G;A). Let G(A, π, ω) be the category whose objects are the group
elements g ∈ G, whose morphism sets are Hom(g, h) := δg=hA, and whose composition law is
the group law in A. We define a tensor structure on G(A, π, ω) similar to Exercise 6.3.7, i.e.,
g⊗h := gh, αg,h,k := ω(g, h, k) ∈ End(ghk), λg := ω(g, 1, 1) ∈ End(g), ρg := −ω(1, 1, g) ∈ End(g).1

However, the tensor product of morphisms is more subtle. For a ∈ End(g) and b ∈ End(h), we
define a⊗ b := a+ πg(b).

Exercise 6.3.11. Repeat Exercise 6.3.8 in the context of Example 6.3.10.

Exercise 6.3.12 (Sinh, [BS10, §4.2]). Show that every monoidal category C whose objects are all
invertible (for every a ∈ C, there is a b ∈ C such that a⊗ b ∼= 1C ∼= b⊗ a) and whose morphisms are
all invertible is monoidally equivalent to a monoidal category of the form G(A, π, ω).

1We write the group law multiplicatively in C× and additively in A.
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6.3.2 G-graded spaces

Exercise 6.3.13. Describe the associators and unitors in the tensor category Vec of complex vector
spaces.

Definition 6.3.14. The category Vec(G) of G-graded vector spaces has objects complex vector
spaces graded by G

V =
⊕
g∈G

Vg

and morphisms G-graded linear transformations. For U, V ∈ Vec(G), we define the tensor product
by defining its g-graded component by

(U ⊗ V )g :=
⊕
h,k∈G
g=hk

Uh ⊗ Vk,

and the associator and unitor isomorphisms are the same as in the category of vector spaces.
We define Vecfd(G) to be the full tensor subcategory of finite dimensional complex vector

spaces. Similarly, Hilb(G) denotes the tensor C∗ category of G-graded Hilbert spaces with G-graded
bounded linear operators and adjoint of bounded operators. We denote by Hilbfd(G) the full tensor
C∗ subcategory of finite dimensional G-graded Hilbert spaces.

Exercise 6.3.15. Suppose ω ∈ Z3(G;C×) as in Example 6.3.7. Define Vec(G,ω) and show it
is a tensor category. Then show that as in Exercise (6.3.9), cohomologous cocycles give tensor
equivalent categories.

Exercise 6.3.16. Repeat Exercise 6.3.15 for Hilb(G,ω) where ω ∈ Z3(G;U(1)).
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Chapter 7

Graphical calculus, part I

In this section, we develop the graphical calculus for tensor categories. We begin with an unbi-
ased version of an ordinary unital complex algebra called a linear algebra before proceeding to an
unbiased version of a tensor category called a tensor algebras.

7.1 Linear algebras and unbiased multiplication

7.1.1 Unbiased definition of a monoid

Recall that a monoid (M, ·) is a set together with an associative binary operation · : M ×M →M
and a unit e ∈M . Consider the following standard introductory exercise.

Exercise 7.1.1. Show that for any n elements x1, . . . , xn ∈ M , the product of x1 · · ·xn does not
depend on the parenthesization of x1, . . . , xn.

Here, we see that the definition of monoid is biased toward multiplying 2 elements at a time.
We can define an unbiased version as follows.

Definition 7.1.2. A monoid is a set M together with n-ary operations µn : Mn → M for every
n ∈ N such that

• µ1 : M →M is the identity, and

• Inserting µk into the i+ 1-th spot of µn+1 gives the map µn+k : Mn+k →M .

µn+1 ◦ (idM × · · · × idM︸ ︷︷ ︸
i factors

×µk × idM × · · · × idM︸ ︷︷ ︸
n− i factors

) = µn+k.

Exercise 7.1.3. Add linearity to the above discussion to get the unbiased definition of a unital
associative complex lgebra.

7.1.2 Linear algebras

We give the following diagrammatic calculus for the unbiased definition of a unital associative
complex algebra by adapting [GMP+18, §3.2].

Definition 7.1.4. The linear operad consists of the 1D Swiss cheese diagrams [Vor99] consisting
of a large interval, several removed subintervals called holes, all considered up to diffeomorphism.
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These interval diagrams can be composed by plugging some new big intervals into the holes to get
a new diagram.(

1 2
)
◦2
(

1 2
)

=
(

1 2 3
)

A linear algebra in vector spaces is an algebra for the linear operad, which means it consists of a
vector space A together with a linear map A⊗n → A attached to each linear Swiss cheese diagram
with n holes. These maps must be compatible with the operad structure (i.e., plugging elements of
A into holes, and plugging diagrams into larger diagrams, associates). Unpacking this definition,
a linear algebra in vector spaces consists of multiplication maps µn : A⊗n → A for every natural
number n (n = 0 gives the unit) which satisfy the appropriate associativity relations. This is
exactly the unbiased definition of a unital associative algebra.

7.1.3 Linear categories and algebras

We now add string labels to get an unbiased version of a linear category which allows us to compose
n morphisms at a time.

Definition 7.1.5. Suppose S is a set of string labels. The S-linear operad consists of 1D Swiss
cheese diagrams whose connected components are labelled by elements of S. To agree with future
examples, it helps to think of these components as strings connecting each hole to the next hole or
to the outside interval.

w x y z
1 2 3

Again the operadic structure comes from gluing linear tangles into the holes, but since substitution
only makes sense when the labels match, this is a colored operad. An algebra •V• for this operad
consists of a family of vector spaces {xVy}x,y∈S together with an action of linear tangles with
holes. That is, to each linear tangle T with components labelled by x1, . . . , xn, we get a linear map
Z(T ) : x1Vx2 ⊗ · · · ⊗ xn−1Vxn → x1Vxn which is compatible with composition of linear tangles with
holes.

Exercise 7.1.6. Show that an algebra for the S-linear operad gives an unbiased definition of a
linear category whose set of objects is S, whose hom spaces Hom(x→ y) are the vector spaces xVy,
and whose composition of morphisms is the action of linear tangles.
Hint: The identity morphisms come from the tangles with no holes.

7.2 Tensor algebras and unbiased tensor categories

Sometimes there is a good analogy between going one categorical dimension higher and going one
topological dimension higher. This is the case for a tensor algebra, which is an unbiased version of
a linear category. Again, we adapt [GMP+18, §3.2].

Definition 7.2.1. An S-tensor tangle is a 2D Swiss cheese diagram consisting of a rectangle, with
several smaller rectangles (with edges parallel to those of the big one) removed, and some non-
crossing smooth strings labelled by elements of S which are oriented upward, have no minima or
maxima, and begin and end on the tops or bottoms of the rectangles. We say a monoidal tangle T
has type ((s0, t0); (s1, t1), . . . , (sk, tk)) where s0, . . . , sk, t0, . . . , tk are finite words on S if the tangle
T has k input rectangles, and there are |si|, |ti| strings attached to the bottom and top respectively
of the i-th rectangle (the zeroth rectangle is the output rectangle and 1 ≤ i ≤ k corresponds to the
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i-th input rectangle), which are labelled by the characters in the words si, ti respectively. Here is
an example of a tangle with S = { , , }, where we color the strings instead of labelling them:

1

2

3

has type ((︸ ︷︷ ︸
s0

, ︸︷︷︸
t0

); (︸︷︷︸
s1

, ︸︷︷︸
t1

), (︸︷︷︸
s2

, ︸︷︷︸
t2

), (︸︷︷︸
s3

, ∅︸︷︷︸
t3

)).

Tensor tangles are considered up to isotopy (through diagrams that again have no minima or
maxima). Tensor tangles form a colored operad, because you can insert tensor tangles into the
rectangles of a large tensor tangle to get a new tensor tangle.

Definition 7.2.2. An S-tensor algebra is an algebra for the operad of S-tensor tangles. Unpacking
this definition, a tensor algebra P•→• consists of a family of finite dimensional vector spaces Ps→t
where s, t are finite words in S, together with an action of tensor tangles. To each tensor tangle T
of type ((s0, t0); (s1, t1, . . . , (sk, tk))), we associate a multilinear map Z(T ) :

∏k
j=1 Psj→tj → Ps0→t0 ,

and composition of tensor tangles corresponds to composition of multilinear maps. Here is an an
example:

Z


1

2

3

 : P → × P → × P →∅ → P →

A tensor algebra is called semisimple if for every pair of words s, t on S, the 2× 2 linking algebra

L(s, t) :=

(
Ps→s Pt→s
Ps→t Pt→t

)
(7.1)

whose multiplication given by matrix multiplication together with the appropriate ‘stacking’ mul-
tiplication tangles is a finite dimensional semisimple algebra.

Example 7.2.3. Suppose C is a tensor category with a set of objects S := {Xs}s∈S which
Cauchy tensor generates C, i.e., every object in C is isomorphic to a summand of a direct sum
of tensor products of objects in S. We define an S-tensor algebra P(C,S)•→• as follows. For
s1, . . . , sk, t1, . . . , t` ∈ S, we define

P(C,S)s1···sk→t1···t` := C(Xs1 ⊗ · · · ⊗Xsk → Xt1 ⊗ · · · ⊗Xt`).

We use the convention that if ∅ is the empty word on S, then the empty tensor product of objects
is 1C . The action of tangles is given as follows:

[[todo: explain]]

Theorem 7.2.4. There is an equivalence of categories 1{
S-tensor algebras P•→• with finite
dimensional box spaces Pm→n

}
∼=

{
Pairs (C, {Xs}s∈S) with C a tensor category
with Cauchy tensor generators Xs ∈ C for
s ∈ S

}
.

Under this equivalence, semsimple S-tensor algebras correspond to semisimple tensor categories.
1 Pairs (C, {Xs}s∈S) form a 2-category where between any two 1-morphisms, there is at most one 2-morphism,

which is necessarily invertible when it exists [HPT16b, Lem. 3.5]. Hence this 2-category is equivalent to its truncation
to a 1-category.
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7.2.1 Shadings is tensor algebras

Now suppose C is a semisimple tensor category.

Exercise 7.2.5. Show that C(1C → 1C) is abelian, i.e., there is an r ∈ N such that C(1C → 1C) ∼= Cr.
Hint: Mimic the proof that π2(X) is abelian for a topological space X.

By Exercise 7.2.5, we may decompose 1C ∼=
⊕r

i=1 1i as a direct sum of r distinct simples. We
call such a C an r-shaded semisimple tensor category. We write

Cij := 1i ⊗ C ⊗ 1j , (7.2)

and we note that C =
⊕r

i,j=1 Cij . We also have distinguished idempotents pi ∈ C(1C → 1C)
corresponding to each summand 1i for 1 ≤ i ≤ r. In the graphical calculus, we represent these
projections, which freely float about in their regions, as a single shading. For example, we could
denote

= pi = pj .

Then for objects a, b ∈ Cij , we would denote a morphism f ∈ C(a→ b) by

f

.

This motivates the following definition.

Definition 7.2.6. An R-shaded S-tensor tangle with label set S is a tensor tangle with string label
set S whose regions are shaded by the elements of R such that each element x ∈ S has a left source
shading sx ∈ R and a right target shading ty ∈ R.

Example 7.2.7. For the shading set R = { , , }, and the label set S = { , , , }, we
have the following R-shaded monoidal tangle with label set S:

1

2

3

.

Definition 7.2.8. An R-shaded S-tensor algebra is an algebra over the operad of R-shaded S-
tensor tangles. Notice this means that the spaces Px→y are only well-defined when consecutive
characters in the words x and y have compatible target and source shadings, and the source and
target shadings of the words x and y agree.

We have the following shaded version Theorem 7.2.4.

Corollary 7.2.9. There is an equivalence of categories (see Footnote 1)Semisimple {1, . . . , r}-shaded
S-tensor algebras P•→•

 ∼=


Pairs (C, {Xy}y∈S) with C an r-shaded semisimple
tensor category with decomposition 1 =

⊕r
i=1 1i

with Cauchy tensor generators Xy ∈ Csy ,ty for y ∈ S

 .
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Chapter 8

The synoptic chart of tensor
categories

We now provide a brief interlude to provide the synoptic chart of properties and structures for tensor
categories. We then provide the modified chart for unitary tensor categories. In the upcoming
chapters, we will discuss in detail dualizability and pivotal structures and braidings on tensor
categories.

In the charts below,

• An arrow A B indicates that notion B can be obtained from notion A by forgetting
part of the data. This also means that notion A can be obtained from B by adding extra
structure.

• An arrow A B indicates that notion A can be obtained from notion B by imposing
extra axioms. That is, notion A should be considered as a property of notion of B, and not
extra structure.

• A dashed arrow A B
Z

indicates that the Drinfeld center construction goes from notion
A to notion B.

• An arrow with two heads A B indicates an equivalence between notions A and B.

• A double arrow A B
P indicates that notion A implies notion B assuming property P.
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tensor

braided has duals

balanced braided with duals pivotal

balanced with duals braided pivotal spherical

ribbon braided spherical
semisimple

ϕ : idC ⇒ ∨◦∨

x

ϕ
=

x

ϕ

TrϕL(x) = TrϕR(x)

x

ϕ−1
=

x

ϕ

∀ = pi, = pj

ev = : c∨ ⊗ c → 1C
coev = : 1C → c⊗c∨

= =

βa,b = : a⊗b
∼=−→ b⊗a

=
(R2)

+ (R3)×2

θ : idC ⇒ idC

θc = θ−1
c =

θa⊗b = (θa⊗θb)◦βb,a◦βa,b

θ∨a = θa∨
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Chapter 9

Dualizability in tensor categories

In this section, we investigate common properties and structures of tensor categories. We keep in
mind the example of finite dimensional G-graded vector/Hilbert spaces. For this section, C will
denote a linear tensor category which is not necessarily semisimple. Throughout, we suppress all
associators and unitors whenever possible.

9.1 Dualizability

Consider the category of complex vector spaces Vec. The dual space of V ∈ Vec is the space
V ∨ := Hom(V → C) of linear functionals on V . Notice that the dual space comes with a canonical
evaluation map V ∨ ⊗ V → C given by the linear extension of f ⊗ v 7→ f(v). When V is finite
dimensional, we have a canonical isomorphism V ⊗ V ∨ ∼= End(V ) given by the linear extension of
the v ⊗ f 7→ f( · )v ∈ End(V ). This gives us a canonical coevaluation map C → V ⊗ V ∨ given by
λ 7→ λ

∑
b b⊗ b∨ where {b} is a basis for B and {b∨} denotes the dual basis of V ∨.

Exercise 9.1.1. Show that
∑

b b
∨( · )b = idV and is thus independent of the choice of basis. Then

use the canonical isomorphism V ⊗ V ∨ ∼= End(V ) to show
∑

b b ⊗ b∨ is independent of the choice
of basis.

The situation is analogous in the category Rep(G) of finite dimensional complex representations
of G, and in the category Vec(G) of G-graded vector spaces, perhaps twisted by a 3-cocycle ω ∈
Z3(G,C×).

Exercise 9.1.2. Show that when V ∈ Rep(G), V ∨ also carries a canonical linear representation of
G given by (g · f)(v) := f(g−1 · v). Then show that the evaluation and coevaluation maps are both
G-equivariant and thus define maps in Rep(G).

9.1.1 Duals and preduals

Definition 9.1.3. An object c ∈ C is called dualizable if there is an object c∨ ∈ C together with
morphisms evc ∈ C(c∨ ⊗ c→ 1C) and coevc ∈ C(1C → c⊗ c∨) which satisfy the zig-zag axioms

c c⊗ c∨ ⊗ c

c

coevc⊗ idc

idc
idc⊗ evc

c∨ c∨ ⊗ c⊗ c∨

c∨

idc⊗ coevc

idc∨
evc⊗ idc

(9.1)
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The triple (c∨, evc, coevc) is called a dual of C. We say that C has duals if every c ∈ C has a dual
in C.

In the tensor algebra graphical calculus, the evaluation and coevaluation are best represented
by caps and cups respectively:

evc = [[todo]]

We then see that the zig-zag axioms are exactly Morse cancellation of critical points:

[[todo]]

Exercise 9.1.4. Show that a vector space V ∈ Vec is dualizable if and only if it is finite dimensional.
Repeat this exercise for G-graded vector spaces.

Exercise 9.1.5. Suppose a, b ∈ C both have duals. Find a dual for a⊗ b.

Exercise 9.1.6. Show that given objects c, c∨ ∈ C and a map evc ∈ C(c∨ ⊗ c → 1C), there is at
most one coevc ∈ C(1C → c⊗ c∨) satisfying (9.1). In this sense, we say that evaluation determines
coevaluation.

Exercise 9.1.7. Show that coevaluation also determines evaluation, i.e., given a map coev ∈
C(1C → c⊗ c∨), there is at most one evc ∈ C(c∨ ⊗ c→ 1C) satisfying (9.1).

Exercise 9.1.8. Show that given two duals (c∨1 , ev1, coev1) and (c∨2 , ev2, coev2) for c ∈ C, the
following two conditions are equivalent for a map ζc ∈ C(c∨2 → c∨1 ):

(1) ev2 ◦(ζc ⊗ idc) = ev1, and

(2) (idc⊗ζc) ◦ coev1 = coev2.

Show that the above conditions uniquely determine ζc, which is necessarily an isomorphism. Deduce
that given two duals of c ∈ C, there is a unique isomorphism ζc ∈ C(c∨2 → c∨1 ) satisfying the above
conditions.
For later use, we record the following formula for ζc:

ζc :=
c∨2

c∨1 = (ev2
c ⊗ idc∨1 ) ◦ (idc∨2 ⊗ coev1

c). (9.2)

Definition 9.1.9. An object c∨ ∈ C is called a predual of c ∈ C if there exists an isomorphism
(c∨)∨ ∼= c. We say that C has preduals if every object in C admits a predual.

Exercise 9.1.10. Find an object in a tensor category which:

• admits a predual but does not admit a dual, and

• admits a dual but does not admit a predual.

Remark 9.1.11. [[comment about left/right rigidity]]

Definition 9.1.12. Suppose that C has duals. A dual functor consists of a choice of dual (c∨, evc, coevc)
for each c ∈ C, which may be amalgamated into a linear anti-tensor functor (∨, ν) : C → C as follows.
On objects, we define ∨(c) := c∨, and on morphisms f ∈ C(a→ b), we define

f∨ := (evb⊗ ida∨) ◦ (idb∨ ⊗f ⊗ ida∨) ◦ (idb∨ ⊗ coeva).

The canonical anti-tensorator νa,b ∈ C(a∨ ⊗ b∨ → (b⊗ a)∨) is defined by taking the unique isomor-
phism ζb⊗a for the two duals (b⊗ a)∨ and a∨ ⊗ b∨ for b⊗ a:

νa,b := ζb⊗a = (eva⊗ id(b⊗a)∨) ◦ (ida∨⊗evb⊗ ida⊗ id(b⊗a)∨
) ◦ (ida∨⊗b∨ ⊗ coevb⊗a).

Observe that ν is not part of the data of ∨ as ν is completely determined by ∨.
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Exercise 9.1.13. Show that given any two dual functors ∨1,∨2 : C → C, the unique isomorphisms
from Exercise 9.1.8 give a unique monoidal natural isomorphism ζ : ∨1 ⇒ ∨2 which is compatible
with the evaluation and coevaluation maps.

9.1.2 Duality and semisimplicity

For this section, we assume C is a semisimple tensor category which has duals.

Exercise 9.1.14 ([HPT16a, Lem. A.5]). Suppose c ∈ C and (c∨, evc, coevc) is a dual of c. Suppose
that ε : c∨ ⊗ c→ 1C and η : 1C → c∨ ⊗ c are non-zero morphisms. Prove that ε ◦ η 6= 0.

Definition 9.1.15. A multifusion category is a finitely semisimple tensor category with duals and
preduals. If in addition 1C is simple, we call C a fusion category.

Example 9.1.16. For G a finite group, the category Rep(G) of finite dimensional complex repre-
sentations of G is a fusion category, as is the category Vec(G,ω) of G-graded vector spaces with
associator twisted by ω ∈ Z3(G,C×).

9.1.3 Duality in unitary tensor categories

Definition 9.1.17.

[[canonical iso c→ c∨∨ in the presence of a unitary dual functor.]]

9.1.4 Unitary fusion categories

Exercise 9.1.18. Show that a unitary fusion category has a unique unitary dual functor up to
unique unitary monoidal natural isomorphism.

9.2 Pivotal structures

9.2.1 Trace and dimension

9.2.2 Semisimplicity and nondegeneracy of the trace
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[HPT16a] André Henriques, David Penneys, and James Tener, Categorified trace for module tensor categories over
braided tensor categories, Doc. Math. 21 (2016), 1089–1149, MR3578212 arXiv:1509.02937.
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[Müg03] Michael Müger, From subfactors to categories and topology. I. Frobenius algebras in and Morita
equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003), no. 1-2, 81–157, MR1966524

DOI:10.1016/S0022-4049(02)00247-5 arXiv:math.CT/0111204.

[Pal01] Theodore W. Palmer, Banach algebras and the general theory of ∗-algebras. Vol. 2, Encyclopedia of
Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001, ∗-algebras,
MR1819503 DOI:10.1017/CBO9780511574757.003.

[Pop95] Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math.
120 (1995), no. 3, 427–445, MR1334479 DOI:10.1007/BF01241137.

65

http://arxiv.org/abs/1509.00038
http://www.ams.org/mathscinet-getitem?mr=MR3069440
http://dx.doi.org/10.1007/BF02950718
http://www.ams.org/mathscinet-getitem?mr=MR1448713
http://dx.doi.org/10.1006/aima.1997.1617
http://www.ams.org/mathscinet-getitem?mr=MR2664619
http://arxiv.org/abs/math/0608420
http://www.ams.org/mathscinet-getitem?mr=MR3242743
http://dx.doi.org/10.1090/surv/205
http://www.ams.org/mathscinet-getitem?mr=MR999799
http://www.ams.org/mathscinet-getitem?mr=MR808930
http://arxiv.org/abs/1810.06076
http://www.ams.org/mathscinet-getitem?mr=MR3578212
http://arxiv.org/abs/1509.02937
http://arxiv.org/abs/1607.06041
http://www.ams.org/mathscinet-getitem?mr=MR696688
http://dx.doi.org/10.1007/BF01389127
http://www.ams.org/mathscinet-getitem?mr=MR0766964
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
https://math.vanderbilt.edu/jonesvf/VONNEUMANNALGEBRAS2015/VonNeumann2015.pdf
http://www.ams.org/mathscinet-getitem?mr=MR1473221
http://www.ams.org/mathscinet-getitem?mr=MR899057
http://dx.doi.org/10.1016/0040-9383(87)90009-7
http://www.ams.org/mathscinet-getitem?mr=MR1966524
http://dx.doi.org/10.1016/S0022-4049(02)00247-5
http://arxiv.org/abs/math.CT/0111204
http://www.ams.org/mathscinet-getitem?mr=MR1819503
http://dx.doi.org/10.1017/CBO9780511574757.003
http://www.ams.org/mathscinet-getitem?mr=MR1334479
http://dx.doi.org/10.1007/BF01241137


[PP86] Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19
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